Package ‘ungroup’

June 28, 2021

Type Package

Title Penalized Composite Link Model for Efficient Estimation of Smooth Distributions from Coarsely Binned Data

Version 1.4.2

Description Versatile method for ungrouping histograms (binned count data) assuming that counts are Poisson distributed and that the underlying sequence on a fine grid to be estimated is smooth. The method is based on the composite link model and estimation is achieved by maximizing a penalized likelihood. Smooth detailed sequences of counts and rates are so estimated from the binned counts. Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis; comparisons can be hindered when different grouping approaches are used in different histograms; and the last interval is often wide and open-ended and, thus, covers a lot of information in the tail area. Age-at-death distributions grouped in age classes and abridged life tables are examples of binned data. Because of modest assumptions, the approach is suitable for many demographic and epidemiological applications. For a detailed description of the method and applications see Rizzi et al. (2015) <doi:10.1093/aje/kwv020>.

License MIT + file LICENSE

LazyData TRUE

Depends R (>= 3.4.0)

Imports pbapply (>= 1.3), Rcpp (>= 0.12.0), Rdpack (>= 0.8), Matrix

LinkingTo Rcpp, RcppEigen

Suggests MortalityLaws (>= 1.5.0), knitr (>= 1.20), rmarkdown (>= 1.10), testthat (>= 2.0.0)

RdMacros Rdpack

URL https://github.com/mpascariu/ungroup

BugReports https://github.com/mpascariu/ungroup/issues

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes
control.pclm

Description

Auxiliary for Controlling pclm Fitting

Usage

```r
control.pclm(lambda = NA,
  kr = 2,
  deg = 3,
  int.lambda = c(0.1, 1e+5),
  diff = 2,
  opt.method = c("BIC", "AIC"),
  max.iter = 1e+3,
  tol = 1e-3)
```
control.pclm2D

Arguments

- **lambda**: Smoothing parameter to be used in pclm estimation. If lambda = NA an algorithm will find the optimal values.
- **kr**: Knot ratio. Number of internal intervals used for defining 1 knot in B-spline basis construction. See MortSmooth_bbase.
- **deg**: Degree of the splines needed to create equally-spaced B-splines basis over an abscissa of data.
- **int.lambda**: If lambda is optimized an interval to be searched needs to be specified. Format: vector containing the end-points.
- **diff**: An integer indicating the order of differences of the components of PCLM coefficients. Default value: 2.
- **opt.method**: Selection criterion of the model. Possible values are "AIC" and "BIC". Default: "BIC".
- **max.iter**: Maximal number of iterations used in fitting procedure.
- **tol**: Relative tolerance in PCLM fitting procedure. Default: 0.1% i.e. the estimated aggregate bins should be in the 0.1% error margin.

Value

A list with exactly eight control parameters.

See Also

- pclm

Examples

control.pclm()
Arguments

lambda
Smoothing parameter to be used in pclm estimation. If lambda = NA an algorithm will find the optimal values.

kr
Knot ratio. Number of internal intervals used for defining 1 knot in B-spline basis construction. See MortSmooth_bbase.

deg
Degree of the splines needed to create equally-spaced B-splines basis over an abscissa of data.

int.lambda
If lambda is optimized an interval to be searched needs to be specified. Format: vector containing the end-points.

diff
An integer indicating the order of differences of the components of PCLM coefficients. Default value: 2.

opt.method
Selection criterion of the model. Possible values are "AIC" and "BIC". Default: "BIC".

max.iter
Maximal number of iterations used in fitting procedure.

tol
Relative tolerance in PCLM fitting procedure. Default: 0.1% i.e. the estimated aggregate bins should be in the 0.1% error margin.

Value

A list with exactly eight control parameters.

See Also

pclm2D

Examples

control.pclm2D()

pclm

Univariate Penalized Composite Link Model (PCLM)

Description

Fit univariate penalized composite link model (PCLM) to ungroup binned count data, e.g. age-at-death distributions grouped in age classes.

Usage

```
pclm(
x,
y,
nlast,
offset = NULL,
out.step = 1,
```
Arguments

\textbf{x} \hspace{0.5cm} \text{Vector containing the starting values of the input intervals/bins. For example: if we have 3 bins \([0,5],[5,10)\) and \([10,15)\), \textbf{x} will be defined by the vector: \(c(0,5,10)\).

\textbf{y} \hspace{0.5cm} \text{Vector with counts to be ungrouped. It must have the same dimension as \textbf{x}.}

\textbf{nlast} \hspace{0.5cm} \text{Length of the last interval. In the example above \textbf{nlast} would be 5.}

\textbf{offset} \hspace{0.5cm} \text{Optional offset term to calculate smooth mortality rates. A vector of the same length as \textbf{x} and \textbf{y}. See Rizzi et al. (2015) for further details.}

\textbf{out.step} \hspace{0.5cm} \text{Length of estimated intervals in output. Values between 0.1 and 1 are accepted. Default: 1.}

\textbf{ci.level} \hspace{0.5cm} \text{Level of significance for computing confidence intervals. Default: 95.}

\textbf{verbose} \hspace{0.5cm} \text{Logical value. Indicates whether a progress bar should be shown or not. Default: FALSE.}

\textbf{control} \hspace{0.5cm} \text{List with additional parameters:}

- \textbf{lambda} – Smoothing parameter to be used in pclm estimation. If \textbf{lambda} = NA an algorithm will find the optimal values.
- \textbf{kr} – Knot ratio. Number of internal intervals used for defining 1 knot in B-spline basis construction. See \texttt{MortSmooth_bbase}.
- \textbf{deg} – Degree of the splines needed to create equally-spaced B-splines basis over an abscissa of data.
- \textbf{int.lambda} – If \textbf{lambda} is optimized an interval to be searched needs to be specified. Format: vector containing the end-points.
- \textbf{diff} – An integer indicating the order of differences of the components of PCLM coefficients.
- \textbf{opt.method} – Selection criterion of the model. Possible values are "AIC" and "BIC".
- \textbf{max.iter} – Maximal number of iterations used in fitting procedure.
- \textbf{tol} – Relative tolerance in PCLM fitting procedure.

Details

The PCLM method is based on the composite link model, which extends standard generalized linear models. It implements the idea that the observed counts, interpreted as realizations from Poisson distributions, are indirect observations of a finer (ungrouped) but latent sequence. This latent sequence represents the distribution of expected means on a fine resolution and has to be estimated from the aggregated data. Estimates are obtained by maximizing a penalized likelihood. This maximization is performed efficiently by a version of the iteratively reweighted least-squares algorithm. Optimal values of the smoothing parameter are chosen by minimizing Bayesian or Akaike's Information Criterion.
Value

The output is a list with the following components:

- **input**: A list with arguments provided in input. Saved for convenience.
- **fitted**: The fitted values of the PCLM model.
- **ci**: Confidence intervals around fitted values.
- **goodness.of.fit**: A list containing goodness of fit measures: standard errors, AIC and BIC.
- **smoothPar**: Estimated smoothing parameters: lambda, kr and deg.
- **bins.definition**: Additional values to identify the bins limits and location in input and output objects.
- **deep**: A list of objects created in the fitting process. Useful in diagnosis of possible issues.
- **call**: An unevaluated function call, that is, an unevaluated expression which consists of the named function applied to the given arguments.

References

See Also

- `control.pclm`
- `plot.pclm`

Examples

```r
# Data
x <- c(0, 1, seq(5, 85, by = 5))
y <- c(294, 66, 32, 44, 170, 284, 287, 293, 361, 600, 998,
      1572, 2529, 4637, 6161, 7369, 10481, 15293, 39016)
offset <- c(114, 440, 509, 492, 628, 618, 576, 580, 634, 657,
          631, 584, 573, 619, 530, 384, 303, 245, 249) * 1000
nlast <- 26 # the size of the last interval

# Example 1 ----------------------
M1 <- pclm(x, y, nlast)
ls(M1)
summary(M1)
fitted(M1)
plot(M1)

# Example 2 ----------------------
# ungroup even in smaller intervals
M2 <- pclm(x, y, nlast, out.step = 0.5)
head(fitted(M1))
plot(M1, type = "s")
```
Note, in example 1 we are estimating intervals of length 1. In example 2
we are estimating intervals of length 0.5 using the same aggregate data.

Example 3 ----------------------
Do not optimise smoothing parameters; choose your own. Faster.
M3 <- pclm(x, y, nlast, out.step = 0.5,
 control = list(lambda = 100, kr = 10, deg = 10))
plot(M3)
summary(M2)
summary(M3) # not the smallest BIC here, but sometimes is not important.

Example 4 -----------------------
Grouped x & grouped offset (estimate death rates)
M4 <- pclm(x, y, nlast, offset)
plot(M4, type = "s")

Example 5 -----------------------
Grouped x & ungrouped offset (estimate death rates)
ungrouped.Ex <- pclm(x, y = offset, nlast, offset = NULL)$fitted # ungrouped offset data
M5 <- pclm(x, y, nlast, offset = ungrouped.Ex)

pclm2D

Two-Dimensional Penalized Composite Link Model (PCLM-2D)

Description

Fit two-dimensional penalized composite link model (PCLM-2D), e.g. simultaneous ungrouping of
age-at-death distributions grouped in age classes for adjacent years. The PCLM can be extended
to a two-dimensional regression problem. This is particularly suitable for mortality analysis when
mortality surfaces are to be estimated to capture both age-specific trajectories of coarsely grouped
distributions and time trends (Rizzi et al. 2019).

Usage

```r
pclm2D(
  x,
  y,
  nlast,
  offset = NULL,
  out.step = 1,
  ci.level = 95,
  verbose = TRUE,
  control = list()
)
```
Arguments

x Vector containing the starting values of the input intervals/bins. For example: if we have 3 bins \([0,5), [5,10)\) and \([10,15)\), \(x\) will be defined by the vector: \(c(0,5,10)\).

y data.frame with counts to be ungrouped. The number of rows should be equal with the length of \(x\).

nlast Length of the last interval. In the example above \(nlast\) would be 5.

offset Optional offset term to calculate smooth mortality rates. A vector of the same length as \(x\) and \(y\). See Rizzi et al. (2015) for further details.

out.step Length of estimated intervals in output. Values between 0.1 and 1 are accepted. Default: 1.

ci.level Level of significance for computing confidence intervals. Default: 95.

verbose Logical value. Indicates whether a progress bar should be shown or not. Default: TRUE.

control List with additional parameters:
- \(\lambda\) – Smoothing parameter to be used in pclm estimation. If \(\lambda = NA\) an algorithm will find the optimal values.
- \(kr\) – Knot ratio. Number of internal intervals used for defining 1 knot in B-spline basis construction. See \texttt{MortSmooth_bbase}.
- \(deg\) – Degree of the splines needed to create equally-spaced B-splines basis over an abscissa of data.
- \(int.\lambda\) – If \(\lambda\) is optimized an interval to be searched needs to be specified. Format: vector containing the end-points.
- \(\text{diff}\) – An integer indicating the order of differences of the components of PCLM coefficients.
- \(\text{opt.method}\) – Selection criterion of the model. Possible values are "AIC" and "BIC".
- \(\text{max.iter}\) – Maximal number of iterations used in fitting procedure.
- \(\text{tol}\) – Relative tolerance in PCLM fitting procedure.

Value

The output is a list with the following components:

input A list with arguments provided in input. Saved for convenience.

fitted The fitted values of the PCLM model.

ci Confidence intervals around fitted values.

goodness.of.fit A list containing goodness of fit measures: standard errors, AIC and BIC.

smoothPar Estimated smoothing parameters: \(\lambda, kr\) and \(deg\).

bins.definition Additional values to identify the bins limits and location in input and output objects.
deep A list of objects created in the fitting process. Useful in diagnosis of possible issues.
call An unevaluated function call, that is, an unevaluated expression which consists of the named function applied to the given arguments.

References

See Also

control.pclm2D plot.pclm2D

Examples

Input data
Dx <- ungroup.data$Dx
Ex <- ungroup.data$Ex

Aggregate data to be ungrouped in the examples below
Select a 10y data frame
x <- c(0, 1, seq(5, 85, by = 5))
nlast <- 26
n <- c(diff(x), nlast)
group <- rep(x, n)
y <- aggregate(Dx, by = list(group), FUN = "sum")[, 2:10]
offset <- aggregate(Ex, by = list(group), FUN = "sum")[, 2:10]

Example 1 ----------------------
Fit model and ungroup data using PCLM-2D
P1 <- pclm2D(x, y, nlast)
summary(P1)

Plot fitted values
plot(P1)

Plot input data
plot(P1, "observed")

NOTE: pclm2D does not search for optimal smoothing parameters by default
(like pclm does) because it is more time consuming. If optimization is
required set lambda = c(NA, NA):

P1 <- pclm2D(x, y, nlast, control = list(lambda = c(NA, NA)))
Example 2 ----------------------
Ungroup and build a mortality surface
P2 <- pclm2D(x, y, nlast, offset)
summary(P2)

plot(P2, type = "observed")
plot(P2, type = "fitted")
plot(P2, type = "fitted", colors = c("blue", "red"))

plot.pclm

Generic Plot for pclm Class

Description

Generic Plot for pclm Class

Usage

```r
## S3 method for class 'pclm'
plot(x, xlab, ylab, ylim, type, lwd, col, legend, legend.position, ...)
```

Arguments

- `x` An object of class `pclm`
- `xlab` a label for the x axis, defaults to a description of x.
- `ylab` a label for the y axis, defaults to a description of y.
- `ylim` the y limits of the plot.
- `type` 1-character string giving the type of plot desired. The following values are possible, for details, see plot: "p" for points, "l" for lines, "b" for both points and lines, "c" for empty points joined by lines, "o" for overplotted points and lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
- `lwd` Line width, a positive number, defaulting to 2.
- `col` Three colours to be used in the plot for observed values, fitted values and confidence intervals.
- `legend` a character or `expression` vector of length ≥ 1 to appear in the legend. Other objects will be coerced by `as.graphicsAnnot`.
- `legend.position` Legend position, or the x and y co-ordinates to be used to position the legend.
- `...` other graphical parameters (see `par` for more details).

See Also

- `pclm`
Examples

See complete examples in pclm help page

plot.pclm2D

Generic Plot for pclm2D Class

Description

The generic plot for a pclm2D object is constructed using persp method.

Usage

S3 method for class 'pclm2D'
plot(
 x,
 type = c("fitted", "observed"),
 colors = c("#b6e3db", "#e5d9c2", "#b5ba61", "#725a28"),
 nbcol = 25,
 xlab = "x",
 ylab = "y",
 zlab = "values",
 phi = 30,
 theta = 210,
 border = "grey50",
 ticktype = "simple",
 ...
)

Arguments

x an object of class pclm2D.

type chart type. Defines which data are plotted. "fitted" values or "observed" input data. Default: "fitted".

colors colors to interpolate; must be a valid argument to col2rgb().

nbcol dimension of the color palette. Number of colors. Default: 25.

xlab titles for the axes. N.B. These must be character strings; expressions are not accepted. Numbers will be coerced to character strings.

ylab titles for the axes. N.B. These must be character strings; expressions are not accepted. Numbers will be coerced to character strings.

zlab titles for the axes. N.B. These must be character strings; expressions are not accepted. Numbers will be coerced to character strings.

phi angles defining the viewing direction. theta gives the azimuthal direction and phi the colatitude.

theta angles defining the viewing direction. theta gives the azimuthal direction and phi the colatitude.
residuals.pclm

border

the color of the line drawn around the surface facets. The default, NULL, corresponds to par("fg"). A value of NA will disable the drawing of borders: this is sometimes useful when the surface is shaded.

ticktype

character: "simple" draws just an arrow parallel to the axis to indicate direction of increase; "detailed" draws normal ticks as per 2D plots.

... any other argument to be passed to persp.

See Also

pclm2D

Examples

See complete examples in pclm2D help page

residuals.pclm Extract PCLM Deviance Residuals

Description

Extract PCLM Deviance Residuals

Usage

S3 method for class 'pclm'
residuals(object, ...)

Arguments

object an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the object object.

Examples

x <- c(0, 1, seq(5, 85, by = 5))
y <- c(294, 66, 32, 44, 170, 284, 287, 293, 361, 600, 998,
 1572, 2529, 4637, 6161, 7369, 10481, 15293, 39016)
M1 <- pclm(x, y, nlast = 26)
residuals(M1)
Description

Extract PCLM-2D Deviance Residuals

Usage

```r
## S3 method for class 'pclm2D'
residuals(object, ...)  
```

Arguments

- `object`: an object for which the extraction of model residuals is meaningful.
- `...`: other arguments.

Value

Residuals extracted from the object `object`.

Examples

```r
Dx <- ungroup.data$Dx
Ex <- ungroup.data$Ex

# Aggregate data to ungroup it in the example below
x <- c(0, 1, seq(5, 85, by = 5))
nlast <- 26
n <- c(diff(x), nlast)
group <- rep(x, n)
y <- aggregate(Dx, by = list(group), FUN = "sum")[, -1]

# Example
P1 <- pclm2D(x, y, nlast)

residuals(P1)
```
Description

Versatile method for ungrouping histograms (binned count data) assuming that counts are Poisson distributed and that the underlying sequence on a fine grid to be estimated is smooth. The method is based on the composite link model and estimation is achieved by maximizing a penalized likelihood. Smooth detailed sequences of counts and rates are so estimated from the binned counts. Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis; comparisons can be hindered when different grouping approaches are used in different histograms; and the last interval is often wide and open-ended and, thus, covers a lot of information in the tail area. Age-at-death distributions grouped in age classes and abridged life tables are examples of binned data. Because of modest assumptions, the approach is suitable for many demographic and epidemiological applications. For a detailed description of the method and applications see Rizzi et al. (2015) <doi:10.1093/aje/kwv020>.

Details

To learn more about the package, start with the vignettes: `browseVignettes(package = "ungroup")`

Author(s)

Maintainer: Marius D. Pascariu <rpascariu@outlook.com> (ORCID)

Authors:

- Silvia Rizzi <srizzi@health.sdu.dk>
- Jonas Schoeley (ORCID)
- Maciej J. Danko <Danko@demogr.mpg.de> (ORCID)

References

See Also

Useful links:

- https://github.com/mpascariu/ungroup
- Report bugs at https://github.com/mpascariu/ungroup/issues

ungroup.data

Test Dataset in the Package

Description

Dataset containing death counts (Dx) and exposures (Ex) by age for a certain population between 1980 and 2014. The data-set is provided for testing purposes only and might be altered and outdated. Download actual demographic data free of charge from Human Mortality Database (2018). Once a username and a password is created on the website the MortalityLaws R package can be used to extract data in R format.

Usage

ungroup.data

Format

An object of class ungroup.data of length 2.
Source

Human Mortality Database

References

See Also

ReadHMD
Index

* datasets
 ungroup.data, 15

as.graphicsAnnot, 10

col2rgb, 11
control.pclm, 2, 6
control.pclm2D, 3, 9

eexpression, 10

MortSmooth_bbase, 3–5, 8

par, 10
pclm, 3, 4, 10
pclm2D, 4, 7, 11, 12
persp, 11, 12
plot.pclm, 6, 10
plot.pclm2D, 9, 11

ReadHMD, 16
residuals.pclm, 12
residuals.pclm2D, 13

ungroup, 14
ungroup.data, 15