Package ‘twoxtwo’

October 14, 2022

Type Package

Title Work with Two-by-Two Tables

Version 0.1.0

Maintainer VP Nagraj <nagraj@nagraj.net>

Description A collection of functions for data analysis with two-by-two contingency tables. The package provides tools to compute measures of effect (odds ratio, risk ratio, and risk difference), calculate impact numbers and attributable fractions, and perform hypothesis testing. Statistical analysis methods are oriented towards epidemiological investigation of relationships between exposures and outcomes.

Imports dplyr, tidyr, forcats, magrittr, rlang, knitr

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests testthat, lifecycle, rmarkdown, ggplot2, purrr

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation no

Author VP Nagraj [aut, cre]

Repository CRAN

Date/Publication 2021-07-09 09:00:02 UTC

R topics documented:

- twoxtwo-package .. 2
- af ... 2
- bound .. 4
- chisq .. 4
- display .. 5
- fisher .. 6
Description

Provides a collection of functions for data analysis with two-by-two contingency tables.

Attribute fractions

Description

In addition to measures of effect such as odds ratio, risk ratio, and risk difference, the twoxtwo framework allows for calculation of attributable fractions: attributable risk proportion in the exposed (ARP) and the population attributable risk proportion (PARP).

Estimates of the attributable fractions can be calculated with the \texttt{arp()} and \texttt{parp()} functions respectively. Each function takes an input dataset and arguments for outcome and exposure as bare, unquoted variable names. If the input has the \texttt{twoxtwo} class then the effect measures will be calculated using exposure and outcome information from that object. The functions all return a tidy tibble with the name of the measure, the point estimate, and lower/upper bounds of a confidence interval (CI) based on the SE.

Formulas used in point estimate and SE calculations are available in 'Details'.

Usage

\begin{verbatim}
arp(.data, exposure, outcome, alpha = 0.05, percent = FALSE, ...)
parp(.data, exposure, outcome, alpha = 0.05, percent = FALSE, prevalence = NULL, ...)
\end{verbatim}
Arguments

.data Either a data frame with observation-level exposure and outcome data or a twoxtwo object
exposure Name of exposure variable; ignored if input to .data is a twoxtwo object
outcome Name of outcome variable; ignored if input to .data is a twoxtwo object
alpha Significance level to be used for constructing confidence interval; default is 0.05
percent Logical as to whether or not the measure should be returned as a percentage; default is FALSE
... Additional arguments passed to twoxtwo function; ignored if input to .data is a twoxtwo object
prevalence Prevalence of exposure in the population; must be numeric between 0 and 1; only used in parp(); default is NULL and will be ignored

Details

The formulas below denote cell values as A,B,C,D. For more on twoxtwo notation see the twoxtwo documentation.

Note that formulas for standard errors are not provided below but are based on formulas described in Hildebrandt et al (2006).

Attributable Risk Proportion in the Exposed (ARP):

\[ARP = 1 - \left(\frac{1}{\frac{A}{A+B}} \cdot \frac{C}{C+D}\right) \]

Population Attributable Risk Proportion (PARP):

\[PARP = \frac{((A+C)/(A+B+C+D)) - (C/(C+D))}{((A+C)/(A+B+C+D))} \]

If "prevalence" argument is not NULL then the formula uses the value specified for prevalence of exposure (p):

\[PARP = p \cdot \frac{((A/(A+B))/(C/(C+D))) - 1}{p \cdot ((A/(A+B))/(C/(C+D))) - 1 + 1} \]

Value

A tibble with the following columns:

- **measure**: Name of the measure calculated
- **estimate**: Point estimate for the effect measure
- **ci_lower**: The lower bound of the confidence interval for the estimate
- **ci_upper**: The upper bound of the confidence interval for the estimate
- **exposure**: Name of the exposure variable followed by +/- levels (e.g. smoking::yes/no)
- **outcome**: Name of the outcome variable followed by +/- levels (e.g. heart_disease::yes/no)
References

bound

Bound a vector

Description

This unexported helper function bounds a numeric vector on a minimum and maximum value.

Usage

bound(x, min = 0.01, max = 0.99)

Arguments

x Numeric vector to be bounded
min Minimum allowed value for vector "x"; default is 0.01
max Maximum allowed value for vector "x"; default is 0.99

Value

Numeric vector of the same length as x with no values less than minimum nor greater than maximum.

chisq

Pearson's chi-squared test

Description

This function conducts a Pearson's chi-squared test for a two-way constructed using the specified exposure and outcome. Internally the function uses chisq.test. The output of the function includes the chi-squared test statistic, degrees of freedom, and the p-value from the test.

Usage

chisq(.data, exposure, outcome, correct = TRUE, ...)

chisq
display

Arguments

- **.data**: Either a data frame with observation-level exposure and outcome data or a `twoxtwo` object.
- **exposure**: Name of exposure variable; ignored if input to `.data` is a `twoxtwo` object.
- **outcome**: Name of outcome variable; ignored if input to `.data` is a `twoxtwo` object.
- **correct**: Logical as to whether or not to apply continuity correction; default is `TRUE`.
- **...**: Additional arguments passed to `twoxtwo` function; ignored if input to `.data` is a `twoxtwo` object.

Value

A tibble with the following columns:

- **test**: Name of the test conducted.
- **estimate**: Point estimate from the test (NA for `chisq()`).
- **ci_lower**: The lower bound of the confidence interval for the estimate (NA for `chisq()`).
- **ci_upper**: The upper bound of the confidence interval for the estimate (NA for `chisq()`).
- **statistic**: Test statistic from the test.
- **df**: Degrees of freedom parameter for the test statistic.
- **pvalue**: P-value from the test.
- **exposure**: Name of the exposure variable followed by +/- levels (e.g. smoking::yes/no).
- **outcome**: Name of the outcome variable followed by +/- levels (e.g. heart_disease::yes/no).

Description

This is a helper to render a `twoxtwo` object as a `kable`. The function extracts `twoxtwo` cell counts and uses exposure levels as row names and outcome levels as column names.

Usage

```r
display(.twoxtwo, ...)
```

Arguments

- **.twoxtwo**: `twoxtwo` object.
- **...**: Additional arguments passed to `kable`.

Value

A `knitr_kable` object with the `twoxtwo` cell counts, exposure levels as row names, and outcome levels as column names.
fisher
Fisher’s exact test

Description

This function conducts a Fisher’s exact test using specified exposure and outcome. Internally the function uses `fisher.test` to test independence of `twoxtwo` rows and columns. The output of the function includes the odds ratio, the lower/upper bounds for the confidence interval around the estimate, and the p-value from the test.

Usage

```r
fisher(
  .data,  
exposure,  
outcome,  
alternative = "two.sided",  
conf_level = 0.95,  
or = 1,  
...)
```

Arguments

- `.data` Either a data frame with observation-level exposure and outcome data or a `twoxtwo` object
- `exposure` Name of exposure variable; ignored if input to `.data` is a `twoxtwo` object
- `outcome` Name of outcome variable; ignored if input to `.data` is a `twoxtwo` object
- `alternative` Alternative hypothesis for test; must be one of "two.sided", "greater", or "less"; default is "two.sided"
- `conf_level` Confidence level for the confidence interval; default is 0.95
- `or` Hypothesized odds ratio; default is 1
- `...` Additional arguments passed to `twoxtwo` function; ignored if input to `.data` is a `twoxtwo` object

Value

A tibble with the following columns:

- **test**: Name of the test conducted
- **estimate**: Point estimate from the test
- **ci_lower**: The lower bound of the confidence interval for the estimate
- **ci_upper**: The upper bound of the confidence interval for the estimate
- **statistic**: Test statistic from the test (NA for `fisher()`)
format_measure

Description

This helper takes the output from a twoxtwo effect measure function and formats the point estimate and lower/upper bounds of the computed confidence interval (CI) as a string.

Usage

```
format_measure(.data, digits = 3)
```

Arguments

- `.data`: Output from a twoxtwo effect measure function (e.g. odds_ratio)
- `digits`: Number of digits; default is 3

Value

A character vector of length 1 with the effect measure formatted as point estimate (lower bound of CI, upper bound of CI). The point estimate and CI are rounded to precision specified in "digits" argument.

impact

Description

Impact numbers are designed to communicate how impactful interventions and/or exposures can be on a population. The twoxtwo framework allows for calculation of impact numbers: exposure impact number (EIN), case impact number (CIN), and the exposed cases impact number (ECIN).

The ein(), cin(), and ecin() functions provide interfaces for calculating impact number estimates. Each function takes an input dataset and arguments for outcome and exposure as bare, unquoted variable names. If the input has the twoxtwo class then the measures will be calculated using exposure and outcome information from that object. The functions all return a tidy tibble with the name of the measure, the point estimate, and lower/upper bounds of a confidence interval (CI) based on the SE.

Formulas used in point estimate and SE calculations are available in 'Details'.
Usage

ein(.data, exposure, outcome, alpha = 0.05, ...)

cin(.data, exposure, outcome, alpha = 0.05, prevalence = NULL, ...)

ecin(.data, exposure, outcome, alpha = 0.05, ...)

Arguments

.data Either a data frame with observation-level exposure and outcome data or a twoxtwo object
exposure Name of exposure variable; ignored if input to .data is a twoxtwo object
outcome Name of outcome variable; ignored if input to .data is a twoxtwo object
alpha Significance level to be used for constructing confidence interval; default is 0.05
... Additional arguments passed to twoxtwo function; ignored if input to .data is a twoxtwo object
prevalence Prevalence of exposure in the population; must be numeric between 0 and 1; only used in cin(); default is NULL and will be ignored

Details

The formulas below denote cell values as A,B,C,D. For more on twoxtwo notation see the twoxtwo documentation.

Note that formulas for standard errors are not provided below but are based on formulas described in Hildebrandt et al (2006).

Exposure Impact Number (EIN):

\[
EIN = 1/((A/(A + B)) - (C/(C + D)))
\]

Case Impact Number (CIN):

\[
CIN = 1/(((A + C)/(A + B + C + D)) - (C/(C + D)))/((A + C)/(A + B + C + D))
\]

If "prevalence" argument is not NULL then the formula uses the value specified for prevalence of exposure (p):

\[
CIN = 1/((p*(((A/(A+B))/(C/(C+D)))−1))/(p*(((A/(A+B))/(C/(C+D)))−1)+1))
\]

Exposed Cases Impact Number (ECIN):

\[
ECIN = 1/(1 - (1/((A/(A + B))/(C/(C + D))))))
\]
measures

Value
A tibble with the following columns:

- **measure**: Name of the measure calculated
- **estimate**: Point estimate for the impact number
- **ci_lower**: The lower bound of the confidence interval for the estimate
- **ci_upper**: The upper bound of the confidence interval for the estimate
- **exposure**: Name of the exposure variable followed by +/- levels (e.g. smoking::yes/no)
- **outcome**: Name of the outcome variable followed by +/- levels (e.g. heart_disease::yes/no)

References

measures Measures of effect

Description
The twoxtwo framework allows for estimation of the magnitude of association between an exposure and outcome. Measures of effect that can be calculated include odds ratio, risk ratio, and risk difference. Each measure can be calculated as a point estimate as well as the standard error (SE) around that value. It is critical to note that the interpretation of measures of effect depends on the study design and research question being investigated.

The odds_ratio(), risk_ratio(), and risk_diff() functions provide a standard interface for calculating measures of effect. Each function takes an input dataset and arguments for outcome and exposure as bare, unquoted variable names. If the input has the twoxtwo class then the effect measures will be calculated using exposure and outcome information from that object. The functions all return a tidy tibble with the name of the measure, the point estimate, and lower/upper bounds of a confidence interval (CI) based on the SE.

Formulas used in point estimate and SE calculations are available in 'Details'.

Usage
odds_ratio(.data, exposure, outcome, alpha = 0.05, ...)
risk_ratio(.data, exposure, outcome, alpha = 0.05, ...)
risk_diff(.data, exposure, outcome, alpha = 0.05, ...)
Arguments

.data Either a data frame with observation-level exposure and outcome data or a twoxtwo object
exposure Name of exposure variable; ignored if input to .data is a twoxtwo object
outcome Name of outcome variable; ignored if input to .data is a twoxtwo object
alpha Significance level to be used for constructing confidence interval; default is 0.05
... Additional arguments passed to twoxtwo function; ignored if input to .data is a twoxtwo object

Details

The formulas below denote cell values as A,B,C,D. For more on twoxtwo notation see the twoxtwo documentation.

Odds Ratio:

$$OR = (A \times D) / (B \times C)$$

$$seOR = \sqrt{1/A + 1/B + 1/C + 1/D}$$

Risk Ratio:

$$RR = (A/(A + B)) / (C/(C + D))$$

$$seRR = \sqrt{((1-(A/(A+B))) / ((A+B)*(A/(A+B)))) + ((1-(C/(C+D))) / ((C+D)*(C/(C+D))))}$$

Risk Difference:

$$RD = (A/(A + B)) - (C/(C + D))$$

$$seRD = \sqrt{((A \times B) / ((A + B)^3)) + ((C \times D) / ((C + D)^3))}$$

Value

A tibble with the following columns:

- **measure**: Name of the measure calculated
- **estimate**: Point estimate for the effect measure
- **ci_lower**: The lower bound of the confidence interval for the estimate
- **ci_upper**: The upper bound of the confidence interval for the estimate
- **exposure**: Name of the exposure variable followed by +/- levels (e.g. smoking::yes/no)
- **outcome**: Name of the outcome variable followed by +/- levels (e.g. heart_disease::yes/no)
References

print.twoxtwo

Print twoxtwo object

Description

The print.twoxtwo() function provides an S3 method for printing objects created with twoxtwo. The printed output formats the contents of the twoxtwo table as a kable.

Usage

```r
## S3 method for class 'twoxtwo'
print(x, ...)
```

Arguments

- `x` : twoxtwo object
- `...` : Additional arguments passed to kable

Value

A printed knitr_kable object with the twoxtwo cell counts, exposure levels as row names, and outcome levels as column names.
summary.twoxtwo

Summarize twoxtwo object

Description

The `summary.twoxtwo()` function provides an S3 method for summarizing objects created with `twoxtwo`. The summary function prints the `twoxtwo` via `print.twoxtwo` along with characteristics of the contingency table such as the number of missing observations and exposure/outcome variables and levels. The summary will also compute effect measures using `odds_ratio`, `risk_ratio`, and `risk_diff` and print the estimates and confidence interval for each.

Usage

```r
## S3 method for class 'twoxtwo'
summary(object, alpha = 0.05, ...)  
```

Arguments

- `object` (twoxtwo object)
- `alpha` (Significance level to be used for constructing confidence interval; default is 0.05)
- `...` (Additional arguments passed to `print.twoxtwo`)

Value

Printed summary information including the outcome and exposure variables and levels, as well as the number of missing observations, the `twoxtwo` contingency table, and formatted effect measures (see "Description"). In addition to printed output, the function invisibly returns a named list with computed effect measures (i.e. the tibble outputs from `odds_ratio`, `risk_ratio`, and `risk_diff` respectively).

titanic

Expanded Titanic dataset

Description

This data is based on the `Titanic` dataset. Unlike the version in the `datasets` package, the data here is expanded to the observation-level rather than cross-tabulated.

Usage

```r
titanic  
```
twoxtwo

Format
A data frame with 2201 rows and 4 variables:

- **Class**: Passenger class ("1st", "2nd", "3rd") or crew status ("Crew")
- **Crew**: Logical as to whether or not a crew member (TRUE) or not (FALSE)
- **Sex**: Sex of individual ("Male" or "Female")
- **Age**: Categorized age ("Adult" or "Child")
- **Survived**: Whether or not individual survived ("Yes" or "No")

Examples

```r
head(titanic)
```

Description
The `twoxtwo` constructor function takes an input data frame and summarizes counts of the specified exposure and outcome variables as a two-by-two contingency table. This function is used internally in other functions, but can be used on its own as well. The returned object is given a `twoxtwo` class which allows dispatch of the `twoxtwo` S3 methods (see `print.twoxtwo` and `summary.twoxtwo`).

For more information on how the two-by-two table is created see ’Details’.

Usage

```r
twoxtwo(.data, exposure, outcome, levels = NULL, na.rm = TRUE, retain = TRUE)
```

Arguments

- `.data`: Data frame with observation-level exposure and outcome data
- `exposure`: Name of exposure variable
- `outcome`: Name of outcome variable
- `levels`: Levels for the exposure and outcome as a named list; if supplied, then the contingency table will be oriented with respect to the sequence of levels specified; default is NULL
- `na.rm`: Logical as to whether or not to remove NA values when constructing contingency table; default is TRUE
- `retain`: Logical as to whether or not the original data passed to the ".data" argument should be retained; if FALSE the `summary.twoxtwo()` function will not compute effect measures; default is TRUE
Details

The two-by-two table covers four conditions that can be specified with A,B,C,D notation:

- **A**: Exposure "+" and Outcome "+
- **B**: Exposure "+" and Outcome "-
- **C**: Exposure "-" and Outcome "+
- **D**: Exposure "-" and Outcome "-

twoxtwo() requires that the exposure and outcome variables are binary. The columns can be character, numeric, or factor but must have only two levels. Each column will internally be coerced to a factor with levels reversed. The reversal results in exposures with TRUE and FALSE (or 1 and 0) oriented in the two-by-two table with the TRUE as "+" (first row) and FALSE as "-" (second row). Likewise, TRUE/FALSE outcomes will be oriented with TRUE as "+" (first column) and FALSE as "-" (second column). Note that the user can also define the orientation of the table using the "levels" argument.

Value

A named list with the twoxtwo class. Elements include:

- **tbl**: The summarized two-by-two contingency table as a tibble.
- **cells**: Named list with the counts in each of the cells in the two-by-two contingency table (i.e. A,B,C,D)
- **exposure**: Named list of exposure information (name of variable and levels)
- **outcome**: Named list of outcome information (name of variable and levels)
- **n_missing**: The number of missing values (in either exposure or outcome variable) removed prior to computing counts for the two-by-two table
- **data**: The original data frame passed to the ".data" argument. If retain=FALSE, then this element will be NULL.
Index

* datasets
 titanic, 12
af, 2
arp (af), 2
bound, 4
chisq, 4
chisq.test, 4
cin (impact), 7
display, 5
ecin (impact), 7
ein (impact), 7
fisher, 6
fisher.test, 6
format_measure, 7
impact, 7
kable, 5, 11
measures, 2, 9
odds_ratio, 7, 12
odds_ratio (measures), 9
parp (af), 2
print.twotwo, 11, 12, 13
risk_diff, 12
risk_diff (measures), 9
risk_ratio, 12
risk_ratio (measures), 9
summary.twotwo, 12, 13
Titanic, 12
titanic, 12
twotwo, 2, 3, 5–12, 13
twotwo-package, 2