Package ‘tsensembler’

August 28, 2017

Title Dynamic Ensembles for Time Series Forecasting

Version 0.0.2

Author Vitor Cerqueira [aut, cre],
Luis Torgo [ctb],
Carlos Soares [ctb]

Maintainer Vitor Cerqueira <cerqueira.vitormanuel@gmail.com>

Imports xts, RcppRoll, methods, ranger, glmnet, earth, kernlab, Cubist, nnet, gbm, zoo, pls

Suggests testthat

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

URL http://github.com/vcerqueira/tsensembler

NeedsCompilation no

Repository CRAN

Date/Publication 2017-08-28 12:20:49 UTC
R topics documented:

ADE ... 3
ADE-class ... 4
ade_hat ... 6
ade_hat-class .. 6
base_ensemble ... 7
blocked_prequential 8
bm_cubist .. 8
bm_ffnn ... 9
bm_gaussianprocess 10
bm_gbm ... 10
bm_glm .. 11
bm_mars .. 12
bm_pls_pcr ... 12
bm_ppr ... 13
bm_randomforest ... 14
bm_svr ... 15
build_base_ensemble 15
DETS ... 16
DETS-class .. 18
dets_hat ... 19
dets_hat-class .. 20
embed_timeseries .. 20
erfc .. 21
forecast .. 22
get_y .. 23
intraining_estimations 23
learning_base_models 24
model_recent_performance 25
model_specs ... 26
model_specs-class 28
model_weighting ... 30
predict .. 31
roll_mean_matrix 33
tsensembler ... 33
update_ade ... 35
update_ade_meta ... 36
update_base_models 38
update_weights .. 39
water_consumption 41

Index 42
Description

Arbitrated Dynamic Ensemble (ADE) is an ensemble approach for adaptively combining forecasting models. A metalearning strategy is used that specializes base models across the time series. Each meta-learner is specifically designed to model how apt its base counterpart is to make a prediction for a given test example. This is accomplished by analysing how the error incurred by a given learning model relates to the characteristics of the data. At test time, the base-learners are weighted according to their degree of competence in the input observation, estimated by the predictions of the meta-learners.

Usage

ADE(form, data, specs, lambda = 50, omega = 0.5, select_best = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>form</td>
<td>formula;</td>
</tr>
<tr>
<td>data</td>
<td>data to train the base models</td>
</tr>
<tr>
<td>specs</td>
<td>object of class <code>model_specs-class</code>. Contains the parameter setting information for training the base models;</td>
</tr>
<tr>
<td>lambda</td>
<td>window size. Number of observations to compute the recent performance of the base models, according to the committee ratio <code>omega</code>. Essentially, the top <code>omega</code> models are selected and weighted at each prediction instance, according to their performance in the last <code>lambda</code> observations. Defaults to 50 according to empirical experiments;</td>
</tr>
<tr>
<td>omega</td>
<td>committee ratio size. Essentially, the top <code>omega * 100</code> percent of models are selected and weighted at each prediction instance, according to their performance in the last <code>lambda</code> observations. Defaults to .5 according to empirical experiments;</td>
</tr>
<tr>
<td>select_best</td>
<td>Logical. If true, at each prediction time, a single base model is picked to make a prediction. The picked model is the one that has the lowest loss prediction from the meta models. Defaults to FALSE;</td>
</tr>
</tbody>
</table>

References

See Also

model_specs-class for setting up the ensemble parameters for an ADE model; forecast for the forecasting method that uses an ADE model for forecasting future values; predict for the method that predicts new held out observations; update_weights for the method used to update the weights of an ADE model between successive predict or forecast calls; update_ade_meta for updating (retraining) the meta models of an ADE model; update_base_models for the updating (retraining) the base models of an ADE ensemble (and respective weights); ade_hat-class for the object that results from predicting with an ADE model; and update_ade to update an ADE model, combining functions update_base_models, update_meta_ade, and update_weights.

Examples

```r
specs <- model_specs(
  learner = c("bm_ppr", "bm_glm", "bm_mars"),
  learner_pars = list(
    bm_glm = list(alpha = c(0, .5, 1)),
    bm_svr = list(kernel = c("rbfdot", "polydot"),
                  C = c(1, 3)),
    bm_ppr = list(nterms = 4))
)

data("water_consumption")
train <- embed_timeseries(water_consumption, 5)
train <- train[1:300, ] # toy size for checks

model <- ADE(target ~., train, specs)
```

ADE-class

Arbitrated Dynamic Ensemble

Description

Arbitrated Dynamic Ensemble (ADE) is an ensemble approach for adaptively combining forecasting models. A metalearning strategy is used that specializes base models across the time series. Each meta-learner is specifically designed to model how apt its base counterpart is to make a prediction for a given test example. This is accomplished by analysing how the error incurred by a given learning model relates to the characteristics of the data. At test time, the base-learners are weighted according to their degree of competence in the input observation, estimated by the predictions of the meta-learners.

Slots

- `base_ensemble` object of class base_ensemble-class. It contains the base models used that can be used for predicting new data or forecasting future values;
- `meta_model` a list containing the meta models, one for each base model. The meta-models are random forests;
ADE-class

form formula;
specs object of class model_specs-class. Contains the parameter setting information for training the base models;
lambda window size. Number of observations to compute the recent performance of the base models, according to the committee ratio omega. Essentially, the top omega models are selected and weighted at each prediction instance, according to their performance in the last lambda observations. Defaults to 50 according to empirical experiments;
omega committee ratio size. Essentially, the top omega * 100 percent of models are selected and weighted at each prediction instance, according to their performance in the last lambda observations. Defaults to .5 according to empirical experiments;
select_best Logical. If true, at each prediction time, a single base model is picked to make a prediction. The picked model is the one that has the lowest loss prediction from the meta models. Defaults to FALSE;
recent_series the most recent lambda observations.

References

See Also

model_specs-class for setting up the ensemble parameters for an ADE model; forecast for the forecasting method that uses an ADE model for forecasting future values; predict for the method that predicts new held out observations; update_weights for the method used to update the weights of an ADE model between successive predict or forecast calls; update_ade_meta for updating (retraining) the meta models of an ADE model; update_base_models for the updating (retraining) the base models of an ADE ensemble (and respective weights); ade_hat-class for the object that results from predicting with an ADE model; and update_ade to update an ADE model, combining functions update_base_models, update_meta_ade, and update_weights.

Examples

specs <- model_specs(
 learner = c("bm_ppr", "bm_glm", "bm_mars"),
 learner_pars = list(
 bm_glm = list(alpha = c(0, .5, 1)),
 bm_svr = list(kernel = c("rbfdot", "polydot"),
 C = c(1, 3)),
 bm_ppr = list(nterms = 4)
)
)

data("water_consumption")
train <- embed_timeseries(water_consumption, 5)
ade_hat <- train[1:300,] # toy size for checks
model <- ADE(target ~., train, specs)

ade_hat

Predictions by an ADE ensemble

Description

Predictions produced by a ADE-class object. It contains y_hat, the combined predictions, Y_hat, the predictions of each base model, Y_committee, the base models used for prediction at each time point, and E_hat, the loss predictions by each meta-model.

Usage

ade_hat(y_hat, Y_hat, Y_committee, E_hat)

Arguments

y_hat
combined predictions of the ensemble ADE. A numeric vector;

Y_hat
a matrix containing the predictions made by individual models;

Y_committee
a list describing the models selected for predictions at each time point (according to lambda and omega);

E_hat
predictions of error of each base model, estimated by their respective meta model associate;

See Also

ADE-class for generating an ADE ensemble.
Other ensemble predictions: ade_hat-class, dets_hat-class, dets_hat

ade_hat-class

Predictions by an ADE ensemble

Description

Predictions produced by a ADE-class object. It contains y_hat, the combined predictions, Y_hat, the predictions of each base model, Y_committee, the base models used for prediction at each time point, and E_hat, the loss predictions by each meta-model.
Slots

y_hat combined predictions of the ensemble ADE-class. A numeric vector;
Y_hat a matrix containing the predictions made by individual models;
Y_committee a list describing the models selected for predictions at each time point (according to lambda and omega);
E_hat predictions of error of each base model, estimated by their respective meta model associate;

See Also

ADE for generating an ADE ensemble.

Other ensemble predictions: ade_hat, dets_hat-class, dets_hat

Description

base_ensemble is an S4 class that contains the base models comprising the ensemble. Besides the base learning algorithms – base_models – base_ensemble class contains information about other meta-data used to compute predictions for new upcoming data.

Usage

base_ensemble(base_models, pre_weights, form, colnames)

Arguments

base_models a list comprising the base models;
pre_weights normalized relative weights of the base learners according to their performance on the available data;
form formula;
colnames names of the columns of the data used to train the base_models;
blocked_prequential
Prequential Procedure in Blocks

Description

Prequential Procedure in Blocks

Usage

```r
blocked_prequential(x, nfolds, FUN, .rbind = TRUE, ...)
```

Arguments

- `x`: data to split into `nfolds` blocks;
- `nfolds`: number of blocks to split data into;
- `FUN`: to apply to train/test;
- `.rbind`: logical. If TRUE, the results from FUN are `rbind`ed;
- `...`: further parameters to FUN

See Also

`intraining_estimations` function to use as `FUN` parameter.

bm_cubist
Fit Cubist models (M5)

Description

Learning a M5 model from training data Parameter setting can vary in `committees` and `neighbors` parameters.

Usage

```r
bm_cubist(form, data, lpars)
```

Arguments

- `form`: formula
- `data`: training data for building the predictive model
- `lpars`: a list containing the learning parameters

Details

See `cubist` for a comprehensive description.

Imports learning procedure from `Cubist` package.
bm_ffnn

See Also

Other learning models: `bm_mars`; `bm_ppr`; `bm_gbm`; `bm_glm`; `bm_gaussianprocess`; `bm_randomforest`; `bm_pls_pcr`; `bm_ffnn`; `bm_svr`

Other base learning models: `bm_ffnn`, `bm_gaussianprocess`, `bm_gbm`, `bm_glm`, `bm_mars`, `bm_pls_pcr`, `bm_ppr`, `bm_randomforest`, `bm_svr`

bm_ffnn: Fit Feedforward Neural Networks models

Description

Learning a Feedforward Neural Network model from training data.

Usage

bm_ffnn(form, data, lpars)

Arguments

- form: formula
- data: training data for building the predictive model
- lpars: a list containing the learning parameters

Details

Parameter setting can vary in `size`, `maxit`, and `decay` parameters.

See `nnet` for a comprehensive description.

Imports learning procedure from `nnet` package.

See Also

Other learning models: `bm_mars`; `bm_ppr`; `bm_gbm`; `bm_glm`; `bm_cubist`; `bm_randomforest`; `bm_pls_pcr`; `bm_gaussianprocess`; `bm_svr`

Other base learning models: `bm_cubist`, `bm_gaussianprocess`, `bm_gbm`, `bm_glm`, `bm_mars`, `bm_pls_pcr`, `bm_ppr`, `bm_randomforest`, `bm_svr`
bm_gaussianprocess

Fit Gaussian Process models

Description

Learning a Gaussian Process model from training data. Parameter setting can vary in **kernel** and **tolerance**. See `gausspr` for a comprehensive description.

Usage

```
bm_gaussianprocess(form, data, lpars)
```

Arguments

- `form` : formula
- `data` : training data for building the predictive model
- `lpars` : a list containing the learning parameters

Details

Imports learning procedure from `kernlab` package.

Value

A list containing Gaussian Processes models

See Also

other learning models: bm_mars; bm_ppr; bm_gbm; bm_glm; bm_cubist; bm_randomforest; bm_pls_pcr; bm_ffnn; bm_svr

Other base learning models: bm_cubist, bm_ffnn, bm_gbm, bm_glm, bm_mars, bm_pls_pcr, bm_ppr, bm_randomforest, bm_svr

bm_gbm

Fit Generalized Boosted Regression models

Description

Learning a Boosted Tree Model from training data. Parameter setting can vary in **interaction.depth**, **n.trees**, and **shrinkage** parameters.

Usage

```
bm_gbm(form, data, lpars)
```
bm_glm

Arguments

- `form` : formula
- `data` : training data for building the predictive model
- `lpar` : a list containing the learning parameters

Details

See `gbm` for a comprehensive description.
Imports learning procedure from `gbm` package.

See Also

Other learning models: bm_mars, bm_ppr, bm_gaussianprocess, bm_glm, bm_cubist, bm_randomforest, bm_pls_pcr, bm_ffnn, bm_svr

Other base learning models: bm_cubist, bm_ffnn, bm_gaussianprocess, bm_glm, bm_mars, bm_pls_pcr, bm_ppr, bm_randomforest, bm_svr

bm_glm

Fit Generalized Linear Models

Description

Learning a Generalized Linear Model from training data. Parameter setting can vary in `alpha`. See `glmnet` for a comprehensive description.

Usage

`bm_glm(form, data, lpar)`

Arguments

- `form` : formula
- `data` : training data for building the predictive model
- `lpar` : a list containing the learning parameters

Details

Imports learning procedure from `glmnet` package.

See Also

Other learning models: bm_mars, bm_ppr, bm_gbm, bm_gaussianprocess, bm_cubist, bm_randomforest, bm_pls_pcr, bm_ffnn, bm_svr

Other base learning models: bm_cubist, bm_ffnn, bm_gaussianprocess, bm_gbm, bm_mars, bm_pls_pcr, bm_ppr, bm_randomforest, bm_svr
bm_mars

Fit Multivariate Adaptive Regression Splines models

Description

Learning a Multivariate Adaptive Regression Splines model from training data.

Usage

```
bm_mars(form, data, lpars)
```

Arguments

- `form`: formula
- `data`: training data for building the predictive model
- `lpars`: a list containing the learning parameters

Details

Parameter setting can vary in `nk`, `degree`, and `thresh` parameters.

See `earth` for a comprehensive description.

Imports learning procedure from `earth` package.

See Also

other learning models: `bm_gaussianprocess; bm_ppr; bm_gbm; bm_glm; bm_cubist; bm_randomforest; bm_pls_pcr; bm_ffnn; bm_svr`

Other base learning models: `bm_cubist, bm_ffnn, bm_gaussianprocess, bm_gbm, bm_glm, bm_pls_pcr, bm_ppr, bm_randomforest, bm_svr`

bm_pls_pcr

Fit PLS/PCR regression models

Description

Learning a Partial Least Squares or Principal Components Regression from training data

Usage

```
bm_pls_pcr(form, data, lpars)
```
Fit Projection Pursuit Regression models

Description

Learning a Projection Pursuit Regression model from training data. Parameter setting can vary in `nterms` and `sm.method` parameters. See `ppr` for a comprehensive description.

Usage

```r
bm_ppr(form, data, lpars)
```

Arguments

- `form`: formula
- `data`: training data for building the predictive model
- `lpars`: a list containing the learning parameters

Details

Imports learning procedure from `stats` package.

See Also

other learning models: `bm_mars; bm_ppr; bm_gbm; bm_glm; bm_cubist; bm_randomforest; bm_gaussianprocess; bm_ffnn; bm_svr`

Other base learning models: `bm_cubist, bm_ffnn, bm_gaussianprocess, bm_gbm, bm_glm, bm_mars, bm_ppr, bm_randomforest, bm_svr`
bm_randomforest

See Also

other learning models: bm_mars; bm_gaussianprocess; bm_gbm; bm_glm; bm_cubist; bm_randomforest; bm_pls_pcr; bm_ffnn; bm_svr

Other base learning models: bm_cubist, bm_ffnn, bm_gaussianprocess, bm_gbm, bm_glm, bm_mars, bm_pls_pcr, bm_randomforest, bm_svr

bm_randomforest Fit Random Forest models

Description

Learning a Random Forest Model from training data. Parameter setting can vary in num.trees and mtry parameters.

Usage

bm_randomforest(form, data, lpars)

Arguments

form formula

data training data for building the predictive model

lpars a list containing the learning parameters

Details

See ranger for a comprehensive description.

Imports learning procedure from ranger package.

See Also

other learning models: bm_mars; bm_ppr; bm_gbm; bm_glm; bm_cubist; bm_gaussianprocess; bm_pls_pcr; bm_ffnn; bm_svr

Other base learning models: bm_cubist, bm_ffnn, bm_gaussianprocess, bm_gbm, bm_glm, bm_mars, bm_pls_pcr, bm_ppr, bm_svr
bm_svr

Fit Support Vector Regression models

Description

Learning a Support Vector Regression model from training data.

Usage

bm_svr(form, data, lpars)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>form</td>
<td>formula</td>
</tr>
<tr>
<td>data</td>
<td>training data for building the predictive model</td>
</tr>
<tr>
<td>lpars</td>
<td>a list containing the learning parameters</td>
</tr>
</tbody>
</table>

Details

Parameter setting can vary in kernel, C, and epsilon parameters.
See ksvm for a comprehensive description.
Imports learning procedure from kernlab package.

See Also

Other learning models: bm_mars; bm_ppr; bm_gbm; bm_glm; bm_cubist; bm_randomforest; bm_pls_pcr; bm_ffnn; bm_gaussianprocess
Other base learning models: bm_cubist, bm_ffnn, bm_gaussianprocess, bm_gbm, bm_glm, bm_mars, bm_pls_pcr, bm_ppr, bm_randomforest

build_base_ensemble

Wrapper for creating an ensemble

Description

Using the parameter specifications from model_specs-class, this function trains a set of regression models.

Usage

build_base_ensemble(form, data, specs)
Arguments

- **form**: formula;
- **data**: data.frame for training the predictive models;
- **specs**: object of class `model_specs-class`. Contains the information about the parameter setting of the models to train.

Value

An S4 class with the following slots: **base_models**, a list containing the trained models; **pre_weights**, a numeric vector describing the weights of the base models according to their performance in the training data; and **colnames**, the column names of the data, used for reference.

Examples

```r
data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
specs <- model_specs(c("bm_ppr","bm_svr"), NULL)
M <- build_base_ensemble(target ~ ., dataset, specs)
```

Description

A Dynamic Ensemble for Time Series (DETS). The DETS ensemble method we present settles on individually pre-trained models which are dynamically combined at run-time to make a prediction. The combination rule is reactive to changes in the environment, rendering an online combined model. The main properties of the ensemble are:

- **heterogeneity** Heterogeneous ensembles are those comprised of different types of base learners. By employing models that follow different learning strategies, use different features and/or data observations we expect that individual learners will disagree with each other, introducing a natural diversity into the ensemble that helps in handling different dynamic regimes in a time series forecasting setting;

- **responsiveness** We promote greater responsiveness of heterogeneous ensembles in time series tasks by making the aggregation of their members’ predictions time-dependent. By tracking the loss of each learner over time, we weigh the predictions of individual learners according to their recent performance using a non-linear function. This strategy may be advantageous for better detecting regime changes and also to quickly adapt the ensemble to new regimes.

Usage

```r
DETS(form, data, specs, lambda = 50, omega = 0.5)
```
Arguments

- **form**: formula;
- **data**: data frame to train the base models;
- **specs**: object of class `model_specs-class`. Contains the parameter setting information for training the base models;
- **lambda**: window size. Number of observations to compute the recent performance of the base models, according to the committee ratio `omega`. Essentially, the top `omega` models are selected and weighted at each prediction instance, according to their performance in the last `lambda` observations. Defaults to 50 according to empirical experiments;
- **omega**: committee ratio size. Essentially, the top `omega` models are selected and weighted at each prediction instance, according to their performance in the last `lambda` observations. Defaults to .5 according to empirical experiments;

References

See Also

- `model_specs-class` for setting up the ensemble parameters for an DETS model;
- `forecast` for the method that uses an DETS model for forecasting future values;
- `predict` for the method that predicts new held out observations;
- `update_weights` for the method used to update the weights of an DETS model between successive predict or forecast calls;
- `update_base_models` for the updating (retraining) the base models of an DETS ensemble (and respective weights); and `dets_hat-class` for the object that results from predicting with an DETS model.

Examples

```r
specs <- model_specs(
  c("bm_ppr", "bm_svr"),
  list(bm_ppr = list(nterms = c(2, 4)),
       bm_svr = list(kernel = c("vanilladot", "polydot"), C = c(1,5)))
)

data("water_consumption");
train <- embed_timeseries(water_consumption, 5);
model <- DETS(target ~., train, specs, lambda = 30, omega = .2)
```
Description

A Dynamic Ensemble for Time Series (DETS). The DETS ensemble method we present settles on individually pre-trained models which are dynamically combined at run-time to make a prediction. The combination rule is reactive to changes in the environment, rendering an online combined model. The main properties of the ensemble are:

heterogeneity Heterogeneous ensembles are those comprised of different types of base learners. By employing models that follow different learning strategies, use different features and/or data observations we expect that individual learners will disagree with each other, introducing a natural diversity into the ensemble that helps in handling different dynamic regimes in a time series forecasting setting;

responsiveness We promote greater responsiveness of heterogeneous ensembles in time series tasks by making the aggregation of their members’ predictions time-dependent. By tracking the loss of each learner over time, we weigh the predictions of individual learners according to their recent performance using a non-linear function. This strategy may be advantageous for better detecting regime changes and also to quickly adapt the ensemble to new regimes.

Slots

- **base_ensemble** object of class `base_ensemble-class`. It contains the base models used that can be used for predicting new data or forecasting future values;
- **form** formula;
- **specs** object of class `model_specs-class`. Contains the parameter setting information for training the base models;
- **lambda** window size. Number of observations to compute the recent performance of the base models, according to the committee ratio `omega`. Essentially, the top `omega` models are selected and weighted at each prediction instance, according to their performance in the last `lambda` observations. Defaults to 50 according to empirical experiments;
- **omega** committee ratio size. Essentially, the top `omega` models are selected and weighted at each prediction instance, according to their performance in the last `lambda` observations. Defaults to .5 according to empirical experiments;
- **recent_series** the most recent `lambda` observations.

References

See Also

model_specs-Class for setting up the ensemble parameters for an DETS model; forecast for the method that uses an DETS model for forecasting future values; predict for the method that predicts new held out observations; update_weights for the method used to update the weights of an DETS model between successive predict or forecast calls; update_base_models for the updating (retraining) the base models of an DETS ensemble (and respective weights); and dets_hat-class for the object that results from predicting with an DETS model.

Examples

specs <- model_specs(
 c("bm_ppr", "bm_svr"),
 list(bm_ppr = list(nterms = c(2, 4)),
 bm_svr = list(kernel = c("vanilladot", "polydot"), C = c(1,5)))
)

data("water_consumption")
train <- embed_timeseries(water_consumption, 5)

model <- DETS(target ~ ., train, specs, lambda = 30, omega = .2)

predictions <- predict(model, newdata, lambda = 30, omega = .2)

Description

Predictions by an DETS ensemble

Usage

dets_hat(y_hat, Y_hat, Y_committee, W)

Arguments

y_hat combined predictions of the ensemble DETS. A numeric vector;
Y_hat a matrix containing the predictions made by individual models;
Y_committee a list describing the models selected for predictions at each time point (according to lambda and omega);
W a matrix with the weights of the base models at each prediction time.

Value

Set of results from predicting with a DETS ensemble

See Also

Other ensemble predictions: ade_hat-class, ade_hat, dets_hat-class
dets_hat-class Predictions by an DETS ensemble

Description

Predictions by an DETS ensemble

Slots

- `y_hat` combined predictions of the ensemble `DETS-class`. A numeric vector;
- `Y_hat` a matrix containing the predictions made by individual models;
- `Y_committee` a list describing the models selected for predictions at each time point (according to `lambda` and `omega`);
- `W` a matrix with the weights of the base models at each prediction time.

See Also

Other ensemble predictions: `ade_hat-class`, `ade_hat`, `dets_hat`

embed_timeseries Embedding a Time Series

Description

This function embeds a time series into an Euclidean space. This implementation is based on the function `embed` of `stats` package and has theoretical background on reconstruction of attractors (see Takens, 1981). This shape transformation of the series allows for the use of any regression tool available to learn the time series. The assumption is that there are no long-term dependencies in the data.

Usage

```r
embed_timeseries(timeseries, embedding.dimension)
```

Arguments

- `timeseries` a time series of class `xts`
- `embedding.dimension` an integer specifying the embedding dimension.

Value

An embedded time series
erfc

See Also

`embed` for the details of the embedding procedure.

Examples

```r
## Not run:
require(xts)
ts <- as.xts(rnorm(100L), order.by = Sys.Date() + rnorm(100L))
embedded.ts <- embed.timeseries(ts, 20L)

## End(Not run)

```

erfc

Complementary Gaussian Error Function

Description

Erfc stands for the Complementary Gaussian Error Function. This mathematical formula can be used as a squashing function. Consider \(x \) a numeric vector representing the squared error of base models in a given observation. By applying the `erfc` function on the error, the weight of a given model decays exponentially as its loss increases.

Usage

`erfc(x, alpha = 2)`

Arguments

- **x**: A numeric vector. The default value for the parameter \(\lambda \) assumes that \(x \) is in a 0–1 range. In the scope of this package, this is achieved using the `normalize` function;
- **alpha**: parameter used to control the flatness of the `erfc` curve. Defaults to 2.

Value

The complementary Gaussian error

References

Examples

```r
## Not run:
erfc(.1)
erfc(c(.1, .7))

## End(Not run)
```

forecast

Forecasting using an ensemble predictive model

Description

Generic function for forecasting future values of a time series from an *ADE-class* model or a *DETS-class* model.

Usage

```r
forecast(object, h)
```

- S4 method for signature 'ADE'
  ```r
  forecast(object, h)
  ```

- S4 method for signature 'DETS'
  ```r
  forecast(object, h)
  ```

Arguments

- `object` predictive model object. A *ADE-class* or a *DETS-class* ensemble object;
- `h` steps to forecast

Note

The `forecast` generic in *tensemble* assumes that the data is purely auto-regressive (no external variables), and that the target variable is the first column of the data provided. For a different data setup, the predict methods (`predict`) can be used (with successive calls with updates for multi-step forecasting).

See Also

- `predict` for the predict method; `update_weights` for updating the weights of a model after forecasting; `update_base_models` for updating the base models of an ensemble.
get_y

Examples

```r
specs <- model_specs(
  learner = c("bm_svr", "bm_glm", "bm_mars"),
  learner_pars = NULL
)

data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
train <- dataset[1:500, ]

model <- DETS(target ~., train, specs)
model2 <- ADE(target ~., train, specs, lambda = 30)

next_vals_dets <- forecast(model, h = 2)
next_vals_ade <- forecast(model2, h = 2)
```

get_y

Get the response values from a data matrix

Description

Given a formula and a data set, `get_y` function retrieves the response values.

Usage

```r
get_y(data, form)
```

Arguments

- `data` : data set with the response values;
- `form` : formula

intraining_estimations

Out-of-bag loss estimations

Description

A pipeline for retrieving out-of-bag loss estimations

Usage

```r
intraining_estimations(train, test, form, specs)
```
Arguments

- **train**: train set from the training set;
- **test**: test set from the training set;
- **form**: formula;
- **specs**: object of class `model_specs-class`. Contains the specifications of the base models.

Value

A list containing two objects:

- **mloss**: loss of base models in test
- **oob**: out-of-bag test samples

See Also

Other out-of-bag functions: `intraining_predictions`

learning_base_models
Training the base models of an ensemble

Description

This function uses `train` to build a set of predictive models, according to `specs`.

Usage

```
learning_base_models(train, form, specs)
```

Arguments

- **train**: training set to build the predictive models;
- **form**: formula;
- **specs**: object of class `model_specs-class`

Value

A series of predictive models (base_model), and the weights of the models computed in the training data (preweights).

See Also

- `build_base_ensemble`
Examples

```r
data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
specs <- model_specs(c("bm_ppr", "bm_svr"), NULL)
M <- build_base_ensemble(target ~., dataset, specs)
```

model_recent_performance

Recent performance of models using EMASE

Description

This function computes **EMASE**, Erfc Moving Average Squared Error, to quantify the recent performance of the base models.

Usage

```r
model_recent_performance(Y_hat, Y, lambda, omega, pre_weights)
```

Arguments

- `Y_hat`: A `data.frame` containing the predictions of each base model;
- `Y`: known true values from past data to compare the predictions to;
- `lambda`: Window size. Number of periods to average over when computing **MASE**;
- `omega`: Ratio of top models in the committee;
- `pre_weights`: The initial weights of the models, computed in the available data during the learning phase;

Value

A list containing two objects:

- **model_scores**: The weights of the models in each time point
- **top_models**: Models in the committee in each time point

See Also

Other weighting base models: **EMASE**, **build_committee**, **get_top_models**, **model_weighting**, **select_best**
model_specs

Description

This class sets up the base learning models and respective parameters setting to learn the ensemble.

Usage

model_specs(learner, learner_pars = NULL)

Arguments

learner character vector with the base learners to be trained. Currently available models are:

- **bm_gaussianprocess** Gaussian Process models, from the *kernlab* package. See `gausspr` for a complete description and possible parametrization. See `bm_gaussianprocess` for the function implementation.
- **bm_ppr** Projection Pursuit Regression models, from the *stats* package. See `ppr` for a complete description and possible parametrization. See `bm_ppr` for the function implementation.
- **bm_glm** Generalized Linear Models, from the *glmnet* package. See `glmnet` for a complete description and possible parametrization. See `bm_glm` for the function implementation.
- **bm_gbm** Generalized Boosted Regression models, from the *gbm* package. See `gbm` for a complete description and possible parametrization. See `bm_gbm` for the function implementation.
- **bm_randomforest** Random Forest models, from the *ranger* package. See `ranger` for a complete description and possible parametrization. See `bm_randomforest` for the function implementation.
- **bm_cubist** M5 tree models, from the *Cubist* package. See `cubist` for a complete description and possible parametrization. See `bm_cubist` for the function implementation.
- **bm_mars** Multivariate Adaptive Regression Splines models, from the *earth* package. See `earth` for a complete description and possible parametrization. See `bm_mars` for the function implementation.
- **bm_svr** Support Vector Regression models, from the *kernlab* package. See `ksvm` for a complete description and possible parametrization. See `bm_svr` for the function implementation.
- **bm_ffnn** Feedforward Neural Network models, from the *nnet* package. See `nnet` for a complete description and possible parametrization. See `bm_ffnn` for the function implementation.
- **bm_pls_pcr** Partial Least Regression and Principal Component Regression models, from the *pls* package. See `mvr` for a complete description and possible parametrization. See `bm_pls_pcr` for the function implementation.
Examples

```r
# A PPR model and a GLM model with default parameters
model_specs(learner = c("bm_ppr", "bm_glm"), learner_pars = NULL)
```

```r
# A PPR model and a SVR model. The listed parameters are combined
# with a cartesian product.
# With these specifications an ensemble with 6 predictive base
# models will be created. Two PPR models, one with 2 nterms
# and another with 4; and 4 SVR models, combining the kernel
# and C parameters.
specs <- model_specs(
  c("bm_ppr", "bm_svr"),
  list(bm_ppr = list(nterms = c(2, 4)),
       bm_svr = list(kernel = c("vanilladot", "polydot"), C = c(1,5)))
)
```

```r
# All parameters currently available (parameter values can differ)
model_specs(
  learner = c("bm_ppr", "bm_svr", "bm_randomforest",
              "bm_gaussianprocess", "bm_cubist", "bm_glm",
              "bm_gbm", "bmpls_pcr", "bm_ffnn", "bm_mars"),
  learner_pars = list(
    bm_ppr = list(
      nterms = c(2, 4),
      sm.method = "supsmu"),
    bm_svr = list(
      kernel = "rbfdot",
      C = c(1,5),
      epsilon = .01),
    bm_glm = list(
      alpha = c(1, 0)),
    bm_randomforest = list(
      num.trees = 500),
    bm_gbm = list(
      interaction.depth = 1,
      shrinkage = c(.01, .005),
      n.trees = c(100)),
    bm_mars = list(
      nk = 15,
```
model_specs-class

Setup base learning models

Description
This class sets up the base learning models and respective parameters setting to learn the ensemble.

Slots

learner character vector with the base learners to be trained. Currently available models are:

bm_gaussianprocess Gaussian Process models, from the kernlab package. See gausspr for a complete description and possible parametrization. See bm_gaussianprocess for the function implementation.

bm_ppr Projection Pursuit Regression models, from the stats package. See ppr for a complete description and possible parametrization. See bm_ppr for the function implementation.

bm_glm Generalized Linear Models, from the glmnet package. See glmnet for a complete description and possible parametrization. See bm_glm for the function implementation.

bm_gbm Generalized Boosted Regression models, from the gbm package. See gbm for a complete description and possible parametrization. See bm_gbm for the function implementation.

bm_randomforest Random Forest models, from the ranger package. See ranger for a complete description and possible parametrization. See bm_randomforest for the function implementation.

bm_cubist M5 tree models, from the Cubist package. See cubist for a complete description and possible parametrization. See bm_cubist for the function implementation.
bm_mars Multivariate Adaptive Regression Splines models, from the earth package. See earth for a complete description and possible parametrization. See bm_mars for the function implementation.

bm_svr Support Vector Regression models, from the kernlab package. See ksvm for a complete description and possible parametrization. See bm_svr for the function implementation.

bm_ffnn Feedforward Neural Network models, from the nnet package. See nnet for a complete description and possible parametrization. See bm_ffnn for the function implementation.

bm_pls_pcr Partial Least Regression and Principal Component Regression models, from the pls package. See mvr for a complete description and possible parametrization. See bm_pls_pcr for the function implementation.

learner_pars a list with parameter setting for the learner. For each model, a inner list should be created with the specified parameters.

Check each implementation to see the possible variations of parameters (also exemplified below).

Examples

A PPR model and a GLM model with default parameters
model_specs(learner = c("bm_ppr", "bm_glm"), learner_pars = NULL)

A PPR model and a SVR model. The listed parameters are combined
with a cartesian product.
With these specifications an ensemble with 6 predictive base
models will be created. Two PPR models, one with 2 nterms
and another with 4; and 4 SVR models, combining the kernel
and C parameters.
specs <- model_specs(
 c("bm_ppr", "bm_svr"),
 list(bm_ppr = list(nterms = c(2, 4)),
 bm_svr = list(kernel = c("vanilladot", "polydot"), C = c(1, 5)))
)

All parameters currently available (parameter values can differ)
model_specs(
 learner = c("bm_ppr", "bm_svr", "bm_randomforest",
 "bm_gaussianprocess", "bm_cubist", "bm_glm",
 "bm_gbm", "bm_pls_pcr", "bm_ffnn", "bm_mars"),
 learner_pars = list(
 bm_ppr = list(
 nterms = c(2,4),
 sm.method = "supsmu"
),
 bm_svr = list(
 kernel = "rbfdot",
 C = c(1,5),
 epsilon = .01
),

```
model_weighting

Model weighting

Description

This is an utility function that takes the raw error of models and scales them into a 0-1 range according to one of three strategies:

Usage

model_weighting(x, trans = "softmax", ...)

```r
bm_glm = list(
 alpha = c(1, 0)
),
bm_randomforest = list(
 num.trees = 500
),
bm_gbm = list(
 interaction.depth = 1,
 shrinkage = c(.01, .005),
 n.trees = c(100)
),
bm_mars = list(
 nk = 15,
 degree = 3,
 thresh = .001
),
bm_ffnn = list(
 size = 30,
 decay = .01
),
bm_pls_pcr = list(
 method = c("kernelpls", "simpls", "cppls")
),
bm_gaussianprocess = list(
 kernel = "vanilladot",
 tol = .01
),
bm_cubist = list(
 committees = 50,
 neighbors = 0
)
)
predict

Arguments

- **x**: A object describing the loss of each base model
- **trans**: Character value describing the transformation type. The available options are **softmax**, **linear** and **erfc**. The softmax and erfc provide a non-linear transformation where the weights decay exponentially as the relative loss of a given model increases (with respect to all available models). The linear transformation is a simple normalization of values using the max-min method.

... Further arguments to normalize and proportion functions (na.rm = TRUE)

Details

- **erfc**: using the complementary Gaussian error function
- **softmax**: using a softmax function
- **linear**: A simple normalization using max-min method

These transformations culminate into the final weights of the models.

Value

An object describing the weights of models

See Also

Other weighting base models: EMASE, build_committee, get_top_models, model_recent_performance, select_best

Usage

```r
## S4 method for signature 'ADE'
predict(object, newdata)

## S4 method for signature 'DETS'
predict(object, newdata)

## S4 method for signature 'base_ensemble'
predict(object, newdata)
```

Description

Initially, the predictions of the base models are collected. Then, the predictions of the loss to be incurred by the base models \(E_{\hat{\text{hat}}} \) (estimated by their associate meta models) are computed. The weights of the base models are then estimated according to \(E_{\hat{\text{hat}}} \) and the committee of top models. The committee is built according to the \(\lambda \) and \(\omega \) parameters. Finally, the predictions are combined according to the weights and the committee setup.
Arguments

- object an object of class `ADE-class`:
- newdata new data to predict

Examples

```
# Not run:
# Predicting with an ADE ensemble
specs <- model_specs(
  learner = c("bm_glm", "bm_mars"),
  learner_pars = NULL
)
data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
train <- dataset[1:1000,]
test <- dataset[1001:1500,]
model <- ADE(target ~., train, specs)
preds <- predict(model, test)

# Not run:
# Predicting with a DETS ensemble
specs <- model_specs(
  learner = c("bm_svr", "bm_glm", "bm_mars"),
  learner_pars = NULL
)
data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
train <- dataset[1:700,]
test <- dataset[701:1000,]
model <- DETS(target ~., train, specs, lambda = 50, omega = .2)
preds <- predict(model, test)

# End(Not run)

# Not run:
# Predicting with a base ensemble
model <- ADE(target ~., train, specs)
basespreds <- predict(model@base_ensemble, test)
```
roll_mean_matrix

roll_mean_matrix

Computing the rolling mean of the columns of a matrix

Description

Computing the rolling mean of the columns of a matrix

Usage

```r
roll_mean_matrix(x, lambda)
```

Arguments

- `x`: a numeric data.frame;
- `lambda`: periods to average over when computing the moving average.

tsensembler

Dynamic Ensembles for Time Series Forecasting

Description

This package implements ensemble methods for time series forecasting tasks. Dynamically combining different forecasting models is a common approach to tackle these problems.

Details

The main methods in `tsensembler` are in `ADE-class` and `DETS-class`:

- **ADE** Arbitrated Dynamic Ensemble (ADE) is an ensemble approach for dynamically combining forecasting models using a metalearning strategy called arbitrating. A meta model is trained for each base model in the ensemble. Each meta-learner is specifically designed to model the error of its associate across the time series. At forecasting time, the base models are weighted according to their degree of competence in the input observation, estimated by the predictions of the meta models.

- **DETS** Dynamic Ensemble for Time Series (DETS) is similar to ADE in the sense that it adaptively combines the base models in an ensemble for time series forecasting. DETS follows a more traditional approach for forecaster combination. It pre-trains a set of heterogeneous base models, and at run-time weights them dynamically according to recent performance. Like ADE, the ensemble includes a committee, which dynamically selects a subset of base models that are weighted with a non-linear function.

The ensemble methods can be used to predict new observations or forecast future values of a time series. They can also be updated using generic functions (check see also section).
References

See Also

ADE-class for setting up an ADE model; and DETS-class for setting up an DETS model; see forecast to check the generic function for forecasting future values of a time series using an ensemble from tsensembler; see also update_weights and update_base_models to check the generic function for updating the predictive models in an ensemble.

Examples

```r
## Not run:

data("water_consumption")
# embedding time series into a matrix
dataset <- embed_timeseries(water_consumption, 5)

# splitting data into train/test
train <- dataset[1:1000,]
test <- dataset[1001:1020,]

# setting up base model parameters
specs <- model_specs(
  learner = c("bm_ppr","bm_glm","bm_svr","bm_mars"),
  learner_pars = list(
    bm_glm = list(alpha = c(0,.5,1)),
    bm_svr = list(kernel = c("rbfdot","polydot"),
                   C = c(1,3)),
    bm_ppr = list(nterms = 4)
  )
)

# building the ensemble
model <- ADE(target ~., train, specs)

# forecast next value and update base and meta models
# every three points;
# in the other points, only the weights are updated
predictions <- numeric(nrow(test))
for (i in seq_along(predictions)) {
  predictions[i] <- predict(model, test[i,])@y_hat
}  
```
if (i %% 3 == 0) {
 model <-
 update_base_models(model,
 rbind.data.frame(train, test[seq_len(i),]))
 model <- update_ade_meta(model, rbind.data.frame(train, test[seq_len(i),]))
} else
 model <- update_weights(model, test[i,])
}

point_forecast <- forecast(model, h = 5)

setting up an ensemble of support vector machines
specs2 <-
 model_specs(learner = c("bm_svr"),
 learner_pars = list(
 bm_svr = list(kernel = c("vanilladot", "polydot", "rbfdot"),
 C = c(1,3,6)),
))

model <- DETS(target ~., train, specs2)
preds <- predict(model, test)y_hat

End(Not run)

update_ade

Updating an ADE model

Description

update_ade is a generic function that combines *update_base_models*, *update_ade_meta*, and *update_weights*.

Usage

update_ade(object, newdata)

S4 method for signature 'ADE'
update_ade(object, newdata)

Arguments

- **object** *(a ADE-class object)*.
newdata data used to update the ADE model. This should be the data used to initially train the models (training set), together with new observations (for example, validation set). Each model is retrained using newdata.

See Also

ADE-class for building an ADE model; update_weights for updating the weights of the ensemble (without retraining the models); update_base_models for updating the base models of an ensemble; and update_ade_meta for updating the meta-models of an ADE model.

Other updating models: update_ade_meta, update_weights

Examples

```r
specs <- model_specs(
  learner = c("bm_svr", "bm_glm", "bm_mars"),
  learner_pars = NULL
)

data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
# toy size for checks
train <- dataset[1:300, ]
validation <- dataset[301:400, ]
test <- dataset[401:500, ]

model <- ADE(target ~ , train, specs)
preds_val <- predict(model, validation)
model <- update_ade(model, rbind.data.frame(train, validation))
preds_test <- predict(model, test)
```

update_ade_meta Updating the metalearning layer of an ADE model

Description

The update_ade_meta function uses new information to update the meta models of an ADE-class ensemble. As input it receives a ADE-class model object class and a new dataset for updating the weights of the base models in the ensemble. This new data should have the same structure as the one used to build the ensemble. Updating the base models of the ensemble is done using the update_base_models function.
usage

`update_ade_meta(object, newdata)`

```
## S4 method for signature 'ADE'
update_ade_meta(object, newdata)
```

Arguments

object

A **ADE-class** object.

newdata

data used to update the meta models. This should be the data used to initially train the meta-models (training set), together with new observations (for example, validation set). Each meta model is retrained using `newdata`.

See Also

ADE-class for building an ADE model; `update_weights` for updating the weights of the ensemble (without retraining the models); and `update_base_models` for updating the base models of an ensemble.

Other updating models: `update_ade, update_weights`

Examples

```
## Not run:
specs <- model_specs(  
  learner = c("bm_svr", "bm_glm", "bm_mars"),  
  learner_pars = NULL  
)

data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
train <- dataset[1:1000, ]
validation <- dataset[1001:1200, ]
test <- dataset[1201:1500, ]

model <- ADE(target ~., train, specs)

preds_val <- predict(model, validation)
model <- update_ade_meta(model, rbind.data.frame(train, validation))

preds_test <- predict(model, test)
```

End(Not run)
update_base_models

Update the base models of an ensemble

Description

This is a generic function for updating the base models comprising an ensemble.

Usage

```r
update_base_models(object, newdata)
```

S4 method for signature 'ADE'

```r
update_base_models(object, newdata)
```

S4 method for signature 'DETS'

```r
update_base_models(object, newdata)
```

Arguments

- `object` : an ensemble object, of class **DETS-class** or **ADE-class**;
- `newdata` : new data used to update the models. Each base model is retrained, so `newdata` should be the past data used for initially training the models along with any further available observations.

Details

The `update_base_models` function receives a model object and a new dataset for retraining the base models. This new data should have the same structure as the one used to build the ensemble.

See Also

- **ADE-class** for the ADE model information, and **DETS-class** for the DETS model information;
- **update_ade_meta** for updating the meta models of an ADE ensemble. See **update_weights** for the method used to update the weights of the ensemble. Updating the weights only changes the information about the recent observations for computing the weights of the base models, while updating the model uses that information to retrain the models.

Examples

```r
data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
# toy size for checks execution time
train <- dataset[1:300,]
test <- dataset[301:305,]

specs <- model_specs(c("bm_ppr","bm_glm","bm_mars"), NULL)

model <- ADE(target ~., train, specs)
```
update_weights

predictions <- numeric(nrow(test))
for (i in seq_along(predictions)) {
 predictions[i] <- predict(model, test[i,])$y_hat
 model <-
 update_base_models(model,
 rbind.data.frame(train, test[seq_len(i),]))
}

###

specs2 <- model_specs(c("bm_ppr","bm_randomforest","bm_svr"), NULL)
modeldets <- DETS(target ~ ., train, specs2)
predictions <- numeric(nrow(test))
predict new data and update models every three points
in the remaining points, the only the weights are updated
for (i in seq_along(predictions)) {
 predictions[i] <- predict(modeldets, test[i,])$y_hat
 if (i %% 3 == 0)
 modeldets <-
 update_base_models(modeldets,
 rbind.data.frame(train, test[seq_len(i),]))
 else
 modeldets <- update_weights(modeldets, test[seq_len(i),])
}

update_weights

Updating the weights of base models

Description

Update the weights of base models of a ADE-class or DETS-class ensemble. This is accomplished by using computing the loss of the base models in new recent observations.

Usage

update_weights(object, newdata)

S4 method for signature 'ADE'
update_weights(object, newdata)

S4 method for signature 'DETS'
update_weights(object, newdata)
Arguments

object a ADE-class or DETS-class model object;
newdata new data used to update the most recent observations of the time series. At prediction time these observations are used to compute the weights of the base models.

Note

Updating the weights of an ensemble is only necessary between different calls of the functions predict or forecast. Otherwise, if consecutive known observations are predicted (e.g. a validation/test set) the updating is automatically done internally.

See Also

update_weights for the weight updating method for an ADE model, and update_weights for the same method for a DETS model.

Other updating models: update_ade_meta, update_ade

Examples

data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)

toy size for checks
train <- dataset[1:300,]
test <- dataset[301:305,]

specs <- model_specs(c("bm_ppr","bm_glm","bm_mars"), NULL)
same with model <- DETS(target ~., train, specs)
model <- ADE(target ~., train, specs)

if consecutive known observations are predicted (e.g. a validation/test set)
the updating is automatically done internally.
predictions1 <- predict(model, test)@y_hat

otherwise, the models need to be updated
predictions <- numeric(nrow(test))
predict new data and update the weights of the model for (i in seq_along(predictions)) {
predictions[i] <- predict(model, test[i,])@y_hat
model <- update_weights(model, test[i,])
}

all.equal(predictions1, predictions)
water_consumption

water_consumption Water Consumption in Oporto city (Portugal) area.

Description

A time series of classes `xts` and `zoo` containing the water consumption levels at a specific delivery point in Oporto town, in Portugal.

Usage

`water_consumption`

Format

The time series has 1741 values from Jan, 2012 to Oct, 2016 in a daily granularity.

- **consumption** consumption of water, raw value from sensor

Source

Index

*Topic datasets
 water_consumption, 41
ADE, 3, 6, 7, 40
ADE-class, 4
ade_hat, 6, 7, 19, 20
ade_hat-class, 6
base_ensemble, 7
blocked_prequential, 8
bm_cubist, 8, 9–15, 26, 28
bm_ffnn, 9, 9, 10–15, 26, 29
bm_gaussianprocess, 9, 10, 11–15, 26, 28
bm_glm, 9–11, 10, 11–15, 26, 28
bm_mars, 9–11, 12, 13–15, 26, 29
bm_pls_pcr, 9, 10, 11–15, 26, 29
bm_randomforest, 9–14, 15, 26, 29
bm_svr, 9–14, 15, 26, 29
build_base_ensemble, 15, 24
build_committee, 25, 31
cubist, 8, 26, 28
DETS, 16, 19, 40
DETS-class, 18
dets_hat, 6, 7, 19, 20
dets_hat-class, 20
earth, 12, 26, 29
EMASE, 25, 31
embed, 21
embed_timeseries, 20
erfc, 21
forecast, 4, 5, 17, 19, 22, 34
forecast, ADE-method (forecast), 22
forecast, DETS-method (forecast), 22
gausspr, 10, 26, 28
gbm, 11, 26, 28
get_top_models, 25, 31
get_y, 23
glmnet, 11, 26, 28
intraining_estimations, 8, 23
intraining_predictions, 24
ksvm, 15, 26, 29
learning_base_models, 24
model_recent_performance, 25, 31
model_specs, 26
model_specs-class, 28
model_weighting, 25, 30
mvr, 13, 26, 29
nnet, 9, 26, 29
ppr, 13, 26, 28
predict, 4, 5, 17, 19, 22, 31
predict, ADE-method (predict), 31
predict, base_ensemble-method (predict), 31
predict, DETS-method (predict), 31
predict, ade (predict), 31
predict, base (predict), 31
predict, dets (predict), 31
ranger, 14, 26, 28
roll_mean_matrix, 33
select_best, 25, 31
tsensemler, 33
tsensemler-package (tsensemler), 33
update_ade, 4, 5, 35, 37, 40
update_ade, ADE-method (update_ade), 35
update_ade_meta, 4, 5, 35, 36, 36, 38, 40
update_ade_meta, ADE-method
(update_ade_meta), 36
update_base_models, 4, 5, 17, 19, 22, 34–37, 38
update_base_models, ADE-method
(update_base_models), 38
update_base_models, DETS-method
(update_base_models), 38
update_weights, 4, 5, 17, 19, 22, 34–38, 39, 40
update_weights, ADE-method
(update_weights), 39
update_weights, DETS-method
(update_weights), 39
water_consumption, 41