Package ‘tsfeatures’

October 14, 2022

Title Time Series Feature Extraction
Version 1.1

Depends R (>= 3.6.0)
Imports fracdiff, forecast (>= 8.3), purrr, RcppRoll (>= 0.2.2), stats, tibble, tseries, urca, future, furrr
Suggests testthat, knitr, rmarkdown, ggplot2, tidyr, dplyr, Mcomp, GGally
License GPL-3
ByteCompile true
URL https://pkg.robjhyndman.com/tsfeatures/
BugReports https://github.com/robjhyndman/tsfeatures/issues/
RoxygenNote 7.2.1
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no

Author Rob Hyndman [aut, cre] (<https://orcid.org/0000-0002-2140-5352>), Yanfei Kang [aut] (<https://orcid.org/0000-0001-8769-6650>), Pablo Montero-Manso [aut], Thiyanga Talagala [aut] (<https://orcid.org/0000-0002-0656-9789>), Earo Wang [aut] (<https://orcid.org/0000-0001-6448-5260>), Yangzhuoran Yang [aut], Mitchell O'Hara-Wild [aut] (<https://orcid.org/0000-0001-6729-7695>), Souhaib Ben Taieb [ctb], Cao Hanqing [ctb].
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>acf_features</td>
<td>3</td>
</tr>
<tr>
<td>ac_9</td>
<td>3</td>
</tr>
<tr>
<td>arch_stat</td>
<td>4</td>
</tr>
<tr>
<td>as.list.mts</td>
<td>5</td>
</tr>
<tr>
<td>autocorr_features</td>
<td>5</td>
</tr>
<tr>
<td>binarize_mean</td>
<td>6</td>
</tr>
<tr>
<td>compengine</td>
<td>7</td>
</tr>
<tr>
<td>crossing_points</td>
<td>8</td>
</tr>
<tr>
<td>dist_features</td>
<td>8</td>
</tr>
<tr>
<td>embed2_incircle</td>
<td>9</td>
</tr>
<tr>
<td>entropy</td>
<td>10</td>
</tr>
<tr>
<td>firstmin_ac</td>
<td>11</td>
</tr>
<tr>
<td>firstzero_ac</td>
<td>12</td>
</tr>
<tr>
<td>flat_spots</td>
<td>13</td>
</tr>
<tr>
<td>fluctanal_prop_r1</td>
<td>13</td>
</tr>
<tr>
<td>heterogeneity</td>
<td>14</td>
</tr>
<tr>
<td>histogram_mode</td>
<td>14</td>
</tr>
<tr>
<td>holt_parameters</td>
<td>15</td>
</tr>
<tr>
<td>hurst</td>
<td>16</td>
</tr>
<tr>
<td>localsimple_taures</td>
<td>16</td>
</tr>
<tr>
<td>lumpiness</td>
<td>17</td>
</tr>
<tr>
<td>max_level_shift</td>
<td>17</td>
</tr>
<tr>
<td>motiftwo_entro3</td>
<td>18</td>
</tr>
<tr>
<td>nonlinearity</td>
<td>19</td>
</tr>
<tr>
<td>outlierinclude_mdrmd</td>
<td>20</td>
</tr>
<tr>
<td>pacf_features</td>
<td>21</td>
</tr>
<tr>
<td>pred_features</td>
<td>21</td>
</tr>
<tr>
<td>sampenc</td>
<td>22</td>
</tr>
<tr>
<td>sampen_first</td>
<td>23</td>
</tr>
<tr>
<td>scal_features</td>
<td>24</td>
</tr>
<tr>
<td>spreadrandomlocal_meantaul</td>
<td>25</td>
</tr>
<tr>
<td>station_features</td>
<td>25</td>
</tr>
<tr>
<td>std1st_der</td>
<td>26</td>
</tr>
<tr>
<td>stl_features</td>
<td>27</td>
</tr>
<tr>
<td>trev_num</td>
<td>28</td>
</tr>
<tr>
<td>tsfeatures</td>
<td>29</td>
</tr>
<tr>
<td>unitroot_kpss</td>
<td>30</td>
</tr>
<tr>
<td>walker_propcross</td>
<td>31</td>
</tr>
</tbody>
</table>
acf_features

Description

Computes various measures based on autocorrelation coefficients of the original series, first-differenced series and second-differenced series

Usage

```r
acf_features(x)
```

Arguments

- **x**: a univariate time series

Value

A vector of 6 values: first autocorrelation coefficient and sum of squared of first ten autocorrelation coefficients of original series, first-differenced series, and twice-differenced series. For seasonal data, the autocorrelation coefficient at the first seasonal lag is also returned.

Author(s)

Thiyanga Talagala

ac_9

Autocorrelation at lag 9. Included for completion and consistency.

Description

Autocorrelation at lag 9. Included for completion and consistency.

Usage

```r
ac_9(y, acfv = stats::acf(y, 9, plot = FALSE, na.action = na.pass))
```

Arguments

- **y**: the input time series
- **acfv**: vector of autocorrelation, if exist, used to avoid repeated computation.
Value
autocorrelation at lag 9

Author(s)
Yangzhuoran Yang

References

<table>
<thead>
<tr>
<th>arch_stat</th>
<th>ARCH LM Statistic</th>
</tr>
</thead>
</table>

Description
Computes a statistic based on the Lagrange Multiplier (LM) test of Engle (1982) for autoregressive conditional heteroscedasticity (ARCH). The statistic returned is the R^2 value of an autoregressive model of order $lags$ applied to x^2.

Usage
arch_stat(x, lags = 12, demean = TRUE)

Arguments
- x: a univariate time series
- lags: Number of lags to use in the test
- demean: Should data have mean removed before test applied?

Value
A numeric value.

Author(s)
Yanfei Kang
as.list.mts

Convert mts object to list of time series

Description
Convert mts object to list of time series

Usage
S3 method for class 'mts'
as.list(x, ...)

Arguments
x multivariate time series of class mts.
... other arguments are ignored.

Author(s)
Rob J Hyndman

autocorr_features
The autocorrelation feature set from software package hctsa

Description
Calculate the features that grouped as autocorrelation set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage
autocorr_features(x)

Arguments
x the input time series

Details
Features in this set are 'embed2_incircle_1', 'embed2_incircle_2', 'ac_9', 'firstmin_ac', 'trev_num', 'motiftwo_entro3', and 'walker_propcross'.

Value
a vector with autocorrelation features
binarize_mean

Author(s)
Yangzhuoran Yang

References
B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-
B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

See Also
embed2_incircle
ac_9
firstmin_ac
trev_num
motiftwo_entro3
walker_propcross

Description
Converts an input vector into a binarized version from software package hctsa

Usage

```r
binarize_mean(y)
```

Arguments

y
the input time series

Value
Time-series values above its mean are given 1, and those below the mean are 0.

Author(s)
Yangzhuoran Yang
compengine

References

compengine

CompEngine feature set

Description

Calculate the features that have been used in CompEngine database, using method introduced in package hctsa.

Usage

compengine(x)

Arguments

x the input time series

Details

The features involved can be grouped as autocorrelation, prediction, stationarity, distribution, and scaling.

Value

a vector with CompEngine features

Author(s)

Yangzhuoran Yang

References

See Also
- autocorr_features
- pred_features
- station_features
- dist_features
- scal_features

<table>
<thead>
<tr>
<th>crossing_points</th>
<th>Number of crossing points</th>
</tr>
</thead>
</table>

Description
Computes the number of times a time series crosses the median.

Usage
crossing_points(x)

Arguments
x a univariate time series

Value
A numeric value.

Author(s)
Earo Wang and Rob J Hyndman

dist_features
The distribution feature set from software package hctsa

Description
Calculate the features that grouped as distribution set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage
dist_features(x)

Arguments
x the input time series
embed2_incircle

Details
Features in this set are `histogram_mode_10` and `outlierinclude_mdrmd`.

Value
a vector with autocorrelation features

Author(s)
Yangzhuoran Yang

References

See Also
`histogram_mode`
`outlierinclude_mdrmd`

embed2_incircle

Points inside a given circular boundary in a 2-d embedding space from software package hctsa

Description
The time lag is set to the first zero crossing of the autocorrelation function.

Usage

```r
embed2_incircle(
    y,
    boundary = NULL,
    acfv = stats::acf(y, length(y) - 1, plot = FALSE, na.action = na.pass)
)
```

Arguments

- `y` the input time series
- `boundary` the given circular boundary, setting to 1 or 2 in CompEngine. Default to 1.
- `acfv` vector of autocorrelation, if exist, used to avoid repeated computation.
Value
the proportion of points inside a given circular boundary

Author(s)
Yangzhuoran Yang

References

entropy
Spectral entropy of a time series

Description
Computes spectral entropy from a univariate normalized spectral density, estimated using an AR model.

Usage
```
entropy(x)
```

Arguments

- **x**: a univariate time series

Details
The spectral entropy equals the Shannon entropy of the spectral density $f_x(\lambda)$ of a stationary process x_t:

$$H_s(x_t) = -\int_{-\pi}^{\pi} f_x(\lambda) \log f_x(\lambda) d\lambda,$$

where the density is normalized such that $\int_{-\pi}^{\pi} f_x(\lambda) d\lambda = 1$. An estimate of $f(\lambda)$ can be obtained using `spec.ar` with the burg method.

Value
A non-negative real value for the spectral entropy $H_s(x_t)$.

Author(s)
Rob J Hyndman
References

See Also

spec.ar

Examples

entropy(rnorm(1000))
entropy(lynx)
entropy(sin(1:20))

firstmin_ac

Time of first minimum in the autocorrelation function from software package hctsa

Description

Time of first minimum in the autocorrelation function from software package hctsa

Usage

firstmin_ac(
 x,
 acfv = stats::acf(x, lag.max = N - 1, plot = FALSE, na.action = na.pass)
)

Arguments

x the input time series
acfv vector of autocorrelation, if exist, used to avoid repeated computation.

Value

The lag of the first minimum

Author(s)

Yangzhuoran Yang
References

Examples

```
firstmin_ac(WWWusage)
```

```
firstzero_ac(y, acfv = stats::acf(y, N - 1, plot = FALSE, na.action = na.pass))
```

Description

Search up to a maximum of the length of the time series

Usage

```
firstzero_ac(y, acfv = stats::acf(y, N - 1, plot = FALSE, na.action = na.pass))
```

Arguments

- `y` the input time series
- `acfv` vector of autocorrelation, if exist, used to avoid repeated computation.

Value

The first zero crossing of the autocorrelation function

Author(s)

Yangzhuoran Yang

References

flat_spots

Longest flat spot

Description

"Flat spots" are computed by dividing the sample space of a time series into ten equal-sized intervals, and computing the maximum run length within any single interval.

Usage

```r
flat_spots(x)
```

Arguments

- `x`: a univariate time series

Value

A numeric value.

Author(s)

Earo Wang and Rob J Hyndman

fluctanal_prop_r1

Implements fluctuation analysis from software package hctsa

Description

Fits a polynomial of order 1 and then returns the range. The order of fluctuations is 2, corresponding to root mean square fluctuations.

Usage

```r
fluctanal_prop_r1(x)
```

Arguments

- `x`: the input time series (or any vector)

Author(s)

Yangzhuoran Yang
References

heterogeneity

Description

Computes various measures of heterogeneity of a time series. First the series is pre-whitened using an AR model to give a new series \(y \). We fit a GARCH(1,1) model to \(y \) and obtain the residuals, \(e \). Then the four measures of heterogeneity are: (1) the sum of squares of the first 12 autocorrelations of \(y^2 \); (2) the sum of squares of the first 12 autocorrelations of \(e^2 \); (3) the \(R^2 \) value of an AR model applied to \(y^2 \); (4) the \(R^2 \) value of an AR model applied to \(e^2 \). The statistics obtained from \(y^2 \) are the ARCH effects, while those from \(e^2 \) are the GARCH effects.

Usage

heterogeneity(x)

Arguments

\(x \)
a univariate time series

Value

A vector of numeric values.

Author(s)

Yanfei Kang and Rob J Hyndman

histogram_mode

Description

Measures the mode of the data vector using histograms with a given number of bins as suggestion. The value calculated is different from hctsa and CompEngine as the histogram edges are calculated differently.

Usage

histogram_mode(y, numBins = 10)
holt_parameters

Arguments
- `y` the input data vector
- `numBins` the number of bins to use in the histogram.

Value
the mode

Author(s)
Yangzhuoran Yang

References

holt_parameters Parameter estimates of Holt’s linear trend method

Description
Estimate the smoothing parameter for the level-alpha and the smoothing parameter for the trend-beta. `hw_parameters` considers additive seasonal trend: ets(A,A,A) model.

Usage
- `holt_parameters(x)`
- `hw_parameters(x)`

Arguments
- `x` a univariate time series

Value
- `holt_parameters` produces a vector of 2 values: alpha, beta.
- `hw_parameters` produces a vector of 3 values: alpha, beta and gamma.

Author(s)
Thiyanga Talagala, Pablo Montero-Manso
hurst

Hurst coefficient

Description

Computes the Hurst coefficient indicating the level of fractional differencing of a time series.

Usage

```r
hurst(x)
```

Arguments

- `x` a univariate time series. If missing values are present, the largest contiguous portion of the time series is used.

Value

A numeric value.

Author(s)

Rob J Hyndman

localsimple_taures

The first zero crossing of the autocorrelation function of the residuals from Simple local time-series forecasting from software package hctsa

Description

Simple predictors using the past `trainLength` values of the time series to predict its next value.

Usage

```r
localsimple_taures(y, forecastMeth = c("mean", "lfit"), trainLength = NULL)
```

Arguments

- `y` the input time series
- `forecastMeth` the forecasting method, default to `mean`. `mean`: local mean prediction using the past `trainLength` time-series values. `lfit`: local linear prediction using the past `trainLength` time-series values.
- `trainLength` the number of time-series values to use to forecast the next value. Default to 1 when using method `mean` and 3 when using method `lfit`.
lumpiness

Value

The first zero crossing of the autocorrelation function of the residuals

Description

Computes feature of a time series based on tiled (non-overlapping) windows. Means or variances are produced for all tiled windows. Then stability is the variance of the means, while lumpiness is the variance of the variances.

Usage

```r
lumpiness(x, width = ifelse(frequency(x) > 1, frequency(x), 10))
```

```r
stability(x, width = ifelse(frequency(x) > 1, frequency(x), 10))
```

Arguments

- `x` a univariate time series
- `width` size of sliding window

Value

A numeric vector of length 2 containing a measure of lumpiness and a measure of stability.

Author(s)

Earo Wang and Rob J Hyndman

max_level_shift

Time series features based on sliding windows

Description

Computes feature of a time series based on sliding (overlapping) windows. `max_level_shift` finds the largest mean shift between two consecutive windows. `max_var_shift` finds the largest var shift between two consecutive windows. `max_kl_shift` finds the largest shift in Kulback-Leibler divergence between two consecutive windows.
Usage

max_level_shift(x, width = ifelse(frequency(x) > 1, frequency(x), 10))

max_var_shift(x, width = ifelse(frequency(x) > 1, frequency(x), 10))

max_kl_shift(x, width = ifelse(frequency(x) > 1, frequency(x), 10))

Arguments

x a univariate time series
width size of sliding window

Details

Computes the largest level shift and largest variance shift in sliding mean calculations

Value

A vector of 2 values: the size of the shift, and the time index of the shift.

Author(s)

Earo Wang and Rob J Hyndman

motiftwo_entro3

Local motifs in a binary symbolization of the time series from software package hctsa

Description

Coarse-graining is performed. Time-series values above its mean are given 1, and those below the mean are 0.

Usage

motiftwo_entro3(y)

Arguments

y the input time series

Value

Entropy of words in the binary alphabet of length 3.

Author(s)

Yangzhuoran Yang
References

Examples
motiftwo_entro3(WWWusage)

<table>
<thead>
<tr>
<th>nonlinearity</th>
<th>Nonlinearity coefficient</th>
</tr>
</thead>
</table>

Description
Computes a nonlinearity statistic based on Lee, White & Granger's nonlinearity test of a time series. The statistic is $10X^2/T$ where X^2 is the Chi-squared statistic from Lee, White and Granger, and T is the length of the time series. This takes large values when the series is nonlinear, and values around 0 when the series is linear.

Usage
nonlinearity(x)

Arguments

x a univariate time series

Value
A numeric value.

Author(s)
Yanfei Kang and Rob J Hyndman

References

Examples
nonlinearity(lynx)
outlierinclude_mdrmd

Description
Measures median as more and more outliers are included in the calculation according to a specified rule, of outliers being further from the mean.

Usage
outlierinclude_mdrmd(y, zscored = TRUE)

Arguments
y the input time series (ideally z-scored)
zscored Should y be z-scored before computing the statistic. Default: TRUE

Details
The threshold for including time-series data points in the analysis increases from zero to the maximum deviation, in increments of 0.01*sigma (by default), where sigma is the standard deviation of the time series.

At each threshold, proportion of time series points included and median are calculated, and outputs from the algorithm measure how these statistical quantities change as more extreme points are included in the calculation.

Outliers are defined as furthest from the mean.

Value
median of the median of range indices

Author(s)
Yangzhuoran Yang

References

pacf_features

Partial autocorrelation-based features

Description

Computes various measures based on partial autocorrelation coefficients of the original series, first-differenced series and second-differenced series.

Usage

```
pacf_features(x)
```

Arguments

- `x`: a univariate time series

Value

A vector of 3 values: Sum of squared of first 5 partial autocorrelation coefficients of the original series, first differenced series and twice-differenced series. For seasonal data, the partial autocorrelation coefficient at the first seasonal lag is also returned.

Author(s)

Thiyanga Talagala

pred_features

The prediction feature set from software package hctsa

Description

Calculate the features that grouped as prediction set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage

```
pred_features(x)
```

Arguments

- `x`: the input time series

Details

Features in this set are `localsimple_mean1`, `localsimple_lfitac`, and `sampen_first`.
Value

a vector with autocorrelation features

Author(s)

Yangzhuoran Yang

References

See Also

localsimple_taures
sampen_first

Description

Modified from the Ben Fulcher version of original code sampenc.m from http://physionet.org/physiotools/sampen/ http://www.physionet.org/physiotools/sampen/matlab/1.1/sampenc.m Code by DK Lake (dlake@virginia.edu), JR Moorman and Cao Hanqing.

Usage

sampenc(y, M = 6, r = 0.3)

Arguments

y the input time series
M embedding dimension
r threshold

Author(s)

Yangzhuoran Yang
References

cf. "Physiological time-series analysis using approximate entropy and sample entropy", J. S. Rich-

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-

B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

Description

Modified from the Ben Fulcher's EN_SampEn which uses code from PhysioNet. The publicly-
available PhysioNet Matlab code, sampenc (renamed here to RN_sampenc) is available from:
http://www.physionet.org/physiotools/sampen/matlab/1.1/sampenc.m

Usage

`sampen_first(y)`

Arguments

`y` the input time series

Details

Embedding dimension is set to 5. The threshold is set to 0.3.

Author(s)

Yangzhuoran Yang

References

cf. "Physiological time-series analysis using approximate entropy and sample entropy", J. S. Rich-

B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-

B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-
The scaling feature set from software package hctsa

Description

Calculate the features that grouped as scaling set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage

scal_features(x)

Arguments

x the input time series

Details

Feature in this set is fluctanal_prop_r1.

Value

a vector with autocorrelation features

Author(s)

Yangzhuoran Yang

References

See Also

fluctanal_prop_r1
spreadrandomlocal_meantaul

Description

100 time-series segments of length l are selected at random from the time series and the mean of the first zero-crossings of the autocorrelation function in each segment is calculated.

Usage

spreadrandomlocal_meantaul(y, l = 50)

Arguments

- **y**: the input time series
- **l**: the length of local time-series segments to analyse as a positive integer. Can also be a specified character string: "ac2": twice the first zero-crossing of the autocorrelation function

Value

mean of the first zero-crossings of the autocorrelation function

Author(s)

Yangzhuoran Yang

References

station_features

Description

Calculate the features that grouped as stationarity set, which have been used in CompEngine database, using method introduced in package hctsa.

Usage

station_features(x)
Arguments

std1st_der

Details

Features in this set are std1st_der, spreadrandomlocal_meantaul_50, and spreadrandomlocal_meantaul_ac2.

Value

a vector with autocorrelation features

Author(s)

Yangzhuoran Yang

References

See Also

std1st_der

spreadrandomlocal_meantaul

std1st_der Standard deviation of the first derivative of the time series from software package hctsa

Description

Modified from SY_StdNthDer in hctsa. Based on an idea by Vladimir Vassilevsky.

Usage

std1st_der(y)

Arguments

y the input time series. Missing values will be removed.

Value

Standard deviation of the first derivative of the time series.
stl_features

Author(s)
Yangzhuoran Yang

References
B.D. Fulcher and N.S. Jones. hctsa: A computational framework for automated time-series pheno-
B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series analysis: the empirical struc-

Description
Computes various measures of trend and seasonality of a time series based on an STL decomposi-
tion. The number of seasonal periods, and the length of the seasonal periods are returned. Also, the
strength of seasonality corresponding to each period is estimated. The `mstl` function is used to do
the decomposition.

Usage
```r
stl_features(x, ...)
```

Arguments
- `x` a univariate time series.
- `...` Other arguments are passed to `mstl`.

Value
A vector of numeric values.

Author(s)
Rob J Hyndman
Normalized nonlinear autocorrelation, the numerator of the trev function of a time series from software package hctsa

Description

Calculates the numerator of the trev function, a normalized nonlinear autocorrelation, The time lag is set to 1.

Usage

trev_num(y)

Arguments

y the input time series

Value

the numerator of the trev function of a time series

Author(s)

Yangzhuoran Yang

References

Examples

trev_num(WWWusage)
Description

tfeatures computes a matrix of time series features from a list of time series.

The tsfeature package provides methods to extract various features from time series data.

Usage

tfeatures(
 tslist,
 features = c("frequency", "stl_features", "entropy", "acf_features"),
 scale = TRUE,
 trim = FALSE,
 trim_amount = 0.1,
 parallel = FALSE,
 multiprocess = future::multisession,
 na.action = na.pass,
 ...
)

Arguments

tlist
 a list of univariate time series, each of class ts or a numeric vector. Alternatively, an object of class mts may be used.

features
 a vector of function names which return numeric vectors of features. All features returned by these functions must be named if they return more than one feature. Existing functions from installed packages may be used, but the package must be loaded first. Functions must return a result for all time series, even if it is just NA.

scale
 if TRUE, time series are scaled to mean 0 and sd 1 before features are computed.

trim
 if TRUE, time series are trimmed by trim_amount before features are computed. Values larger than trim_amount in absolute value are set to NA.

trim_amount
 Default level of trimming if trim==TRUE.

parallel
 If TRUE, multiple cores (or multiple sessions) will be used. This only speeds things up when there are a large number of time series.

multiprocess
 The function from the future package to use for parallel processing. Either multisession or multicore. The latter is preferred for Linux and MacOS.

na.action
 A function to handle missing values. Use na.interp to estimate missing values.

... Other arguments get passed to the feature functions.

Value

A feature matrix (in the form of a tibble) with each row corresponding to one time series from tslist, and each column being a feature.
unitroot_kpss

Author(s)

Rob J Hyndman

Examples

mylist <- list(sunspot.year, WWWusage, AirPassengers, USAccDeaths)
tsfeatures(mylist)

unitroot_kpss Unit Root Test Statistics

Description

unitroot_kpss computes the statistic for the Kwiatkowski et al. unit root test using the default settings for the ur.kpss function. unitroot_pp computes the statistic for the Phillips-Perron unit root test using the default settings for the ur.pp function.

Usage

unitroot_kpss(x, ...)

unitroot_pp(x, ...)

Arguments

x a univariate time series.
...

Other arguments are passed to the ur.kpss or ur.pp functions.

Value

A numeric value

Author(s)

Pablo Montero-Manso
walker_propcross

Simulates a hypothetical walker moving through the time domain from software package hctsa

Description

The hypothetical particle (or ‘walker’) moves in response to values of the time series at each point. The walker narrows the gap between its value and that of the time series by 10%.

Usage

```r
walker_propcross(y)
```

Arguments

- `y` the input time series

Value

fraction of time series length that walker crosses time series

Author(s)

Yangzhuoran Yang

References

yahoo_data

Yahoo server metrics

Description

Yahoo server metrics

Usage

```r
yahoo_data(...)```

---
Arguments

... Additional arguments passed to `download.file`
Downloads and returns aggregated and anonymized datasets from Yahoo representing server metrics of Yahoo services.

Value

A matrix of time series with 1437 rows of hourly data, and 1748 columns representing different servers.

Author(s)

Rob Hyndman, Earo Wang, Nikolay Laptev, Mitchell O’Hara-Wild

References


Examples

```r
yahoo <- yahoo_data()
plot(yahoo[,1:10])
plot(yahoo[,1:44], plot.type='single', col=1:44)
```

---

### zero_proportion

**Proportion of zeros**

**Description**

Computes proportion of zeros in a time series

**Usage**

```r
zero_proportion(x, tol = 1e-08)
```

**Arguments**

- `x` a univariate time series
- `tol` tolerance level. Absolute values below this are considered zeros.

**Value**

A numeric value.
zero_proportion

Author(s)

Thiyanga Talagala
Index

ac_9, 3, 6
acf_features, 3
arch_stat, 4
as.list.mts, 5
autocorr_features, 5, 8
binarize_mean, 6
compengine, 7
crossing_points, 8
dist_features, 8, 8
embed2_incircle, 6, 9
entropy, 10
firstmin_ac, 6, 11
firstzero_ac, 12
flat_spots, 13
fluctanal_prop_r1, 13, 24
heterogeneity, 14
histogram_mode, 9, 14
holt_parameters, 15
hurst, 16
hw_parameters (holt_parameters), 15
localsimple_taures, 16, 22
lumpiness, 17
max_kl_shift (max_level_shift), 17
max_level_shift, 17
max_var_shift (max_level_shift), 17
motiftwo_entro3, 6, 18
mstl, 27
multicore, 29
multisession, 29
nonlinearity, 19
outlierinclude_mdrmd, 9, 20
pacf_features, 21
pred_features, 8, 21
sampen_first, 22, 23
samppenc, 22
scal_features, 8, 24
spec.ar, 10, 11
spreadrandomlocal_meantaul, 25, 26
stability (lumpiness), 17
station_features, 8, 25
stld1st_der, 26, 26
stl_features, 27
trev_num, 6, 28
tsfearures, 29
unitroot_kpss, 30
unitroot_pp (unitroot_kpss), 30
ur.kpss, 30
ur.pp, 30
walker_propcros, 6, 31
yahoo_data, 31
zero_proportion, 32