Package ‘tune’

April 18, 2024

Title Tidy Tuning Tools

Version 1.2.1

Description The ability to tune models is important. ‘tune’ contains functions and classes to be used in conjunction with other ‘tidymodels’ packages for finding reasonable values of hyper-parameters in models, pre-processing methods, and post-processing steps.

License MIT + file LICENSE

BugReports https://github.com/tidymodels/tune/issues

Depends R (>= 4.0)

Imports cli (>= 3.3.0), dials (>= 1.0.0), doFuture (>= 1.0.0), dplyr (>= 1.1.0), foreach, future (>= 1.33.0), generics (>= 0.1.2), ggplot2, glue (>= 1.6.2), GPfit, hardhat (>= 1.2.0), lifecycle (>= 1.0.0), parsnip (>= 1.2.0), purrr (>= 1.0.0), recipes (>= 1.0.4), rlang (>= 1.1.0), rsample (>= 1.2.0), tibble (>= 3.1.0), tidyr (>= 1.2.0), tidyselect (>= 1.1.2), vctrs (>= 0.6.1), withr, workflows (>= 1.1.4), yardstick (>= 1.3.0)

Suggests C50, censored (>= 0.3.0), covr, kernlab, kknn, knitr, modeldata, scales, spelling, testthat (>= 3.0.0), xgboost, xml2

Config/Needs/website pkgdown, tidymodels, kknn, doParallel, doFuture, tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Max Kuhn [aut, cre] (<https://orcid.org/0000-0003-2402-136X>), Posit Software, PBC [cph, fn]
.stash_last_result

Save most recent results to search path

Description
Save most recent results to search path

Usage
.stash_last_result(x)
Arguments

x An object.

Details

The function will assign \(x \) to `.Last.tune.result` and put it in the search path.

Value

NULL, invisibly.

Description

This S3 method defines the logic for deciding when a case weight vector should be passed to yardstick metric functions and used to measure model performance. The current logic is that frequency weights (i.e. `hardhat::frequency_weights()`) are the only situation where this should occur.

Usage

```r
.use_case_weights_with_yardstick(x)
```

S3 method for class `hardhat_importance_weights`

```r
.use_case_weights_with_yardstick(x)
```

S3 method for class `hardhat_frequency_weights`

```r
.use_case_weights_with_yardstick(x)
```

Arguments

\(x \) A vector

Value

A single `TRUE` or `FALSE`.

Examples

```r
library(parsnip)
library(dplyr)

frequency_weights(1:10) %>%
 .use_case_weights_with_yardstick()

importance_weights(seq(1, 10, by = .1)) %>%
 .use_case_weights_with_yardstick()
```
augment.tune_results
Augment data with holdout predictions

Description

For tune objects that use resampling, these augment() methods will add one or more columns for the hold-out predictions (i.e. from the assessment set(s)).

Usage

```r
## S3 method for class 'tune_results'
augment(x, ..., parameters = NULL)

## S3 method for class 'resample_results'
augment(x, ...)

## S3 method for class 'last_fit'
augment(x, ...)
```

Arguments

- `x`
 An object resulting from one of the tune_*() functions, fit_resamples(), or last_fit(). The control specifications for these objects should have used the option save_pred = TRUE.

- `...`
 Not currently used.

- `parameters`
 A data frame with a single row that indicates what tuning parameters should be used to generate the predictions (for tune_*() objects only). If NULL, select_best(x) will be used with the first metric and, if applicable, the first evaluation time point, used to create x.

Details

For some resampling methods where rows may be replicated in multiple assessment sets, the prediction columns will be averages of the holdout results. Also, for these methods, it is possible that all rows of the original data do not have holdout predictions (like a single bootstrap resample). In this case, all rows are return and a warning is issued.

For objects created by last_fit(), the test set data and predictions are returned. Unlike other augment() methods, the predicted values for regression models are in a column called .pred instead of .fitted (to be consistent with other tidymodels conventions).

For regression problems, an additional .resid column is added to the results.

Value

A data frame with one or more additional columns for model predictions.
Plot tuning search results

Usage

S3 method for class 'tune_results'
autoplot(
 object,
 type = c("marginals", "parameters", "performance"),
 metric = NULL,
 eval_time = NULL,
 width = NULL,
 call = rlang::current_env(),
 ...
)

Arguments

object A tibble of results from `tune_grid()` or `tune_bayes()`.

type A single character value. Choices are "marginals" (for a plot of each predictor versus performance; see Details below), "parameters" (each parameter versus search iteration), or "performance" (performance versus iteration). The latter two choices are only used for `tune_bayes()`.

metric A character vector or NULL for which metric to plot. By default, all metrics will be shown via facets. Possible options are the entries in .metric column of `collect_metrics(object)`.

eval_time A numeric vector of time points where dynamic event time metrics should be chosen (e.g. the time-dependent ROC curve, etc). The values should be consistent with the values used to create object.

width A number for the width of the confidence interval bars when type = "performance". A value of zero prevents them from being shown.

call The call to be displayed in warnings or errors.

Details

When the results of `tune_grid()` are used with `autoplot()`, it tries to determine whether a regular grid was used.
Regular grids:
For regular grids with one or more numeric tuning parameters, the parameter with the most unique values is used on the x-axis. If there are categorical parameters, the first is used to color the geometries. All other parameters are used in column faceting.
The plot has the performance metric(s) on the y-axis. If there are multiple metrics, these are row-faceted.
If there are more than five tuning parameters, the "marginal effects" plots are used instead.

Irregular grids:
For space-filling or random grids, a marginal effect plot is created. A panel is made for each numeric parameter so that each parameter is on the x-axis and performance is on the y-xis. If there are multiple metrics, these are row-faceted.
A single categorical parameter is shown as colors. If there are two or more non-numeric parameters, an error is given. A similar result occurs if only non-numeric parameters are in the grid. In these cases, we suggest using `collect_metrics()` and `ggplot()` to create a plot that is appropriate for the data.
If a parameter has an associated transformation associated with it (as determined by the parameter object used to create it), the plot shows the values in the transformed units (and is labeled with the transformation type).
Parameters are labeled using the labels found in the parameter object except when an identifier was used (e.g. `neighbors = tune("K")`).

Value
A ggplot2 object.

See Also
`tune_grid()`, `tune_bayes()`

Examples

```r
# For grid search:
data("example_ames_knn")

# Plot the tuning parameter values versus performance
autoplot(ames_grid_search, metric = "rmse")

# For iterative search:
# Plot the tuning parameter values versus performance
autoplot(ames_iter_search, metric = "rmse", type = "marginals")

# Plot tuning parameters versus iterations
autoplot(ames_iter_search, metric = "rmse", type = "parameters")

# Plot performance over iterations
autoplot(ames_iter_search, metric = "rmse", type = "performance")
```
collect_predictions Obtain and format results produced by tuning functions

Description

Obtain and format results produced by tuning functions

Usage

collect_predictions(x, ...)

Default S3 method:
collect_predictions(x, ...)

S3 method for class 'tune_results'
collect_predictions(x, ..., summarize = FALSE, parameters = NULL)

collect_metrics(x, ...)

S3 method for class 'tune_results'
collect_metrics(x, ..., summarize = TRUE, type = c("long", "wide"))

collect_notes(x, ...)

S3 method for class 'tune_results'
collect_notes(x, ...)

collect_extracts(x, ...)

S3 method for class 'tune_results'
collect_extracts(x, ...)

Arguments

x The results of tune_grid(), tune_bayes(), fit_resamples(), or last_fit().
 For collect_predictions(), the control option save_pred = TRUE should have
 been used.

... Not currently used.

summarize A logical; should metrics be summarized over resamples (TRUE) or return
 the values for each individual resample. Note that, if x is created by
 last_fit(), summarize has no effect. For the other object types, the
 method of summarizing predictions is detailed below.

parameters An optional tibble of tuning parameter values that can be used to filter the
 predicted values before processing. This tibble should only have columns
 for each tuning parameter identifier (e.g. "my_param" if tune("my_param")
 was used).
collect_predictions

type

One of "long" (the default) or "wide". When type = "long", output has columns .metric and one of .estimate or mean. .estimate/mean gives the values for the .metric. When type = "wide", each metric has its own column and the n and std_err columns are removed, if they exist.

Value

A tibble. The column names depend on the results and the mode of the model.

For `collect_metrics()` and `collect_predictions()`, when unsummarized, there are columns for each tuning parameter (using the id from `tune()`, if any).

`collect_metrics()` also has columns .metric, and .estimator by default. For `collect_metrics()` methods that have a type argument, supplying type = "wide" will pivot the output such that each metric has its own column. When the results are summarized, there are columns for mean, n, and std_err. When not summarized, the additional columns for the resampling identifier(s) and .estimate.

For `collect_predictions()`, there are additional columns for the resampling identifier(s), columns for the predicted values (e.g., .pred, .pred_class, etc.), and a column for the outcome(s) using the original column name(s) in the data.

`collect_predictions()` can summarize the various results over replicate out-of-sample predictions. For example, when using the bootstrap, each row in the original training set has multiple holdout predictions (across assessment sets). To convert these results to a format where every training set same has a single predicted value, the results are averaged over replicate predictions.

For regression cases, the numeric predictions are simply averaged.

For classification models, the problem is more complex. When class probabilities are used, these are averaged and then re-normalized to make sure that they add to one. If hard class predictions also exist in the data, then these are determined from the summarized probability estimates (so that they match). If only hard class predictions are in the results, then the mode is used to summarize.

With censored outcome models, the predicted survival probabilities (if any) are averaged while the static predicted event times are summarized using the median.

`collect_notes()` returns a tibble with columns for the resampling indicators, the location (preprocessor, model, etc.), type (error or warning), and the notes.

`collect_extracts()` collects objects extracted from fitted workflows via the extract argument to `control functions`. The function returns a tibble with columns for the resampling indicators, the location (preprocessor, model, etc.), and extracted objects.

Hyperparameters and extracted objects

When making use of submodels, tune can generate predictions and calculate metrics for multiple model .configurations using only one model fit. However, this means that if a function was supplied to a control function’s extract argument, tune can only execute that extraction on the one model that was fitted. As a result, in the `collect_extracts()` output, tune opts to associate the extracted objects with the hyperparameter combination used to fit that one model workflow, rather than the hyperparameter combination of a submodel. In the output, this appears like a hyperparameter entry is recycled across many .config entries—this is intentional.

See https://parsnip.tidymodels.org/articles/Submodels.html to learn more about submodels.
Examples

```r
data("example_ames_knn")
# The parameters for the model:
extract_parameter_set_dials(ames_wflow)

# Summarized over resamples
collect_metrics(ames_grid_search)

# Per-resample values
collect_metrics(ames_grid_search, summarize = FALSE)
```

```
# --------------------------------------------------------------------------------
library(parsnip)
library(rsample)
library(dplyr)
library(recipes)
library(tibble)

lm_mod <- linear_reg() %>% set_engine("lm")
set.seed(93599150)
car_folds <- vfold_cv(mtcars, v = 2, repeats = 3)
ctrl <- control_resamples(save_pred = TRUE, extract = extract_fit_engine)

spline_rec <-
  recipe(mpg ~ ., data = mtcars) %>%
  step_ns(disp, deg_free = tune("df"))

grid <- tibble(df = 3:6)
resampled <-
  lm_mod %>%
  tune_grid(spline_rec, resamples = car_folds, control = ctrl, grid = grid)

collect_predictions(resampled) %>% arrange(.row)
collect_predictions(resampled, summarize = TRUE) %>% arrange(.row)
collect_predictions(
  resampled,
  summarize = TRUE,
  parameters = grid[1, ]
) %>% arrange(.row)

collect_extracts(resampled)
```

compute_metrics
Calculate and format metrics from tuning functions
compute_metrics

Description
This function computes metrics from tuning results. The arguments and output formats are closely related to those from `collect_metrics()`, but this function additionally takes a `metrics` argument with a metric set for new metrics to compute. This allows for computing new performance metrics without requiring users to re-evaluate models against resamples.

Note that the control option `save_pred = TRUE` must have been supplied when generating `x`.

Usage

```r
compute_metrics(x, metrics, summarize, event_level, ...)
```

Default S3 method:
```r
compute_metrics(x, metrics, summarize = TRUE, event_level = "first", ...)
```

S3 method for class 'tune_results'
```r
compute_metrics(x, metrics, ..., summarize = TRUE, event_level = "first")
```

Arguments

- `x`
The results of a tuning function like `tune_grid()` or `fit_resamples()`, generated with the control option `save_pred = TRUE`.

- `metrics`
A metric set of new metrics to compute. See the "Details" section below for more information.

- `summarize`
A single logical value indicating whether metrics should be summarized over resamples (`TRUE`) or return the values for each individual resample. See `collect_metrics()` for more details on how metrics are summarized.

- `event_level`
A single string containing either "first" or "second". This argument is passed on to yardstick metric functions when any type of class prediction is made, and specifies which level of the outcome is considered the "event".

- `...`
Not currently used.

Details
Each metric in the set supplied to the `metrics` argument must have a metric type (usually "numeric", "class", or "prob") that matches some metric evaluated when generating `x`. e.g. For example, if `x` was generated with only hard "class" metrics, this function can’t compute metrics that take in class probabilities ("prob"). By default, the tuning functions used to generate `x` compute metrics of all needed types.

Value

A tibble. See `collect_metrics()` for more details on the return value.

Examples

```r
# load needed packages:
library(parsnip)
```
library(rsample)
library(yardstick)

evaluate a linear regression against resamples.
note that we pass `save_pred = TRUE`:
res <-
 fit_resamples(
 linear_reg(),
 mpg ~ cyl + hp,
 bootstraps(mtcars, 5),
 control = control_grid(save_pred = TRUE)
)

to return the metrics supplied to `fit_resamples()`:
collect_metrics(res)

to compute new metrics:
compute_metrics(res, metric_set(mae))

if `metrics` is the same as that passed to `fit_resamples()`,
then `collect_metrics()` and `compute_metrics()` give the same
output, though `compute_metrics()` is quite a bit slower:
all.equal(
 collect_metrics(res),
 compute_metrics(res, metric_set(rmse, rsq))
)

conf_mat_resampled
Compute average confusion matrix across resamples

Description

For classification problems, `conf_mat_resampled()` computes a separate confusion matrix for each resample then averages the cell counts.

Usage

```r
conf_mat_resampled(x, ..., parameters = NULL, tidy = TRUE)
```

Arguments

- **x**
 An object with class `tune_results` that was used with a classification model that was run with `control_*(save_pred = TRUE)`.

- **...**
 Currently unused, must be empty.

- **parameters**
 A tibble with a single tuning parameter combination. Only one tuning parameter combination (if any were used) is allowed here.

- **tidy**
 Should the results come back in a tibble (TRUE) or a `conf_mat` object like `yardstick::conf_mat()` (FALSE)?
Value

A tibble or `conf_mat` with the average cell count across resamples.

Examples

```r
library(parsnip)
library(rsample)
library(dplyr)

data(two_class_dat, package = "modeldata")

set.seed(2393)
res <-
  logistic_reg() %>%
  set_engine("glm") %>%
  fit_resamples(
    Class ~ .,
    resamples = vfold_cv(two_class_dat, v = 3),
    control = control_resamples(save_pred = TRUE)
  )

conf_mat_resampled(res)
conf_mat_resampled(res, tidy = FALSE)
```

control_bayes

Control aspects of the Bayesian search process

Description

Control aspects of the Bayesian search process

Usage

```r
control_bayes(
  verbose = FALSE,
  verbose_iter = FALSE,
  no_improve = 10L,
  uncertain = Inf,
  seed = sample.int(10^5, 1),
  extract = NULL,
  save_pred = FALSE,
  time_limit = NA,
  pkgs = NULL,
  save_workflow = FALSE,
  save_gp_scoring = FALSE,
  event_level = "first",
  parallel_over = NULL,
  backend_options = NULL,
)```
control_bayes

allow_par = TRUE
)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always shown) as they are generated during training in a single R process. When using most parallel backends, this argument typically will not result in any logging. If using a dark IDE theme, some logging messages might be hard to see; try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

verbose_iter A logical for logging results of the Bayesian search process. Defaults to FALSE. If using a dark IDE theme, some logging messages might be hard to see; try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

no_improve The integer cutoff for the number of iterations without better results.

uncertain The number of iterations with no improvement before an uncertainty sample is created where a sample with high predicted variance is chosen (i.e., in a region that has not yet been explored). The iteration counter is reset after each uncertainty sample. For example, if uncertain = 10, this condition is triggered every 10 samples with no improvement.

seed An integer for controlling the random number stream. Tuning functions are sensitive to both the state of RNG set outside of tuning functions with set.seed() as well as the value set here. The value of the former determines RNG for the higher-level tuning process, like grid generation and setting the value of this argument if left as default. The value of this argument determines RNG state in workers for each iteration of model fitting, determined by the value of parallel_over.

extract An optional function with at least one argument (or NULL) that can be used to retain arbitrary objects from the model fit object, recipe, or other elements of the workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each model evaluated.

time_limit A number for the minimum number of minutes (elapsed) that the function should execute. The elapsed time is evaluated at internal checkpoints and, if over time, the results at that time are returned (with a warning). This means that the time_limit is not an exact limit, but a minimum time limit. Note that timing begins immediately on execution. Thus, if the initial argument to tune_bayes() is supplied as a number, the elapsed time will include the time needed to generate initialization results.

pkgs An optional character string of R package names that should be loaded (by namespace) during parallel processing.

save_workflow A logical for whether the workflow should be appended to the output as an attribute.
save_gp_scoring
A logical to save the intermediate Gaussian process models for each iteration of the search. These are saved to tempdir() with names gp_candidates_{i}.RData where i is the iteration. These results are deleted when the R session ends. This option is only useful for teaching purposes.

event_level
A single string containing either "first" or "second". This argument is passed on to yardstick metric functions when any type of class prediction is made, and specifies which level of the outcome is considered the "event".

parallel_over
A single string containing either "resamples" or "everything" describing how to use parallel processing. Alternatively, NULL is allowed, which chooses between "resamples" and "everything" automatically.

If "resamples", then tuning will be performed in parallel over resamples alone. Within each resample, the preprocessor (i.e. recipe or formula) is processed once, and is then reused across all models that need to be fit.

If "everything", then tuning will be performed in parallel at two levels. An outer parallel loop will iterate over resamples. Additionally, an inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample. This will result in the preprocessor being re-processed multiple times, but can be faster if that processing is extremely fast.

If NULL, chooses "resamples" if there are more than one resample, otherwise chooses "everything" to attempt to maximize core utilization.

Note that switching between parallel_over strategies is not guaranteed to use the same random number generation schemes. However, re-tuning a model using the same parallel_over strategy is guaranteed to be reproducible between runs.

backend_options
An object of class "tune_backend_options" as created by tune::new_backend_options(), used to pass arguments to specific tuning backend. Defaults to NULL for default backend options.

allow_par
A logical to allow parallel processing (if a parallel backend is registered).

Details

For extract, this function can be used to output the model object, the recipe (if used), or some components of either or both. When evaluated, the function’s sole argument has a fitted workflow if the formula method is used, the recipe element will be NULL.

The results of the extract function are added to a list column in the output called .extracts. Each element of this list is a tibble with tuning parameter column and a list column (also called .extracts) that contains the results of the function. If no extraction function is used, there is no .extracts column in the resulting object. See tune_bayes() for more specific details.

Note that for collect_predictions(), it is possible that each row of the original data point might be represented multiple times per tuning parameter. For example, if the bootstrap or repeated cross-validation are used, there will be multiple rows since the sample data point has been evaluated multiple times. This may cause issues when merging the predictions with the original data.
Hyperparameters and extracted objects

When making use of submodels, tune can generate predictions and calculate metrics for multiple model configurations using only one model fit. However, this means that if a function was supplied to a control function’s extract argument, tune can only execute that extraction on the one model that was fitted. As a result, in the collect_extracts() output, tune opts to associate the extracted objects with the hyperparameter combination used to fit that one model workflow, rather than the hyperparameter combination of a submodel. In the output, this appears like a hyperparameter entry is recycled across many .config entries—this is intentional.

See https://parsnip.tidymodels.org/articles/Submodels.html to learn more about submodels.

control_last_fit

Description

Control aspects of the last fit process

Usage

control_last_fit(verbose = FALSE, event_level = "first", allow_par = FALSE)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always shown) as they are generated during training in a single R process. When using most parallel backends, this argument typically will not result in any logging. If using a dark IDE theme, some logging messages might be hard to see: try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

event_level A single string containing either "first" or "second". This argument is passed on to yardstick metric functions when any type of class prediction is made, and specifies which level of the outcome is considered the "event".

allow_par A logical to allow parallel processing (if a parallel backend is registered).

Details

control_last_fit() is a wrapper around control_resamples() and is meant to be used with last_fit().
**coord_obs_pred**

*Use same scale for plots of observed vs predicted values*

**Description**

For regression models, `coord_obs_pred()` can be used in a ggplot to make the x- and y-axes have the same exact scale along with an aspect ratio of one.

**Usage**

```r
coord_obs_pred(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")
```

**Arguments**

- `ratio`: Aspect ratio, expressed as $y/x$. Defaults to 1.0.
- `xlim`, `ylim`: Limits for the x and y axes.
- `expand`: Not currently used.
- `clip`: Should drawing be clipped to the extent of the plot panel? A setting of "on" (the default) means yes, and a setting of "off" means no. In most cases, the default of "on" should not be changed, as setting `clip = "off"` can cause unexpected results. It allows drawing of data points anywhere on the plot, including in the plot margins. If limits are set via `xlim` and `ylim` and some data points fall outside those limits, then those data points may show up in places such as the axes, the legend, the plot title, or the plot margins.

**Value**

A ggproto object.

**Examples**

```r
data(solubility_test, package = "modeldata")

library(ggplot2)
p <- ggplot(solubility_test, aes(x = solubility, y = prediction)) +
 geom_abline(lty = 2) +
 geom_point(alpha = 0.5)

p

p + coord_fixed()

p + coord_obs_pred()
```
Example Analysis of Ames Housing Data

Details

These objects are the results of an analysis of the Ames housing data. A K-nearest neighbors model was used with a small predictor set that included natural spline transformations of the Longitude and Latitude predictors. The code used to generate these examples was:

```r
library(tidymodels)
library(tune)
library(AmesHousing)

ames <- make_ames()
set.seed(4595)
data_split <- initial_split(ames, strata = "Sale_Price")
ames_train <- training(data_split)
set.seed(2453)
rs_splits <- vfold_cv(ames_train, strata = "Sale_Price")

ames_rec <-
recipe(Sale_Price ~ ., data = ames_train) %>%
 step_log(Sale_Price, base = 10) %>%
 step_YeoJohnson(Lot_Area, Gr_Liv_Area) %>%
 step_other(Neighborhood, threshold = .1) %>%
 step_dummy(all_nominal()) %>%
 step_zv(all_predictors()) %>%
 step_ns(Longitude, deg_free = tune("lon")) %>%
 step_ns(Latitude, deg_free = tune("lat"))

knn_model <-
nearest_neighbor(
 mode = "regression",
 neighbors = tune("K"),
 weight_func = tune(),
 dist_power = tune()
)```
ames_wflow <- workflow() %>% add_recipe(ames_rec) %>% add_model(knn_model)

ames_set <- extract_parameter_set_dials(ames_wflow) %>% update(K = neighbors(c(1, 50)))

ames_grid_search <- tune_grid(
 ames_wflow,
 resamples = rsplits,
 grid = ames_grid
)

ames_iter_search <- tune_bayes(
 ames_wflow,
 resamples = rsplits,
 param_info = ames_set,
 initial = ames_grid_search,
 iter = 15
)

important note: Since the rsample split columns contain a reference to the same data, saving them to disk can result in large object sizes when the object is later used. In essence, R replaces all of those references with the actual data. For this reason, we saved zero-row tibbles in their place. This doesn’t affect how we use these objects in examples but be advised that using some rsample functions on them will cause issues.

Value

- `ames_wflow`: A workflow object
- `ames_grid_search, ames_iter_search`: Results of model tuning.

Examples

library(tune)
Description

`expo_decay()` can be used to increase or decrease a function exponentially over iterations. This can be used to dynamically set parameters for acquisition functions as iterations of Bayesian optimization proceed.

Usage

```r
expo_decay(iter, start_val, limit_val, slope = 1/5)
```

Arguments

- `iter` An integer for the current iteration number.
- `start_val` The number returned for the first iteration.
- `limit_val` The number that the process converges to over iterations.
- `slope` A coefficient for the exponent to control the rate of decay. The sign of the slope controls the direction of decay.

Details

Note that, when used with the acquisition functions in `tune()`, a wrapper would be required since only the first argument would be evaluated during tuning.

Value

A single numeric value.

Examples

```r
library(tibble)
library(purrr)
library(ggplot2)
library(dplyr)
tibble(
  iter = 1:40,
  value = map_dbl(
    1:40,
    expo_decay,
    start_val = .1,
    limit_val = 0,
```
```
slope = 1 / 5
```

```r
) %>%
ggplot(aes(x = iter, y = value)) +
  geom_path()
```

extract-tune

Extract elements of tune objects

Description

These functions extract various elements from a tune object. If they do not exist yet, an error is thrown.

- `extract_preprocessor()` returns the formula, recipe, or variable expressions used for preprocessing.
- `extract_spec_parsnip()` returns the parsnip model specification.
- `extract_fit_parsnip()` returns the parsnip model fit object.
- `extract_fit_engine()` returns the engine specific fit embedded within a parsnip model fit. For example, when using `parsnip::linear_reg()` with the "lm" engine, this returns the underlying `lm` object.
- `extract_mold()` returns the preprocessed "mold" object returned from `hardhat::mold()`. It contains information about the preprocessing, including either the prepped recipe, the formula terms object, or variable selectors.
- `extract_recipe()` returns the recipe. The estimated argument specifies whether the fitted or original recipe is returned.
- `extract_workflow()` returns the workflow object if the control option `save_workflow = TRUE` was used. The workflow will only have been estimated for objects produced by `last_fit()`.

Usage

```r
## S3 method for class 'last_fit'
extract_workflow(x, ...)

## S3 method for class 'tune_results'
extract_workflow(x, ...)

## S3 method for class 'tune_results'
extract_spec_parsnip(x, ...)

## S3 method for class 'tune_results'
extract_recipe(x, ..., estimated = TRUE)

## S3 method for class 'tune_results'
extract_fit_parsnip(x, ...)
```
S3 method for class 'tune_results'
extract_fit_engine(x, ...)

S3 method for class 'tune_results'
extract_mold(x, ...)

S3 method for class 'tune_results'
extract_preprocessor(x, ...)

Arguments

- **x**: A `tune_results` object.
- **...**: Not currently used.
- **estimated**: A logical for whether the original (unfit) recipe or the fitted recipe should be returned.

Details

These functions supersede `extract_model()`.

Value

The extracted value from the `tune tune_results`, `x`, as described in the description section.

Examples

```r
library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
tr_te_split <- initial_split(mtcars)

spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
  step_ns(disp)

lin_mod <- linear_reg() %>%
  set_engine("lm")

spline_res <- last_fit(lin_mod, spline_rec, split = tr_te_split)

extract_preprocessor(spline_res)

# The `spec` is the parsnip spec before it has been fit.
# The `fit` is the fitted parsnip model.
extract_spec_parsnip(spline_res)
extract_fit_parsnip(spline_res)
extract_fit_engine(spline_res)

# The mold is returned from `hardhat::mold()` and contains the
# predictors, outcomes, and information about the preprocessing
# for use on new data at `predict()` time.
extract_mold(spline_res)

# A useful shortcut is to extract the fitted recipe from the workflow
extract_recipe(spline_res)

# That is identical to
identical(
  extract_mold(spline_res)$blueprint$recipe,
  extract_recipe(spline_res)
)

---

**extract_model**

*Convenience functions to extract model*

**Description**

[Soft-deprecated]

**Usage**

extract_model(x)

**Arguments**

x A fitted workflow object.

**Details**

Use `extract_fit_engine()` instead of `extract_model()`.

When extracting the fitted results, the workflow is easily accessible. If there is only interest in the model, this functions can be used as a shortcut

**Value**

A fitted model.
filter_parameters  Remove some tuning parameter results

Description

For objects produced by the tune_*() functions, there may only be a subset of tuning parameter combinations of interest. For large data sets, it might be helpful to be able to remove some results. This function trims the .metrics column of unwanted results as well as columns .predictions and .extracts (if they were requested).

Usage

filter_parameters(x, ..., parameters = NULL)

Arguments

x  An object of class tune_results that has multiple tuning parameters.

... Expressions that return a logical value, and are defined in terms of the tuning parameter values. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

parameters A tibble of tuning parameter values that can be used to filter the predicted values before processing. This tibble should only have columns for tuning parameter identifiers (e.g. "my_param" if tune("my_param") was used). There can be multiple rows and one or more columns. **If used, this parameter must be named.**

Details

Removing some parameter combinations might affect the results of autoplot() for the object.

Value

A version of x where the lists columns only retain the parameter combinations in parameters or satisfied by the filtering logic.

Examples

library(dplyr)
library(tibble)

# For grid search:
data("example_ames_knn")

# select all combinations using the 'rank' weighting scheme
ames_grid_search %>%
collect_metrics()
The finalize_* functions take a list or tibble of tuning parameter values and update objects with those values.

**Usage**

```r
finalize_model(x, parameters)
finalize_recipe(x, parameters)
finalize_workflow(x, parameters)
```

**Arguments**

- `x`  
  A recipe, `parsnip` model specification, or workflow.

- `parameters`  
  A list or 1-row tibble of parameter values. Note that the column names of the tibble should be the id fields attached to `tune()`. For example, in the Examples section below, the model has `tune("K")`. In this case, the parameter tibble should be "K" and not "neighbors".

**Value**

An updated version of `x`. 
Examples

```r
data("example_ames_knn")

library(parsnip)

knn_model <-
 nearest_neighbor(
 mode = "regression",
 neighbors = tune("K"),
 weight_func = tune(),
 dist_power = tune()
) %>%
 set_engine("kknn")

lowest_rmse <- select_best(ames_grid_search, metric = "rmse")

knn_model

finalize_model(knn_model, lowest_rmse)
```

---

**fit_best**  
*Fit a model to the numerically optimal configuration*

**Description**

`fit_best()` takes the results from model tuning and fits it to the training set using tuning parameters associated with the best performance.

**Usage**

```r
fit_best(x, ...)
```

## Default S3 method:
```r
fit_best(x, ...)
```

## S3 method for class 'tune_results'
```r
fit_best(
 x,
 ..., metric = NULL,
 eval_time = NULL,
 parameters = NULL,
 verbose = FALSE,
 add_validation_set = NULL
)
```
Arguments

x  The results of class `tune_results` (coming from functions such as `tune_grid()`, `tune_bayes()`, etc). The control option `save_workflow = TRUE` should have been used.

... Not currently used, must be empty.

metric  A character string (or NULL) for which metric to optimize. If NULL, the first metric is used.

eval_time  A single numeric time point where dynamic event time metrics should be chosen (e.g., the time-dependent ROC curve, etc). The values should be consistent with the values used to create x. The NULL default will automatically use the first evaluation time used by x.

parameters  An optional 1-row tibble of tuning parameter settings, with a column for each tuning parameter. This tibble should have columns for each tuning parameter identifier (e.g. "my_param" if `tune("my_param")` was used). If NULL, this argument will be set to `select_best(metric, eval_time)`. If not NULL, parameters overwrites the specification via metric, and eval_time.

verbose  A logical for printing logging.

add_validation_set  When the resamples embedded in x are a split into training set and validation set, should the validation set be included in the data set used to train the model? If not, only the training set is used. If NULL, the validation set is not used for resamples originating from `rsample::validation_set()` while it is used for resamples originating from `rsample::validation_split()`.

Details

This function is a shortcut for the manual steps of:

```r
best_param <- select_best(tune_results, metric) # or other `select_*()`
wflow <- finalize_workflow(wflow, best_param) # or just `finalize_model()`
wflow_fit <- fit(wflow, data_set)
```

Value

A fitted workflow.

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of case weights: importance weights (doubles) and frequency weights (integers). Frequency weights are used during model fitting and evaluation, whereas importance weights are only used during fitting.

To know if your model is capable of using case weights, create a model spec and test it using `parsnip::case_weights_allowed()`.

To use them, you will need a numeric column in your data set that has been passed through either `hardhat::importance_weights()` or `hardhat::frequency_weights()`.
For functions such as `fit_resamples()` and the `tune_*()` functions, the model must be contained inside of a `workflows::workflow()`. To declare that case weights are used, invoke `workflows::add_case_weights()` with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appropriate) performance estimation.

See also

`last_fit()` is closely related to `fit_best()`. They both give you access to a workflow fitted on the training data but are situated somewhat differently in the modeling workflow. `fit_best()` picks up after a tuning function like `tune_grid()` to take you from tuning results to fitted workflow, ready for you to predict and assess further. `last_fit()` assumes you have made your choice of hyperparameters and finalized your workflow to then take you from finalized workflow to fitted workflow and further to performance assessment on the test data. While `fit_best()` gives a fitted workflow, `last_fit()` gives you the performance results. If you want the fitted workflow, you can extract it from the result of `last_fit()` via `extract_workflow()`.

Examples

```r
library(recipes)
library(rsample)
library(parsnip)
library(dplyr)

data(meats, package = "modeldata")
meats <- meats %>% select(-water, -fat)

set.seed(1)
meat_split <- initial_split(meats)
meat_train <- training(meat_split)
meat_test <- testing(meat_split)

set.seed(2)
meat_rs <- vfold_cv(meat_train, v = 10)

pca_rec <-
 recipe(protein ~ ., data = meat_train) %>%
 step_normalize(all_numeric_predictors()) %>%
 step_pca(all_numeric_predictors(), num_comp = tune())

knn_mod <- nearest_neighbor(neighbors = tune()) %>% set_mode("regression")

ctrl <- control_grid(save_workflow = TRUE)

set.seed(128)
knn_pca_res <-
 tune_grid(knn_mod, pca_rec, resamples = meat_rs, grid = 10, control = ctrl)

knn_fit <- fit_best(knn_pca_res, verbose = TRUE)
predict(knn_fit, meat_test)
```
fit_resamples  

*Fit multiple models via resampling*

**Description**

*fit_resamples()* computes a set of performance metrics across one or more resamples. It does not perform any tuning (see *tune_grid()* and *tune_bayes()* for that), and is instead used for fitting a single model+recipe or model+formula combination across many resamples.

**Usage**

```
fit_resamples(object, ...)
```

```r
S3 method for class 'model_spec'
fit_resamples(
 object,
 preprocessor,
 resamples,
 ...,
 metrics = NULL,
 eval_time = NULL,
 control = control_resamples()
)
```

```r
S3 method for class 'workflow'
fit_resamples(
 object,
 resamples,
 ...,
 metrics = NULL,
 eval_time = NULL,
 control = control_resamples()
)
```

**Arguments**

- **object**: A *parsnip* model specification or an unfitted *workflow*. No tuning parameters are allowed; if arguments have been marked with *tune(*), their values must be finalized.
- **...**: Currently unused.
- **preprocessor**: A traditional model formula or a recipe created using *recipes::recipe()*. 
- **resamples**: An *rsample* resampling object created from an *rsample* function, such as *rsample::vfold_cv()*.
- **metrics**: A *yardstick::metric_set()* or NULL to compute a standard set of metrics.
**fit_resamples**

- **eval_time**: A numeric vector of time points where dynamic event time metrics should be computed (e.g., the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).

- **control**: A `control_resamples()` object used to fine tune the resampling process.

**Case Weights**

Some models can utilize case weights during training. tidymodels currently supports two types of case weights: importance weights (doubles) and frequency weights (integers). Frequency weights are used during model fitting and evaluation, whereas importance weights are only used during fitting.

To know if your model is capable of using case weights, create a model spec and test it using `parsnip::case_weights_allowed()`.

To use them, you will need a numeric column in your data set that has been passed through either `hardhat::importance_weights()` or `hardhat::frequency_weights()`.

For functions such as `fit_resamples()` and the `tune_*()` functions, the model must be contained inside of a `workflows::workflow()`. To declare that case weights are used, invoke `workflows::add_case_weights()` with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appropriate) performance estimation.

**Censored Regression Models**

Three types of metrics can be used to assess the quality of censored regression models:

- **static**: the prediction is independent of time.
- **dynamic**: the prediction is a time-specific probability (e.g., survival probability) and is measured at one or more particular times.
- **integrated**: same as the dynamic metric but returns the integral of the different metrics from each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For example:

```r
Needs no 'eval_time' value
metric_set(concordance_survival)

Needs at least one 'eval_time'
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

Needs at least two eval_time values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival, brier_survival)
```
Values of eval_time should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or NA).

**Performance Metrics**

To use your own performance metrics, the `yardstick::metric_set()` function can be used to pick what should be measured for each model. If multiple metrics are desired, they can be bundled. For example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under the typical probability cutoff of 0.50), the `metrics` argument could be given:

```r
metrics = metric_set(roc_auc, sens, spec)
```

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

- For regression models, the root mean squared error and coefficient of determination are computed.
- For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For example, in a classification problem, if metrics are used that are all associated with hard class predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called `.metrics`. This tibble contains a row for each metric and columns for the value, the estimator type, and so on. `collect_metrics()` can be used for these objects to collapse the results over the resampled (to obtain the final resampling estimates per tuning parameter combination).

**Obtaining Predictions**

When `control_grid(save_pred = TRUE)`, the output tibble contains a list column called `.predictions` that has the out-of-sample predictions for each parameter combination in the grid and each fold (which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number from the original data object (`.row`), the outcome data (with the same name(s) of the original data), and any columns created by the predictions. For example, for simple regression problems, this function generates a column called `.pred` and so on. As noted above, the prediction columns that are returned are determined by the type of metric(s) requested.

This list column can be unnested using `tidyr::unnest()` or using the convenience function `collect_predictions()`.

**Extracting Information**

The extract control option will result in an additional function to be returned called `.extracts`. This is a list column that has tibbles containing the results of the user’s function for each tuning parameter combination. This can enable returning each model and/or recipe object that is created during resampling. Note that this could result in a large return object, depending on what is returned.
The control function contains an option (extract) that can be used to retain any model or recipe that was created within the resamples. This argument should be a function with a single argument. The value of the argument that is given to the function in each resample is a workflow object (see workflows::workflow() for more information). Several helper functions can be used to easily pull out the preprocessing and/or model information from the workflow, such as extract_preprocessor() and extract_fit_parsnip().

As an example, if there is interest in getting each parsnip model fit back, one could use:

```r
extract = function (x) extract_fit_parsnip(x)
```

Note that the function given to the extract argument is evaluated on every model that is fit (as opposed to every model that is evaluated). As noted above, in some cases, model predictions can be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a separate R object associated with it.

See Also
control_resamples(), collect_predictions(), collect_metrics()

Examples

```r
library(recipes)
library(rsample)
library(parsnip)
library(workflows)

set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
 step_ns(disp) %>%
 step_ns(wt)

lin_mod <- linear_reg() %>%
 set_engine("lm")

control <- control_resamples(save_pred = TRUE)
spline_res <- fit_resamples(lin_mod, spline_rec, folds, control = control)
spline_res

show_best(spline_res, metric = "rmse")
```

# You can also wrap up a preprocessor and a model into a workflow, and
# supply that to `fit_resamples()` instead. Here, a workflows "variables"
# preprocessor is used, which lets you supply terms using dplyr selectors.
# The variables are used as-is, no preprocessing is done to them.

```r
wf <- workflow() %>%
 add_variables(outcomes = mpg, predictors = everything()) %>%
```
add_model(lin_mod)

wf_res <- fit_resamples(wf, folds)

---

**int_pctl.tune_results**  
*Bootstrap confidence intervals for performance metrics*

### Description

Using out-of-sample predictions, the bootstrap is used to create percentile confidence intervals.

### Usage

```r
S3 method for class 'tune_results'
int_pctl(
 .data,
 metrics = NULL,
 eval_time = NULL,
 times = 1001,
 parameters = NULL,
 alpha = 0.05,
 allow_par = TRUE,
 event_level = "first",
 ...
)
```

### Arguments

- `.data`  
  A object with class `tune_results` where the `save_pred = TRUE` option was used in the control function.
- `metrics`  
  A `yardstick::metric_set()`. By default, it uses the same metrics as the original object.
- `eval_time`  
  A vector of evaluation times for censored regression models. `NULL` is appropriate otherwise. If `NULL` is used with censored models, a evaluation time is selected, and a warning is issued.
- `times`  
  The number of bootstrap samples.
- `parameters`  
  An optional tibble of tuning parameter values that can be used to filter the predicted values before processing. This tibble should only have columns for each tuning parameter identifier (e.g. "my_param" if `tune("my_param")` was used).
- `alpha`  
  Level of significance.
- `allow_par`  
  A logical to allow parallel processing (if a parallel backend is registered).
- `event_level`  
  A single string. Either "first" or "second" to specify which level of truth to consider as the "event".
- `...`  
  Not currently used.
Details

For each model configuration (if any), this function takes bootstrap samples of the out-of-sample predicted values. For each bootstrap sample, the metrics are computed and these are used to compute confidence intervals. See `rsample::int_pctl()` and the references therein for more details.

Note that the `.estimate` column is likely to be different from the results given by `collect_metrics()` since a different estimator is used. Since random numbers are used in sampling, set the random number seed prior to running this function.

The number of bootstrap samples should be large to have reliable intervals. The defaults reflect the fewest samples that should be used.

The computations for each configuration can be extensive. To increase computational efficiency parallel processing can be used. The `future` package is used here. To execute the resampling iterations in parallel, specify a `plan` with `future` first. The `allow_par` argument can be used to avoid parallelism.

Also, if a censored regression model used numerous evaluation times, the computations can take a long time unless the times are filtered with the `eval_time` argument.

Value

A tibble of metrics with additional columns for `.lower` and `.upper`.

References


See Also

`rsample::int_pctl()`

Examples

data(Sacramento, package = "modeldata")
library(rsample)
library(parsnip)

set.seed(13)
sac_rs <- vfold_cv(Sacramento)

lm_res <-
  linear_reg() %>%
  fit_resamples(
    log10(price) ~ beds + baths + sqft + type + latitude + longitude,
    resamples = sac_rs,
    control = control_resamples(save_pred = TRUE)
  )

set.seed(31)
int_pctl(lm_res)
last_fit

Fit the final best model to the training set and evaluate the test set

Description

last_fit() emulates the process where, after determining the best model, the final fit on the entire training set is needed and is then evaluated on the test set.

Usage

last_fit(object, ...)

## S3 method for class 'model_spec'
last_fit(
  object,
  preprocessor,
  split,
  ...,
  metrics = NULL,
  eval_time = NULL,
  control = control_last_fit(),
  add_validation_set = FALSE
)

## S3 method for class 'workflow'
last_fit(
  object,
  split,
  ...,
  metrics = NULL,
  eval_time = NULL,
  control = control_last_fit(),
  add_validation_set = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A parsnip model specification or an unfitted workflow(). No tuning parameters are allowed; if arguments have been marked with tune(), their values must be finalized.</td>
</tr>
<tr>
<td>...</td>
<td>Currently unused.</td>
</tr>
<tr>
<td>preprocessor</td>
<td>A traditional model formula or a recipe created using recipes::recipe().</td>
</tr>
<tr>
<td>split</td>
<td>An rsplit object created from rsample::initial_split() or rsample::initial_validation_split()</td>
</tr>
<tr>
<td>metrics</td>
<td>A yardstick::metric_set(), or NULL to compute a standard set of metrics.</td>
</tr>
</tbody>
</table>
```
 last_fit

 eval_time A numeric vector of time points where dynamic event time metrics should be computed (e.g. the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).
 control A control_last_fit() object used to fine tune the last fit process.
 add_validation_set
 For 3-way splits into training, validation, and test set via rsample::initial_validation_split(), should the validation set be included in the data set used to train the model. If not, only the training set is used.

Details

This function is intended to be used after fitting a variety of models and the final tuning parameters (if any) have been finalized. The next step would be to fit using the entire training set and verify performance using the test data.

Value

A single row tibble that emulates the structure of fit_resamples(). However, a list column called workflow is also attached with the fitted model (and recipe, if any) that used the training set. Helper functions for formatting tuning results like collect_metrics() and collect_predictions() can be used with last_fit() output.

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of case weights: importance weights (doubles) and frequency weights (integers). Frequency weights are used during model fitting and evaluation, whereas importance weights are only used during fitting.

To know if your model is capable of using case weights, create a model spec and test it using parsnip::case_weights_allowed().

To use them, you will need a numeric column in your data set that has been passed through either hardhat::importance_weights() or hardhat::frequency_weights().

For functions such as fit_resamples() and the tune_*() functions, the model must be contained inside of a workflows::workflow(). To declare that case weights are used, invoke workflows::add_case_weights() with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appropriate) performance estimation.

Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

- static: the prediction is independent of time.
- dynamic: the prediction is a time-specific probability (e.g., survival probability) and is measured at one or more particular times.
- integrated: same as the dynamic metric but returns the integral of the different metrics from each time point.
```
Which metrics are chosen by the user affects how many evaluation times should be specified. For example:

```r
Needs no `eval_time` value
metric_set(concordance_survival)

Needs at least one `eval_time`
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

Needs at least two `eval_time` values
metric_set(brier_survivalIntegrated, concordance_survival)
metric_set(brier_survivalIntegrated, concordance_survival, brier_survival)
```

Values of `eval_time` should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or NA).

See also

`last_fit()` is closely related to `fit_best()`. They both give you access to a workflow fitted on the training data but are situated somewhat differently in the modeling workflow. `fit_best()` picks up after a tuning function like `tune_grid()` to take you from tuning results to fitted workflow, ready for you to predict and assess further. `last_fit()` assumes you have made your choice of hyperparameters and finalized your workflow to then take you from finalized workflow to fitted workflow and further to performance assessment on the test data. While `fit_best()` gives a fitted workflow, `last_fit()` gives you the performance results. If you want the fitted workflow, you can extract it from the result of `last_fit()` via `extract_workflow()`.

Examples

```r
library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
tr_te_split <- initial_split(mtcars)

spline_rec <- recipe(mpg ~ ., data = mtcars) %>%
 step_ns(disp)

lin_mod <- linear_reg() %>%
 set_engine("lm")

spline_res <- last_fit(lin_mod, spline_rec, split = tr_te_split)
spline_res

test set metrics
```
collect_metrics(spline_res)

# test set predictions
collect_predictions(spline_res)

# or use a workflow

library(workflows)
spline_wfl <-
  workflow() %>%
  add_recipe(spline_rec) %>%
  add_model(lin_mod)

last_fit(spline_wfl, split = tr_te_split)

---

**message_wrap**

Write a message that respects the line width

---

**Description**

Write a message that respects the line width

**Usage**

message_wrap(
  x,
  width = options()$width - 2,
  prefix = "",
  color_text = NULL,
  color_prefix = color_text
)

**Arguments**

- **x**
  A character string of the message text.
- **width**
  An integer for the width.
- **prefix**
  An optional string to go on the first line of the message.
- **color_text**, **color_prefix**
  A function (or NULL) that is used to color the text and/or prefix.

**Value**

The processed text is returned (invisibly) but a message is written.
Examples

```r
library(cli)
Gaiman <-
 paste(
 "Good point." Bod was pleased with himself, and glad he had thought of",
 "asking the poet for advice. Really, he thought, if you couldn't trust a",
 "poet to offer sensible advice, who could you trust?",
 collapse = ""
)
message_wrap(Gaiman)
message_wrap(Gaiman, width = 20, prefix = "-")
message_wrap(Gaiman,
 width = 30, prefix = "-",
 color_text = cli::col_silver
)
message_wrap(Gaiman,
 width = 30, prefix = "-",
 color_text = cli::style_underline,
 color_prefix = cli::col_green
)
```

---

**prob_improve**  
*Acquisition function for scoring parameter combinations*

**Description**

These functions can be used to score candidate tuning parameter combinations as a function of their predicted mean and variation.

**Usage**

```r
prob_improve(trade_off = 0, eps = .Machine$double.eps)
exp_improve(trade_off = 0, eps = .Machine$double.eps)
conf_bound(kappa = 0.1)
```

**Arguments**

- **trade_off**  
  A number or function that describes the trade-off between exploitation and exploration. Smaller values favor exploitation.

- **eps**  
  A small constant to avoid division by zero.

- **kappa**  
  A positive number (or function) that corresponds to the multiplier of the standard deviation in a confidence bound (e.g. 1.96 in normal-theory 95 percent confidence intervals). Smaller values lean more towards exploitation.
Details

The acquisition functions often combine the mean and variance predictions from the Gaussian process model into an objective to be optimized.

For this documentation, we assume that the metric in question is better when maximized (e.g. accuracy, the coefficient of determination, etc).

The expected improvement of a point \( x \) is based on the predicted mean and variation at that point as well as the current best value (denoted here as \( x_b \)). The vignette linked below contains the formulas for this acquisition function. When the \( \text{trade_off} \) parameter is greater than zero, the acquisition function will down-play the effect of the \( \text{mean} \) prediction and give more weight to the variation. This has the effect of searching for new parameter combinations that are in areas that have yet to be sampled.

Note that for \( \text{exp_improve()} \) and \( \text{prob_improve()} \), the \( \text{trade_off} \) value is in the units of the outcome. The functions are parameterized so that the \( \text{trade_off} \) value should always be non-negative.

The confidence bound function does not take into account the current best results in the data.

If a function is passed to \( \text{exp_improve()} \) or \( \text{prob_improve()} \), the function can have multiple arguments but only the first (the current iteration number) is given to the function. In other words, the function argument should have defaults for all but the first argument. See \( \text{expo_decay()} \) as an example of a function.

Value

An object of class \( \text{prob_improve} \), \( \text{exp_improve} \), or \( \text{conf_bounds} \) along with an extra class of \( \text{acquisition_function} \).

See Also

\( \text{tune_bayes()} \), \( \text{expo_decay()} \)

Examples

\( \text{prob_improve()} \)

\hline

show_best & \text{Investigate best tuning parameters} \\

\hline

Description

\( \text{show_best()} \) displays the top sub-models and their performance estimates.

\( \text{select_best()} \) finds the tuning parameter combination with the best performance values.

\( \text{select_by_one_std_err()} \) uses the "one-standard error rule" (Breiman _el at, 1984) that selects the most simple model that is within one standard error of the numerically optimal results.

\( \text{select_by_pct_loss()} \) selects the most simple model whose loss of performance is within some acceptable limit.
Usage

show_best(x, ...)

## Default S3 method:
show_best(x, ...)

## S3 method for class 'tune_results'
show_best(
  x,
  ...,
  metric = NULL,
  eval_time = NULL,
  n = 5,
  call = rlang::current_env()
)

select_best(x, ...)

## Default S3 method:
select_best(x, ...)

## S3 method for class 'tune_results'
select_best(x, ..., metric = NULL, eval_time = NULL)

select_by_pct_loss(x, ...)

## Default S3 method:
select_by_pct_loss(x, ...)

## S3 method for class 'tune_results'
select_by_pct_loss(x, ..., metric = NULL, eval_time = NULL, limit = 2)

select_by_one_std_err(x, ...)

## Default S3 method:
select_by_one_std_err(x, ...)

## S3 method for class 'tune_results'
select_by_one_std_err(x, ..., metric = NULL, eval_time = NULL)

Arguments

x

The results of tune_grid() or tune_bayes().

... For select_by_one_std_err() and select_by_pct_loss(), this argument is passed directly to dplyr::arrange() so that the user can sort the models from most simple to most complex. That is, for a parameter p, pass the unquoted expression p if smaller values of p indicate a simpler model, or desc(p) if larger values indicate a simpler model. At least one term is required for these two
show_best

functions. See the examples below.

metric A character value for the metric that will be used to sort the models. (See https://yardstick.tidymodels.org/articles/metric-types.html for more details). Not required if a single metric exists in x. If there are multiple metric and none are given, the first in the metric set is used (and a warning is issued).

eval_time A single numeric time point where dynamic event time metrics should be chosen (e.g., the time-dependent ROC curve, etc). The values should be consistent with the values used to create x. The NULL default will automatically use the first evaluation time used by x.

n An integer for the number of top results/rows to return.

call The call to be shown in errors and warnings.

limit The limit of loss of performance that is acceptable (in percent units). See details below.

Details

For percent loss, suppose the best model has an RMSE of 0.75 and a simpler model has an RMSE of 1. The percent loss would be \((1.00 - 0.75)/1.00 * 100\), or 25 percent. Note that loss will always be non-negative.

Value

A tibble with columns for the parameters. show_best() also includes columns for performance metrics.

References


Examples

data("example_ames_knn")

show_best(ames_iter_search, metric = "rmse")

select_best(ames_iter_search, metric = "rsq")

# To find the least complex model within one std error of the numerically optimal model, the number of nearest neighbors are sorted from the largest number of neighbors (the least complex class boundary) to the smallest (corresponding to the most complex model).

select_by_one_std_err(ames_grid_search, metric = "rmse", desc(K))

# Now find the least complex model that has no more than a 5% loss of RMSE:
select_by_pct_loss(
  ames_grid_search,
show_notes  
Display distinct errors from tune objects

Description
Display distinct errors from tune objects

Usage
show_notes(x, n = 10)

Arguments
x  
An object of class tune_results.
n  
An integer for how many unique notes to show.

Value
Invisibly, x. Function is called for side-effects and printing.

tune_bayes  
Bayesian optimization of model parameters.

Description
tune_bayes() uses models to generate new candidate tuning parameter combinations based on previous results.

Usage
tune_bayes(object, ...)

## S3 method for class 'model_spec'
tune_bayes(
  object,
  preprocessor,
  resamples,
  ...,  
  iter = 10,
  param_info = NULL,
  metrics = NULL,
tune_bayes

```r
eval_time = NULL,
objective = exp_improve(),
initial = 5,
control = control_bayes()
```

## S3 method for class 'workflow'

```r
tune_bayes(
 object,
 resamples,
 ...,
 iter = 10,
 param_info = NULL,
 metrics = NULL,
 eval_time = NULL,
 objective = exp_improve(),
 initial = 5,
 control = control_bayes()
)
```

### Arguments

- **object**: A `parsnip` model specification or an unfitted `workflow()`. No tuning parameters are allowed; if arguments have been marked with `tune()`, their values must be finalized.
- **...**: Options to pass to `GPfit::GP_fit()` (mostly for the `corr` argument).
- **preprocessor**: A traditional model formula or a recipe created using `recipes::recipe()`.
- **resamples**: An `rset` resampling object created from an `rsample` function, such as `rsample::vfold_cv()`.
- **iter**: The maximum number of search iterations.
- **param_info**: A `dials::parameters()` object or `NULL`. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- **metrics**: A `yardstick::metric_set()`, or `NULL` to compute a standard set of metrics. The first metric in `metrics` is the one that will be optimized.
- **eval_time**: A numeric vector of time points where dynamic event time metrics should be computed (e.g. the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).
- **objective**: A character string for what metric should be optimized or an acquisition function object.
- **initial**: An initial set of results in a tidy format (as would result from `tune_grid()`) or a positive integer. It is suggested that the number of initial results be greater than the number of parameters being optimized.
- **control**: A control object created by `control_bayes()`.
Details

The optimization starts with a set of initial results, such as those generated by `tune_grid()`. If none exist, the function will create several combinations and obtain their performance estimates.

Using one of the performance estimates as the model outcome, a Gaussian process (GP) model is created where the previous tuning parameter combinations are used as the predictors.

A large grid of potential hyperparameter combinations is predicted using the model and scored using an acquisition function. These functions usually combine the predicted mean and variance of the GP to decide the best parameter combination to try next. For more information, see the documentation for `exp_improve()` and the corresponding package vignette.

The best combination is evaluated using resampling and the process continues.

Value

A tibble of results that mirror those generated by `tune_grid()`. However, these results contain an `.iter` column and replicate the `rset` object multiple times over iterations (at limited additional memory costs).

Parallel Processing

tune supports parallel processing with the `future` package. To execute the resampling iterations in parallel, specify a plan with `future` first. The `allow_par` argument can be used to avoid parallelism.

For the most part, warnings generated during training are shown as they occur and are associated with a specific resample when `control_bayes(verbos = TRUE)`. They are (usually) not aggregated until the end of processing.

For Bayesian optimization, parallel processing is used to estimate the resampled performance values once a new candidate set of values are estimated.

Initial Values

The results of `tune_grid()`, or a previous run of `tune_bayes()` can be used in the initial argument. `initial` can also be a positive integer. In this case, a space-filling design will be used to populate a preliminary set of results. For good results, the number of initial values should be more than the number of parameters being optimized.

Parameter Ranges and Values

In some cases, the tuning parameter values depend on the dimensions of the data (they are said to contain unknown values). For example, `mtry` in random forest models depends on the number of predictors. In such cases, the unknowns in the tuning parameter object must be determined beforehand and passed to the function via the `param_info` argument. `dials::finalize()` can be used to derive the data-dependent parameters. Otherwise, a parameter set can be created via `dials::parameters()`, and the `dials update()` function can be used to specify the ranges or values.
Performance Metrics

To use your own performance metrics, the yardstick::metric_set() function can be used to pick what should be measured for each model. If multiple metrics are desired, they can be bundled. For example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under the typical probability cutoff of 0.50), the metrics argument could be given:

```r
metrics = metric_set(roc_auc, sens, spec)
```

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

- For regression models, the root mean squared error and coefficient of determination are computed.
- For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For example, in a classification problem, if metrics are used that are all associated with hard class predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called `.metrics`. This tibble contains a row for each metric and columns for the value, the estimator type, and so on. `collect_metrics()` can be used for these objects to collapse the results over the resampled (to obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When `control_bayes(save_pred = TRUE)`, the output tibble contains a list column called `.predictions` that has the out-of-sample predictions for each parameter combination in the grid and each fold (which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number from the original data object (`.row`), the outcome data (with the same name(s) of the original data), and any columns created by the predictions. For example, for simple regression problems, this function generates a column called `.pred` and so on. As noted above, the prediction columns that are returned are determined by the type of metric(s) requested.

This list column can be unnested using `tidyr::unnest()` or using the convenience function `collect_predictions()`.

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of case weights: importance weights (doubles) and frequency weights (integers). Frequency weights are used during model fitting and evaluation, whereas importance weights are only used during fitting.

To know if your model is capable of using case weights, create a model spec and test it using `parsnip::case_weights_allowed()`.

To use them, you will need a numeric column in your data set that has been passed through either `hardhat::importance_weights()` or `hardhat::frequency_weights()`.
For functions such as `fit_resamples()` and the `tune_*()` functions, the model must be contained inside of a `workflows::workflow()`. To declare that case weights are used, invoke `workflows::add_case_weights()` with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appropriate) performance estimation.

### Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

- **static**: the prediction is independent of time.
- **dynamic**: the prediction is a time-specific probability (e.g., survival probability) and is measured at one or more particular times.
- **integrated**: same as the dynamic metric but returns the integral of the different metrics from each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For example:

```r
Needs no `eval_time\` value
metric_set(concordance_survival)

Needs at least one `eval_time`
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

Needs at least two eval_time\ values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
meter_set(brier_survival_integrated, concordance_survival, brier_survival)
```

Values of `eval_time` should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or `NA`).

### Optimizing Censored Regression Models

With dynamic performance metrics (e.g. Brier or ROC curves), performance is calculated for every value of `eval_time` but the **first** evaluation time given by the user (e.g., `eval_time[1]`) is used to guide the optimization.

### Extracting Information

The `extract` control option will result in an additional function to be returned called `.extracts`. This is a list column that has tibbles containing the results of the user’s function for each tuning parameter combination. This can enable returning each model and/or recipe object that is created during resampling. Note that this could result in a large return object, depending on what is returned.
The control function contains an option (extract) that can be used to retain any model or recipe that was created within the resamples. This argument should be a function with a single argument. The value of the argument that is given to the function in each resample is a workflow object (see \texttt{workflows::workflow()}) for more information). Several helper functions can be used to easily pull out the preprocessing and/or model information from the workflow, such as \texttt{extract_preprocessor()} and \texttt{extract_fit_parsnip()}.

As an example, if there is interest in getting each parsnip model fit back, one could use:

\begin{verbatim}
extract = function (x) extract_fit_parsnip(x)
\end{verbatim}

Note that the function given to the extract argument is evaluated on every model that is fit (as opposed to every model that is evaluated). As noted above, in some cases, model predictions can be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a separate R object associated with it.

\textbf{See Also}

\texttt{control_bayes()}, \texttt{tune()}, \texttt{autoplot.tune_results()}, \texttt{show_best()}, \texttt{select_best()}, \texttt{collect_predictions()}, \texttt{collect_metrics()}, \texttt{prob_improve()}, \texttt{exp_improve()}, \texttt{conf_bound()}, \texttt{fit_resamples()}

\textbf{Examples}

\begin{verbatim}
library(recipes)
library(rsample)
library(parsnip)

# define resamples and minimal recipe on mtcars
set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

car_rec <-
  recipe(mpg ~ ., data = mtcars) %>%
  step_normalize(all_predictors())

# define an svm with parameters to tune
svm_mod <-
  svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
  set_engine("kernlab") %>%
  set_mode("regression")

# use a space-filling design with 6 points
set.seed(3254)
svm_grid <- tune_grid(svm_mod, car_rec, folds, grid = 6)
show_best(svm_grid, metric = "rmse")

# use bayesian optimization to evaluate at 6 more points
set.seed(8241)
svm_bayes <- tune_bayes(svm_mod, car_rec, folds, initial = svm_grid, iter = 6)
\end{verbatim}
# note that bayesian optimization evaluated parameterizations
# similar to those that previously decreased rmse in svm_grid
show_best(svm_bayes, metric = "rmse")

# specifying 'initial' as a numeric rather than previous tuning results
# will result in 'tune_bayes' initially evaluating an space-filling
# grid using 'tune_grid' with 'grid = initial'
set.seed(0239)
svm_init <- tune_bayes(svm_mod, car_rec, folds, initial = 6, iter = 6)
show_best(svm_init, metric = "rmse")

tune_grid

Model tuning via grid search

Description
tune_grid() computes a set of performance metrics (e.g. accuracy or RMSE) for a pre-defined set of tuning parameters that correspond to a model or recipe across one or more resamples of the data.

Usage
tune_grid(object, ...)

## S3 method for class 'model_spec'
tune_grid(
  object,
  preprocessor,
  resamples,
  ...,
  param_info = NULL,
  grid = 10,
  metrics = NULL,
  eval_time = NULL,
  control = control_grid()
)

## S3 method for class 'workflow'
tune_grid(
  object,
  resamples,
  ...,
  param_info = NULL,
  grid = 10,
  metrics = NULL,
  eval_time = NULL,
  control = control_grid()
)
Arguments

- **object**: A `parsnip` model specification or an unfitted `workflow()`. No tuning parameters are allowed; if arguments have been marked with `tune()`, their values must be finalized.
- **...**: Not currently used.
- **preprocessor**: A traditional model formula or a recipe created using `recipes::recipe()`.
- **resamples**: An `rset` resampling object created from an `rsample` function, such as `rsample::vfold_cv()`.
- **param_info**: A `dials::parameters()` object or `NULL`. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- **grid**: A data frame of tuning combinations or a positive integer. The data frame should have columns for each parameter being tuned and rows for tuning parameter candidates. An integer denotes the number of candidate parameter sets to be created automatically.
- **metrics**: A `yardstick::metric_set()`, or `NULL` to compute a standard set of metrics.
- **eval_time**: A numeric vector of time points where dynamic event time metrics should be computed (e.g., the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).
- **control**: An object used to modify the tuning process, likely created by `control_grid()`.

Details

Suppose there are $m$ tuning parameter combinations. `tune_grid()` may not require all $m$ model/recipe fits across each resample. For example:

- In cases where a single model fit can be used to make predictions for different parameter values in the grid, only one fit is used. For example, for some boosted trees, if 100 iterations of boosting are requested, the model object for 100 iterations can be used to make predictions on iterations less than 100 (if all other parameters are equal).
- When the model is being tuned in conjunction with pre-processing and/or post-processing parameters, the minimum number of fits are used. For example, if the number of PCA components in a recipe step are being tuned over three values (along with model tuning parameters), only three recipes are trained. The alternative would be to re-train the same recipe multiple times for each model tuning parameter.

`tune` supports parallel processing with the `future` package. To execute the resampling iterations in parallel, specify a `plan` with `future` first. The `allow_par` argument can be used to avoid parallelism. For the most part, warnings generated during training are shown as they occur and are associated with a specific resample when `control_grid(verbos = TRUE)`. They are (usually) not aggregated until the end of processing.

Value

An updated version of `resamples` with extra list columns for `.metrics` and `.notes` (optional columns are `.predictions` and `.extracts`). `.notes` contains warnings and errors that occur during execution.
Parameter Grids

If no tuning grid is provided, a semi-random grid (via `dials::grid_latin_hypercube()`) is created with 10 candidate parameter combinations.

When provided, the grid should have column names for each parameter and these should be named by the parameter name or id. For example, if a parameter is marked for optimization using `penalty = tune()`, there should be a column named `penalty`. If the optional identifier is used, such as `penalty = tune(id = 'lambda')`, then the corresponding column name should be `lambda`.

In some cases, the tuning parameter values depend on the dimensions of the data. For example, `mtry` in random forest models depends on the number of predictors. In this case, the default tuning parameter object requires an upper range. `dials::finalize()` can be used to derive the data-dependent parameters. Otherwise, a parameter set can be created (via `dials::parameters()`) and the `dials update()` function can be used to change the values. This updated parameter set can be passed to the function via the `param_info` argument.

Performance Metrics

To use your own performance metrics, the `yardstick::metric_set()` function can be used to pick what should be measured for each model. If multiple metrics are desired, they can be bundled. For example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under the typical probability cutoff of 0.50), the `metrics` argument could be given:

```r
metrics = metric_set(roc_auc, sens, spec)
```

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

- For regression models, the root mean squared error and coefficient of determination are computed.
- For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For example, in a classification problem, if metrics are used that are all associated with hard class predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called `.metrics`. This tibble contains a row for each metric and columns for the value, the estimator type, and so on.

`collect_metrics()` can be used for these objects to collapse the results over the resampled (to obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When `control_grid(save_pred = TRUE)`, the output tibble contains a list column called `.predictions` that has the out-of-sample predictions for each parameter combination in the grid and each fold (which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number from the original data object `.row`, the outcome data (with the same name(s) of the original data), and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called .pred and so on. As noted above, the prediction columns that are returned are determined by the type of metric(s) requested.

This list column can be unnested using `tidyr::unnest()` or using the convenience function `collect_predictions()`.

### Extracting Information

The `extract` control option will result in an additional function to be returned called `.extracts`. This is a list column that has tibbles containing the results of the user’s function for each tuning parameter combination. This can enable returning each model and/or recipe object that is created during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (`extract`) that can be used to retain any model or recipe that was created within the resamples. This argument should be a function with a single argument. The value of the argument that is given to the function in each resample is a workflow object (see `workflows::workflow()` for more information). Several helper functions can be used to easily pull out the preprocessing and/or model information from the workflow, such as `extract_preprocessor()` and `extract_fit_parsnip()`.

As an example, if there is interest in getting each parsnip model fit back, one could use:

```
extract = function (x) extract_fit_parsnip(x)
```

Note that the function given to the `extract` argument is evaluated on every model that is fit (as opposed to every model that is evaluated). As noted above, in some cases, model predictions can be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a separate R object associated with it.

### Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of case weights: importance weights (doubles) and frequency weights (integers). Frequency weights are used during model fitting and evaluation, whereas importance weights are only used during fitting.

To know if your model is capable of using case weights, create a model spec and test it using `parsnip::case_weights_allowed()`.

To use them, you will need a numeric column in your data set that has been passed through either `hardhat::importance_weights()` or `hardhat::frequency_weights()`.

For functions such as `fit_resamples()` and the `tune_*()` functions, the model must be contained inside of a `workflows::workflow()`. To declare that case weights are used, invoke `workflows::add_case_weights()` with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appropriate) performance estimation.

### Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

- static: the prediction is independent of time.
- dynamic: the prediction is a time-specific probability (e.g., survival probability) and is measured at one or more particular times.
- integrated: same as the dynamic metric but returns the integral of the different metrics from each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For example:

```r
Needs no `eval_time` value
metric_set(concordance_survival)

Needs at least one `eval_time`
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

Needs at least two eval_time values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival, brier_survival)
```

Values of eval_time should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or NA).

**See Also**

- `control_grid()`, `tune()`, `fit_resamples()`, `autoplot.tune_results()`, `show_best()`, `select_best()`, `collect_predictions()`, `collect_metrics()`

**Examples**

```r
library(recipes)
library(rsample)
library(parsnip)
library(workflows)
library(ggplot2)

set.seed(6735)
set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

tuning recipe parameters:
spline_rec <-
 recipe(mpg ~ ., data = mtcars) %>%
 step_ns(disp, deg_free = tune("disp")) %>%
```
```r
step_ns(wt, deg_free = tune("wt"))

lin_mod <-
 linear_reg() %>%
 set_engine("lm")

manually create a grid
spline_grid <- expand.grid(disp = 2:5, wt = 2:5)

Warnings will occur from making spline terms on the holdout data that are
extrapolations.
spline_res <-
 tune_grid(lin_mod, spline_rec, resamples = folds, grid = spline_grid)
spline_res

show_best(spline_res, metric = "rmse")

tune model parameters only (example requires the `kernlab` package)

car_rec <-
 recipe(mpg ~ ., data = mtcars) %>%
 step_normalize(all_predictors())

svm_mod <-
 svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
 set_engine("kernlab") %>%
 set_mode("regression")

Use a space-filling design with 7 points
set.seed(3254)
svm_res <- tune_grid(svm_mod, car_rec, resamples = folds, grid = 7)
svm_res

show_best(svm_res, metric = "rmse")

autoplot(svm_res, metric = "rmse") +
 scale_x_log10()

Using a variables preprocessor with a workflow

Rather than supplying a preprocessor (like a recipe) and a model directly
to `tune_grid()`, you can also wrap them up in a workflow and pass
that along instead (note that this doesn't do any preprocessing to
the variables, it passes them along as-is).
wf <- workflow() %>%
 add_variables(outcomes = mpg, predictors = everything()) %>%
 add_model(svm_mod)
```
set.seed(3254)
svm_res_wf <- tune_grid(wf, resamples = folds, grid = 7)
Index

* datasets
  example_ames_knn, 17
  .stash_last_result, 2
  .use_case_weights_with_yardstick, 3
  ames_grid_search (example_ames_knn), 17
  ames_iter_search (example_ames_knn), 17
  ames_wflow (example_ames_knn), 17
  augment.last_fit
    (augment.tune_results), 4
  augment.resample_results
    (augment.tune_results), 4
  augment.tune_results, 4
  autoplot.tune_results, 5
  autoplot.tune_results(), 47, 52
  collect_extracts (collect_predictions), 7
  collect_extracts(), 8
  collect_metrics (collect_predictions), 7
  collect_metrics(), 8, 10, 30, 31, 33, 35, 45, 47, 50, 52
  collect_notes (collect_predictions), 7
  collect_notes(), 8
  collect_predictions, 7
  collect_predictions(), 7, 8, 14, 30, 31, 35, 45, 47, 51, 52
  compute_metrics, 9
  conf_bound (prob_improve), 38
  conf_bound(), 47
  conf_mat_resampled, 11
  control function's, 8, 15
  control functions, 8
  control option, 10
  control_bayes, 12
  control_bayes(), 43, 47
  control_grid(), 49, 52
  control_last_fit, 15
  control_last_fit(), 15, 35
  control_resamples(), 15, 29, 31
  coord_obs_pred, 16
  dials::finalize(), 44, 50
  dials::grid_latin_hypercube(), 50
  dials::parameters(), 43, 44, 49, 50
  dplyr::arrange(), 40
  example_ames_knn, 17
  exp_improve (prob_improve), 38
  exp_improve(), 39, 44, 47
  expo_decay, 19
  expo_decay(), 19, 39
  extract-tune, 20
  extract_fit_engine(), 20, 22
  extract_fit_engine.tune_results
    (extract-tune), 20
  extract_fit_parsnip(), 20, 31, 47, 51
  extract_fit_parsnip.tune_results
    (extract-tune), 20
  extract_model, 22
  extract_mold(), 20
  extract_mold.tune_results
    (extract-tune), 20
  extract_preprocessor(), 20, 31, 47, 51
  extract_preprocessor.tune_results
    (extract-tune), 20
  extract_recipe(), 20
  extract_recipe.tune_results
    (extract-tune), 20
  extract_spec_parsnip(), 20
  extract_spec_parsnip.tune_results
    (extract-tune), 20
  extract_workflow(), 20, 27, 36
  extract_workflow.last_fit
    (extract-tune), 20
  extract_workflow.tune_results
    (extract-tune), 20
  filter_parameters, 23
  finalize_model, 24

55
finalize_recipe(finalize_model), 24
finalize_workflow(finalize_model), 24
finalized, 28, 34, 43, 49
fit_best, 25
fit_best(), 27, 36
fit_resamples, 28
fit_resamples(), 7, 10, 27–29, 35, 46, 47, 51, 52
GPfit::GP_fit(), 43
hardhat::frequency_weights(), 3, 26, 29, 35, 45, 51
hardhat::mold(), 20
int_pctl.tune_results, 32
last_fit, 34
last_fit(), 7, 15, 20, 27, 34, 36
message_wrap, 37
metric set, 10
parsnip::case_weights_allowed(), 26, 29, 35, 45, 51
parsnip::linear_reg(), 20
plan, 33, 44, 49
prob_improve, 38
prob_improve(), 39, 47
recipes::recipe(), 28, 34, 43, 49
rsample::initial_split(), 34
rsample::initial_validation_split(), 34, 35
rsample::int_pctl(), 33
rsample::validation_set(), 26
rsample::validation_split(), 26
rsample::vfold_cv(), 28, 43, 49
select_best(show_best), 39
select_best(), 39, 47, 52
select_by_one_std_err(show_best), 39
select_by_one_std_err(), 39, 40
select_by_pct_loss(show_best), 39
select_by_pct_loss(), 39, 40
show_best, 39
show_best(), 39, 41, 47, 52
show_notes, 42
tidyr::unnest(), 30, 45, 51
tune(), 8, 19, 28, 34, 43, 47, 49, 52
tune_bayes, 42
tune_bayes(), 5–7, 13, 14, 26, 28, 39, 40, 42, 44
tune_grid, 48
tune_grid(), 5–7, 10, 26–28, 36, 40, 43, 44, 48, 49
unknown, 44
workflow(), 28, 34, 43, 49
workflows::add_case_weights(), 27, 29, 35, 46, 51
workflows::workflow(), 27, 29, 31, 35, 46, 47, 51
yardstick::metric_set(), 28, 30, 32, 34, 43, 45, 49, 50