Package ‘tvd’

February 20, 2015

Type Package
Title Total Variation Denoising
Version 0.1.0
Date 2014-08-11
Description Total Variation Denoising is a regularized denoising method which effectively removes noise from piecewise constant signals whilst preserving edges. This package contains a C++ implementation of Condat's very fast 1D squared error loss TVD algorithm. Additional methods and loss functions may be added in future versions.

License EPL (>= 1.0)
Depends R (>= 3.1.0)
Imports Rcpp (>= 0.11.2)
LinkingTo Rcpp

URL https://bitbucket.org/marpin/r-tvd

BugReports https://bitbucket.org/marpin/r-tvd/issues

Author Mark Pinese [aut, cre, cph]
Maintainer Mark Pinese <m.pinese@garvan.org.au>

R topics documented:

- tvd-package
- tvd1d

Index
tvd-package

Total Variation Denoising

Description

Total Variation Denoising

Details

tvd is a package for Total Variation Denoising, a regularized procedure for removing noise from piecewise constant signals whilst retaining edges. Currently implements Condat's algorithm for fast 1D TVD, in function tvd1d.

Author(s)

Mark Pinese <m.pinese@garvan.org.au>

References

See Also

- tvd1d

tvd1d

Perform Total Variation Denoising on a 1-Dimensional Signal

Description

When supplied a noisy sequential signal in vector y, performs TVD with regularization parameter lambda, and returns a denoised version of y.

Usage

```r
tvd1d(y, lambda, method = "Condat")
```

Arguments

- `y` a numeric vector of sequential noisy data values
- `lambda` the total variation penalty coefficient
- `method` a string indicating the algorithm to use for denoising. Currently only supports method "Condat"
Details

1D TVD is a filtering technique for a sequential univariate signal that attempts to find a vector $x_{	ext{tvd}}$ that approximates a noisy vector y, as:

$$x_{	ext{tvd}} = \text{argmin}_x (E(x, y) + \lambda V(x))$$

where $E(x, y)$ is a loss function measuring the error in approximating y with x, and $V(x)$ is the total variation of x:

$$V(x) = \sum |x_{i+1} - x_i|$$

TVD is particularly well-suited to recovering piecewise constant signals. The degree of approximation is controlled by the parameter lambda: for $\lambda = 0$, $x_{	ext{tvd}} = y$, and as λ increases, $x_{	ext{tvd}}$ contains increasingly fewer value transitions, until, for a high enough value, it is constant. Currently only implements Condat’s fast squared-error loss TVD algorithm (method “Condat”), which is restricted to vectors of length $2^{32} - 1$ and shorter.

Value

a numeric vector of the same length as y, containing denoised data.

Author(s)

Mark Pinese <m.pinese@garvan.org.au>

References

Examples

```r
## Generate a stepped signal
x = rep(c(1, 2, 3, 4, 2, 4, 3, 2, 1), each = 100)

## Create a noisy version of the signal
y = x + rnorm(length(x), sd = 0.5)

## Denoise the signal by Condat’s method
x.denoised = tvd1d(y, lambda = 10, method = "Condat")

## Plot the original signal, the noisy signal, and the denoised signal
plot(y, col = "black", pch = 19, cex = 0.3)
lines(x, col = "blue", lwd = 3)
lines(x.denoised, col = "red", lwd = 3)
legend("topleft", legend = c("Original", "Noisy", "Denoised"),
    col = c("blue", "black", "red"), lty = c("solid", "solid", "solid"),
    lwd = c(2, 0, 1), pch = c(NA, 19, NA), pt.cex = c(NA, 0.3, NA), inset = 0.05)
```
Index

+Topic package
 tvd-package, 2

tvd-package, 2
tvd1d, 2, 2