Package ‘unifed’

January 30, 2022

Title The Unified Distribution
Version 1.1.6
Date 2022-01-30

Description Probability functions, family for glm() and Stan code for working with the unified distribution (Quijano Xacur, 2019; <doi:10.1186/s40488-019-0102-6>).

Depends R (>= 3.1), methods
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2

Suggests knitr, rmarkdown, testthat, rstan, data.table
VignetteBuilder knitr

Author Oscar Alberto Quijano Xacur [aut,cre]
Maintainer Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>

NeedsCompilation yes
Repository CRAN

Date/Publication 2022-01-30 20:00:02 UTC

R topics documented:

 car.insurance .. 2
 dirwin.hall ... 3
 dunifed .. 4
 summary_unifed_glm ... 5
 unifed .. 6
 unifed.deviance .. 7
 unifed.kappa .. 8
 unifed.mle ... 9
 unifed.stan ... 10
 unifed.stan.path ... 11
 unifed.varf ... 11
Description

This data set is based on one-year vehicle insurance policies taken out in 2004 or 2005. There are 67856 policies, of which 4624 (6.8%) had at least one claim.

Usage

car.insurance

Format

A data frame with 67,856 rows and 11 columns:

- **veh_value**: vehicle value, in $10,000s
- **exposure**: Values between 0 and 1
- **clm**: occurrence of claim (0 = no, 1 = yes)
- **numclaims**: number of claims
- **claimcst0**: claim amount (0 if no claim)
- **veh_body**: vehicle body, coded as
 - BUS
 - CONVT: convertible
 - COUPE
 - HBACK: hatchback
 - HDTOP: hardtop
 - MCARA: motorized caravan
 - MIBUS: minibus
 - PANVN: panel van
 - RDSTR: roadster
 - SEDAN
 - STNWG: station wagon
 - TRUCK
 - UTE: utility
- **veh_age**: age of vehicle: 1 (youngest), 2, 3, 4
- **gender**: gender of driver: M, F
- **area**: driver’s area of residence: A, B, C, D, E, F
- **agecat**: driver’s age category: 1 (youngest), 2, 3, 4, 5, 6
Description
Irwin-Hall density

Usage
```r
dirwin.hall(x, n, log = FALSE)
```

Arguments
- `x`: A number between 0 and `n`.
- `n`: Number of uniform distributions in the unit interval to sum.
- `log`: If it evaluates to `TRUE` it returns the log of the density instead of the density.

Details
Gives the density of the Irwin-Hall distribution. It is the density of the sum of `n` uniform distributions on the interval (0,1).

\[
h(y; n) = \frac{1}{(n-1)!} \sum_{k=0}^{\lfloor y \rfloor} (-1)^k \binom{n}{k} (y-k)^{n-1}
\]

where \(x \in [0, 1] \) and \(n \) is a positive integer.

This function is not numerically stable. The examples have some cases of this.

Examples
```r
dirwin.hall(2, 5)
# Numerically unstable example
# Run the following one after the other
# See how it goes from positive to negative (which means overflowing )
dirwin.hall(35, 50)
```
The unified distribution

Description

Density, distribution function, quantile function and random generation for the unified distribution.

Usage

dunified(x, theta)
unifed.lcdf(x, theta)
punifed(q, theta)
qunifed(p, theta)
runifed(n, theta)

Arguments

x A vector of quantiles. They must be numbers between 0 and 1.
theta The value of the canonical parameter. It must be of length one.
q A vector of quantiles.
p A vector of probabilities.
n number of observations

Value

dunified gives the density function.
unifed.lcdf returns the log of the cumulative distribution function of the unified.
punifed gives the distribution function.
qunifed gives the quantile function.
runifed generates random observations.

References

summary_unifed_glm

Examples

dunifed(c(0.1,0.3,0.7), 10)

x <- c(0.3,0.6,0.9)
unifed.lcdf(x,5)

x <- c(0.1,0.4,0.7,1)
punified(x,-5)

p <- 1:9/10
qunifed(p,5)

runifed(20,-3.3)

summary_unifed_glm

Summarizing Generalized Linear Model Fits

Description

Wrapper function for summary.glm.

Usage

summary_unifed_glm(object, ...)

Arguments

object an object of class "glm".
... Other arguments for stats::summary.glm.

This wrapper function was created in order to automatically set to 1 the disper-
sion parameter of a fitted unified GLM. When the package is loaded the summary
method of the glm class is rewritten using this function.
unifed

Family object for the unifed distribution

Description

Family object for the unifed distribution

Usage

```r
unifed(link = "logit", ...)
quasiunifed(link = "logit", ...)
unifed.canonical.link()
```

Arguments

- `link`: a specification for the model link function. This can be a name/expression, a literal character string, a length-one character vector or an object of class "link-glm" (such as generated by `make.link`) provided it is not specified via one of the accepted names. The unifed family accepts the links (as names) 'canonical', 'logit', 'probit', 'cloglog' and 'cauchit'.

- `...`: Optional `tol` and `maxit` arguments for `unifed.unit.deviance`.

Details

The link 'canonical' is not part of the standard names accepted by `make.link()` from the stats package. It corresponds to the canonical link function for the unifed distribution, which is the inverse of the derivative of its cumulant generator. There is no explicit formula for it. The function `unifed.kappa.prime.inverse()` implements it using the Newton-Raphson method.

This function is used inside of `unifed()` when the link parameter is set to "canonical". It returns the link function, inverse link function, the derivative `dmu/deta` and a function for domain checking for the unifed distribution canonical link.

Value

`unifed` returns a family object for using the unifed distribution with the `glm` function.

The `quasiunifed` family differs from the `unifed` only in that the dispersion parameter is not fixed to one.

An object of class "link-glm".

References

See Also
Gamma `unifed.kappa.prime.inverse`
`make.link`

unifed.deviance
Deviance of the unifed distribution

Description
Deviance of the unifed distribution

Usage

```r
unifed.deviance(y.v, mu.v, wt = 1, ...)
unifed.unit.deviance(y, mu, tol = 1e-07, maxit = 50)
```

Arguments
- `y.v`
 A numeric vector with values between 0 and 1
- `mu.v`
 A numeric vector with values between 0 and 1
- `wt`
 (default value: 1) The weight vector. It contains the weight of each observation. It must contain positive integers only.
- `...`
 Additional parameters of `unifed.kappa.prime.inverse.one`
- `y`
 A vector with values between 0 and 1.
- `mu`
 A vector with values between 0 and 1.
- `tol`
 Tolerance level for the Newton-Raphson algorithm for computing the inverse of the derivative of the cumulant generator of the family.
- `maxit`
 Maximum number of iterations for the Newton-Raphson algorithm for computing the inverse of the derivative of the cumulant generator of the family.

Details

`unifed.unit.deviance` uses the following expression for the deviance of regular exponential dispersion families

\[
d(y, \mu) = 2 \left[y \left(\kappa^{-1}(y) - \kappa^{-1}(\mu) \right) - \kappa(\kappa^{-1}(y)) - \kappa(\kappa^{-1}(\mu)) \right]
\]

\(\kappa^{-1}\) is computed with the function `unifed.kappa.prime.inverse` from this package.
Value
unifed.deviance returns the deviance of a GLM with a unifed response distribution. This is
\[D(y, \mu) = \sum_{i=1}^{m} w_i d(y_i, \mu_i) \]
Where \(d(y_i, \mu_i) \) is the unit deviance of the unifed distribution between the i-th entry of \(y \) and \(\mu \). \(w_i \) is the i-th entry of the weight vector. unifed.unit.deviance is used to get the value of \(d \).

unifed.unit.deviance

unifed.kappa
Cumulant generator of the unifed distribution

Description
Cumulant generator of the unifed distribution

Usage
unifed.kappa(theta)
unifed.kappa.prime(theta)
unifed.kappa.double.prime(theta)
unifed.kappa.prime.inverse(mu, ...)
unifed.kappa.prime.inverse.one(mu, tol = 1e-07, maxit = 1e+07)

Arguments
theta A numeric vector.
mu A vector of numbers between 0 and 1
... Other parameters of unifed.kappa.prime.inverse.one
tol Tolerance level. The algorithm stops if the proportional difference between the new and old value of an iteration is less or equal than this number.
maxit Maximum number of iterations of the algorithm to look for convergence.

Details
The cumulant generator of the unifed distribution is defined as
\[\kappa(\theta) = \begin{cases} \log \left(e^{\theta} - 1 \right) & \text{if } \theta \neq 0 \\ 0 & \text{if } \theta = 0 \end{cases} \]
unifed.kappa.prime.inverse.one uses the Newthon-Raphson method for finding the inverse of unifed.kappa.prime for a single value.
Value

unifed.kappa returns a vector that contains the cumulant generator of the unifed distribution applied to each element of theta.

unifed.kappa.prime returns a vector that contains the derivative of the cumulant generator of the unifed distribution for each element of theta.

unifed.kappa.double.prime returns a vector that contains the second derivative of the cumulant generator of the unifed distribution for each element of theta.

unifed.kappa.prime.inverse returns a vector with unifed.kappa.prime.inverse.one evaluated at every entry of mu.

unifed.kappa.prime.inverse.one if the tolerance level is reached within maxit iterations, the function returns the value of the last iteration. Otherwise it returns NA.

References

Examples

```r
unifed.kappa(1)
unifed.kappa(-5:5)

unifed.kappa.prime(4.5)

unifed.kappa.double.prime(0)

unifed.kappa.prime.inverse(0.5)
unifed.kappa.prime.inverse(c(0.1,0.7,0.9))
```

| unifed.mle | Maximum Likelihood Estimate for the unifed distribution |

Description

Maximum Likelihood Estimate for the unifed distribution

Usage

unifed.mle(x)
Arguments

x
A numeric vector with values in the interval [0,1].
Computes the maximum likelihood estimator of the canonical parameter of the unifed distribution. It is assumed that the elements of x come from independent and identically distributed unifed random variables.

Examples

```r
a.unifed.sample <- runifed(1000,10)
theta.mle <- unifed.mle(a.unifed.sample)
```

unifed.stan

Stan functions for working with the unifed distribution

Description

Stan functions for working with the unifed distribution

Details

A script with stan functions of the unifed is provided. The script can be included in stan code. The full path to the script can be obtained with the function `unifed.stan.path`. The following list are the names of functions that take one real value:

- `real unifed_kappa(real theta)` Computes the cumulant generator of the unifed distribution.
- `real unifed_kappa_prime(real theta)` Computes the first derivative of the cumulant generator.
- `real unifed_kappa_double_prime(real theta)` Computes the second derivative of the cumulant generator.
- `real unifed_lpdf(real x, real theta)` Computes the logarithm of the probability density function of a unifed distribution. theta is the value of the canonical parameter of the unifed and x if the value where the density is evaluated.
- `real unifed_quantile(real p, real theta)` Returns the p-th quantile of a unifed distribution with canonical parameter theta.
- `real unifed_rng(real theta)` Returns a simulated value of a unifed distribution with canonical parameter theta.
- `real unifed_lcdf(real x, real theta)` Computes the logarithm of the cumulative density function of a unifed distribution. theta is the value of the canonical parameter of the unifed and x if the value where the density is evaluated.
- `real unifed_kappa_prime_inverse(real mu)` Returns the inverse of the derivative of the unifed cumulant generator
- `real unifed_unit_deviance(real y, real mu)` Unit deviance function of the unifed.

The following functions take vectors as arguments
vector unifed_kappa_v(vector theta) Vectorized version of unifed_kappa.
vector unifed_kappa_prime_inverse_v(vector mu) Vectorized version of unifed_kappa_prime_inverse.
void unifed_glm_lp(vector y, vector theta, vector weights) Adds to the Log Probability Accumulator the logarithm of the likelihood function of a GLM with observed response y, estimated canonical parameter theta and weights weights.

Description

The `unifed.stan` provided by the file contains functions for using the unifed distribution in Stan. The file can be included (with `#include`) inside the functions block of a Stan program or its contents can be copied and pasted.

Usage

- `unifed.stan.path()`
- `unifed.stan.folder()`

Value

- The full path to the `unifed.stan` file provided by the package.
- `unifed.stan.folder` returns a string containing the path to the folder containing the `unifed.stan` file. This can be used as the `isystem` parameter in stan functions.

unifed.varf Variance function of the unifed distribution

Description

Variance function of the unifed distribution

Usage

- `unifed.varf(mu)`

Arguments

- `mu` A vector with numbers between 0 and 1.

Value

- It returns `unifed.kappa.double.prime(unifed.kappa.prime.inverse(mu))`.
Index

* datasets
 car.insurance, 2

 car.insurance, 2

dirwin.hall, 3
dunifed, 4

 punifed (dunifed), 4

 quasiumifed (unifed), 6

 qunifed (dunifed), 4

 runifed (dunifed), 4

 summary_unifed_glm, 5

 unifed, 6

 unifed.deviance, 7

 unifed.kappa, 8

 unifed.kappa.prime.inverse, 6, 7

 unifed.kappa.prime.inverse.one, 7, 8

 unifed.lcdf (dunifed), 4

 unifed.mle, 9

 unifed.stan, 10

 unifed.stan.folder (unifed.stan.path), 11

 unifed.stan.path, 10, 11

 unifed.unit.deviance, 6, 8

 unifed.unit.deviance (unifed.deviance), 7

 unifed.varf, 11