Package ‘tvmediation’

May 25, 2022

Type Package
Date 2022-05-13
Version 1.1.0
Title Time Varying Mediation Analysis
Description Provides functions for estimating mediation effects that vary over
time as described in Cai X, Coffman DL, Piper ME, Li R.
Estimation and inference for the mediation effect in a time-varying mediation model.
RoxygenNote 7.1.2
Depends R (>= 4.0.0)
Imports stats (>= 4.0.2), dplyr (>= 1.0.2), ggplot2 (>= 3.3.2), locpol
(>= 0.7-0)
Suggests knitr, rmarkdown
License GPL-3
URL https://github.com/dcoffman/tvmediation/wiki
BugReports https://github.com/dcoffman/tvmediation/issues
LazyData true
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Donna Coffman [aut, cre] (https://orcid.org/0000-0001-6305-6579),
Xizhen Cai [aut] (https://orcid.org/0000-0003-2097-1755),
Yajnaseni Chakraborti [aut] (https://orcid.org/0000-0002-6747-8821),
Harry Zobel [ctb]
Maintainer Donna Coffman <dcoffman@temple.edu>
Repository CRAN
Date/Publication 2022-05-25 06:40:02 UTC
\textbf{R topics documented:}

- \texttt{bootci_coeff_2trt}
- \texttt{bootci_coeff_3trt}
- \texttt{bootci_coeff_binary}
- \texttt{bootci_tvmb}
- \texttt{bootci_tvm_3trt}
- \texttt{coeff}
- \texttt{estBootCIs}
- \texttt{estCoeff}
- \texttt{LongToWide}
- \texttt{newMediatorOutcome}
- \texttt{smoker}
- \texttt{smootherest}
- \texttt{tvma}
- \texttt{tvma_3trt}
- \texttt{tvmb}
- \texttt{tvmcurve_3trt}

\section*{Index}

\begin{tabular}{ll}
\texttt{bootci_coeff_2trt} & 2 \\
\texttt{bootci_coeff_3trt} & 3 \\
\texttt{bootci_coeff_binary} & 4 \\
\texttt{bootci_tvmb} & 5 \\
\texttt{bootci_tvm_3trt} & 6 \\
\texttt{coeff} & 7 \\
\texttt{estBootCIs} & 8 \\
\texttt{estCoeff} & 8 \\
\texttt{LongToWide} & 9 \\
\texttt{newMediatorOutcome} & 10 \\
\texttt{smoker} & 10 \\
\texttt{smootherest} & 11 \\
\texttt{tvma} & 12 \\
\texttt{tvma_3trt} & 15 \\
\texttt{tvmb} & 18 \\
\texttt{tvmcurve_3trt} & 20 \\
\end{tabular}

\begin{center}
\texttt{Index} 22
\end{center}

\textbf{bootci_coeff_2trt} \hspace{1cm} \textit{Bootstrap function for computing CIs for coefficients for a continuous outcome and two treatment groups}

\section*{Description}

Part of the set of internal functions for estimating bootstrapped CIs for the coefficients of the mediation model for continuous outcome and two treatment groups.

\section*{Usage}

\texttt{bootci_coeff_2trt(trt, t.seq, M, Y, t.est, deltat, replicates)}

\section*{Arguments}

- \texttt{trt} \hspace{1cm} a vector indicating treatment group
- \texttt{t.seq} \hspace{1cm} a vector of time points for each observation
- \texttt{M} \hspace{1cm} matrix of mediator values in wide format
- \texttt{Y} \hspace{1cm} matrix of outcome values in wide format
- \texttt{t.est} \hspace{1cm} time points at which to make the estimation. Default = t.seq
- \texttt{deltat} \hspace{1cm} a small constant which controls the time-lag of the effect of the mediator on the outcome.
- \texttt{replicates} \hspace{1cm} number of replicates for bootstrapping confidence intervals. Default = 1000
bootci_coeff_3trt

Value
- CI.upper.alpha: CI upper limit for coefficient hat.alpha
- CI.lower.alpha: CI lower limit for coefficient hat.alpha
- CI.upper.gamma: CI upper limit for coefficient hat.gamma
- CI.lower.gamma: CI lower limit for coefficient hat.gamma
- CI.upper.beta: CI upper limit for coefficient hat.beta
- CI.lower.beta: CI lower limit for coefficient hat.beta
- CI.upper.tau: CI upper limit for coefficient hat.tau
- CI.lower.tau: CI lower limit for coefficient hat.tau

bootci_coeff_3trt
Bootstrap samples to estimate confidence intervals for coefficients for a continuous outcome and three treatment groups.

Description
Part of the set of internal functions for estimating bootstrapped confidence intervals for the coefficients of the mediation model for a continuous outcome and three treatment groups.

Usage

```r
bootci_coeff_3trt(
  T1,
  T2,
  t.seq,
  mediator,
  outcome,
  t.est,
  original.coeff,
  boot.sample = 1000
)
```

Arguments

- `T1`: a vector indicating assignment to treatment 1
- `T2`: a vector indicating assignment to treatment 2
- `t.seq`: a vector of time points for each observation
- `mediator`: matrix of mediator values in wide format
- `outcome`: matrix of outcome values in wide format
- `t.est`: time points at which to make the estimation. Default = `t.seq`
- `original.coeff`: a list of the estimated coefficients.
- `boot.sample`: number of replicates for bootstrapping confidence intervals. Default = 1000.
Value

- `alw1`: CI lower limit for estimated Treatment 1 effect on mediator
- `aup1`: CI upper limit for estimated Treatment 1 effect on mediator
- `alw2`: CI lower limit for estimated Treatment 2 effect on mediator
- `aup2`: CI upper limit for estimated Treatment 2 effect on mediator
- `glw1`: CI lower limit for estimated Treatment 1 direct effect on outcome
- `gup1`: CI upper limit for estimated Treatment 1 direct effect on outcome
- `glw2`: CI lower limit for estimated Treatment 2 direct effect on outcome
- `gup2`: CI upper limit for estimated Treatment 2 direct effect on outcome
- `tlw1`: CI lower limit for estimated Treatment 1 total effect on outcome
- `tup1`: CI upper limit for estimated Treatment 1 total effect on outcome
- `tlw2`: CI lower limit for estimated Treatment 2 total effect on outcome
- `tup2`: CI upper limit for estimated Treatment 2 total effect on outcome
- `blw`: CI lower limit for estimated effect of mediator on outcome
- `bup`: CI upper limit for estimated effect of mediator on outcome

bootci_coeff_binary

Bootstrap samples to estimate confidence intervals for binary outcome coefficients.

Description

Internal function for estimating bootstrapped confidence intervals for the coefficients of the mediation model for a binary outcome.

Usage

```r
bootci_coeff_binary(
  treatment,  # a vector indicating treatment group
  t.seq,      # a vector of unique time points for each observation
  m,          # matrix of mediator values in wide format
  outcome,    # matrix of outcome values in wide format
  span = 0.75, # Numeric value of the span to be used for LOESS regression. Default = 0.75.
  replicates = 1000 # Number of replicates for bootstrapping confidence intervals. Default = 1000.
)
```

Arguments

- `treatment`
- `t.seq`
- `m`
- `outcome`
- `span`
- `replicates`
Value

- **t.seq**: time points of estimation
- **CI.lower.a**: CI lower limit for alpha_hat
- **CI.upper.a**: CI upper limit for alpha_hat
- **CI.lower.g**: CI lower limit for gamma_hat
- **CI.upper.g**: CI upper limit for gamma_hat
- **CI.lower.b**: CI lower limit for beta_hat
- **CI.upper.b**: CI upper limit for beta_hat
- **CI.lower.t**: CI lower limit for tau_hat
- **CI.upper.t**: CI upper limit for tau_hat

bootci_tvmb
Bootstrap samples to estimate confidence intervals for the mediation effect for a binary outcome.

Description

Part of the set of internal functions for estimating bootstrapped confidence intervals for the mediation effect for a binary outcome when user argument CI="boot".

Usage

```r
bootci_tvmb(treatment, t.seq, m, outcome, coeff_data, span = 0.75, replicates = 1000)
```

Arguments

- **treatment**: a vector indicating treatment group
- **t.seq**: a vector of unique time points for each observation
- **m**: matrix of mediator values in wide format
- **outcome**: matrix of outcome values in wide format
- **coeff_data**: a merged dataset of indirect and direct effects and CIs estimated from bootci_coeff_binary
- **span**: Numeric value of the span to be used for LOESS regression. Default = 0.75.
- **replicates**: number of replicates for bootstrapping CIs. Default = 1000.
Value

- `timeseq`
 time points of estimation
- `alpha_hat`
 time-varying treatment effect on the mediator
- `CI.lower.a`
 CI lower limit for estimated coefficient `alpha_hat`
- `CI.upper.a`
 CI upper limit for estimated coefficient `alpha_hat`
- `gamma_hat`
 time-varying treatment effect on the outcome (direct effect)
- `CI.lower.g`
 CI lower limit for estimated coefficient `gamma_hat`
- `CI.upper.g`
 CI upper limit for estimated coefficient `gamma_hat`
- `beta_hat`
 time-varying effect of the mediator on the outcome
- `CI.lower.b`
 CI lower limit for estimated coefficient `beta_hat`
- `CI.upper.b`
 CI upper limit for estimated coefficient `beta_hat`
- `tau_hat`
 time-varying treatment effect on outcome (total effect)
- `CI.lower.t`
 CI lower limit for estimated coefficient `tau_hat`
- `CI.upper.t`
 CI upper limit for estimated coefficient `tau_hat`
- `medEffect`
 time varying mediation effect
- `CI.lower`
 CI lower limit for `medEffect`
- `CI.upper`
 CI upper limit for `medEffect`

bootci_tvm_3trt
Bootstrap samples to estimate confidence intervals for continuous outcome and three treatment groups.

Description

Internal function for estimating bootstrapped confidence intervals for the mediation effect of continuous outcome and three treatment groups when user argument `CI="boot"`.

Usage

```r
bootci_tvm_3trt(boot.sample, orig.data, t.est)
```

Arguments

- `boot.sample`
 number of replicates for bootstrapping confidence intervals. Default = 1000.
- `orig.data`
 a list of original data `T1`, `T2`, `mediator`, `outcome` and `t.seq`.
- `t.est`
 time points at which to make the estimation. Default = `t.seq`.

Value

\begin{itemize}
 \item \texttt{plw1} \quad CI lower limit for estimated mediation effect of T1
 \item \texttt{pup1} \quad CI upper limit for estimated mediation effect of T1
 \item \texttt{plw2} \quad CI lower limit for estimated mediation effect of T2
 \item \texttt{pup2} \quad CI upper limit for estimated mediation effect of T2
 \item \texttt{orig.se1.all} \quad estimated standard errors for the mediation effect of T1
 \item \texttt{orig.se2.all} \quad estimated standard errors for the mediation effect of T2
 \item \texttt{orig.mediation1} \quad time varying mediation effect for T1
 \item \texttt{orig.mediation2} \quad time varying mediation effect for T2
\end{itemize}

\\

coeff

Function to estimate coefficients at time t

Description

Part of the set of internal functions called within the \texttt{tvmcurve_3trt} function to assist in the estimation of time varying mediation effect.

Usage

\begin{verbatim}
coeff(j, T1, T2, x, y)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{j} \quad a number indicating time point of observation
 \item \texttt{T1} \quad a vector indicating assignment to treatment 1
 \item \texttt{T2} \quad a vector indicating assignment to treatment 2
 \item \texttt{x} \quad matrix of mediator values in wide format
 \item \texttt{y} \quad matrix of outcome outcomes in wide format
\end{itemize}

Value

\begin{itemize}
 \item \texttt{coeff.est} \quad estimated coefficients of the mediation model
 \item \texttt{nomissing.index} \quad index of complete cases
\end{itemize}
estBootCIs

Bootstrapping samples to estimate mediation effects confidence intervals for continuous outcome and two treatment (exposure) groups.

Description

Part of the set of internal functions for estimating bootstrapped confidence intervals for continuous outcome and two treatment groups when user argument CI="boot".

Usage

```r
estBootCIs(trt, t.seq, M, Y, t.est, deltat, replicates)
```

Arguments

- `trt` : a vector indicating treatment group
- `t.seq` : a vector of time points at each obs
- `M` : matrix of mediator values
- `Y` : matrix of outcome values
- `t.est` : time points at which to make the estimation
- `deltat` : a small constant which controls the time-lag of the effect of the mediator on the outcome, half the time between two time points
- `replicates` : number of replicates for bootstrapping confidence intervals.

Value

- `boot.se` : bootstrapped standard error for the estimated mediation effect
- `CI.upperpercentile` : bootstrapped CI upper limit for the estimated mediation effect
- `CI.lowerpercentile` : bootstrapped CI lower limit for the estimated mediation effect

estCoeff

Function to estimate coefficients at time t.

Description

Part of the set of internal functions called within the tvma function to assist in the estimation of the time varying mediation effect.

Usage

```r
estCoeff(newMO.j.est)
```
LongToWide

Arguments

newMO.j.est a list containing mean centered mediators and outcomes

Value

coeff.est estimated coefficients of the mediation model

Description

Transposing a dataset with repeated measurements/responses for each subject from longitudinal to wide format.

Usage

LongToWide(subject.id, time.sequence, outcome, verbose = FALSE)

Arguments

subject.id a column of subject identifiers
time.sequence a column of time points
outcome a column to be transposed
verbose TRUE or FALSE (default = FALSE) prints output to screen (OPTIONAL INPUT)

Details

If data is not sorted by subject.id, a warning message will appear. The function will then sort the data by subject.id. It is recommended that the user sorts the data prior to using this function.

Value

mat.wide a matrix in wide format, in which each column is the outcome for each subject and each row is the time sequence

Examples

CREATING A TRANSPOSED MATRIX FOR MEDIATOR `WantToSmokeLst15min`
data(smoker)
mat.wide <- LongToWide(smoker$SubjectID,
 smoker$timeseq,
 smoker$WantToSmokeLst15min)
newMediatorOutcome

Function to compute new Mediator and Outcome using time t and t-1 mean centered on the individual.

Description

Part of the set of internal functions called within the `tvma` function to assist in the estimation of time varying mediation effect.

Usage

```r
newMediatorOutcome(trt, M, Y)
```

Arguments

- `trt`: numeric binary treatment group indicator for each individual
- `M`: (t.seq x N) matrix where N = number of observations. Column 1 is mediator at time t-1. Column 2 is mediator at time t.
- `Y`: (Nx1) matrix were N = number of observations. Column 1 is outcome at time t-1.

Value

- `newMO`: list containing new mediators, outcomes, and index of complete cases

smoker

Wisconsin Smokers’ Health Study 2

Description

The dataset is *simulated* based on the Wisconsin Smokers’ Health Study 2.

Usage

```r
data(smoker)
```

Format

A data frame with 40,130 observations on 12 variables.

1. **SubjectID**: Subject ID
2. **treatment**: Treatment group (2 = patch, 3 = varenicline, 4 = combination nicotine replacement therapy)
3. **patch**: Received patch (0 = No, 1 = Yes)
4. **varenicline**: Received varenicline (0 = No, 1 = Yes)
5. **comboNRT**: Received combination nicotine replacement therapy (0 = No, 1 = Yes)
6. **DaysFromTQD**: Number of days from quit date
7. **time.of.day**: Time of day (0 = am, 1 = pm)
8. **timeseq**: Number of days from quit date (.5 indicates pm)
9. **WantToSmokeLst15min**: How did you feel in the last 15 min: wanting to smoke (1 = not at all, 7 = extremely)
10. **NegMoodLst15min**: How did you feel in the last 15 min: Negative mood (1 = not at all, 7 = extremely)
11. **cessFatig**: Cessation fatigue - I am tired of trying to quit smoking (1 = strongly disagree, 7 = strongly agree)
12. **CigCount**: Cigarettes smoked over entire day
13. **smoke_status**: Did you smoke (0 = No, 1 = Yes)

See Also

tvmb, tvma_3trt, tvma, LongToWide

Examples

data(smoker)

<table>
<thead>
<tr>
<th>smoothest</th>
<th>Function to compute local polynomial estimation using rule of thumb for bandwidth selection</th>
</tr>
</thead>
</table>

Description

Part of the set of internal functions called within the tvma function to assist in the estimation of the time varying mediation effect.

Usage

smoothest(t.seq, t.coef, t.est, deltat)

Arguments

- **t.seq**: a vector of time points at each observation
- **t.coef**: estimated coefficients
- **t.est**: time points at which to make the estimation
- **deltat**: a small constant which controls the time-lag of the effect of the mediator on the outcome, half the time between two time points
Value

- **bw_alpha**: A number computed via Fan and Gijbels' (1996) rule of thumb for bandwidth selector for alpha coefficient.
- **bw_gamma**: A number computed via Fan and Gijbels' (1996) rule of thumb for bandwidth selector for gamma coefficient.
- **bw_beta**: A number computed via Fan and Gijbels' (1996) rule of thumb for bandwidth selector for beta coefficient.
- **bw_tau**: A number computed via Fan and Gijbels' (1996) rule of thumb for bandwidth selector for tau coefficient.
- **hat.alpha**: Estimated treatment effect on mediator.
- **hat.gamma**: Estimated treatment effect on outcome, adjusted for mediator.
- **hat.beta**: Estimated mediator effect on outcome.
- **hat.tau**: Estimated treatment effect on outcome, not adjusting for mediator.
- **est.M**: Estimated mediation effect, product of hat.alpha and hat.beta.

tvma

Time Varying Mediation Function: Continuous Outcome and Two Treatment Groups

Description

Function to estimate the time-varying mediation effect and bootstrap standard errors for two treatment groups and a continuous outcome.

Usage

```r
tvma(
  treatment,
  t.seq,
  mediator,
  outcome,
  t.est = t.seq,
  plot = FALSE,
  CI = "boot",
  replicates = 1000,
  verbose = FALSE
)
```

Arguments

- **treatment**: A vector indicating treatment group.
- **t.seq**: A vector of time points for each observation.
- **mediator**: A matrix of mediator values in wide format.
outcome matrix of outcome values in wide format

t.est a vector of time points at which to estimate. Default = t.seq (OPTIONAL ARGUMENT)

plot TRUE or FALSE for producing plots. Default = "FALSE" (OPTIONAL ARGUMENT)

CI "none" or "boot" method of deriving confidence intervals. Default = "boot" (OPTIONAL ARGUMENT)

replicates number of replicates for bootstrapping confidence intervals. Default = 1000 (OPTIONAL ARGUMENT)

verbose TRUE or FALSE for printing results to screen. Default = "FALSE" (OPTIONAL ARGUMENT)

Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hat.alpha</td>
<td>estimated time-varying treatment effect on mediator</td>
</tr>
<tr>
<td>CI.lower.alpha</td>
<td>CI lower limit for estimated coefficient hat.alpha</td>
</tr>
<tr>
<td>CI.upper.alpha</td>
<td>CI upper limit for estimated coefficient hat.alpha</td>
</tr>
<tr>
<td>hat.gamma</td>
<td>estimated time-varying treatment effect on outcome (direct effect)</td>
</tr>
<tr>
<td>CI.lower.gamma</td>
<td>CI lower limit for estimated coefficient hat.gamma</td>
</tr>
<tr>
<td>CI.upper.gamma</td>
<td>CI upper limit for estimated coefficient hat.gamma</td>
</tr>
<tr>
<td>hat.beta</td>
<td>estimated time-varying effect of the mediator on outcome</td>
</tr>
<tr>
<td>CI.lower.beta</td>
<td>CI lower limit for estimated coefficient hat.beta</td>
</tr>
<tr>
<td>CI.upper.beta</td>
<td>CI upper limit for estimated coefficient hat.beta</td>
</tr>
<tr>
<td>hat.tau</td>
<td>estimated time-varying treatment effect on outcome (total effect)</td>
</tr>
<tr>
<td>CI.lower.tau</td>
<td>CI lower limit for estimated coefficient hat.tau</td>
</tr>
<tr>
<td>CI.upper.tau</td>
<td>CI upper limit for estimated coefficient hat.tau</td>
</tr>
<tr>
<td>est.M</td>
<td>time varying mediation effect</td>
</tr>
<tr>
<td>boot.se.m</td>
<td>estimated standard error for est.M</td>
</tr>
<tr>
<td>CI.lower</td>
<td>CI lower limit for est.M</td>
</tr>
<tr>
<td>CI.upper</td>
<td>CI upper limit for est.M</td>
</tr>
</tbody>
</table>

Plot Returns

1. Alpha_CI plot for hat.alpha with CIs over t.est
2. Gamma_CI plot for hat.gamma with CIs over t.est
3. Beta_CI plot for hat.beta with CIs over t.est
4. Tau_CI plot for hat.tau with CIs over t.est
5. MedEff plot for est.M over t.est
6. MedEff_CI plot for est.M with CIs over t.est
Note

1. **IMPORTANT** An alternate way of formatting the data and calling the function is documented in detail in the tutorial for the tvmb() function.

References

Examples

```r
## Not run: data(smoker)

# REDUCE DATA SET TO ONLY 2 TREATMENT CONDITIONS (EXCLUDING COMBINATION NRT)
smoker.sub <- smoker[smoker$treatment != 4, ]

# GENERATE WIDE FORMATTED MEDIATORS
mediator <- LongToWide(smoker.sub$SubjectID, smoker.sub$timeseq, smoker.sub$NegMoodLst15min)

# GENERATE WIDE FORMATTED OUTCOMES
outcome <- LongToWide(smoker.sub$SubjectID, smoker.sub$timeseq, smoker.sub$cessFatig)

# GENERATE A BINARY TREATMENT VARIABLE
trt <- as.numeric(unique(smoker.sub[,c("SubjectID","varenicline")])[,2])-1

# GENERATE A VECTOR OF UNIQUE TIME POINTS
t.seq <- sort(unique(smoker.sub$timeseq))

# COMPUTE TIME VARYING MEDIATION ANALYSIS USING BOOTSTRAPPED CONFIDENCE INTERVALS
results <- tvma(trt, t.seq, mediator, outcome)

# COMPUTE TIME VARYING MEDIATION ANALYSIS FOR SPECIFIED POINTS IN TIME USING 250 REPLICATES
results <- tvma(trt, t.seq, mediator, outcome,
```
Description

Function to estimate the time-varying mediation effect and bootstrap standard errors for three treatment groups and a continuous outcome.

Usage

tvma_3trt(T1, T2, t.seq, mediator, outcome, t.est = t.seq, plot = FALSE, CI = "boot", replicates = 1000, grpname = "T", verbose = FALSE)

Arguments

T1 a vector indicating assignment to treatment 1
T2 a vector indicating assignment to treatment 2
t.seq a vector of time points for each observation
mediator matrix of mediator values in wide format
outcome matrix of outcome values in wide format
t.est a vector of time points at which to make the estimation. Default = t.seq. (OPTIONAL ARGUMENT)
plot TRUE or FALSE for plotting mediation effect. Default = "FALSE". (OPTIONAL ARGUMENT)
CI "none" or "boot" method of deriving confidence intervals. Default = "boot". (OPTIONAL ARGUMENT)
replicates number of replicates for bootstrapping confidence intervals. Default = 1000. (OPTIONAL ARGUMENT)
Value

- **hat.alpha1** estimated Treatment 1 effect on mediator
- **CI.lower.alpha1** CI lower limit for estimated coefficient hat.alpha1
- **CI.upper.alpha1** CI upper limit for estimated coefficient hat.alpha1
- **hat.alpha2** estimated Treatment 2 effect on mediator
- **CI.lower.alpha2** CI lower limit for estimated coefficient hat.alpha2
- **CI.upper.alpha2** CI upper limit for estimated coefficient hat.alpha2
- **hat.gamma1** estimated Treatment 1 direct effect on outcome
- **CI.lower.gamma1** CI lower limit for estimated coefficient hat.gamma1
- **CI.upper.gamma1** CI upper limit for estimated coefficient hat.gamma1
- **hat.gamma2** estimated Treatment 2 direct effect on outcome
- **CI.lower.gamma2** CI lower limit for estimated coefficient hat.gamma2
- **CI.upper.gamma2** CI upper limit for estimated coefficient hat.gamma2
- **hat.tau1** estimated Treatment 1 total effect on outcome
- **CI.lower.tau1** CI lower limit for estimated coefficient hat.tau1
- **CI.upper.tau1** CI upper limit for estimated coefficient hat.tau1
- **hat.tau2** estimated Treatment 2 total effect on outcome
- **CI.lower.tau2** CI lower limit for estimated coefficient hat.tau2
- **CI.upper.tau2** CI upper limit for estimated coefficient hat.tau2
- **hat.beta** estimated mediator effect on outcome
- **CI.lower.beta** CI lower limit for estimated coefficient hat.beta
- **CI.upper.beta** CI upper limit for estimated coefficient hat.beta
- **hat.mediation1** time varying mediation effect for Treatment 1 on outcome
- **SE_MedEff1** estimated standard errors of hat.mediation1
- **CI.upper.T1** CI upper limit for hat.mediation1
- **CI.lower.T1** CI lower limit for hat.mediation1
- **hat.mediation2** time varying mediation effect for Treatment 2 on outcome
- **SE_MedEff2** estimated standard errors of hat.mediation2
- **CI.upper.T2** CI upper limit for hat.mediation2
- **CI.lower.T2** CI lower limit for hat.mediation2

grpname

name of the treatment arms (exposure groups) to be displayed in the results. Default = "T". (OPTIONAL ARGUMENT)

verbose

TRUE or FALSE for printing results to screen. Default = "FALSE". (OPTIONAL ARGUMENT)
Plot Returns

1. plot1_a1 plot for hat.alpha1 with CIs over t.est
2. plot2_a2 plot for hat.alpha2 with CIs over t.est
3. plot3_g1 plot for hat.gamma1 with CIs over t.est
4. plot4_g2 plot for hat.gamma2 with CIs over t.est
5. plot5_t1 plot for hat.tau1 with CIs over t.est
6. plot6_t2 plot for hat.tau2 with CIs over t.est
7. plot7_b plot for hat.beta with CIs over t.est
8. MedEff_T1 plot for hat.mediation1 over t.est
9. MedEff_T2 plot for hat.mediation2 over t.est
10. MedEff_CI_T1 plot for hat.mediation1 with CIs over t.est
11. MedEff_CI_T2 plot for hat.mediation2 with CIs over t.est

References

Examples

```r
## Not run: data(smoker)

# GENERATE WIDE FORMATTED MEDIATORS
mediator <- LongToWide(smoker$SubjectID, smoker$timeseq, smoker$NegMoodLst15min)

# GENERATE WIDE FORMATTED OUTCOMES
outcome <- LongToWide(smoker$SubjectID, smoker$timeseq, smoker$cessFatig)

# GENERATE TWO BINARY TREATMENT VARIABLES
```
NRT1 <- as.numeric(unique(smoker[,c("SubjectID","varenicline")])[,2])-1
NRT2 <- as.numeric(unique(smoker[,c("SubjectID","comboNRT")])[,2])-1

GENERATE A VECTOR OF UNIQUE TIME POINTS
t.seq <- sort(unique(smoker$timeseq))

COMPUTE TIME VARYING MEDIATION ANALYSIS USING BOOTSTRAPPED CONFIDENCE INTERVALS
results <- tvma_3trt(NRT1, NRT2, t.seq, mediator, outcome)

COMPUTE TIME VARYING MEDIATION ANALYSIS FOR SPECIFIED POINTS IN TIME USING 250 REPLICATES
results <- tvma_3trt(NRT1, NRT2, t.seq, mediator, outcome,
 t.est = c(0.2, 0.4, 0.6, 0.8),
 replicates = 250)

End(Not run)

tvmb

Time Varying Mediation Function: Binary Outcome and Two Treatment Groups

Description
Function to estimate the time-varying mediation effect and bootstrap standard errors, involving two treatment groups and binary outcome.

Usage
tvmb(
 treatment,
 t.seq,
 mediator,
 outcome,
 span = 0.75,
 plot = FALSE,
 CI = "boot",
 replicates = 1000,
 verbose = FALSE
)

Arguments
treatment a vector indicating treatment group
t.seq a vector of unique time points for each observation
mediator matrix of mediator values in wide format
outcome matrix of outcome values in wide format
span Numeric value of the span to be used for LOESS regression. Default = 0.75.
tvmb

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot</td>
<td>TRUE or FALSE for producing plots. Default = "FALSE". (OPTIONAL ARGUMENT)</td>
</tr>
<tr>
<td>CI</td>
<td>"none" or "boot" method of deriving confidence intervals. Default = "boot". (OPTIONAL ARGUMENT)</td>
</tr>
<tr>
<td>replicates</td>
<td>Number of replicates for bootstrapping confidence intervals. Default = 1000. (OPTIONAL ARGUMENT)</td>
</tr>
<tr>
<td>verbose</td>
<td>TRUE or FALSE for printing results to screen. Default = "FALSE". (OPTIONAL ARGUMENT)</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeseq</td>
<td>time points of estimation</td>
</tr>
<tr>
<td>alpha_hat</td>
<td>estimated treatment effect on mediator</td>
</tr>
<tr>
<td>CI.lower.a</td>
<td>CI lower limit for estimated coefficient alpha_hat</td>
</tr>
<tr>
<td>CI.upper.a</td>
<td>CI upper limit for estimated coefficient alpha_hat</td>
</tr>
<tr>
<td>gamma_hat</td>
<td>estimated treatment effect on outcome (direct effect)</td>
</tr>
<tr>
<td>CI.lower.g</td>
<td>CI lower limit for estimated coefficient gamma_hat</td>
</tr>
<tr>
<td>CI.upper.g</td>
<td>CI upper limit for estimated coefficient gamma_hat</td>
</tr>
<tr>
<td>beta_hat</td>
<td>estimated mediator effect on outcome</td>
</tr>
<tr>
<td>CI.lower.b</td>
<td>CI lower limit for estimated coefficient beta_hat</td>
</tr>
<tr>
<td>CI.upper.b</td>
<td>CI upper limit for estimated coefficient beta_hat</td>
</tr>
<tr>
<td>tau_hat</td>
<td>estimated treatment effect on outcome (total effect)</td>
</tr>
<tr>
<td>CI.lower.t</td>
<td>CI lower limit for estimated coefficient tau_hat</td>
</tr>
<tr>
<td>CI.upper.t</td>
<td>CI upper limit for estimated coefficient tau_hat</td>
</tr>
<tr>
<td>medEffect</td>
<td>time varying mediation effect</td>
</tr>
<tr>
<td>CI.lower</td>
<td>CI lower limit for medEffect</td>
</tr>
<tr>
<td>CI.upper</td>
<td>CI upper limit for medEffect</td>
</tr>
</tbody>
</table>

Plot Returns

1. plot1.a plot for alpha_hat with CIs over t.seq
2. plot2.g plot for gamma_hat with CIs over t.seq
3. plot3.b plot for beta_hat with CIs over t.seq
4. plot4.t plot for tau_hat with CIs over t.seq
5. MedEff plot for medEffect over t.seq
6. MedEff_CI plot for medEffect with CIs over t.seq
7. bootstrap plot for estimated medEffect from bootstrapped samples over t.seq

Note

1. Currently supports 2 treatment groups
2. **IMPORTANT** An alternate way of formatting the data and calling the function is documented in detail in the tutorial for the tvmb() function.
References

Examples

```r
## Not run: data(smoker)

# REDUCE DATA SET TO ONLY 2 TREATMENT CONDITIONS (EXCLUDE COMBINATION NRT)
smoker.sub <- smoker[smoker$treatment != 4, ]

# GENERATE WIDE FORMATTED MEDIATORS
mediator <- LongToWide(smoker.sub$SubjectID,
                         smoker.sub$timeseq,
                         smoker.sub$NegMoodLst15min)

# GENERATE WIDE FORMATTED OUTCOMES
outcome <- LongToWide(smoker.sub$SubjectID,
                      smoker.sub$timeseq,
                      smoker.sub$smoke_status)

# GENERATE A BINARY TREATMENT VARIABLE
trt <- as.numeric(unique(smoker.sub[, c("SubjectID","varenicline")])[, 2])-1

# GENERATE A VECTOR OF UNIQUE TIME POINTS
t.seq <- sort(unique(smoker.sub$timeseq))

# COMPUTE TIME VARYING MEDIATION ANALYSIS USING BOOTSTRAPPED CONFIDENCE INTERVALS
results <- tvmb(trt, t.seq, mediator, outcome)
## End(Not run)
```

tvmcurve_3trt

Main function for time varying mediation function for continuous outcome and three treatment arms (i.e., exposure groups).
Description
Part of the set of internal functions to estimate the time-varying mediation effect and bootstrap standard errors for three treatment groups and continuous outcome.

Usage
tvcurve_3trt(T1, T2, t.seq, x, y, t.est)

Arguments
T1 a vector indicating assignment to treatment 1
T2 a vector indicating assignment to treatment 2
t.seq a vector of time points for each observation
x matrix of mediator values in wide format
y matrix of outcome values in wide format
t.est time points at which to make the estimation. Default = t.seq

Value
hat.alpha1 estimated Treatment 1 effect on mediator
hat.alpha2 estimated Treatment 2 effect on mediator
hat.gamma1 estimated Treatment 1 direct effect on outcome
hat.gamma2 estimated Treatment 2 direct effect on outcome
hat.tau1 estimated Treatment 1 total effect on outcome
hat.tau2 estimated Treatment 2 total effect on outcome
hat.beta estimated mediator effect on outcome
hat.mediation1 time varying mediation effect for Treatment 1 on outcome
hat.mediation2 time varying mediation effect for Treatment 2 on outcome
Index

* datasets
 smoker, 10
 bootci_coeff_2trt, 2
 bootci_coeff_3trt, 3
 bootci_coeff_binary, 4
 bootci_tvm_3trt, 6
 bootci_tvmb, 5
 coeff, 7
 estBootCIs, 8
 estCoeff, 8
 LongToWide, 9, 11
 newMediatorOutcome, 10
 smoker, 10
 smoothest, 11
 tvma, 11, 12
 tvma_3trt, 11, 15
 tvmb, 11, 18
 tvmcurve_3trt, 20