Denoising with tvR package

Kisung You

For a given noisy signal \(f \), total variation regularization (also known as denoising) aims at recovering a cleaned version of signal \(u \) by solving an equation of the following form

\[
\min_u E(u, f) + \lambda V(u)
\]

where \(E(u, f) \) is a fidelity term that measures closeness of noisy signal \(f \) to a desired solution \(u \), and \(V(u) \) a penalty term in pursuit of smoothness of a solution. For a differentiable function \(u : \Omega \rightarrow \mathbb{R} \), total variation is defined as

\[
V(u) = \int_\Omega \| \nabla u(x) \| dx
\]

and \(\lambda \) a regularization parameter that balances fitness and smoothness defined by two terms.

Our tvR package provides two functions

- \texttt{denoise1} for 1d signal (usually with time domain), and
- \texttt{denoise2} for 2d signal such as image.

Let’s see two examples in the below.

```r
library(tvR)

# Example: 1d signal with denoise1

# We aim to solve TV-L2 problem, where
# \[
# E(u, f) = \frac{1}{2} \int |u(x) - f(x)|^2 dx
# \]
# with a penalty \( V(u) = \sum_i |u_{i+1} - u_i| \) with two algorithms, including 1) iterative clipping algorithm and 2) majorization-minorization method.

set.seed(1)
x = rep(sample(1:5,10,replace=TRUE), each=50)  ## main signal
xnoised = x + rnorm(length(x), sd=0.25)  ## add noise

First, let’s compare how two algorithms perform with \( \lambda = 1.0 \).
apply denoising process

```r
xproc1 = denoise1(xnoised, method = "TVL2.IC")
xproc2 = denoise1(xnoised, method = "TVL2.MM")
```

compare two algorithms

![Graph showing comparison between algorithms](image)

which shows somewhat seemingly inconsistent results. However, this should be understood as induced by their internal algorithmic details such as stopping criterion. In such sense, let’s compare whether a single method is consistent with respect to the degree of regularization by varying parameters \( \lambda = 10^{-3}, 10^{-2}, 10^{-1}, 1 \). For this comparison, we will use iterative clipping (TVL2.IC) algorithm.

```r
compare = list()
for (i in 1:4){
 compare[[i]] = denoise1(xnoised, lambda = 10^{(i-4)}, method="TVL2.IC")
}
```
An observation can be made that the larger the $\lambda$ is, the smoother the fitted solution becomes.

**Example : image denoising with denoise2**

For a 2d signal case, we support both $TV-L1$ and $TV-L2$ problem, where

$$E_{L_1}(u,f) = \int_{\Omega} |u(x) - f(x)|_1 dx \quad E_{L_2}(u,f) = \int_{\Omega} |u(x) - f(x)|_2^2 dx$$

given a 2-dimensional domain $\Omega \subset \mathbb{R}^2$ and a penalty $V(u) = \sum(u_x^2 + u_y^2)^{1/2}$. For $TV-L1$ problem, we provide primal-dual algorithm, whereas $TV-L2$ brings primal-dual algorithm as well as finite-difference scheme with fixed point iteration.

A typical yet major example of 2-dimensional signal is image, considering each pixel’s value as $f(x,y)$ at location $(x,y)$. We’ll use the gold standard image of Lena. In our example, we will use a version of gray-scale Lena image stored as a matrix of size $128 \times 128$ and add some gaussian noise as before with $\sigma = 10$.

```r
data(lena128)
xnoised <- lena128 + array(rnorm(128*128, sd=10), c(128,128))
```

Let’s see how different algorithms perform with $\lambda = 10$.

```r
apply denoising process
xproc1 <- denoise2(xnoised, lambda=10, method="TVL1.PrimalDual")
xproc2 <- denoise2(xnoised, lambda=10, method="TVL2.FiniteDifference")
xproc3 <- denoise2(xnoised, lambda=10, method="TVL2.PrimalDual")
```