Package ‘twoway’

August 24, 2018

Type Package
Title Analysis of Two-Way Tables
Version 0.6.2
Author Michael Friendly [aut, cre],
 Richard M. Heiberger [aut],
 John Fox [ctb]
Maintainer Michael Friendly <friendly@yorku.ca>
Description Carries out analyses of two-
 way tables with one observation per cell, together with graphical displays
 for an additive fit and
 a diagnostic plot for removable 'non-additivity' via a power transformation of the response.
 It implements Tukey's Exploratory Data Analysis methods, including a
 1-degree-of-freedom test for row*column 'non-additivity', linear in the row and column effects.

URL https://github.com/friendly/twoway
BugReports https://github.com/friendly/twoway/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-24 21:50:03 UTC

R topics documented:

anova.twoway ... 2
Arizona ... 3
as.data.frame.twoway .. 3
anova.twoway

ANOVA summary for a two-way table, including Tukey Additivity Test

Description

Test for a 1-df interaction in two-way ANOVA table by the Tukey test.

Usage

```r
## S3 method for class 'twoway'
anova(object, ...)
```

Arguments

- **object**: a class("twoway") object
- **...**: other arguments passed down, but not used here

Details

At present, this function simply gives the results of the ANOVAs for the additive model, the model including the 1 df term for non-additivity, and an `anova()` comparison of the two. The analysis is based on row and column means.

Author(s)

Michael Friendly
Arizona

Examples

data(sentRT)
sent.2way <- twoway(sentRT)
anova(sent.2way)

Arizona Mean monthly temperatures in Arizona

Description

This is the data set used by Tukey (1977) for the initial examples of twoway tables.

Format

A matrix of 7 rows (Month) and 3 columns (City) where the value is mean monthly temperature in degrees F. The matrix has a responseName attribute, "Temperature".

References

Examples

data(Arizona)
(AR.2way <- twoway(Arizona, method="median"))

plot(AR.2way)

as.data.frame.twoway Convert a twoway object to a data frame. This function converts a "twoway" object to a data.frame.

Description

The rows and columns of the data table are strung out in standard R order in a vector, joined with row and column labels. Additional columns are added, representing the calculated values used in the two-way display.

Usage

S3 method for class 'twoway'
as.data.frame(x, ...)

Arguments

x a "twoway" object
...
other arguments, presently ignored

Value

a data.frame with \(r \times c \) rows corresponding to the input data table, and the following columns

row row labels
col column labels
data the data value in the cell
fit the fitted value,
roweff the row effect
coleff the column effect
nonadd the 1 df for non-additivity value

Examples

```r
data(sentRT)
sent.2way <- twoway(sentRT)
as.data.frame(sent.2way)
```

Description

Create an initial twoway object representing the data before fitting

Usage

```r
as.twoway(x, ...)
```

S3 method for class 'matrix'

```r
as.twoway(x, ..., name = deparse(substitute(x)),
  responseName = name, varNames = names(dimnames(x)))
```

Arguments

x a numeric matrix or numeric data frame with rownames
...
other arguments, unused here
name Name of the data matrix
responseName Name of the response variable
varNames Names of the row and column variables
drugs

Value

An object of class c("twoway") with all effects(roweff, coeleff, overall) set to zero, and method="Initial"

Author(s)

Richard M. Heiberger
Richard M. Heiberger

Examples

data(taskRT)
as.twoway(taskRT)

drugs Scores for 5 subjects after being given each of 4 drugs

Description

The original source is Winer (1971), p. 268. This was used as an example in Friendly (1991).

References

Examples

data(drugs)
twoway(drugs)

hstart Number of U.S. housing starts by month for the years 1965 – 1973

Description

Number of U.S. housing starts by month for the years 1965 – 1973

Format

a 9 x 12 matrix, where the entries are the number of housing starts, in thousands

References

Examples

```r
hstart.2way <- twoway(hstart, method="mean")
plot(hstart.2way)
```

<table>
<thead>
<tr>
<th>insectCounts</th>
<th>Counts of an insect for the combinations of 4 treatments and 6 areas of a field</th>
</tr>
</thead>
</table>

Description

Counts of numbers of an insect, *Leptinotarsa decemlineata* (the Colorado potato beetle), each of which is the sum for two plots treated alike, for all combinations of 4 treatments and 6 areas of the field chosen to be relatively homogeneous.

Format

a 4 x 6 matrix, where the rows are treatments and the columns are areas of a field.

Details

These data are used in Tukey (1977) Exhibit 1 of Ch 11 and throughout the chapter as examples of median polish. Because the data are counts, either a sqrt or log transformation would be reasonable.

References

Examples

```r
insect.2way <- twoway(insectCounts, method="median")
print(insect.2way, digits=2)

plot(insect.2way)
plot(insect.2way, which="diagnose")

# try sqrt transformation
insect.sqrt <- twoway(sqrt(insectCounts), method="median")
print(insect.sqrt, digits=2)

plot(insect.sqrt)
plot(insect.sqrt, which="diagnose")
```
Description

The input power value is rounded to the nearest integer or fractional powers, ±1/3, 1/2. The function is presently designed just for display purposes.

Usage

```r
ladder_power(p)
```

Arguments

- `p`: A numeric power, for use as a transformation of a response, `y`, of the form `y^p`, where `p=0` is interpreted to mean `log(y)`.

Details

In use, the transformation via the ladder of powers usually attaches a minus sign to the transformation when the `power < 0`, so that the order of the response values are preserved under the transformation. Thus, a result of `power = -0.5` is interpreted to mean \(-1/\sqrt{y}\).

Value

A named list of two elements: `power`, the ladder-of-power value, and `name`, the name for the transformation.

References

Examples

```r
ladder_power(0.6)
ladder_power(-0.6)
```
meanfit
Fit a two-way table using row and column means

Description
Fit a two-way table using row and column means

Usage
meanfit(x, ...)

Arguments
x a numeric matrix or data frame
... other arguments passed down

Value
An object of class c("twoway") with the following named components:
overall the fitted constant term.
roweff the fitted row effects.
coleff the fitted column effects.
residuals the residuals.
name the name of the dataset.
rownames the names for the rows
colnames the names for the columns
method "median"

medianfit
Fit a two-way table using median polish

Description
Fit a two-way table using median polish

Usage
medianfit(x, trace.iter = FALSE, ...)

Arguments
x a numeric matrix or data frame
trace.iter whether to give verbose output of iteration history in median polish.
... other arguments passed down
Value

An object of class c("twoway", "medpolish") with the following named components:

- **overall**: the fitted constant term.
- **roweff**: the fitted row effects.
- **coleff**: the fitted column effects.
- **residuals**: the residuals.
- **name**: the name of the dataset.
- **rownames**: the names for the rows
- **colnames**: the names for the columns
- **method**: "median"

plot.twoway

Plot methods for two-way tables

Description

Plots either the fitted values and residuals under additivity or a diagnostic plot for removable non-additivity by a power transformation

Usage

```r
## S3 method for class 'twoway'
plot(x, which = c("fit", "diagnose"), ...)

## S3 method for class 'twoway.fit'
plot(x, main = paste0("Tukey two-way fit plot for ",
  x$name, " (method: ", x$method, ")"), xlab = expression(hat(mu) *
  " + Column Effect - Row Effect"), ylab = expression("Fit = " * hat(mu)
  " + Column Effect + Row Effect"), rfactor = 1, rcolor = c("blue",
  "red"), lwd = 3, ylim = NULL, ...)

## S3 method for class 'twoway.diagnose'
plot(x, annotate = TRUE, jitter = FALSE,
  smooth = FALSE, pch = 16, ...)
```

Arguments

- **x**: a class("twoway") object
- **which**: one of "fit" or "diagnose"
- **...**: other arguments, passed to plot
- **main**: plot title
- **xlab**: X axis label
plot.twoway

ylab
Y axis label

rfactor
draw lines for \(\text{abs(residuals)} > \text{rfactor*sqrt(MSPE)} \)

rcolor
a vector of length 2 giving the color of lines for positive and negative residuals

lwd
line width for residual lines in the fit plot

ylim
Y axis limits

annotate
A logical value; if TRUE, the slope and power are displayed in the diagnostic plot

jitter
A logical value; if TRUE, the comparison values in the plot are jittered to avoid overplotting

smooth
A logical value; if TRUE, a smoothed **loess** curve is added to the plot

pch
Plot character for point symbols in the diagnostic plot

Details

For the which="fit" plot, the basic result comes from a plot of the row effects against the column fitted values, which appears as a rectangular grid in these coordinates. Rotating this 45 degrees counterclockwise give a plot in which the vertical coordinate is the fitted value for the two-way table, and the horizontal coordinate is the column fit minus the row effect. The spacing of the grid lines for the rows and columns of the table show the relative magnitudes of the row/column means or medians.

For the which="diagnose" plot, the interaction residuals from an additive model, \(y_{ij} = \mu + \alpha_i + \beta_j \), are plotted against the estimated components \(\alpha_i, \beta_j / \mu \). If this plot shows a substantially non-zero slope, \(b \), this analysis suggests that a power transformation, \(y \to y^{(1-b)} \) might reduce the apparent interaction effects.

For both plots, if you want to directly compare the result of method="mean" and method="median", it is essential to set the same xlim and ylim axes in the call.

Value

The diagnostic plot invisibly returns a list with elements c("slope", "power")

Examples

data(taskRT)
tw <- twoway(taskRT)
tw
twmed <- twoway(taskRT, method="median")
twmed
plot(tw, xlim=c(2,7), ylim=c(2,7)) ## use the same xlim and ylim, for comparison
plot(twmed, xlim=c(2,7), ylim=c(2,7))

plot(tw, which="diagnose", xlim=c(-.19, .19), ylim=c(-.5, .55))
plot(twmed, which="diagnose", xlim=c(-.19, .19), ylim=c(-.5, .55))

data(insectCounts)
twi <- twoway(insectCounts)
twi
twimed <- twoway(insectCounts, method="median")
print.twoway

plot(twi, xlim=c(-250, 700), ylim=c(-180, 900))
plot(twimed, xlim=c(-250, 700), ylim=c(-180, 900))

plot(twi, which="diagnose", xlim=c(-160, 170), ylim=c(-200, 400)) # power = .1
plot(twimed, which="diagnose", xlim=c(-160, 170), ylim=c(-200, 400)) # power = .3

print.twoway Print method for two-way tables

Description

Print method for two-way tables

Usage

S3 method for class 'twoway'
print(x, digits = getOption("digits"), border = 2,
zapsmall = TRUE, ...)

Arguments

x a numeric matrix
digits number of digits to print
border if 0, the components "twoway" object ("overall", "roweff", "coleff", "residuals")
 are printed separately; if 1, the row, column and overall effects are joined to the
 residuals in a single table. if 2, row, column, overall and residuals are joined,
 and decorated with horizontal and vertical rules
zapsmall a logical value; if TRUE small residuals are printed as 0.
... other arguments passed down

Author(s)

Michael Friendly, Richard Heiberger

Examples

data(taskRT)
task.2way <- twoway(taskRT)
print(task.2way)
print(task.2way, border=0)

data(sentRT)
sent.2way <- twoway(sentRT)
print(sent.2way)
print(sent.2way, border=1)
residuals.twoway

Extract residuals from a twoway object

Description

Extract residuals from a twoway object

Extract fitted values from a twoway object

Usage

S3 method for class 'twoway'
residuals(object, nonadd = FALSE, ...)

S3 method for class 'twoway'
fitted(object, nonadd = FALSE, ...)

Arguments

object
A class="twoway" object

nonadd
If TRUE, the 1 degree of freedom term for non-additivity is subtracted from the additive residuals

...
other arguments (unused)

Value

A numeric matrix of residuals corresponding to the data supplied to twoway

A numeric matrix of fitted values corresponding to the data supplied to twoway

Examples

data(taskRT)
task.2way <- twoway(taskRT)
residuals(task.2way)
residuals(task.2way, nonadd=TRUE)

sum(residuals(task.2way)^2) # SSE for additive model
sum(residuals(task.2way, nonadd=TRUE)^2) # SSPE, non-additive model
data(taskRT)
task.2way <- twoway(taskRT)
fitted(task.2way)
fitted(task.2way, nonadd=TRUE)
sentRT

Reaction times for T/F judgments

Description

A demonstration 3 x 3 two-way table composed of reaction times for three subjects making T/F judgments on three types of sentences.

References

Examples

```r
data(sentRT)
twoway(sentRT)
```

taskRT

Data on reaction times for various tasks and topics

Description

A demonstration 3 x 4 two-way table composed of reaction times for tasks varying in difficulty, with content on different topics.

Format

A matrix of 3 rows and 4 columns, where the rows are the task difficulty levels and the columns are the topics. The cell values are average reaction times (in sec.). The matrix has a `responseName` attribute, "RT"

Examples

```r
data(taskRT)
twoway(taskRT)
twoway(taskRT, method="median")```
to_long  

*Reshape a data.frame or matrix to a long data.frame*

**Description**
Reshape a data.frame or matrix to a long data.frame

**Usage**

```r
to_long(wide, rowname = NULL, colname = NULL,
responseName = deparse(substitute(wide)), varNames = c("Row", "Col"))
```

```r
to_wide(long, row = 1, col = 2, response = 3)
```

**Arguments**

- **wide**
  A data.frame or matrix in wide form

- **rowname**
  Name for the row variable

- **colname**
  Name for the column variable

- **responseName**
  Name for the response variable. If `wide` is a matrix with an attribute that begins with "response", that value is taken as the `responseName`. Otherwise, the name of the wide object is used.

- **varNames**
  Default names for the row and column variables if not passed as `rowname` or `colname`

- **long**
  A data.frame in long form

- **row**
  Column index or quoted name of the row variable

- **col**
  Column index or quoted name of the column variable

- **response**
  Column index or quoted name of the response variable

**Value**

A data.frame in long format

**Author(s)**

Michael Friendly and Richard M. Heiberger

Michael Friendly and Richard M. Heiberger

**Examples**

```r
Arizona.long <- to_long(Arizona, varNames=c("Month", "City"))
Arizona.long
```

```r
Arizona.long <- to_long(Arizona, varNames=c("Month", "City"))
back the other way
to_wide(Arizona.long)
```
twoway

Analysis of a two-way table with one observation per cell

Description
Fits an additive model using either row and column means or Tukey’s median polish procedure

Usage
```
twoway(x, ...)
```

## Default S3 method:
twoway(x, method = c("mean", "median"), ...,
    name = deparse(substitute(x)), responseName = attr(x, "response"),
    varNames = names(dimnames(x)))

Arguments
- `x` a numeric matrix or data frame.
- `...` other arguments passed down
- `method` one of "mean" or "median"
- `name` name for the input dataset
- `responseName` name for the response variable
- `varNames` names for the Row and Column variables

Details
The `rownames(x)` are used as the levels of the row factor and the `colnames(x)` are the levels of the column factor. For a numeric matrix, the function uses the `names(dimnames(x))` as the names of these variables, and, if present, a `responseName` attribute as the name for the response variable.

Value
An object of class c("twoway") with the following named components:

- `overall` the fitted constant term.
- `roweff` the fitted row effects.
- `colef` the fitted column effects.
- `residuals` the residuals.
- `name` the name of the dataset.
- `rownames` the names for the rows
- `colnames` the names for the columns
- `method` the fitting method
- `varNames` the names of the row and column variables
**responseName** the name of the response variable

**compValue** the comparison values, for the diagnostic plot

**slope** the slope value, for the diagnostic plot

**power** the suggested power transformation, 1-slope

An object of class "twoway", but supplemented by additional components used for labeling

**Author(s)**

Michael Friendly

**References**


**See Also**

codetwoway.formula, codemedpolish

medianfit, meanfit

**Examples**

data(taskRT)
twoway(taskRT)

---

twoway.formula

*Formula method for twoway analysis using a dataset in long format*

**Description**

The formula method reshapes the data set from long to wide format and calls the default method.

**Usage**

```r
S3 method for class 'formula'
twoway(formula, data, subset, na.action, ...)
```

**Arguments**

- **formula**: A formula of the form `response ~ rowvar + colvar`, where `response` is numeric
- **data**: The name of the data set, containing a row vector, column factor and a numeric response
- **subset**: An expression to subset the data (unused)
- **na.action**: What to do with NAs? (unused)
- **...**: other arguments, passed down
**Author(s)**

Michael Friendly and Richard Heiberger

**References**

the conversion of long to wide in a formula method was suggested on https://stackoverflow.com/questions/50469320/how-to-write-a-formula-method-that-converts-long-to-wide

**Examples**

```r
longRT <- to_long(taskRT)
twoway(RT ~ Task + Topic, data=longRT)
```
Index

*Topic data
  Arizona, 3  
drugs, 5  
hstart, 5  
insectCounts, 6  
sentRT, 13  
taskRT, 13

anova.twoway, 2  
Arizona, 3  
as.data.frame.twoway, 3  
as.twoway, 4

drugs, 5

fitted.twoway(residuals.twoway), 12

hstart, 5

insectCounts, 6

ladder_power, 7  
loess, 10

meanfit, 8, 16  
medianfit, 8, 16  
medpolish, 16

plot.twoway, 9  
print.twoway, 11

residuals.twoway, 12

sentRT, 13

taskRT, 13  
to_long, 14  
to_wide (to_long), 14  
twoway, 15  
twoway.formula, 16, 16