Package ‘tsdataleaks’

February 6, 2024

Type Package

Title Exploit Data Leakages in Time Series Forecasting Competitions

Version 2.1.1

Description Forecasting competitions are of increasing importance as a mean to learn best practices and gain knowledge. Data leakage is one of the most common issues that can often be found in competitions. Data leaks can happen when the training data contains information about the test data. For example: randomly chosen blocks of time series are concatenated to form a new time series, scale-shifts, repeating patterns in time series, white noise is added in the original time series to form a new time series, etc. ‘tsdataleaks’ package can be used to detect data leakages in a collection of time series.

License GPL (>= 2)

URL https://github.com/thiyangt/tsdataleaks

BugReports https://github.com/thiyangt/tsdataleaks/issues

Depends R (>= 3.6.0)

Imports stats, tibble (>= 1.4.1), ggplot2 (>= 3.0.0), dplyr (>= 1.0.0), tidyr (>= 1.1.0), slider, purrr, utils, cowplot, plyr, viridis

Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat (>= 2.1.0), knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Thiyanga S. Talagala [aut, cre]
(https://orcid.org/0000-0002-0656-9789)

Maintainer Thiyanga S. Talagala <ttalagala@sjp.ac.lk>

Repository CRAN

Date/Publication 2024-02-06 16:50:02 UTC
find_dataleaks

R topics documented:

find_dataleaks .. 2
reason_dataleaks .. 3
ts.match ... 4
viz_dataleaks .. 5

Description

Correlation calculation based on rolling window with overlapping observations.

Usage

find_dataleaks(lstx, h, cutoff = 1)

Arguments

 lstx list of time series
 h length of forecast horizon
 cutoff benchmark value for corr absolute value, default 1

Value

list of matching quantities

Examples

a = rnorm(15)
lst <- list(
 a = a,
 b = c(a[10:15], rnorm(10), a[1:5], a[1:5]),
 c = c(rnorm(10), a[1:5])
)
find_dataleaks(lst, h=5)

List without naming elements
lst <- list(

 x = a,
 y = c(rnorm(10), a[1:5])
)
find_dataleaks(lst, h=5)
reason_dataleaks

```r
c(rnorm(10), a[1:5], a[1:5]),
  rnorm(10)
)
find_dataleaks(lst, h=5)
```

Description

Correlation calculation based on rolling window with overlapping observations.

Usage

```r
reason_dataleaks(lstx, finddataleaksout, h, ang = 0)
reason_dataleaks(lstx, finddataleaksout, h, ang = 0)
```

Arguments

- `lstx` list of time series
- `finddataleaksout` list, the output generated from `find_dataleaks` function
- `h` length of the window size
- `ang` angle at which the tick and axis labels should be displayed (default 0)

Value

matrix visualizing the output

Examples

```r
a = rnorm(15)
lst <- list(
  a = a,
  b = c(a[10:15], rnorm(10), a[1:5]+10, a[1:5]),
  c = c(rnorm(10), a[1:5])
)
fl <- find_dataleaks(lst, h=5)
reason_dataleaks(lst, fl, h=5)

# List without naming elements
lst <- list(
  a,
```
ts.match

Correlation calculation based on rolling window with overlapping observations.

Description

Correlation calculation based on rolling window with overlapping observations.

Usage

\[\text{ts.match}(x, y, \text{cutoff} = 1) \]

Arguments

- **x**: time series
- **y**: subsection of the time series to map
- **cutoff**: benchmark value for corr, default 1

Value

Pearson’s correlation coefficient between \(x \) and \(y \)

Examples

\begin{verbatim}
 x <- rnorm(15)
y <- -x[6:10]
x <- c(x, y)
ts.match(x, y, 1)
z <- rnorm(5)
ts.match(x, z)
\end{verbatim}
viz_dataleaks

Correlation calculation based on rolling window with overlapping observations.

Description

Correlation calculation based on rolling window with overlapping observations.

Usage

viz_dataleaks(finddataleaksout)

Arguments

finddataleaksout

list, the output generated from find_dataleaks function

Value

matrix visualizing the output

Examples

a = rnorm(15)
lst <- list(
 a = a,
 b = c(a[10:15]+rep(8,6), rnorm(10), a[1:5], a[1:5]),
 c = c(rnorm(10), a[1:5]),
 d = rnorm(10)
)
f1 <- find_dataleaks(lst, h=5)
viz_dataleaks(f1)

a = rnorm(15)
lst <- list(
 x= a,
 y= c(rnorm(10), a[1:5])
)
f2 <- find_dataleaks(lst, h=5)
viz_dataleaks(f2)

List without naming elements
lst <- list(
 a,
 c(rnorm(10), a[1:5], a[1:5]),
 rnorm(10)
)
f3 <- find_dataleaks(lst, h=5)
viz_dataleaks(f3)
Index

find_dataleaks, 2
reason_dataleaks, 3
ts.match, 4
viz_dataleaks, 5