Package ‘tsfeatures’

April 16, 2019

Title Time Series Feature Extraction
Version 1.0.1

Depends R (>= 3.2.3)
Imports ForeCA, fracdiff, forecast (>= 8.3), purrr, RcppRoll (>= 0.2.2), stats, tibble, tseries, urca, future, furrr
Suggests testthat, knitr, rmarkdown, ggplot2, dplyr, Mcomp, GGally
License GPL-3
LazyData true
ByteCompile true
URL https://pkg.robjhyndman.com/tsfeatures/
BugReports https://github.com/robjhyndman/tsfeatures/issues/
RoxygenNote 6.1.1
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no

Author Rob Hyndman [aut, cre] (<https://orcid.org/0000-0002-2140-5352>), Yanfei Kang [aut] (<https://orcid.org/0000-0001-8769-6650>), Pablo Montero-Manso [aut], Thiyanga Talagala [aut] (<https://orcid.org/0000-0002-0656-9789>), Earo Wang [aut] (<https://orcid.org/0000-0001-6448-5260>), Yangzhuoran Yang [aut], Mitchell O’Hara-Wild [aut] (<https://orcid.org/0000-0001-6729-7695>), Souhaib Ben Taieb [ctb],
Cao Hanqing [ctb],
D K Lake [ctb],
Nikolay Laptev [ctb],
J R Moorman [ctb]

Maintainer Rob Hyndman <Rob.Hyndman@monash.edu>

Repository CRAN

Date/Publication 2019-04-16 13:02:47 UTC

R topics documented:

acf_features ... 3
ac_9 .. 3
arch_stat .. 4
as.list.mts ... 5
autocorr_features 5
binarize_mean .. 6
compengine .. 7
crossing_points 8
dist_features .. 8
embed2_incircle 9
entropy .. 10
firstmin_ac ... 10
firstzero_ac .. 11
flat_spots ... 12
fluctanal_prop_r1 12
heterogeneity ... 13
histogram_mode 14
holt_parameters 14
hurst .. 15
localsimple_taures 16
lumpiness ... 16
max_level_shift 17
motiftwo_entro3 18
nonlinearity .. 19
outlierinclude_mdrmd 19
pacf_features ... 20
pred_features ... 21
sampenc ... 22
sampen_first ... 22
scal_features ... 23
spreadrandomlocal_meantaul 24
station_features 25
std1st_der .. 26
stl_features .. 26
trev_num ... 27
tsf_features .. 28
unitroot_kpss .. 29
acf_features

Autocorrelation-based features

Description
Computes various measures based on autocorrelation coefficients of the original series, first-differenced series and second-differenced series.

Usage
acf_features(x)

Arguments
x a univariate time series

Value
A vector of 6 values: first autocorrelation coefficient and sum of squared of first ten autocorrelation coefficients of original series, first-differenced series, and twice-differenced series. For seasonal data, the autocorrelation coefficient at the first seasonal lag is also returned.

Author(s)
Thiyanga Talagala

ac_9

Autocorrelation at lag 9. Included for completion and consistency.

Description
Autocorrelation at lag 9. Included for completion and consistency.

Usage
ac_9(y, acfY = stats::acf(y, 9, plot = FALSE, na.action = na.pass))

Arguments
y the input time series
acfY vector of autocorrelation, if exist, used to avoid repeated computation.
Value

autocorrelation at lag 9

Author(s)

Yangzhuoran Yang

References

arch_stat

ARCH LM Statistic

Description

Computes a statistic based on the Lagrange Multiplier (LM) test of Engle (1982) for autoregressive conditional heteroscedasticity (ARCH). The statistic returned is the R^2 value of an autoregressive model of order `lags` applied to x^2.

Usage

```r
arch_stat(x, lags = 12, demean = TRUE)
```

Arguments

- **x**: a univariate time series
- **lags**: Number of lags to use in the test
- **demean**: Should data have mean removed before test applied?

Value

A numeric value.

Author(s)

Yanfei Kang
as.list.mts

Convert mts object to list of time series

Description
Convert mts object to list of time series

Usage
S3 method for class 'mts'
as.list(x, ...)

Arguments
x
multivariate time series of class mts.
...
other arguments are ignored.

Author(s)
Rob J Hyndman

autocorr_features
The autocorrelation feature set from software package hctsa

Description
Calculate the features that grouped as autocorrelation set, which have been used in CompEngine
database, using method introduced in package hctsa.

Usage
autocorr_features(x)

Arguments
x
the input time series

Details
Features in this set are embed2_incircle_1, embed2_incircle_2, ac_9, firstmin_ac, trev_num,
motiftwo_entro3, and walker_propcross.

Value
a vector with autocorrelation features

Author(s)

Yangzhuoran Yang

References

See Also

- `embed2_incircle`
- `ac_9`
- `firstmin_ac`
- `trev_num`
- `motiftwo_entro3`
- `walker_propcross`

binarize_mean

Converts an input vector into a binarized version from software package hctsa

Description

Converts an input vector into a binarized version from software package hctsa

Usage

`binarize_mean(y)`

Arguments

- `y` the input time series

Value

Time-series values above its mean are given 1, and those below the mean are 0.

Author(s)

Yangzhuoran Yang
References

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-

B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

compengine

CompEngine feature set

Description

Calculate the features that have been used in CompEngine database, using method introduced in
package hctsa.

Usage

compengine(x)

Arguments

x the input time series

Details

The features involved can be grouped as autocorrelation, prediction, stationarity, distribution,
and scaling.

Value

a vector with CompEngine features

Author(s)

Yangzhuoran Yang

References

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-

B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-
See Also

autocorr_features
pred_features
station_features
dist_features
scal_features

crossing_points Number of crossing points

Description
Computes the number of times a time series crosses the median.

Usage
crossing_points(x)

Arguments
x a univariate time series

Value
A numeric value.

Author(s)
Earo Wang and Rob J Hyndman

dist_features The distribution feature set from software package hctsa

Description
Calculate the features that grouped as distribution set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage
dist_features(x)

Arguments
x the input time series
Details

Features in this set are histogram_mode_10 and outlierinclude_mdrmd.

Value

a vector with autocorrelation features

Author(s)

Yangzhuoran Yang

References

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-

B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

See Also

histogram_mode

outlierinclude_mdrmd

Description

The time lag is set to the first zero crossing of the autocorrelation function.

Usage

embed2_incircle(y, boundary = NULL, acf = stats::acf(y, length(y) - 1, plot = FALSE, na.action = na.pass))

Arguments

y the input time series
boundary the given circular boundary, setting to 1 or 2 in CompEngine. Default to 1.
acf vector of autocorrelation, if exist, used to avoid repeated computation.

Value

the proportion of points inside a given circular boundary
Author(s)
Yangzhuoran Yang

References

<table>
<thead>
<tr>
<th>entropy</th>
<th>Spectral entropy of a time series</th>
</tr>
</thead>
</table>

Description
Computes the spectral entropy of a time series

Usage
entropy(x)

Arguments
x a univariate time series

Value
A numeric value.

Author(s)
Rob J Hyndman

<table>
<thead>
<tr>
<th>firstmin_ac</th>
<th>Time of first minimum in the autocorrelation function from software package hctsa</th>
</tr>
</thead>
</table>

Description
Time of first minimum in the autocorrelation function from software package hctsa

Usage
firstmin_ac(x, acf = stats::acf(x, lag.max = N - 1, plot = FALSE, na.action = na.pass))
Arguments

\[x \text{ the input time series} \]
\[\text{acfv vector of autocorrelation, if exist, used to avoid repeated computation.} \]

Value

The lag of the first minimum

Author(s)

Yangzhuoran Yang

References

Examples

```
firstmin_ac(wwwusage)
```

Description

Search up to a maximum of the length of the time series

Usage

```
firstzero_ac(y, acf = stats::acf(y, N - 1, plot = FALSE, na.action = na.pass))
```

Arguments

\[y \text{ the input time series} \]
\[\text{acfv vector of autocorrelation, if exist, used to avoid repeated computation.} \]

Value

The first zero crossing of the autocorrelation function
Author(s)

Yangzhuoran Yang

References

flat_spots

Number of flat spots

Description

Number of flat spots in a time series

Usage

`flat_spots(x)`

Arguments

- `x` : a univariate time series

Value

A numeric value.

Author(s)

Earo Wang and Rob J Hyndman

fluctanal_prop_r1

Implements fluctuation analysis from software package hctsa

Description

Fits a polynomial of order 1 and then returns the range. The order of fluctuations is 2, corresponding to root mean square fluctuations.

Usage

`fluctanal_prop_r1(x)`
heterogeneity

Arguments

x the input time series (or any vector)

Author(s)

Yangzhuoran Yang

References

<table>
<thead>
<tr>
<th>heterogeneity</th>
<th>Heterogeneity coefficients</th>
</tr>
</thead>
</table>

Description

Computes various measures of heterogeneity of a time series. First the series is pre-whitened using an AR model to give a new series y. We fit a GARCH(1,1) model to y and obtain the residuals, e. Then the four measures of heterogeneity are: (1) the sum of squares of the first 12 autocorrelations of \(y^2 \); (2) the sum of squares of the first 12 autocorrelations of \(e^2 \); (3) the \(R^2 \) value of an AR model applied to \(y^2 \); (4) the \(R^2 \) value of an AR model applied to \(e^2 \). The statistics obtained from \(y^2 \) are the ARCH effects, while those from \(e^2 \) are the GARCH effects.

Usage

heterogeneity(x)

Arguments

x a univariate time series

Value

A vector of numeric values.

Author(s)

Yanfei Kang and Rob J Hyndman
histogram_mode

Mode of a data vector from software package hctsa

Description

Measures the mode of the data vector using histograms with a given number of bins as suggestion. The value calculated is different from hctsa and CompEngine as the histogram edges are calculated differently.

Usage

```r
histogram_mode(y, numBins = 10)
```

Arguments

- `y` the input data vector
- `numBins` the number of bins to use in the histogram.

Value

the mode

Author(s)

Yangzhuoran Yang

References

holt_parameters

Parameter estimates of Holt's linear trend method

Description

Estimate the smoothing parameter for the level-alpha and the smoothing parameter for the trend-beta. `hw_parameters` considers additive seasonal trend: ets(A,A,A) model.

Usage

```r
holt_parameters(x)
```

```r
hw_parameters(x)
```
Arguments

x a univariate time series

Value

holt_parameters produces a vector of 2 values: alpha, beta.

hw_parameters produces a vector of 3 values: alpha, beta and gamma.

Author(s)

Thiyanga Talagala, Pablo Montero-Manso

<table>
<thead>
<tr>
<th>hurst</th>
<th>Hurst coefficient</th>
</tr>
</thead>
</table>

Description

Computes the Hurst coefficient indicating the level of fractional differencing of a time series.

Usage

hurst(x)

Arguments

x a univariate time series. If missing values are present, the largest contiguous portion of the time series is used.

Value

A numeric value.

Author(s)

Rob J Hyndman
lumpsimple_taures

The first zero crossing of the autocorrelation function of the residuals from Simple local time-series forecasting from software package hctsa

Description

Simple predictors using the past `trainLength` values of the time series to predict its next value.

Usage

```r
lumpsimple_taures(y, forecastMeth = c("mean", "1fit"),
                    trainLength = NULL)
```

Arguments

- `y` the input time series
- `forecastMeth` the forecasting method, default to `mean`. `mean`: local mean prediction using the past `trainLength` time-series values. `1fit`: local linear prediction using the past `trainLength` time-series values.
- `trainLength` the number of time-series values to use to forecast the next value. Default to 1 when using method `mean` and 3 when using method `1fit`.

Value

The first zero crossing of the autocorrelation function of the residuals

lumpiness

Time series features based on tiled windows

Description

Computes feature of a time series based on tiled (non-overlapping) windows. Means or variances are produced for all tiled windows. Then stability is the variance of the means, while lumpiness is the variance of the variances.

Usage

```r
lumpiness(x, width = ifelse(frequency(x) > 1, frequency(x), 10))

stability(x, width = ifelse(frequency(x) > 1, frequency(x), 10))
```

Arguments

- `x` a univariate time series
- `width` size of sliding window
max_level_shift

Value
A numeric vector of length 2 containing a measure of lumpiness and a measure of stability.

Author(s)
Earo Wang and Rob J Hyndman

max_level_shift

Time series features based on sliding windows

Description
Computes feature of a time series based on sliding (overlapping) windows. `max_level_shift` finds the largest mean shift between two consecutive windows. `max_var_shift` finds the largest variance shift between two consecutive windows. `max_kl_shift` finds the largest shift in Kulback-Leibler divergence between two consecutive windows.

Usage
```
max_level_shift(x, width = ifelse(frequency(x) > 1, frequency(x), 10))
max_var_shift(x, width = ifelse(frequency(x) > 1, frequency(x), 10))
max_kl_shift(x, width = ifelse(frequency(x) > 1, frequency(x), 10))
```

Arguments
- `x` a univariate time series
- `width` size of sliding window

Details
Computes the largest level shift and largest variance shift in sliding mean calculations

Value
A vector of 2 values: the size of the shift, and the time index of the shift.

Author(s)
Earo Wang and Rob J Hyndman
motiftwo_entro3 Local motifs in a binary symbolization of the time series from software package hctsa

Description

Coarse-graining is performed. Time-series values above its mean are given 1, and those below the mean are 0.

Usage

motiftwo_entro3(y)

Arguments

y the input time series

Value

Entropy of words in the binary alphabet of length 3.

Author(s)

Yangzhuoran Yang

References

Examples

motiftwo_entro3(WWWusage)
nonlinearity

<table>
<thead>
<tr>
<th>nonlinearity</th>
<th>Nonlinearity coefficient</th>
</tr>
</thead>
</table>

Description

Computes a nonlinearity statistic based on Teräsvirta’s nonlinearity test of a time series. The statistic is $10X^2/T$ where X^2 is the Chi-squared statistic from Teräsvirta’s test, and T is the length of the time series. This takes large values when the series is nonlinear, and values around 0 when the series is linear.

Usage

```r
nonlinearity(x)
```

Arguments

- `x` a univariate time series

Value

A numeric value.

Author(s)

Yanfei Kang and Rob J Hyndman

Examples

```r
nonlinearity(lynx)
```

outlierinclude_mdrmd

How median depend on distributional outliers from software package hctsa

Description

Measures median as more and more outliers are included in the calculation according to a specified rule, of outliers being furthest from the mean.

Usage

```r
outlierinclude_mdrmd(y, zscored = TRUE)
```

Arguments

- `y` the input time series (ideally z-scored)
- `zscored` Should `y` be z-scored before computing the statistic. Default: TRUE
Details

The threshold for including time-series data points in the analysis increases from zero to the maximum deviation, in increments of 0.01*\(\sigma\) (by default), where \(\sigma\) is the standard deviation of the time series.

At each threshold, proportion of time series points included and median are calculated, and outputs from the algorithm measure how these statistical quantities change as more extreme points are included in the calculation.

Outliers are defined as furthest from the mean.

Value

median of the median of range indices

Author(s)

Yangzhuoran Yang

References

Description

Computes various measures based on partial autocorrelation coefficients of the original series, first-differenced series and second-differenced series

Usage

\[\text{pacf_features}(x) \]

Arguments

- \[x \]: a univariate time series

Value

A vector of 3 values: Sum of squared of first 5 partial autocorrelation coefficients of the original series, first differenced series and twice-differenced series. For seasonal data, the partial autocorrelation coefficient at the first seasonal lag is also returned.
pred_features

Author(s)
Thiyanga Talagala

The prediction feature set from software package hctsa

Description
Calculate the features that grouped as prediction set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage
pred_features(x)

Arguments
x the input time series

Details
Features in this set are localsimple_mean1, localsimple_lfitac, and sampen_first.

Value
a vector with autocorrelation features

Author(s)
Yangzhuoran Yang

References

See Also
localsimple_taures
sampen_first
sampenc

Second Sample Entropy from software package hctsa

Description

Modified from the Ben Fulcher version of original code sampenc.m from http://physionet.org/physiotools/sampen/ http://www.physionet.org/physiotools/sampen/matlab/1.1/sampenc.m Code by DK Lake (dlake@virginia.edu), JR Moorman and Cao Hanqing.

Usage

```matlab
sampenc(y, M = 6, r = 0.3)
```

Arguments

- `y` the input time series
- `M` embedding dimension
- `r` threshold

Author(s)

Yangzhuoran Yang

References

 sampen_first

Second Sample Entropy of a time series from software package hctsa

Description

Modified from the Ben Fulcher’s EN_SampEn which uses code from PhysioNet. The publicly-available PhysioNet Matlab code, sampenc (renamed here to RN_sampenc) is available from: http://www.physionet.org/physiotools/sampen/matlab/1.1/sampenc.m

Usage

```matlab
sampen_first(y)
```
scal_features

Arguments

\(y \)

the input time series

Details

Embedding dimension is set to 5. The threshold is set to 0.3.

Author(s)

Yangzhuoran Yang

References

cf. "Physiological time-series analysis using approximate entropy and sample entropy", J. S. Rich-
B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-
B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

scal_features

The scaling feature set from software package hctsa

Description

Calculate the features that grouped as scaling set, which have been used in CompEngine database,
using method introduced in package hctsa.

Usage

scal_features(x)

Arguments

\(x \)

the input time series

Details

Feature in this set is \texttt{fluctanal_prop_r1}.

Value

a vector with autocorrelation features

Author(s)

Yangzhuoran Yang
References

See Also

fluctanal_prop_r1

spreadrandomlocal_meantaul

Description

100 time-series segments of length l are selected at random from the time series and the mean of the first zero-crossings of the autocorrelation function in each segment is calculated.

Usage

spreadrandomlocal_meantaul(y, l = 50)

Arguments

y the input time series

l the length of local time-series segments to analyse as a positive integer. Can also be a specified character string: "ac2": twice the first zero-crossing of the autocorrelation function

Value

mean of the first zero-crossings of the autocorrelation function

Author(s)

Yangzhuoran Yang

References

Description

Calculate the features that grouped as stationarity set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage

`station_features(x)`

Arguments

x the input time series

Details

Features in this set are `std1st_der`, `spreadrandomlocal_meantaul_50`, and `spreadrandomlocal_meantaul_ac2`.

Value

a vector with autocorrelation features

Author(s)

Yangzhuoran Yang

References

See Also

- `std1st_der`
- `spreadrandomlocal_meantaul`
std1st_der

Standard deviation of the first derivative of the time series from software package hctsa

Description

Modified from SY_SdtNthDer in hctsa. Based on an idea by Vladimir Vassilevsky.

Usage

```
std1st_der(y)
```

Arguments

- `y`: the input time series. Missing values will be removed.

Value

Standard deviation of the first derivative of the time series.

Author(s)

Yangzhuoran Yang

References

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-
B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

stl_features

Strength of trend and seasonality of a time series

Description

Computes various measures of trend and seasonality of a time series based on an STL decompo-
sition. The number of seasonal periods, and the length of the seasonal periods are returned. Also, the
strength of seasonality corresponding to each period is estimated. The `mstl` function is used to do
the decomposition.

Usage

```
stl_features(x, ...)
```
Arguments

- `x` a univariate time series.
- ... Other arguments are passed to `mstl`.

Value

A vector of numeric values.

Author(s)

Rob J Hyndman

Normalized nonlinear autocorrelation, the numerator of the trev function of a time series from software package hctsa

Description

Calculates the numerator of the trev function, a normalized nonlinear autocorrelation. The time lag is set to 1.

Usage

trev_num(y)

Arguments

- `y` the input time series

Value

the numerator of the trev function of a time series

Author(s)

Yangzhuoran Yang

References

Examples

trev_num(WWWWusage)
tsfeatures

Time series feature matrix

Description

`tsfeatures` computes a matrix of time series features from a list of time series.

The `tsfeatures` package provides methods to extract various features from time series data.

Usage

```r
tsfeatures(tslist, features = c("frequency", "stl_features", "entropy", "acf_features"), scale = TRUE, trim = FALSE, trim_amount = 0.1, parallel = FALSE, na.action = na.pass, ...)
```

Arguments

- **tslist**: a list of univariate time series, each of class `ts` or a numeric vector. Alternatively, an object of class `mts` may be used.
- **features**: a vector of function names which return numeric vectors of features. All features returned by these functions must be named if they return more than one feature. Existing functions from installed packages may be used, but the package must be loaded first. Functions must return a result for all time series, even if it is just `NA`.
- **scale**: if `TRUE`, time series are scaled to mean 0 and sd 1 before features are computed.
- **trim**: if `TRUE`, time series are trimmed by `trim_amount` before features are computed. Values larger than `trim_amount` in absolute value are set to `NA`.
- **trim_amount**: default level of trimming if `trim` is `TRUE`.
- **parallel**: if `TRUE`, multiple cores (or multiple sessions) will be used. This only speeds things up when there are a large number of time series.
- **na.action**: a function to handle missing values. Use `na.interp` to estimate missing values.
- **...**: other arguments get passed to the feature functions.

Value

A feature matrix (in the form of a tibble) with each row corresponding to one time series from `tslist`, and each column being a feature.

Author(s)

Rob J Hyndman

Examples

```r
mylist <- list(sunspot.year, WWWusage, AirPassengers, USAccDeaths)
 tsfeatures(mylist)
```
unitroot_kpss

Unit Root Test Statistics

Description

`unitroot_kpss` computes the statistic for the Kwiatkowski et al. unit root test with linear trend and lag 1. `unitroot_pp` computes the statistic for the “Z-alpha” version of Phillips & Perron unit root test with constant trend and lag 1.

Usage

```r
unitroot_kpss(x)
unitroot_pp(x)
```

Arguments

- `x`: a univariate time series.

Value

A numeric value

Author(s)

Pablo Montero-Manso

walker_propcross

Simulates a hypothetical walker moving through the time domain from software package hctsa

Description

The hypothetical particle (or ‘walker’) moves in response to values of the time series at each point. The walker narrows the gap between its value and that of the time series by 10

Usage

```r
walker_propcross(y)
```

Arguments

- `y`: the input time series

Value

fraction of time series length that walker crosses time series
Author(s)

Yangzhuoran Yang

References

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-
B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

yahoo_data

Yahoo server metrics

Description

Yahoo server metrics

Usage

yahoo_data(...)

Arguments

... Additional arguments passed to download.file
Downloads and returns aggregated and anonymized datasets from Yahoo repre-
senting server metrics of Yahoo services.

Value

A matrix of time series with 1437 rows of hourly data, and 1748 columns representing different
servers.

Author(s)

Rob Hyndman, Earo Wang, Nikolay Laptev, Mitchell O’Hara-Wild

References

ceedings of the IEEE International Conference on Data Mining. Atlantic City, NJ, USA. 14–17

Examples

yahoo <- yahoo_data()
plot(yahoo[,1:18])
plot(yahoo[,1:44], plot.type='single', col=1:44)
Index

ac_9, 3, 6
acf_features, 3
arch_stat, 4
as.list.mts, 5
autocorr_features, 5, 8
binarize_mean, 6
cmpengine, 7
crossing_points, 8
dist_features, 8, 8
embed2_incircle, 6, 9
entropy, 10
firstmin_ac, 6, 10
firstzero_ac, 11
flat_spots, 12
fluctanal_prop_r1, 12, 24
heterogeneity, 13
histogram_mode, 9, 14
holt_parameters, 14
hurst, 15
hw_parameters (holt_parameters), 14
localsimple_taures, 16, 21
lumpiness, 16
max_kl_shift (max_level_shift), 17
max_level_shift, 17
max_var_shift (max_level_shift), 17
motiftwo_entro3, 6, 18
mstl, 26, 27
nonlinearity, 19
outlierinclude_mdrmd, 9, 19
pacf_features, 20
pred_features, 8, 21
sampen_first, 21, 22
sampenc, 22
scal_features, 8, 23
spreadrandomlocal_meantaul, 24, 25
stability (lumpiness), 16
station_features, 8, 25
stdlst_der, 25, 26
stl_features, 26
trev_num, 6, 27
tsfeatures, 28
tsfeatures-package (tsfeatures), 28
unitroot kpss, 29
unitroot_pp (unitroot kpss), 29
walker_proprocross, 6, 29
yahoo_data, 30

31