Package ‘unmarked’

July 8, 2023

Version 1.3.2
Date 2023-07-06
Type Package
Title Models for Data from Unmarked Animals
Depends R (>= 2.12.0)
Imports graphics, lattice, lme4, MASS, Matrix, methods, parallel, pbapply, Rcpp (>= 0.8.0), stats, TMB (>= 1.7.18), utils
Suggests knitr, rmarkdown, pkgdown, raster, shiny, terra, testthat
Description Fits hierarchical models of animal abundance and occurrence to data collected using survey methods such as point counts, site occupancy sampling, distance sampling, removal sampling, and double observer sampling. Parameters governing the state and observation processes can be modeled as functions of covariates. References: Kellner et al. (2023) <doi:10.1111/2041-210X.14123>, Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
License GPL (>= 3)
LazyLoad yes
LazyData yes
Collate 'classes.R' 'unmarkedEstimate.R' 'mapInfo.R' 'unmarkedFrame.R'
 'unmarkedFit.R' 'utils.R' 'getDesign.R' 'coext.R' 'distsamp.R'
 'multinomPois.R' 'occu.R' 'occuRN.R' 'occuMulti.R' 'pcount.R'
 'gmultmix.R' 'pcountOpen.R' 'gdistsamp.R' 'unmarkedFitList.R'
 'unmarkedLinComb.R' 'ranef.R' 'boot.R' 'occuFP.R' 'gpcount.R'
 'occuPEN.R' 'pcount.spHDS.R' 'occuMS.R' 'occuTTD.R'
 'distsampOpen.R' 'multmixOpen.R' 'unmarkedCrossVal.R' 'piFun.R'
 'vif.R' 'makePiFun.R' 'posteriorSamples.R' 'nmixTTD.R'
 'gdistremoval.R' 'plotEffects.R' 'mixedModelTools.R' 'power.R'
 'simulate.R' 'predict.R' 'RcppExports.R' 'zzz.R'
LinkingTo Rcpp, RcppArmadillo, TMB, RcppEigen
SystemRequirements GNU make
URL https://groups.google.com/d/forum/unmarked,
 https://rbchan.github.io/unmarked/
BugReports https://github.com/rbchan/unmarked/issues
VignetteBuilder knitr
NeedsCompilation yes
Author Richard Chandler [aut],
 Ken Kellner [cre, aut],
 Ian Fiske [aut],
 David Miller [aut],
 Andy Royle [aut],
 Jeff Hostetler [aut],
 Rebecca Hutchinson [aut],
 Adam Smith [aut],
 Marc Kery [ctb],
 Mike Meredith [ctb],
 Auriel Fournier [ctb],
 Ariel Muldoon [ctb],
 Chris Baker [ctb]
Maintainer Ken Kellner <contact@kenkellner.com>
Repository CRAN
Date/Publication 2023-07-08 11:10:02 UTC

R topics documented:

unmarked-package .. 4
backTransform-methods 8
birds .. 9
coef-methods .. 10
colext ... 11
computeMLELambda 14
confint-methods 15
crossbill ... 15
crossVal ... 18
cruz .. 19
csvToUMF .. 21
detFuns ... 22
distsamp .. 23
distsampOpen 26
fitList ... 31
fitted-methods 32
formatDistData 33
formatMult 35
formatWideLong 36
frogs .. 37
gdistremoval 38
R topics documented:

gdistsamp .. 39
getB-methods ... 42
getFP-methods ... 42
getP-methods ... 43
gf ... 43
gmultmix ... 44
gpcount .. 46
imputeMissing .. 49
issj ... 50
jay ... 51
lambda2psi ... 53
linearComb-methods .. 53
linetran ... 54
makePiFuns ... 55
mallard .. 57
masspcru .. 58
MesoCarnivores .. 59
modSel .. 60
multinomPois ... 61
multmixOpen .. 63
nmixTTD .. 67
nonparboot-methods ... 70
occu ... 71
occuFP ... 73
occuMS .. 76
occuMulti .. 84
occuPEN .. 89
occuPEN_CV ... 92
occuRN ... 94
occuTTD .. 96
optimizePenalty-methods 100
ovendata .. 102
parboot .. 102
pcount .. 104
pcount.spHDS ... 107
pcountOpen .. 109
piFuns ... 113
plotEffects ... 114
pointtran .. 116
posteriorSamples ... 117
powerAnalysis ... 118
predict-methods ... 120
randomTerms .. 121
ranef-methods ... 122
SE-methods ... 124
shinyPower ... 125
sight2perpdist .. 125
sigma .. 126
Models for Data from Unmarked Animals

Description

Fits hierarchical models of animal occurrence and abundance to data collected on species that may be detected imperfectly. Models include single- and multi-season site occupancy models, binomial N-mixture models, and multinomial N-mixture models. The data can arise from survey methods such as occurrence sampling, temporally replicated counts, removal sampling, double observer sampling, and distance sampling. Parameters governing the state and observation processes can be modeled as functions of covariates. General treatment of these models can be found in MacKenzie et al. (2006) and Royle and Dorazio (2008). The primary reference for the package is Fiske and Chandler (2011).
Details

Overview of Model-fitting Functions:

occu fits occurrence models with no linkage between abundance and detection (MacKenzie et al. 2002).

occuRN fits abundance models to presence/absence data by exploiting the link between detection probability and abundance (Royle and Nichols 2003).

occuFP fits occupancy models to data characterized by false negatives and false positive detections (e.g., Royle and Link [2006] and Miller et al. [2011]).

occuMulti fits multi-species occupancy model of Rota et al. [2016].

pcount fits N-mixture models (aka binomial mixture models) to repeated count data (Royle 2004a, Kery et al 2005).

distsamp fits the distance sampling model of Royle et al. (2004) to distance data recorded in discrete intervals.

gdistsamp fits the generalized distance sampling model described by Chandler et al. (2011) to distance data recorded in discrete intervals.

gpcount fits the generalized N-mixture model described by Chandler et al. (2011) to repeated count data collected using the robust design.

multinomPois fits the multinomial-Poisson model of Royle (2004b) to data collected using methods such as removal sampling or double observer sampling.

gmultmix fits a generalized form of the multinomial-mixture model of Royle (2004b) that allows for estimating availability and detection probability.

pcountOpen fits the open population model of Dail and Madsen (2011) to repeated count data. This is a generalized form of the Royle (2004a) N-mixture model that includes parameters for recruitment and apparent survival.

Data: All data are passed to unmarked’s estimation functions as a formal S4 class called an unmarkedFrame, which has child classes for each model type. This allows metadata (e.g., distance interval cut points, measurement units, etc...) to be stored with the response and covariate data. See unmarkedFrame for a detailed description of unmarkedFrames and how to create them.

Model Specification: unmarked’s model-fitting functions allow specification of covariates for both the state process and the detection process. For two-level hierarchical models, (e.g. occu, occuRN, pcount, multinomPois, distsamp) covariates for the detection process (at the site or observation level) and the state process (at the site level) are specified with a double right-hand sided formula, in that order. Such a formula looks like

\[x_1 + x_2 + \ldots + x_n \quad x_1 + x_2 + \ldots + x_n \]

where \(x_1 \) through \(x_n \) are additive covariates of the process of interest. Using two tildes in a single formula differs from standard R convention, but it is informative about the model being fit. The meaning of these covariates, or what they model, is full described in the help files for the individual functions and is not the same for all functions. For models with more than two processes (e.g. coext, gmultmix, pcountOpen), single right-hand sided formulas (only one tilde) are used to model each parameter.

Utility Functions: unmarked contains several utility functions for organizing data into the form required by its model-fitting functions. csvToUMF converts an appropriately formatted comma-separated values (.csv) file to a list containing the components required by model-fitting functions.
Author(s)

Ian Fiske, Richard Chandler, Andy Royle, Marc Kery, David Miller, and Rebecca Hutchinson

References

Examples

An example site-occupancy analysis

```r
# Simulate occupancy data
set.seed(344)
nSites <- 100
nReps <- 5
covariates <- data.frame(veght=rnorm(nSites),
                          habitat=factor(c(rep("A", 50), rep("B", 50))))

psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)

y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {
y[i,] <- rbinom(nReps, 1, z[i]*p[i])
}

# Organize data and look at it
umf <- unmarkedFrameOccu(y = y, siteCovs = covariates)
head(umf)
summary(umf)

# Fit some models
fm1 <- occu(~1 ~1, umf)
fm2 <- occu(~veght+habitat ~veght+habitat, umf)
fm3 <- occu(~veght ~veght+habitat, umf)

# Model selection
fms <- fitList(m1=fm1, m2=fm2, m3=fm3)
modSel(fms)

# Empirical Bayes estimates of the number of sites occupied
sum(bup(ranef(fm3), stat="mode")) # Sum of posterior modes
sum(z) # Actual

# Model-averaged prediction and plots

# psi in each habitat type
newdata1 <- data.frame(habitat=c("A", "B"), veght=0)
Epsi1 <- predict(fms, type="state", newdata=newdata1)
with(Epsi1, {
    plot(1:2, Predicted, xaxt="n", xlim=c(0.5, 2.5), ylim=c(0, 0.5),
         xlab="Habitat",
```
```
Methods for Function `backTransform` in Package `unmarked`

**Description**

Methods for function `backTransform` in Package `unmarked`. This converts from link-scale to original-scale.

**Usage**

```r
S4 method for signature 'unmarkedFit'
backTransform(obj, type)
S4 method for signature 'unmarkedEstimate'
backTransform(obj)
```

**Arguments**

- **obj**: Object of appropriate S4 class
- **type**: one of names(obj), eg `state` or `det`
Methods

- **obj = "unmarkedEstimate"** Typically done internally
- **obj = "unmarkedFit"** Back-transform a parameter from a fitted model. Only possible if no covariates are present. Must specify argument type as one of the values returned by names(obj).
- **obj = "unmarkedLinComb"** Back-transform a predicted value created by linearComb. This is done internally by `predict` but can be done explicitly by user.

Examples

```r
Not run:
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)

(fm <- pcount(~ 1 ~ forest, mallardUMF)) # Fit a model
backTransform(fm, type="det") # This works because there are no detection covariates
#backTransform(fm, type="state") # This doesn't work because covariates are present
lc <- linearComb(fm, c(1, 0), type="state") # Estimate abundance on the log scale when forest=0
backTransform(lc) # Abundance on the original scale

End(Not run)
```

---

**birds**  
*BBS Point Count and Occurrence Data from 2 Bird Species*

**Description**

Data frames for 2 species from the breeding bird survey (BBS). Each data frame has a row for each site and columns for each sampling event. There is a point count and occurrence–designated by .bin– version for each species.

**Usage**

data(birds)

**Format**

- **catbird** A data frame of point count observations for the catbird.
- **catbird.bin** A data frame of occurrence observations for the catbird.
- **woodthrush** A data frame of point count observations for the wood thrush.
- **woodthrush.bin** A data frame of point count observations for the wood thrush.
Source


Examples

data(birds)

coef-methods

Methods for Function \texttt{coef} in Package \texttt{‘unmarked’}

Description

Extract coefficients

Usage

\begin{verbatim}
## S4 method for signature \texttt{’unmarkedFit’}
coef(object, type, altNames = TRUE, fixedOnly=TRUE)
## S4 method for signature \texttt{’unmarkedEstimate’}
coef(object, altNames = TRUE, fixedOnly=TRUE, ...)
## S4 method for signature \texttt{’linCombOrBackTrans’}
coef(object)
\end{verbatim}

Arguments

- \texttt{object} Object of appropriate S4 class
- \texttt{type} Either 'state' or 'det'
- \texttt{altNames} Return specific names for parameter estimates?
- \texttt{fixedOnly} Return only fixed effect parameters?
- \texttt{...} Further arguments. Not currently used

Value

A named numeric vector of parameter estimates.

Methods

- \texttt{object = "linCombOrBackTrans"} Object from linearComb
- \texttt{object = "unmarkedEstimate"} unmarkedEstimate object
- \texttt{object = "unmarkedFit"} Fitted model
Fit the dynamic occupancy model of MacKenzie et. al (2003)

Description
Estimate parameters of the colonization-extinction model, including covariate-dependent rates and detection process.

Usage

colext(psiformula= ~1, gammaformula = ~ 1, epsilonformula = ~ 1, pformula = ~ 1, data, starts, method="BFGS", se=TRUE, ...)

Arguments

- `psiformula`: Right-hand sided formula for the initial probability of occupancy at each site.
- `gammaformula`: Right-hand sided formula for colonization probability.
- `epsilonformula`: Right-hand sided formula for extinction probability.
- `pformula`: Right-hand sided formula for detection probability.
- `data`: unmarkedMultFrame object that supplies the data (see `unmarkedMultFrame`).
- `starts`: optionally, initial values for parameters in the optimization.
- `method`: Optimization method used by `optim`.
- `se`: logical specifying whether or not to compute standard errors.
- `...`: Additional arguments to `optim`, such as lower and upper bounds

Details
This function fits the colonization-extinction model of MacKenzie et al (2003). The colonization and extinction rates can be modeled with covariates that vary yearly at each site using a logit link. These covariates are supplied by special unmarkedMultFrame yearlySiteCovs slot. These parameters are specified using the `gammaformula` and `epsilonformula` arguments. The initial probability of occupancy is modeled by covariates specified in the `psiformula`.

The conditional detection rate can also be modeled as a function of covariates that vary at the secondary sampling period (i.e., repeat visits). These covariates are specified by the first part of the formula argument and the data is supplied via the usual obsCovs slot.

The projected and smoothed trajectories (Weir et al 2009) can be obtained from the smoothed.mean and projected.mean slots (see examples).

Value

unmarkedFitColExt object describing model fit.
References


See Also

`nonparboot, unmarkedMultFrame, and formatMult`

Examples

```r
Fake data
R <- 4 # number of sites
J <- 3 # number of secondary sampling occasions
T <- 2 # number of primary periods

y <- matrix(c(
 1,1,0, 0,0,0,
 0,0,0, 0,0,0,
 1,1,1, 1,1,0,
 1,0,1, 0,0,1), nrow=R, ncol=J*T, byrow=TRUE)
y

site.covs <- data.frame(x1=1:4, x2=factor(c('Var A', 'Var B', 'Var A', 'Var B')))
site.covs

yearly.site.covs <- list(
 year = matrix(c(
 'year1', 'year2',
 'year1', 'year2',
 'year1', 'year2',
 'year1', 'year2'), nrow=R, ncol=T, byrow=TRUE)
)
yearly.site.covs

obs.covs <- list(
 x4 = matrix(c(
 -1,0,1, -1,1,1,
 -2,0,0, 0,0,2,
 -3,1,0, 0,1,2,
 0,0,0, 0,1,-1), nrow=R, ncol=J*T, byrow=TRUE),
 x5 = matrix(c(
 'a','b','c', 'a','b','c',
 'a','b','c', 'a','b','c',
 'a','b','c', 'a','b','c')
)
colext

'd', 'b', 'a', 'd', 'b', 'a',
'a', 'a', 'c', 'd', 'b', 'a',
'a', 'b', 'a', 'd', 'b', 'a'), nrow=R, ncol=J*T, byrow=TRUE))

obs.covs

umf <- unmarkedMultFrame(y=y, siteCovs=site.covs,
 yearlySiteCovs=yearly.site.covs, obsCovs=obs.covs,
 numPrimary=2) # organize data

look at data

summary(umf) # summarize

fm <- colext(~1, ~1, ~1, ~1, umf) # fit a model

Not run:
Real data

data(frogs)

umf <- formatMult(masspcru)

obsCovs(umf) <- scale(obsCovs(umf))

Use 1/4 of data just for run speed in example

umf <- umf[which((1:numSites(umf)) %% 4 == 0),]

constant transition rates

(fm <- colext(psiformula = ~1,
 gammaformula = ~1, epsilonformula = ~1,
 pformula = ~ JulianDate + I(JulianDate^2), umf, control = list(trace=1, maxit=1e4)))

get the trajectory estimates

smoothed(fm)

projected(fm)

Empirical Bayes estimates of number of sites occupied in each year

re <- ranef(fm)

modes <- colSums(bup(re, stat="mode"))

plot(1:7, modes, xlab="Year", ylab="Sites occupied", ylim=c(0, 70))

Find bootstrap standard errors for smoothed trajectory

fm <- nonparboot(fm, B = 100) # This takes a while!

fm@smoothed.mean.bsse

try yearly transition rates

yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7, numSites(umf))))

(fm.yearly <- colext(psiformula = ~1,
 gammaformula = ~year, epsilonformula = ~year,
 pformula = ~ JulianDate + I(JulianDate^2), umf,
 control = list(trace=1, maxit=1e4)))

End(Not run)
computeMPLElambda

Compute the penalty weight for the MPLE penalized likelihood method

Description

This function computes the weight for the MPLE penalty of Moreno & Lele (2010).

Usage

\[
\text{computeMPLElambda(formula, data, knownOcc=numeric(0), starts, method="BFGS", engine=c("C", "R"))}
\]

Arguments

- `formula`: Double right-hand side formula describing covariates of detection and occupancy in that order.
- `data`: An `unmarkedFrameOccu` object
- `knownOcc`: Vector of sites that are known to be occupied. These should be supplied as row numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a priori.
- `starts`: Vector of parameter starting values.
- `method`: Optimization method used by `optim`.
- `engine`: Either "C" or "R" to use fast C++ code or native R code during the optimization.

Details

See `occuPEN` for details and examples.

Value

The computed lambda.

Author(s)

Rebecca A. Hutchinson

References

See Also

`unmarked`, `unmarkedFrameOccu`, `occu`, `occuPEN`, `occuPEN_CV`, `nonparboot`
Methods for Function `confint` in Package 'unmarked'

Description

Methods for function `confint` in Package 'unmarked'

Usage

```r
## S4 method for signature 'unmarkedBackTrans'
confint(object, parm, level)
## S4 method for signature 'unmarkedEstimate'
confint(object, parm, level)
## S4 method for signature 'unmarkedLinComb'
confint(object, parm, level)
## S4 method for signature 'unmarkedFit'
confint(object, parm, level, type, method)
```

Arguments

- `object`: Object of appropriate S4 class
- `parm`: Name of parameter(s) of interest
- `level`: Level of confidence
- `type`: Either "state" or "det"
- `method`: Either "normal" or "profile"

Value

A vector of lower and upper confidence intervals. These are asymptotic unless `method='profile'` is used on `unmarkedFit` objects in which case they are profile likelihood intervals.

See Also

- `unmarkedFit-class`

Description

267 1-kmsq quadrats were surveyed 3 times per year during 1999-2007.
Usage

data(crossbill)

Format

A data frame with 267 observations on the following 58 variables.

id Plot ID
ele Elevation
forest Percent forest cover
surveys a numeric vector
det991 Detection data for 1999, survey 1
det992 Detection data for 1999, survey 2
det993 Detection data for 1999, survey 3
det001 Detection data for 2000, survey 1
det002 a numeric vector
det003 a numeric vector
det011 a numeric vector
det012 a numeric vector
det013 a numeric vector
det021 a numeric vector
det022 a numeric vector
det023 a numeric vector
det031 a numeric vector
det032 a numeric vector
det033 a numeric vector
det041 a numeric vector
det042 a numeric vector
det043 a numeric vector
det051 a numeric vector
det052 a numeric vector
det053 a numeric vector
det061 a numeric vector
det062 a numeric vector
det063 Detection data for 2006, survey 3
det071 Detection data for 2007, survey 1
det072 Detection data for 2007, survey 2
det073 Detection data for 2007, survey 3
date991 Day of the season for 1999, survey 1
date992 Day of the season for 1999, survey 2
date993 Day of the season for 1999, survey 3
date001 Day of the season for 2000, survey 1
date002 a numeric vector
date003 a numeric vector
date011 a numeric vector
date012 a numeric vector
date013 a numeric vector
date021 a numeric vector
date022 a numeric vector
date023 a numeric vector
date031 a numeric vector
date032 a numeric vector
date033 a numeric vector
date041 a numeric vector
date042 a numeric vector
date043 a numeric vector
date051 a numeric vector
date052 a numeric vector
date053 a numeric vector
date061 a numeric vector
date062 a numeric vector
date063 a numeric vector
date071 a numeric vector
date072 a numeric vector
date073 Day of the season for 2007, survey 3

Source
Schmid, H. N. Zbinden, and V. Keller. 2004. Überwachung der Bestandsentwicklung häufiger Brutvogel in der Schweiz, Swiss Ornithological Institute Sempach Switzerland

See Also
Switzerland for corresponding covariate data defined for all 1-kmsq pixels in Switzerland. Useful for making species distribution maps.

Examples
data(crossbill)
str(crossbill)
Cross-validation methods for fitted unmarked models and fit lists

Description

Test predictive accuracy of fitted models using several cross-validation approaches. The dataset is divided by site only into folds or testing and training datasets (i.e., encounter histories within sites are never split up).

Usage

S4 method for signature 'unmarkedFit'
crossVal(
 object, method=c("Kfold","holdout","leaveOneOut"),
 folds=10, holdoutPct=0.25, statistic=RMSE_MAE, parallel=FALSE, ncores, ...)

S4 method for signature 'unmarkedFitList'
crossVal(
 object, method=c("Kfold","holdout","leaveOneOut"),
 folds=10, holdoutPct=0.25, statistic=RMSE_MAE, parallel=FALSE, ncores,
 sort = c("none", "increasing", "decreasing"), ...)

Arguments

- **object**: A fitted model inheriting class `unmarkedFit` or a list of fitted models with class `unmarkedFitList`.
- **method**: Cross validation method to use as string. Valid options are "Kfold", "holdout", or "leaveOneOut".
- **folds**: Number of folds to use for k-fold cross validation.
- **holdoutPct**: Proportion of dataset (value between 0-1) to use as the "holdout" or "test" set, for the holdout method.
- **statistic**: Function that calculates statistics for each fold. The function must take an `unmarkedFit` object as the first argument and return a named numeric vector with statistic value(s). The default function `RMSE_MAE` returns root-mean-square error and mean absolute error. See `unmarked:::RMSE_MAE` for an example of correct statistic function structure.
- **parallel**: If TRUE, run folds in parallel. This may speed up cross-validation if the unmarked model takes a long time to fit or you have a large number of sites and are using leave-one-out cross-validation.
- **ncores**: Number of parallel cores to use.
- **sort**: If doing cross-validation on a fitList, you can optionally sort the resulting table(s) of statistic values for each model.
- **...**: Other arguments passed to the statistic function.
Value

unmarkedCrossVal or unmarkedCrossValList object containing calculated statistic values for each fold.

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

fitList, unmarkedFit

Examples

Not run:

```r
# Get data
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)))
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF)))

# Fit occupancy model
fm <- occu(~ obsvar1 ~ 1, pferUMF)

# K-fold cross validation with 10 folds
(kfold = crossVal(fm, method="Kfold", folds=10))

# Holdout method with 25
(holdout = crossVal(fm, method='holdout', holdoutPct=0.25))

# Leave-one-out method
(leave = crossVal(fm, method='leaveOneOut'))

# Fit a second model and combine into a fitList
fm2 <- occu(~1 ~ 1, pferUMF)
fl <- fitList(fm2,fm)

# Cross-validation for all fits in fitList using holdout method
(cvlist <- crossVal(fl, method='holdout'))
```

End(Not run)

cruz

Landscape data for Santa Cruz Island

Description

Spatially-referenced elevation, forest cover, and vegetation data for Santa Cruz Island.
Usage
data(cruz)

Format
A data frame with 2787 observations on the following 5 variables.
x Easting (meters)
y Northing (meters)
elevation a numeric vector, FEET (multiply by 0.3048 to convert to meters)
forest a numeric vector, proportion cover
chaparral a numeric vector, proportion cover

Details
The resolution is 300x300 meters.
The Coordinate system is EPSG number 26911
NAD_1983_UKM_Zone_11N Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000
Central_Meridian: -117.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000
Linear Unit: Meter GCS_North_American_1983 Datum: D_North_American_1983

Source
Brian Cohen of the Nature Conservancy helped prepare the data

References
chical distance sampling models to estimate population size and habitat-specific abundance of an
island endemic. *Ecological Applications*

Examples
```r
## Not run:
library(lattice)
data(cruz)
str(cruz)

levelplot(elevation ~ x + y, cruz, aspect="iso",
  col.regions=terrain.colors(100))

if(require(raster)) {
elev <- rasterFromXYZ(cruz[,1:3],
  crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")
elev
plot(elev)
}

## End(Not run)
```
Convert .CSV File to an unmarkedFrame

Description

This function converts an appropriately formatted comma-separated values file (.csv) to a format usable by unmarked's fitting functions (see Details).

Usage

csvToUMF(filename, long=FALSE, type, species, ...)

Arguments

filename string describing filename of file to read in
long FALSE if file is in long format or TRUE if file is in long format (see Details)
species if data is in long format with multiple species, then this can specify a particular species to extract if there is a column named "species".
type specific type of unmarkedFrame.
... further arguments to be passed to the unmarkedFrame constructor.

Details

This function provides a quick way to take a .csv file with headers named as described below and provides the data required and returns of data in the format required by the model-fitting functions in unmarked. The .csv file can be in one of 2 formats: long or wide. See the first 2 lines of the examples for what these formats look like.

The .csv file is formatted as follows:

• col 1 is site labels.
• if data is in long format, col 2 is date of observation.
• next J columns are the observations (y) - counts or 0/1's.
• next is a series of columns for the site variables (one column per variable). The column header is the variable name.
• next is a series of columns for the observation-level variables. These are in sets of J columns for each variable, e.g., var1-1 var1-2 var1-3 var2-1 var2-2 var2-3, etc. The column header of the first variable in each group must indicate the variable name.

Value

an unmarkedFrame object
Author(s)

Ian Fiske <ianfiske@gmail.com>

Examples

```r
# examine a correctly formatted long .csv
head(read.csv(system.file("csv","frog2001pcru.csv", package="unmarked")))

# examine a correctly formatted wide .csv
head(read.csv(system.file("csv","widewt.csv", package="unmarked")))

# convert them!
dat1 <- csvToUMF(system.file("csv","frog2001pcru.csv", package="unmarked"),
                 long = TRUE, type = "unmarkedFrameOccu")
dat2 <- csvToUMF(system.file("csv","frog2001pfer.csv", package="unmarked"),
                 long = TRUE, type = "unmarkedFrameOccu")
dat3 <- csvToUMF(system.file("csv","widewt.csv", package="unmarked"),
                 long = FALSE, type = "unmarkedFrameOccu")
```

detFuns

Distance-sampling detection functions and associated density functions

Description

These functions represent the currently available detection functions used for modeling line and point transect data with *distsamp*. Detection functions begin with "g", and density functions begin with a "d".

Usage

```r
gxhn(x, sigma)
gxexp(x, rate)
gxhaz(x, shape, scale)

dxhn(x, sigma)
dxexp(x, rate)
dxhaz(x, shape, scale)
drhn(r, sigma)
drexp(r, rate)
drhaz(r, shape, scale)
```

Arguments

- `x` Perpendicular distance
- `r` Radial distance
- `sigma` Shape parameter of half-normal detection function
distsamp

rate Shape parameter of negative-exponential detection function
shape Shape parameter of hazard-rate detection function
scale Scale parameter of hazard-rate detection function

See Also
distsamp for example of using these for plotting detection function

Examples

Detection probabilities at 25m for range of half-normal sigma values.
round(gxhn(25, 10:15), 2)

Plot negative exponential distributions
plot(function(x) gxexp(x, rate=10), 0, 50, xlab="distance",
 ylab="Detection probability")
plot(function(x) gxexp(x, rate=20), 0, 50, add=TRUE, lty=2)
plot(function(x) gxexp(x, rate=30), 0, 50, add=TRUE, lty=3)

Plot half-normal probability density functions for line- and point-transects
par(mfrow=c(2, 1))
plot(function(x) dxhn(x, 20), 0, 50, xlab="distance",
 ylab="Probability density", main="Line-transect")
plot(function(x) drhn(x, 20), 0, 50, xlab="distance",
 ylab="Probability density", main="Point-transect")

**distsamp**
Fit the hierarchical distance sampling model of Royle et al. (2004)

Description

Fit the hierarchical distance sampling model of Royle et al. (2004) to line or point transect data recorded in discrete distance intervals.

Usage

```
distsamp(formula, data, keyfun=c("halfnorm", "exp",
   "hazard", "uniform"), output=c("density", "abund"),
   unitsOut=c("ha", "kmsq"), starts, method="BFGS", se=TRUE,
   engine=c("C", "R", "TMB"), rel.tol=0.001, ...)
```

Arguments

- **formula**: Double right-hand formula describing detection covariates followed by abundance covariates. ~1~1 would be a null model.
- **data**: object of class `unmarkedFrameDS`, containing response matrix, covariates, distance interval cut points, survey type ("line" or "point"), transect lengths (for survey = "line"), and units ("m" or "km") for cut points and transect lengths. See example for set up.
keyfun

One of the following detection functions: "halfnorm", "hazard", "exp", or "uniform." See details.

output

Model either "density" or "abund"

unitsOut

Units of density. Either "ha" or "kmsq" for hectares and square kilometers, respectively.

starts

Vector of starting values for parameters.

method

Optimization method used by \texttt{optim}.

se

logical specifying whether or not to compute standard errors.

engine

Use code written in C++ or R

rel.tol

Requested relative accuracy of the integral, see \texttt{integrate}

... Additional arguments to \texttt{optim}, such as lower and upper bounds

Details

Unlike conventional distance sampling, which uses the 'conditional on detection' likelihood formulation, this model is based upon the unconditional likelihood and allows for modeling both abundance and detection function parameters.

The latent transect-level abundance distribution $f(N|\theta)$ assumed to be Poisson with mean λ (but see \texttt{gdistsamp} for alternatives).

The detection process is modeled as multinomial: $y_{ij} \sim Multinomial(N_i, \pi_{ij})$, where π_{ij} is the multinomial cell probability for transect i in distance class j. These are computed based upon a detection function $g(x|\sigma)$, such as the half-normal, negative exponential, or hazard rate.

Parameters λ and σ can be vectors affected by transect-specific covariates using the log link.

Value

\texttt{unmarkedFitDS} object (child class of \texttt{unmarkedFit-class}) describing the model fit.

Note

You cannot use \texttt{obsCovs}.

Author(s)

Richard Chandler <rbchan@uga.edu>

References

See Also

unmarkedFrameDS, unmarkedFit-class, fitList, formatDistData, parboot, sight2perpdist, detFuns, gdistamp, ranef. Also look at vignette("distsamp").

Examples

Line transect examples

data(linetran)

ltUMF <- with(linetran, {
 unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
 siteCovs = data.frame(Length, area, habitat),
 dist.breaks = c(0, 5, 10, 15, 20),
 tlength = linetran$Length * 1000, survey = "line", unitsIn = "m"
})

ltUMF
summary(ltUMF)
hist(ltUMF)

Half-normal detection function. Density output (log scale). No covariates.
(fm1 <- distsamp(~ 1 ~ 1, ltUMF))

Some methods to use on fitted model
summary(fm1)
backTransform(fm1, type="state") # animals / ha
exp(coef(fm1, type="state", altNames=TRUE)) # same
backTransform(fm1, type="det") # half-normal SD
hist(fm1, xlab="Distance (m)") # Only works when there are no det covars

Effective strip half-width
(eshw <- integrate(gxhn, 0, 20, sigma=10.9)$value)

Detection probability
eshw / 20 # 20 is strip-width

Halfnormal. Covariates affecting both density and and detection.
(fm2 <- distsamp(~area + habitat ~ habitat, ltUMF))

Hazard-rate detection function.
(fm3 <- distsamp(~ 1 ~ 1, ltUMF, keyfun="hazard"))

Plot detection function.
fmhz.shape <- exp(coef(fm3, type="det"))
fmhz.scale <- exp(coef(fm3, type="scale"))
plot(function(x) gxhaz(x, shape=fmhz.shape, scale=fmhz.scale), 0, 25,
 xlab="Distance (m)", ylab="Detection probability"
Point transect examples

Analysis of the Island Scrub-jay data.
See Sillett et al. (In press)

data(issj)
str(issj)

jayumf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),
 siteCovs=data.frame(scale(issj[,c("elevation","forest","chaparral")]),
 dist.breaks=c(0,100,200,300), unitsIn="m", survey="point")

(fm1jay <- distsamp(~chaparral ~chaparral, jayumf))

Not run:

data(pointtran)

ptUMF <- with(pointtran, {
 unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4, dc5),
 siteCovs = data.frame(area, habitat),
 dist.breaks = seq(0, 25, by=5), survey = "point", unitsIn = "m")
})

Half-normal.
(fmp1 <- distsamp(~ 1 ~ 1, ptUMF))
hist(fmp1, ylim=c(0, 0.07), xlab="Distance (m)"

effective radius
sig <- exp(coef(fmp1, type="det"))
ea <- 2*pi * integrate(grhn, 0, 25, sigma=sig)$value # effective area
sqrt(ea / pi) # effective radius

detection probability
ea / (pi*25^2)

End(Not run)

distsampOpen

Open population model for distance sampling data

Description

Fit the model of Dail and Madsen (2011) and Hostetler and Chandler (2015) with a distance sampling observation model (Sollmann et al. 2015).
Usage

distsampOpen(lambdaformula, gammaformula, omegaformula, pformula, data, keyfun=c("halfnorm", "exp", "hazard", "uniform"), output=c("abund", "density"), unitsOut=c("ha", "kmsq"), mixture=c("P", "NB", "ZIP"), K, dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"), fix=c("none", "gamma", "omega"), immigration=FALSE, iotaformula = ~1, starts, method="BFGS", se=TRUE, ...)

Arguments

lambdaformula Right-hand sided formula for initial abundance
gammaformula Right-hand sided formula for recruitment rate (when dynamics is "constant", "autoreg", or "notrend") or population growth rate (when dynamics is "trend", "ricker", or "gompertz")
omegaformula Right-hand sided formula for apparent survival probability (when dynamics is "constant", "autoreg", or "notrend") or equilibrium abundance (when dynamics is "ricker" or "gompertz")
pformula A right-hand side formula describing the detection function covariates
data An object of class unmarkedFrameDSO
keyfun One of the following detection functions: "halfnorm", "hazard", "exp", or "uniform"
output Model either "density" or "abund"
unitsOut Units of density. Either "ha" or "kmsq" for hectares and square kilometers, respectively
mixture String specifying mixture: "P", "NB", or "ZIP" for the Poisson, negative binomial, or zero-inflated Poisson distributions respectively
K Integer defining upper bound of discrete integration. This should be higher than the maximum observed count and high enough that it does not affect the parameter estimates. However, the higher the value the slower the computation
dynamics Character string describing the type of population dynamics. "constant" indicates that there is no relationship between omega and gamma. "autoreg" is an auto-regressive model in which recruitment is modeled as gamma*N[i,t-1]. "notrend" model gamma as lambda*(1-omega) such that there is no temporal trend. "trend" is a model for exponential growth, N[i,t] = N[i,t-1]*gamma, where gamma in this case is finite rate of increase (normally referred to as lambda). "ricker" and "gompertz" are models for density-dependent population growth. "ricker" is the Ricker-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-N[i,t-1]/omega)), where gamma is the maximum instantaneous population growth rate (normally referred to as r) and omega is the equilibrium abundance (normally referred to as K). "gompertz" is a modified version of the Gompertz-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-log(N[i,t-1]+1)/log(omega+1))), where the interpretations of gamma and omega are similar to in the Ricker model
fix If "omega", omega is fixed at 1. If "gamma", gamma is fixed at 0
Details

These models generalize distance sampling models (Buckland et al. 2001) by relaxing the closure assumption (Dail and Madsen 2011, Hostetler and Chandler 2015, Sollmann et al. 2015).

The models include two or three additional parameters: gamma, either the recruitment rate (births and immigrations), the finite rate of increase, or the maximum instantaneous rate of increase; omega, either the apparent survival rate (deaths and emigrations) or the equilibrium abundance (carrying capacity); and iota, the number of immigrants per site and year. Estimates of population size at each time period can be derived from these parameters, and thus so can trend estimates. Or, trend can be estimated directly using dynamics="trend".

When immigration is set to FALSE (the default), iota is not modeled. When immigration is set to TRUE and dynamics is set to "autoreg", the model will separately estimate birth rate (gamma) and number of immigrants (iota). When immigration is set to TRUE and dynamics is set to "trend", "ricker", or "gompertz", the model will separately estimate local contributions to population growth (gamma and omega) and number of immigrants (iota).

The latent abundance distribution, \(f(N|\theta) \) can be set as a Poisson, negative binomial, or zero-inflated Poisson random variable, depending on the setting of the mixture argument, mixture = "P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of \(N_i \) is \(\lambda_i \). If \(N_i \sim NB \), then an additional parameter, \(\alpha \), describes dispersion (lower \(\alpha \) implies higher variance). For the ZIP distribution, the mean is \(\lambda_i(1-\psi) \), where psi is the zero-inflation parameter.

For "constant", "autoreg", or "notrend" dynamics, the latent abundance state following the initial sampling period arises from a Markovian process in which survivors are modeled as \(S_{it} \sim Binomial(N_{it-1}, \omega_{it}) \), and recruits follow \(G_{it} \sim Poisson(\gamma_{it}) \). Alternative population dynamics can be specified using the dynamics and immigration arguments.

\(\lambda_i, \gamma_{it}, \) and \(\omega_{it} \) are modeled using the the log link. \(p_{ijt} \) is modeled using the logit link. \(\omega_{it} \) is either modeled using the logit link (for "constant", "autoreg", or "notrend" dynamics) or the log link (for "ricker" or "gompertz" dynamics). For "trend" dynamics, \(\omega_{it} \) is not modeled.

For the distance sampling detection process, half-normal ("halfnorm"), exponential ("exp"), hazard ("hazard"), and uniform ("uniform") key functions are available.

Value

An object of class unmarkedFitDSO
Warning

This function can be extremely slow, especially if there are covariates of gamma or omega. Consider testing the timing on a small subset of the data, perhaps with se=FALSE. Finding the lowest value of K that does not affect estimates will also help with speed.

Note

When gamma or omega are modeled using year-specific covariates, the covariate data for the final year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be supplied to unmarkedFrameDSO using the primaryPeriod argument.

Secondary sampling periods are optional, but can greatly improve the precision of the estimates. Optimization may fail if the initial value of the intercept for the detection parameter (sigma) is too small or large relative to transect width. By default, this parameter is initialized at log(average band width). You may have to adjust this starting value.

Author(s)

Richard Chandler, Jeff Hostetler, Andy Royle, Ken Kellner

References

See Also
distsamp, gdistamp, unmarkedFrameDSO

Examples

```r
## Not run:
#Generate some data
set.seed(123)
lambda=4; gamma=0.5; omega=0.8; sigma=25;
M=100; T=10; J=4
y <- array(NA, c(M, J, T))
N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)
```
db <- c(0, 25, 50, 75, 100)

Half-normal, line transect
g <- function(x, sig) exp(-x^2/(2*sig^2))

cp <- u <- a <- numeric(J)
L <- 1
cp[1] <- integrate(g, db[1], db[2], sig=sigma)$value
for(j in 2:J) {
a[j] <- db[j+1] - sum(a[1:j])
cp[j] <- integrate(g, db[j], db[j+1], sig=sigma)$value
}
u <- a / sum(a)
cp <- cp / a * u
cp[J+1] <- 1-sum(cp)

for(i in 1:M) {
 N[i,1] <- rpois(1, lambda)
y[i,1:J,1] <- rmultinom(1, N[i,1], cp)[1:J]
 for(t in 1:(T-1)) {
 S[i,t] <- rbinom(1, N[i,t], omega)
 G[i,t] <- rpois(1, gamma)
 N[i,t+1] <- S[i,t] + G[i,t]
y[i,1:J,t+1] <- rmultinom(1, N[i,t+1], cp)[1:J]
 }
}
y <- matrix(y, M)

Make a covariate
sc <- data.frame(x1 = rnorm(M))

umf <- unmarkedFrameDSO(y = y, siteCovs=sc, numPrimary=T, dist.breaks=db,
survey="line", unitsIn="m", tlength=rep(1, M))

(fit <- distsampOpen(~x1, ~1, ~1, ~1, data = umf, K=50, keyfun="halfnorm")

Compare to truth
cf <- coef(fit)
data.frame(model=c(exp(cf[1]), cf[2], exp(cf[3]), plogis(cf[4]), exp(cf[5])),
 truth=c(lambda, 0, gamma, omega, sigma))

Predict
head(predict(fit, type="Var"))

Check fit with parametric bootstrap
pb <- parboot(fit, nsims=15)
plot(pb)

Empirical Bayes estimates of abundance for each site / year
re <- ranef(fit)
plot(re, layout=c(10,5), xlim=c(-1, 10))
fitList

Description

Organize models for model selection or model-averaged prediction.

Usage

```r
fitList(..., fits, autoNames=c("object", "formula"))
```

Arguments

- `...`: Fitted models. Preferably named.
- `fits`: An alternative way of providing the models. A (preferably named) list of fitted models.
- `autoNames`: Option to change the names unmarked assigns to models if you don’t name them yourself. If `autoNames="object"`, models in the `fitList` will be named based on their R object names. If `autoNames="formula"`, the models will instead be named based on their formulas. This is not possible for some model types.

Note

Two requirements exist to conduct AIC-based model-selection and model-averaging in unmarked. First, the data objects (ie, unmarkedFrames) must be identical among fitted models. Second, the response matrix must be identical among fitted models after missing values have been removed. This means that if a response value was removed in one model due to missingness, it needs to be removed from all models.

Author(s)

Richard Chandler <rbchan@uga.edu>

Examples

```r
data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
  unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
  siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
  tlength = lengths, survey = "line", unitsIn = "m")
})
```
fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp(~ 1 ~area, ltUMF)

Two methods of creating an unmarkedFitList using fitList()

Method 1
fmList <- fitList(Null=fm1, .area=fm2, area.=fm3)

Method 2. Note that the argument name "fits" must be included in call.
models <- list(Null=fm1, .area=fm2, area.=fm3)
fmList <- fitList(fits = models)

Extract coefficients and standard errors
coef(fmList)
SE(fmList)

Model-averaged prediction
predict(fmList, type="state")

Model selection
modSel(fmList, nullmod="Null")

fitted-methods

Methods for Function fitted in Package ‘unmarked’

Description

Extracted fitted values from a fitted model.

Usage

S4 method for signature 'unmarkedFit'
fitted(object, na.rm = FALSE)
S4 method for signature 'unmarkedFitColExt'
fitted(object, na.rm = FALSE)
S4 method for signature 'unmarkedFitOccu'
fitted(object, na.rm = FALSE)
S4 method for signature 'unmarkedFitOccuRN'
fitted(object, K, na.rm = FALSE)
S4 method for signature 'unmarkedFitPCount'
fitted(object, K, na.rm = FALSE)
S4 method for signature 'unmarkedFitDS'
fitted(object, na.rm = FALSE)
formatDistData

Arguments

- **object**: A fitted model of appropriate S4 class
- **K**: Integer specifying upper bound of integration.
- **na.rm**: Logical. Should missing values be removed from data?

Value

Returns a matrix of expected values

Methods

- **object = "unmarkedFit"**: A fitted model
- **object = "unmarkedFitColExt"**: A model fit by `colext`
- **object = "unmarkedFitOccu"**: A model fit by `occu`
- **object = "unmarkedFitOccuRN"**: A model fit by `occuRN`
- **object = "unmarkedFitPCount"**: A model fit by `pcount`
- **object = "unmarkedFitDS"**: A model fit by `distsamp`

formatDistData

Bin distance data

Description

Convert individual-level distance data to the transect-level format required by `distsamp` or `gdistsamp`

Usage

formatDistData(distData, distCol, transectNameCol, dist.breaks, occasionCol, effortMatrix)

Arguments

data.frame where each row is a detected individual. Must have at least 2 columns. One for distances and the other for transect names.

- **distCol**: character, name of the column in distData that contains the distances. The distances should be numeric.
- **transectNameCol**: character, column name containing transect names. The transect column should be a factor.
- **dist.breaks**: numeric vector of distance interval cutpoints. Length must equal J+1.
- **occasionCol**: optional character. If transects were visited more than once, this can be used to format data for `gdistsamp`. It is the name of the column in distData that contains the occasion numbers. The occasion column should be a factor.
- **effortMatrix**: optional matrix of 1 and 0s that is M * T in size and will allow for the insertion of NAs where the matrix = 0, indicating that a survey was not completed. When not supplied a matrix of all 1s is created since it is assumed all surveys were completed.
Details

This function creates a site (M) by distance interval (J) response matrix from a data.frame containing the detection distances for each individual and the transect names. Alternatively, if each transect was surveyed T times, the resulting matrix is M x JT, which is the format required by `gdistsamp`, see `unmarkedFrameGDS`.

Value

An M x J or M x JT matrix containing the binned distance data. Transect names will become rownames and colnames will describe the distance intervals.

Note

It is important that the factor containing transect names includes levels for all the transects surveyed, not just those with >=1 detection. Likewise, if transects were visited more than once, the factor containing the occasion numbers should include levels for all occasions. See the example for how to add levels to a factor.

See Also

distsamp, unmarkedFrame

Examples

Create a data.frame containing distances of animals detected # along 4 transects.
dat <- data.frame(transect=gl(4,5, labels=letters[1:4]),
 distance=rpois(20, 10))
dat

Look at your transect names.
levels(dat$transect)

Suppose that you also surveyed a transect named "e" where no animals were # detected. You must add it to the levels of dat$transect
levels(dat$transect) <- c(levels(dat$transect), "e")
levels(dat$transect)

Distance cut points defining distance intervals
cp <- c(0, 8, 10, 12, 14, 18)

Create formated response matrix
yDat <- formatDistData(dat, "distance", "transect", cp)
yDat

Now you could merge yDat with transect-level covariates and # then use unmarkedFrameGDS to prepare data for distsamp

Example for data from multiple occasions
dat2 <- data.frame(distance=1:100, site=gl(5, 20),
 visit=factor(rep(1:4, each=5)))
cutpt <- seq(0, 100, by=25)
y2 <- formatDistData(dat2, "distance", "site", cutpt, "visit")
unmfr <- unmarkedFrameGDS(y=y2, numPrimary=4, survey="point",
 dist.breaks=cutpt, unitsIn="m")

Example for datda from multiple occasions with effortMatrix

dat3 <- data.frame(distance=1:100, site=gl(5, 20), visit=factor(rep(1:4, each=5)))
cutpt <- seq(0, 100, by=25)
effortMatrix <- matrix(ncol=4, nrow=5, rbinom(20,1,0.8))
y3 <- formatDistData(dat2, "distance", "site", cutpt, "visit", effortMatrix)

formatMult

Create unmarkedMultFrame from Long Format Data Frame

Description

This convenience function converts multi-year data in long format to unmarkedMultFrame Object. See Details for more information.

Usage

`formatMult(df.in)`

Arguments

- `df.in` a data.frame appropriately formatted (see Details).

Details

df.in is a data frame with columns formatted as follows:

- Column 1 = year number
- Column 2 = site name or number
- Column 3 = julian date or chronological sample number during year
- Column 4 = observations (y)
- Column 5 = Final Column = covariates

Note that if the data is already in wide format, it may be easier to create an unmarkedMultFrame object directly with a call to `unmarkedMultFrame`.

Value

unmarkedMultFrame object
formatWideLong

Convert between wide and long data formats.

Description

Convert a data.frame between wide and long formats.

Usage

formatWide(dfin, sep = ".", obsToY, type, ...)
formatLong(dfin, species = NULL, type, ...)

Arguments

dfin A data.frame to be reformatted.
sep A separator of column names in wide format.
obsToY Optional matrix specifying relationship between covariate column structure and
 response matrix structure.
type Type of unmarkedFrame to create?
species Character name of species response column
... Further arguments to the unmarkedFrame* constructor functions

Details

Note that not all possible unmarkedFrame* classes have been tested with these functions. Multi-
nominal data sets (e.g., removal, double-observer, capture-recapture) are almost certainly easier to
enter directly to the constructor function and are not supported by formatLong or formatWide.

In order for these functions to work, the columns of dfin need to be in the correct order. formatLong
requires that the columns are in the following scheme:

1. site name or number.
2. date or observation number.
3. response variable (detections, counts, etc).
4. The remaining columns are observation-level covariates.

formatWide requires particular names for the columns. The column order for formatWide is

1. (optional) site name, named “site”.
2. response, named “y.1”, “y.2”, ..., “y.J”.
3. columns of site-level covariates, each with a relevant name per column.
4. groups of columns of observation-level covariates, each group having the name form “someObs-
cov.1”, “someObsCov.2”, ..., “someObsCov.J”.

Further reading

'fossil' for formatting column names
frogs

Value

A data.frame

See Also

csvToUMF

frogs

2001 Delaware North American Amphibian Monitoring Program Data

Description

frogs contains NAAMP data for Pseudacris feriarum (pfer) and Pseudacris crucifer (pcru) in 2001.

Usage

data(frogs)

Format

- **pcru.y**: matrix of observed calling indices for pcru
- **pcru.bin**: matrix of detections for pcru
- **pcru.data**: array of covariates measured at the observation-level for pcru
- **pfer.y**: matrix of observed calling indices for pfer
- **pfer.bin**: matrix of detections for pfer
- **pfer.data**: array of covariates measured at the observation-level for pfer

Details

The rows of pcru.y, pcru.bin, pfer.y, and pfer.bin correspond to sites and columns correspond to visits to each site. The first 2 dimensions of pfer.data and pcru.data are matrices of covariates that correspond to the observation matrices (sites × observation), with the 3rd dimension corresponding to separate covariates.

Source

https://www.pwrc.usgs.gov/naamp/

References

Examples

```r
data(frogs)
str(pcru.data)
```

gdistremoval

Fit the combined distance and removal model of Amundson et al. (2014).

Description

Fit the model of Amundson et al. (2014) to point count datasets containing both distance and time of observation data. The Amundson et al. (2014) model is extended to account for temporary emigration by estimating an additional availability probability if multiple counts at a site are available. Abundance can be modeled as a Poisson, negative binomial, or Zero-inflated Poisson. Multiple distance sampling key functions are also available.

Usage

```r
gdistremoval(lambdaformula=~1, phiformula=~1, removalformula=~1, distanceformula=~1, data, keyfun=c("halfnorm", "exp", "hazard", "uniform"), output=c("abund", "density"), unitsOut=c("ha", "kmsq"), mixture=c("P", "NB", "ZIP"), K, starts, method = "BFGS", se = TRUE, engine=c("C","TMB"), threads=1, ...)
```

Arguments

- `lambdaformula`: A right-hand side formula describing the abundance covariates
- `phiformula`: A right-hand side formula describing the availability covariates
- `removalformula`: A right-hand side formula describing removal probability covariates
- `distanceformula`: A right-hand side formula describing the detection function covariates
- `data`: An object of class `unmarkedFrameGDR`
- `keyfun`: One of the following detection functions: "halfnorm", "hazard", "exp", or "uniform"
- `output`: Model either "abund" or "density"
- `unitsOut`: Units of density. Either "ha" or "kmsq" for hectares and square kilometers, respectively
- `mixture`: Either "P", "NB", or "ZIP" for the Poisson, negative binomial, and Zero-inflated Poisson models of abundance
- `K`: An integer value specifying the upper bound used in the integration
- `starts`: A numeric vector of starting values for the model parameters
- `method`: Optimization method used by `optim`
- `se`: Logical specifying whether or not to compute standard errors
- `engine`: Either "C" to use C++ code or "TMB" to use TMB for optimization
threads

Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If threads=1 (the default), OpenMP is disabled

Value

An object of class unmarkedFitGDR

Author(s)

Ken Kellner <contact@kenkellner.com>

References

See Also

unmarkedFrameGDR, gdistsamp, gmultmix

gdistsamp

Fit the generalized distance sampling model of Chandler et al. (2011).

description

Extends the distance sampling model of Royle et al. (2004) to estimate the probability of being available for detection. Also allows abundance to be modeled using the negative binomial distribution.

Usage

gdistsamp(lambdaformula, phiformula, pformula, data, keyfun = c("halfnorm", "exp", "hazard", "uniform"), output = c("abund", "density"), unitsOut = c("ha", "kmsq"), mixture = c("P", "NB"), K, starts, method = "BFGS", se = TRUE, engine=c("C","R"), rel.tol=1e-4, threads=1, ...)

Arguments

lambdaformula A right-hand side formula describing the abundance covariates.
phiformula A right-hand side formula describing the availability covariates.
pformula A right-hand side formula describing the detection function covariates.
data An object of class unmarkedFrameGDS
keyfun: One of the following detection functions: "halfnorm", "hazard", "exp", or "uniform." See details.

output: Model either "density" or "abund"

unitsOut: Units of density. Either "ha" or "kmsq" for hectares and square kilometers, respectively.

mixture: Either "P" or "NB" for the Poisson and negative binomial models of abundance.

K: An integer value specifying the upper bound used in the integration.

starts: A numeric vector of starting values for the model parameters.

method: Optimization method used by \texttt{optim}.

se: logical specifying whether or not to compute standard errors.

engine: Either "C" to use fast C++ code or "R" to use native R code during the optimization.

rel.tol: relative accuracy for the integration of the detection function. See \texttt{integrate}. You might try adjusting this if you get an error message related to the integral. Alternatively, try providing different starting values.

threads: Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If \texttt{threads=1} (the default), OpenMP is disabled.

...: Additional arguments to \texttt{optim}, such as lower and upper bounds

Details

This model extends the model of Royle et al. (2004) by estimating the probability of being available for detection ϕ. This effectively relaxes the assumption that $g(0) = 1$. In other words, individuals at a distance of 0 are not assumed to be detected with certainty. To estimate this additional parameter, replicate distance sampling data must be collected at each transect. Thus the data are collected at $i = 1, 2, ..., R$ transects on $t = 1, 2, ..., T$ occasions. As with the model of Royle et al. (2004), the detections must be binned into distance classes. These data must be formatted in a matrix with R rows, and JT columns where J is the number of distance classes. See \texttt{unmarkedFrameGDS} for more information.

Value

An object of class \texttt{unmarkedFitGDS}.

Note

If you aren’t interested in estimating phi, but you want to use the negative binomial distribution, simply set numPrimary=1 when formatting the data.

Note

You cannot use obsCovs, but you can use yearlySiteCovs (a confusing name since this model isn’t for multi-year data. It’s just a hold-over from the coalext methods of formatting data upon which it is based.)
Author(s)

Richard Chandler <rbchan@uga.edu>

References

See Also

distsamp

Examples

```r
# Simulate some line-transect data
set.seed(36837)

R <- 50  # number of transects
T <- 5   # number of replicates
strip.width <- 50
transect.length <- 100
breaks <- seq(0, 50, by=10)

lambda <- 5  # Abundance
phi <- 0.6    # Availability
sigma <- 30   # Half-normal shape parameter

J <- length(breaks)-1
y <- array(0, c(R, J, T))
for(i in 1:R) {
  M <- rpois(1, lambda)  # Individuals within the 1-ha strip
  for(t in 1:T) {
    # Distances from point
    d <- runif(M, 0, strip.width)
    # Detection process
    if(length(d)) {
      cp <- phi*exp(-d^2 / (2 * sigma^2))  # half-normal w/ g(0)<1
      d <- d[rbinom(length(d), 1, cp) == 1]
      y[i,,t] <- table(cut(d, breaks, include.lowest=TRUE))
    }
  }
}

y <- matrix(y, nrow=R)  # convert array to matrix

# Organize data
umf <- unmarkedFrameGDS(y = y, survey="line", unitsIn="m",
...
dist.breaks=breaks, tlength=rep(transect.length, R), numPrimary=T)
summary(umf)

# Fit the model
m1 <- gdistsamp(~1, ~1, ~1, umf, output="density", K=50)
summary(m1)

backTransform(m1, type="lambda")
backTransform(m1, type="phi")
backTransform(m1, type="det")

## Not run:
# Empirical Bayes estimates of abundance at each site
re <- ranef(m1)
plot(re, layout=c(10,5), xlim=c(-1, 20))
## End(Not run)

---

getB-methods

Methods for Function getB in Package ‘unmarked’

Description

Methods for function getB in Package ‘unmarked’. These methods return a matrix of probabilities detections were certain for occupancy models that account for false positives.

---

getFP-methods

Methods for Function getFP in Package ‘unmarked’

Description

Methods for function getFP in Package ‘unmarked’. These methods return a matrix of false positive detection probabilities.
getP-methods

Methods for function `getP` in Package ‘unmarked’

Description

Methods for function `getP` in Package ‘unmarked’. These methods return a matrix of detection probabilities.

Methods

- `object = "unmarkedFit"`  A fitted model object
- `object = "unmarkedFitDS"`  A fitted model object
- `object = "unmarkedFitMPois"`  A fitted model object
- `object = "unmarkedFitGMM"`  A fitted model object

gf

Green frog count index data

Description

Multinomial calling index data.

Usage

data(gf)

Format

A list with 2 components

- `gf.data`  220 x 3 matrix of count indices
- `gf.obs`  list of covariates

References


Examples

data(gf)
str(gf.data)
str(gf.obs)
Description

A three level hierarchical model for designs involving repeated counts that yield multinomial outcomes. Possible data collection methods include repeated removal sampling and double observer sampling. The three model parameters are abundance, availability, and detection probability.

Usage

gmultmix(lambdaformula, phiformula, pformula, data, mixture = c("P", "NB"), K, starts, method = "BFGS", se = TRUE, engine=c("C","R"), threads=1, ...)

Arguments

- lambdaformula: Righthand side (RHS) formula describing abundance covariates
- phiformula: RHS formula describing availability covariates
- pformula: RHS formula describing detection covariates
- data: An object of class unmarkedFrameGMM
- mixture: Either "P" or "NB" for Poisson and Negative Binomial mixing distributions.
- K: The upper bound of integration
- starts: Starting values
- method: Optimization method used by optim
- se: Logical. Should standard errors be calculated?
- engine: Either "C" to use fast C++ code or "R" to use native R code during the optimization.
- threads: Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If threads=1 (the default), OpenMP is disabled.
- ...: Additional arguments to optim, such as lower and upper bounds

Details

The latent transect-level super-population abundance distribution \( f(M|\theta) \) can be set as either a Poisson or a negative binomial random variable, depending on the setting of the mixture argument. mixture = "P" or mixture = "NB" select the Poisson or negative binomial distribution respectively. The mean of \( M_i \) is \( \lambda_i \). If \( M_i \sim NB \), then an additional parameter, \( \alpha \), describes dispersion (lower \( \alpha \) implies higher variance).

The number of individuals available for detection at time \( j \) is modeled as binomial: \( N_{ij} \sim Binomial(M_i, \phi_{ij}) \).
The detection process is modeled as multinomial: \( y_{it} \sim \text{Multinomial}(N_{it}, \pi_{ijt}) \), where \( \pi_{ijt} \) is the multinomial cell probability for plot \( i \) at time \( t \) on occasion \( j \).

Cell probabilities are computed via a user-defined function related to the sampling design. Alternatively, the default functions `removalPiFun` or `doublePiFun` can be used for equal-interval removal sampling or double observer sampling. Note that the function for computing cell probabilities is specified when setting up the data using `unmarkedFrameGMM`.

Parameters \( \lambda, \phi \) and \( p \) can be modeled as linear functions of covariates using the log, logit and logit links respectively.

**Value**

An object of class `unmarkedFitGMM`.

**Note**

In the case where availability for detection is due to random temporary emigration, population density at time \( j \), \( D(i,j) \), can be estimated by \( N(i,j)/\text{plotArea} \).

This model is also applicable to sampling designs in which the local population size is closed during the \( J \) repeated counts, and availability is related to factors such as the probability of vocalizing. In this case, density can be estimated by \( M(i)/\text{plotArea} \).

If availability is a function of both temporary emigration and other processes such as song rate, then density cannot be directly estimated, but inference about the super-population size, \( M(i) \), is possible.

Three types of covariates can be supplied, site-level, site-by-year-level, and observation-level. These must be formatted correctly when organizing the data with `unmarkedFrameGPC`.

**Author(s)**

Richard Chandler `<rbchan@uga.edu>` and Andy Royle

**References**


**See Also**

`unmarkedFrameGMM` for setting up the data and metadata. `multinomPois` for surveys where no secondary sampling periods were used. Example functions to calculate multinomial cell probabilities are described `piFuns`.

**Examples**

```r
Simulate data using the multinomial-Poisson model with a
repeated constant-interval removal design.
```
n <- 100  # number of sites
T <- 4    # number of primary periods
J <- 3    # number of secondary periods
lam <- 3
phi <- 0.5
p <- 0.3

#set.seed(26)
y <- array(NA, c(n, T, J))  
M <- rpois(n, lam)           # Local population size
N <- matrix(NA, n, T)       # Individuals available for detection

for(i in 1:n) {
  N[i,] <- rbinom(T, M[i], phi) # Observe some
  y[i,1] <- rbinom(T, N[i,], p)  # Remove them
  Nleft1 <- N[i,] - y[i,1]
  y[i,2] <- rbinom(T, Nleft1, p) # ...
  Nleft2 <- Nleft1 - y[i,2]
  y[i,3] <- rbinom(T, Nleft2, p)
}
y.ijt <- cbind(y[,1,], y[,2,], y[,3,], y[,4,])

umf1 <- unmarkedFrameGMM(y=y.ijt, numPrimary=T, type="removal")

(m1 <- gmultmix(~1, ~1, ~1, data=umf1, K=30))

backTransform(m1, type="lambda")  # Individuals per plot
backTransform(m1, type="phi")     # Probability of being available
(p <- backTransform(m1, type="det"))  # Probability of detection

# Multinomial cell probabilities under removal design
c(p, (1-p) * p, (1-p)^2 * p)

# Or more generally:
head(getP(m1))

# Empirical Bayes estimates of super-population size
re <- ranef(m1)
plot(re, layout=c(5,5), xlim=c(-1,20), subset=site%in%1:25)

---

gpcount

Generalized binomial N-mixture model for repeated count data
**Description**

Fit the model of Chandler et al. (2011) to repeated count data collected using the robust design. This model allows for inference about population size, availability, and detection probability.

**Usage**

```r
gpcount(lambdaformula, phiformula, pformula, data, mixture = c("P", "NB"), K, starts, method = "BFGS", se = TRUE, engine = c("C", "R"), threads=1, ...)
```

**Arguments**

- `lambdaformula`: Right-hand sided formula describing covariates of abundance.
- `phiformula`: Right-hand sided formula describing availability covariates.
- `pformula`: Right-hand sided formula for detection probability covariates.
- `data`: An object of class `unmarkedFrameGPC`.
- `mixture`: Either "P" or "NB" for Poisson and negative binomial distributions.
- `K`: The maximum possible value of M, the super-population size.
- `starts`: Starting values.
- `method`: Optimization method used by `optim`.
- `se`: Logical. Should standard errors be calculated?
- `engine`: Either "C" or "R" for the C++ or R versions of the likelihood. The C++ code is faster, but harder to debug.
- `threads`: Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If `threads=1` (the default), OpenMP is disabled.
- `...`: Additional arguments to `optim`, such as lower and upper bounds.

**Details**

The latent transect-level super-population abundance distribution $f(M|\theta)$ can be set as either a Poisson or a negative binomial random variable, depending on the setting of the `mixture` argument. The expected value of $M_i$ is $\lambda_i$. If $M_i \sim NB$, then an additional parameter, $\alpha$, describes dispersion (lower $\alpha$ implies higher variance).

The number of individuals available for detection at time $j$ is modeled as binomial: $N_{ij} \sim Binomial(M_{ij}, \phi_{ij})$.

The detection process is also modeled as binomial: $y_{ikj} \sim Binomial(N_{ij}, p_{ikj})$.

Parameters $\lambda$, $\phi$ and $p$ can be modeled as linear functions of covariates using the log, logit and logit links respectively.

**Value**

An object of class `unmarkedFitGPC`. 
Note

In the case where availability for detection is due to random temporary emigration, population density at time \( j \), \( D(i,j) \), can be estimated by \( N(i,j)/\text{plotArea} \).

This model is also applicable to sampling designs in which the local population size is closed during the \( J \) repeated counts, and availability is related to factors such as the probability of vocalizing. In this case, density can be estimated by \( M(i)/\text{plotArea} \).

If availability is a function of both temporary emigration and other processes such as song rate, then density cannot be directly estimated, but inference about the super-population size, \( M(i) \), is possible.

Three types of covariates can be supplied, site-level, site-by-year-level, and observation-level. These must be formatted correctly when organizing the data with \texttt{unmarkedFrameGPC}.

Author(s)

Richard Chandler <rbchan@uga.edu>

References


See Also

\texttt{gmultmix}, \texttt{gdistsamp}, \texttt{unmarkedFrameGPC}

Examples

```r
set.seed(54)

nSites <- 20
nVisits <- 4
nReps <- 3

lambda <- 5
phi <- 0.7
p <- 0.5

M <- rpois(nSites, lambda) # super-population size

N <- matrix(NA, nSites, nVisits)
y <- array(NA, c(nSites, nReps, nVisits))
for(i in 1:nVisits) {
 N[,i] <- rbinom(nSites, M, phi) # population available during visit j
}
colMeans(N)

for(i in 1:nSites) {
```
for(j in 1:nVisits) {
    y[i,,j] <- rbinom(nReps, N[i,j], p)
}

ym <- matrix(y, nSites)
ym[1,] <- NA
ym[2, 1:nReps] <- NA
ym[3, (nReps+1):(nReps+nReps)] <- NA
umf <- unmarkedFrameGPC(y=ym, numPrimary=nVisits)

## Not run:
fmu <- gpcount(~1, ~1, ~1, umf, K=40, control=list(trace=TRUE, REPORT=1))
backTransform(fmu, type="lambda")
backTransform(fmu, type="phi")
backTransform(fmu, type="det")

## End(Not run)

---

**imputeMissing**  
*A function to impute missing entries in continuous obsCovs*

**Description**

This function uses an ad-hoc averaging approach to impute missing entries in obsCovs. The missing entry is replaced by an average of the average for the site and the average for the visit number.

**Usage**

```
imputeMissing(umf, whichCovs = seq(length=ncol(obsCovs(umf))))
```

**Arguments**

- `umf`  
  The data set who’s obsCovs are being imputed.
- `whichCovs`  
  An integer vector giving the indices of the covariates to be imputed. This defaults to all covariates in obsCovs.

**Value**

A version of `umf` that has the requested obsCovs imputed.

**Author(s)**

Ian Fiske
Examples

data(frogs)
pcru.obscovs <- data.frame(MinAfterSunset=as.vector(t(pcru.data[,1]))),
Wind=as.vector(t(pcru.data[,2])),
Sky=as.vector(t(pcru.data[,3])),
Temperature=as.vector(t(pcru.data[,4])))
pcruUMF <- unmarkedFrameOccu(y = pcru.bin, obsCovs = pcru.obscovs)
pcruUMF.i1 <- imputeMissing(pcruUMF)
pcruUMF.i2 <- imputeMissing(pcruUMF, whichCovs = 2)

issj  Distance-sampling data for the Island Scrub Jay (Aphelocoma insularis)

Description

Data were collected at 307 survey locations ("point transects") on Santa Cruz Island, California during the Fall of 2008. The distance data are binned into 3 distance intervals [0-100], (100-200], and (200-300]. The coordinates of the survey locations as well as 3 habitat covariates are also included.

Usage

data(issj)

Format

A data frame with 307 observations on the following 8 variables.

issj[0-100] Number of individuals detected within 100m
issj[100-200] Detections in the interval (100-200m]
issj[200-300] Detections in the interval (200-300m]
x Easting (meters)
y Northing (meters)
elevation Elevation in meters
forest Forest cover
chaparral Chaparral cover

References

See Also

Island-wide covariates are also available cruz

Examples

data(issj)
str(issj)
head(issj)

umf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]), siteCovs=issj[,6:8],
dist.breaks=c(0,100,200,300), unitsIn="m", survey="point")
summary(umf)

European Jay data from the Swiss Breeding Bird Survey 2002

Description

The Swiss breeding bird survey ("Monitoring Haufige Brutvogel" MHB) has monitored the populations of 150 common species since 1999. The MHB sample consists of 267 1-km squares that are laid out as a grid across Switzerland. Fieldwork is conducted by about 200 skilled birdwatchers, most of them volunteers. Avian populations are monitored using a simplified territory mapping protocol, where each square is surveyed up to three times during the breeding season (only twice above the tree line). Surveys are conducted along a transect that does not change over the years.

The list jay has the data for European Jay territories for 238 sites surveyed in 2002.

Usage

data("jay")

Format

jay is a list with 3 elements:

caphist  a data frame with rows for 238 sites and columns for each of the observable detection histories. For the sites visited 3 times, these are "100", "010", "001", "110", "101", "011", "111". Sites visited twice have "10x", "01x", "11x". Each row gives the number of territories with the corresponding detection history, with NA for the detection histories not applicable: sites visited 3 times have NAs in the last 3 columns while those visited twice have NAs in the first 7 columns.

sitescovs  a data frame with rows for 238 sites, and the following columns:

1. elev : the mean elevation of the quadrat, m.
2. length : the length of the route walked in the quadrat, km.
3. forest : percentage forest cover.

covinfo  a data frame with rows for 238 sites, and the following columns:
1. x, y : the coordinates of the site.
2. date1, date2, date3 : the Julian date of the visit, with 1 April = 1. Sites visited twice have NA in the 3rd column.
3. dur1, dur2, dur3 : the duration of the survey, mins. For 10 visits the duration is not available, so there are additional NAs in these columns.

Note

In previous versions, jay had additional information not required for the analysis, and a data frame with essentially the same information as the Switzerland data set.

Source

Swiss Ornithological Institute

References


Kery & Royle (2016) Applied Hierarchical Modeling in Ecology Section 7.9

Examples

data(jay)
str(jay)

# Carry out a simple analysis, without covariates:
# Create a customised piFun (see ?piFun for details)
crPiFun <- function(p) {
  p1 <- p[,1] # Extract the columns of the p matrix, one for
  p2 <- p[,2] # each of J = 3 sample occasions
  p3 <- p[,3]
  cbind(  # define multinomial cell probabilities:
    "100" = p1 * (1-p2) * (1-p3),
    "010" = (1-p1) * p2 * (1-p3),
    "001" = (1-p1) * (1-p2) * p3,
    "110" = p1 * p2 * (1-p3),
    "101" = p1 * (1-p2) * p3,
    "011" = (1-p1) * p2 * p3,
    "111" = p1 * p2 * p3,
    "10x" = p1*(1-p2),
    "01x" = (1-p1)*p2,
    "11x" = p1*p2)
}

# Build the unmarkedFrame object
mhb.umf <- unmarkedFrameMPois(y=as.matrix(jay$caphist),
  obsToY=matrix(1, 3, 10), piFun="crPiFun")
# Fit a model
(fml <- multinomPois(~1 ~1, mhb.umf) )
\textbf{Description}

Abundance and occurrence are fundamentally related.

\textbf{Usage}

\begin{verbatim}
lambda2psi(lambda)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
  \item \texttt{lambda} \hspace{1cm} Numeric vector with values \(\geq 0\)
\end{itemize}

\textbf{Value}

A vector of psi values of the same length as lambda.

\textbf{See Also}

\texttt{pcount}, \texttt{multinomPois}, \texttt{distsamp}

\textbf{Examples}

\begin{verbatim}
lambda2psi(0:5)
\end{verbatim}

\textbf{linearComb-methods}

\textit{Methods for Function linearComb in Package `unmarked`}

\textbf{Description}

Methods for function \texttt{linearComb} in Package `unmarked`

\textbf{Methods}

\texttt{obj = "unmarkedEstimate", coefficients = "matrixOrVector"} Typically called internally

\texttt{obj = "unmarkedFit", coefficients = "matrixOrVector"} Returns linear combinations of parameters from a fitted model. Coefficients are supplied through \texttt{coefficients}. The required argument type specifies which model estimate to use. You can use \texttt{names(fittedmodel)} to view possible values for the type argument.
Examples

data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs = as.data.frame(scale(ovendata.list$covariates[, -1])), type = "removal")
fml <- multinomPois(~ 1 ~ ufc + trba, ovenFrame)
linearComb(fml, c(1, 0.5, 0.5), type = "state")
linearComb(fml, matrix(c(1, 0.5, 0.5, 1, 0, 0, 1, 0, 0.5), 3, 3,
byrow=TRUE), type="state")

linetran Simulated line transect data

Description

Response matrix of animals detected in four distance classes plus transect lengths and two covariates.

Usage

data(linetran)

Format

A data frame with 12 observations on the following 7 variables.

dc1 Counts in distance class 1 [0-5 m)
dc2 Counts in distance class 2 [5-10 m)
dc3 Counts in distance class 3 [10-15 m)
dc4 Counts in distance class 4 [15-20 m)
Length Transect lengths in km
area Numeric covariate
habitat a factor with levels A and B

Examples

data(linetran)

# Format for distsamp()
litUMF <- with(linetran, {
  unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
  siteCovs = data.frame(Length, area, habitat),
  dist.breaks = c(0, 5, 10, 15, 20),
  tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")
})
**Description**

These are factory functions that generate piFuns with the required defaults, which are enclosed within the environment of the piFun. See the main entry for piFuns.

**Usage**

- `makeRemPiFun(times)`
- `makeCrPiFun(nOcc)`
- `makeCrPiFunMb(nOcc)`
- `makeCrPiFunMh(nOcc)`

**Arguments**

- `times` a vector of times for each interval, `length(times)` is the number of survey occasions; can be all 1’s if times are the same.
- `nOcc` the number of survey occasions

**Details**

- `makeRemPiFun` produces a piFun for a removal model with the required number of occasions and potentially varying time intervals. The input to the piFun must be probabilities per unit time. This is a generalisation of the piFun in the Examples section of piFuns.
- `makeCrPiFun` produces a piFun for a standard capture-recapture model, M0, Mt or Mx. Probabilities of detection may vary across occasions. See Kery & Royle (2016) section 7.8.1.
- `makeCrPiFunMb` produces a piFun for a capture-recapture model with a behavioral response after the first capture, Mb. Probabilities of detection are constant across occasions. The first column is the probability of detection for animals not caught before, column #2 is for animals after the first capture. The remaining columns are ignored. See Kery & Royle (2016) section 7.8.2.
- `makeCrPiFunMh` produces a piFun for a capture-recapture model with individual heterogeneity in detection probability, Mh, using a logit-normal distribution. Probabilities of detection are constant across occasions. The first column is the mean of the logit-normal on the probability scale. Cell p[1, 2] is a value in [0, 1] which controls the spread of the distribution. The remaining cells are ignored. See Kery & Royle (2016) section 7.8.3.

**Value**

A piFun with the appropriate defaults.

**References**

Examples

# Generate piFuns and check their behaviour:

# makeRemPiFun
# ============
(pRem <- matrix(0.4, nrow=5, ncol=3))
myPi <- makeRemPiFun(times=c(2,3,5))
myPi(pRem)
ls(environment(myPi)) # See what's in the environment
environment(myPi)$times

(pRem <- matrix(runif(15), 5, 3))
myPi(pRem)
myPi <- makeRemPiFun(c(5,3,2))
environment(myPi)$times
myPi(pRem)

# More than 3 occasions
myPi <- makeRemPiFun(c(1,2,3,5))
try(myPi(pRem)) # Error
(pRem <- matrix(runif(20), 5, 4))
myPi(pRem)
# Probability of escaping detection
1 - rowSums(myPi(pRem))

# makeCrPiFun
# ===========
p <- matrix(0.4, 2, 3)
myPi <- makeCrPiFun(3)
myPi(p)
myPi # Look at the function
ls(environment(myPi))
environment(myPi)$histories

p <- matrix(runif(6, 0.1, 0.9), 2, 3) # different p's everywhere
myPi(p)

p <- matrix(runif(4*5, 0.1, 0.9), 4, 5) # > 3 occasions
try(myPi(p)) # Error
myPi <- makeCrPiFun(5)
(tmp <- myPi(p))
1 - rowSums(tmp) # Probability of non-capture

# makeCrPiFunMb
# ==============
(pMb <- cbind(rep(0.7, 5), 0.3, NA))
myPi <- makeCrPiFunMb(3)
myPi(pMb)

(pMb <- matrix(runif(15), 5, 3)) # col #3 will be ignored
myPi(pMb)
mallard

mallard <- matrix(runif(15), 3, 5)
try(myPi(pMb))
myPi <- makeCrPiFunMb(5)
myPi(pMb)

# makeCrPiFunMb
# =============
pMh <- cbind(rep(0.4, 5), NA, NA)
pMh[1, 2] <- 0.3
pMh
myPi <- makeCrPiFunMb(3)
myPi(pMh)
pMh <- cbind(runif(5), NA, NA)
pMh[1, 2] <- 0.3
pMh
myPi(pMh)

# with > 3 occasions
pMh <- cbind(runif(5), NA, NA, NA, NA)
pMh[1, 2] <- 0.3
pMh
try(myPi(pMh))
myPi <- makeCrPiFunMb(5)
1 - rowSums(myPi(pMh)) # Probability of non-detection

mallard <- Mallard count data

Description

Mallard repeated count data and covariates

Usage

data(mallard)

Format

A list with 3 components

- mallard.y response matrix
- mallard.site site-specific covariates
- mallard.obs survey-specific covariates

References

Examples

data(mallard)
str(mallard.y)
str(mallard.site)
str(mallard.obs)

masspcru  
Massachusetts North American Amphibian Monitoring Program Data

Description

masspcru contains NAAMP data for Pseudacris crucifer (pcru) in Massachusetts from 2001 to 2007 in the raw long format.

Usage

data(masspcru)

Format

Data frame with

SurveyYear  Year of data collection.
RouteNumStopNum  Stop number.
JulianDate  Day of year.
Pcru  Observed calling index.
MinAfterSunset  Minutes after sunset of the observation.
Temperature  Temperature measured during observation.

Details

These data come from the North American Amphibian Monitoring Program. Please see the reference below for more details.

Source

https://www.pwrc.usgs.gov/naamp/

References


Examples

data(masspcru)
str(masspcru)
MesoCarnivores

Occupancy data for coyote, red fox, and bobcat

Description

Occupancy data and site covariates for coyote, red fox, and bobcat from 1437 camera trap sites sampled 3 times. Each sampling period represents one week. This data is a simplified form of the dataset used by Rota et al. (2016).

Usage

data(MesoCarnivores)

Format

A list with four elements:

bobcat A 1437x3 occupancy matrix for bobcat
coyote A 1437x3 occupancy matrix for coyote
redfox A 1437x3 occupancy matrix for red fox
sitecovs A data frame containing covariates for the 1437 sites, with the following columns:
  • Dist_5km Proportion of disturbed land in 5 km radius
  • HDens_5km Housing density in 5 km radius
  • Latitude Latitude / 100
  • Longitude Longitude / 100
  • People_site Number of photos of people at site / 1000
  • Trail 1 if camera was on trail, 0 if not

Source

Used with permission of Roland Kays and Arielle Parsons at North Carolina State University and the North Carolina Museum of Natural Sciences.

References

Description

Model selection results from an unmarkedFitList

Arguments

object: an object of class "unmarkedFitList" created by the function fitList.
nullmod: optional character naming which model in the fitList contains results from the null model. Only used in calculation of Nagelkerke’s R-squared index.

Value

A S4 object with the following slots

Full: data.frame with formula, estimates, standard errors and model selection information. Converge is optim convergence code. CondNum is model condition number. n is the number of sites. delta is delta AIC. cumltvWt is cumulative AIC weight. Rsq is Nagelkerke’s (1991) R-squared index, which is only returned when the nullmod argument is specified.

Names: matrix referencing column names of estimates (row 1) and standard errors (row 2).

Note

Two requirements exist to conduct AIC-based model-selection and model-averaging in unmarked. First, the data objects (ie, unmarkedFrames) must be identical among fitted models. Second, the response matrix must be identical among fitted models after missing values have been removed. This means that if a response value was removed in one model due to missingness, it needs to be removed from all models.

Author(s)

Richard Chandler <rbchan@uga.edu>

References

Examples

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
  unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
  siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
  tlength = lengths, survey = "line", unitsIn = "m")
})

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp(~ 1 ~area, ltUMF)

fl <- fitList(Null=fm1, A.=fm2, .A=fm3)
fl

ms <- modSel(fl, nullmod="Null")
ms

coef(ms) # Estimates only
SE(ms) # Standard errors only
(toExport <- as(ms, "data.frame")) # Everything


multinomPois

Multinomial-Poisson Mixtures Model

Description

Fit the multinomial-Poisson mixture model to data collected using survey methods such as removal
sampling or double observer sampling.

Usage

multinomPois(formula, data, starts, method = "BFGS",
  se = TRUE, engine=c("C","R","TMB"), ...)

Arguments

formula double right-hand side formula for detection and abundance covariates, in that order.
data unmarkedFrame supplying data.
starts vector of starting values.
method Optimization method used by optim.
se logical specifying whether or not to compute standard errors.
Either "C" to use fast C++ code or "R" to use native R code during the optimization.

Additional arguments to optim, such as lower and upper bounds

Details

This function takes advantage of the closed form of the integrated likelihood when a latent Poisson distribution is assumed for abundance at each site and a multinomial distribution is taken for the observation state. Many common sampling methods can be framed in this context. For example, double-observer point counts and removal sampling can be analyzed with this function by specifying the proper multinomial cell probabilities. This is done with by supplying the appropriate function (piFun) argument. removalPiFun and doublePiFun are supplied as example cell probability functions.

Value

unmarkedFit object describing the model fit.

Author(s)

Ian Fiske

References


See Also

piFuns, unmarkedFrameMPois

Examples

# Simulate independent double observer data
nSites <- 50
lambda <- 10
p1 <- 0.5
p2 <- 0.3
cp <- c(p1*(1-p2), p2*(1-p1), p1*p2)
set.seed(9023)
N <- rpois(nSites, lambda)
y <- matrix(NA, nSites, 3)
for(i in 1:nSites) {
  y[i,] <- rmultinom(1, N[i], c(cp, 1-sum(cp)))[1:3]
}

# Fit model
multimixOpen

### Open population multinomial N-mixture model

**Description**

Fit the model of Dail and Madsen (2011) and Hostetler and Chandler (2015) for designs involving repeated counts that yield multinomial outcomes. Possible data collection methods include repeated removal sampling and double observer sampling.

**Usage**

```r
multimixOpen(lambdaformula, gammaformula, omegaformula, pformula, data, mixture=c("P", "NB", "ZIP"), K, dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"),
```
fix=c("none", "gamma", "omega"), immigration=FALSE, iotaformula = ~1,
starts, method="BFGS", se=TRUE, ...)

Arguments

lambdaformula Right-hand sided formula for initial abundance

gammaformula Right-hand sided formula for recruitment rate (when dynamics is "constant",
"autoreg", or "notrend") or population growth rate (when dynamics is "trend",
"ricker", or "gompertz")

omegaformula Right-hand sided formula for apparent survival probability (when dynamics is
"constant", "autoreg", or "notrend") or equilibrium abundance (when dynamics
is "ricker" or "gompertz")

pformula A right-hand side formula describing the detection function covariates

data An object of class unmarkedFrameMMO

mixture String specifying mixture: "P", "NB", or "ZIP" for the Poisson, negative binomial,
or zero-inflated Poisson distributions respectively

K Integer defining upper bound of discrete integration. This should be higher than
the maximum observed count and high enough that it does not affect the parameter estimates. However, the higher the value the slower the computation

dynamics Character string describing the type of population dynamics. "constant" indicates that there is no relationship between omega and gamma. "autoreg" is
an auto-regressive model in which recruitment is modeled as gamma*N[i,t-1].
"notrend" model gamma as lambda*(1-omega) such that there is no temporal trend. "trend" is a model for exponential growth, N[i,t] = N[i,t-1]*gamma, where gamma in this case is finite rate of increase (normally referred to as lambda). "ricker" and "gompertz" are models for density-dependent population growth. "ricker" is the Ricker-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-
N[i,t-1]/omega)), where gamma is the maximum instantaneous population growth rate (normally referred to as r) and omega is the equilibrium abundance (normally referred to as K). "gompertz" is a modified version of the Gompertz-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-
log(N[i,t-1]+1)/log(omega+1))), where the interpretations of gamma and omega are similar to in the Ricker model

fix If "omega", omega is fixed at 1. If "gamma", gamma is fixed at 0

immigration Logical specifying whether or not to include an immigration term (iota) in population dynamics

iotaformula Right-hand sided formula for average number of immigrants to a site per time step

starts Vector of starting values

method Optimization method used by optim

se Logical specifying whether or not to compute standard errors

... Additional arguments to optim, such as lower and upper bounds
Details

These models generalize multinomial N-mixture models (Royle et al. 2004) by relaxing the closure assumption (Dail and Madsen 2011, Hostetler and Chandler 2015, Sollmann et al. 2015).

The models include two or three additional parameters: gamma, either the recruitment rate (births and immigrations), the finite rate of increase, or the maximum instantaneous rate of increase; omega, either the apparent survival rate (deaths and emigrations) or the equilibrium abundance (carrying capacity); and iota, the number of immigrants per site and year. Estimates of population size at each time period can be derived from these parameters, and thus so can trend estimates. Or, trend can be estimated directly using dynamics="trend".

When immigration is set to FALSE (the default), iota is not modeled. When immigration is set to TRUE and dynamics is set to "autoreg", the model will separately estimate birth rate (gamma) and number of immigrants (iota). When immigration is set to TRUE and dynamics is set to "trend", "ricker", or "gompertz", the model will separately estimate local contributions to population growth (gamma and omega) and number of immigrants (iota).

The latent abundance distribution, \( f(N|\theta) \) can be set as a Poisson, negative binomial, or zero-inflated Poisson random variable, depending on the setting of the mixture argument, \( \text{mixture} = "P", \text{mixture} = "NB", \text{mixture} = "ZIP" \) respectively. For the first two distributions, the mean of \( N_i \) is \( \lambda_i \). If \( N_i \sim NB \), then an additional parameter, \( \alpha \), describes dispersion (lower \( \alpha \) implies higher variance). For the ZIP distribution, the mean is \( \lambda_i(1 - \psi) \), where psi is the zero-inflation parameter.

For "constant", "autoreg", or "notrend" dynamics, the latent abundance state following the initial sampling period arises from a Markovian process in which survivors are modeled as \( S_{it} \sim \text{Binomial}(N_{it-1}, \omega_{it}) \), and recruits follow \( G_{it} \sim \text{Poisson}(\gamma_{it}) \). Alternative population dynamics can be specified using the dynamics and immigration arguments.

\( \lambda_i, \gamma_{it}, \text{and } \iota_{it} \) are modeled using the the log link. \( \omega_{it} \) is modeled using the logit link. \( \omega_{it} \) is either modeled using the logit link (for "constant", "autoreg", or "notrend" dynamics) or the log link (for "ricker" or "gompertz" dynamics). For "trend" dynamics, \( \omega_{it} \) is not modeled.

The detection process is modeled as multinomial: \( y_{it} \sim \text{Multinomial}(N_{it}, \pi_{it}) \), where \( \pi_{ijt} \) is the multinomial cell probability for plot \( i \) at time \( t \) on occasion \( j \).

Options for the detection process include equal-interval removal sampling ("removal"), double observer sampling ("double"), or dependent double-observer sampling ("depDouble"). This option is specified when setting up the data using \texttt{unmarkedFrameMMO}. Note that unlike the related functions \texttt{multinomPois} and \texttt{gmultmix}, custom functions for the detection process (i.e., \texttt{piFuns}) are not supported. To request additional options contact the author.

Value

An object of class \texttt{unmarkedFitMMO}

Warning

This function can be extremely slow, especially if there are covariates of gamma or omega. Consider testing the timing on a small subset of the data, perhaps with \texttt{se=FALSE}. Finding the lowest value of K that does not affect estimates will also help with speed.
Note

When gamma or omega are modeled using year-specific covariates, the covariate data for the final year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be supplied to unmarkedFrameMMO using the primaryPeriod argument.

Secondary sampling periods are optional, but can greatly improve the precision of the estimates.

Author(s)

Ken Kellner <contact@kenkellner.com>, Richard Chandler

References


See Also

multinomPois, gmultmix, unmarkedFrameMMO

Examples

```r
#Generate some data
set.seed(123)
lambda=4; gamma=0.5; omega=0.8; p=0.5
M <- 100; T <- 5
y <- array(NA, c(M, 3, T))
N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)
for(i in 1:M) {
 N[i,1] <- rpois(1, lambda)
y[i,1,1] <- rbinom(1, N[i,1], p) # Observe some
 Nleft1 <- N[i,1] - y[i,1,1] # Remove them
 y[i,2,1] <- rbinom(1, Nleft1, p) # ...
y[i,2,1] <- rbinom(1, Nleft1, p) # ...
 Nleft2 <- Nleft1 - y[i,2,1]
y[i,3,1] <- rbinom(1, Nleft2, p)
}
for(t in 1:(T-1)) {
 S[i,t] <- rbinom(1, N[i,t], omega)
 G[i,t] <- rpois(1, gamma)
 N[i,t+1] <- S[i,t] + G[i,t]
y[i,1,t+1] <- rbinom(1, N[i,t+1], p) # Observe some
 Nleft1 <- N[i,t+1] - y[i,1,t+1] # Remove them
```

nmixTTD

Fit N-mixture Time-to-detection Models

Description

Fit N-mixture models with time-to-detection data.

Usage

```
nmixTTD(stateformula = ~1, detformula = ~1, data, K=100, mixture = c("P","NB"), ttdDist = c("exp", "weibull"), starts, method="BFGS", se=TRUE, engine = c("C", "R"), threads = 1, ...)
```
Arguments

- `stateformula` Right-hand sided formula for the abundance at each site.
- `detformula` Right-hand sided formula for mean time-to-detection.
- `data` `unmarkedFrameOccuTTD` object that supplies the data (see `unmarkedFrameOccuTTD`). Note that only single-season models are supported by `nmixTTD`.
- `K` The upper summation index used to numerically integrate out the latent abundance. This should be set high enough so that it does not affect the parameter estimates. Computation time will increase with K.
- `mixture` String specifying mixture distribution: "P" for Poisson or "NB" for negative binomial.
- `ttdDist` Distribution to use for time-to-detection; either "exp" for the exponential, or "weibull" for the Weibull, which adds an additional shape parameter k.
- `starts` optionally, initial values for parameters in the optimization.
- `method` Optimization method used by `optim`.
- `se` logical specifying whether or not to compute standard errors.
- `engine` Either "C" or "R" to use fast C++ code or native R code during the optimization.
- `threads` Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If `threads=1` (the default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

This model extends time-to-detection (TTD) occupancy models to estimate site abundance using data from single or repeated visits. Latent abundance can be modeled as Poisson (mixture="P") or negative binomial (mixture="NB"). Time-to-detection can be modeled as an exponential (ttdDist="exp") or Weibull (ttdDist="weibull") random variable with rate parameter \( \lambda \) and, for the Weibull, an additional shape parameter \( k \). Note that `occuTTD` puts covariates on \( \lambda \) and not \( 1/\lambda \), i.e., the expected time between events.

Assuming that there are \( N \) independent individuals at a site, and all individuals have the same individual detection rate, the expected detection rate across all individuals \( \lambda \) is equal to the the individual-level detection rate \( r \) multiplied by the number of individuals present \( N \).

In the case where there are no detections before the maximum sample time at a site (surveyLength) is reached, we are not sure if the site has \( N = 0 \) or if we just didn’t wait long enough for a detection. We therefore must censor (C the exponential or Weibull distribution at the maximum survey length, \( T_{max} \). Thus, assuming true abundance at site \( i \) is \( N_i \), and an exponential distribution for the TTD \( y_i \) (parameterized with the rate), then:

\[
y_i \sim \text{Exponential}(r_i \ast N_i)C(T_{max})
\]

Note that when \( N_i = 0 \), the exponential rate \( \lambda \) = 0 and the scale is therefore \( 1/0 = \text{Inf} \), and thus the value will be censored at \( T_{max} \).
Because in unmarked values of NA are typically used to indicate missing values that were a result of the sampling structure (e.g., lost data), we indicate a censored \( y_i \) in \texttt{nmixTTD} instead by setting \( y_i = T_{max} \), in the \texttt{y} matrix provided to \texttt{unmarkedFrameOccuTTD}. You can provide either a single value of \( T_{max} \) to the surveyLength argument of \texttt{unmarkedFrameOccuTTD}, or provide a matrix, potentially with a unique value of \( T_{max} \) for each value of \( y \). Note that in the latter case the value of \( y \) that will be interpreted by \texttt{nmixTTD} as a censored observation (i.e., \( T_{max} \)) will differ between observations!

\section*{Value}

\texttt{unmarkedFitNmixTTD} object describing model fit.

\section*{Author(s)}

Ken Kellner <contact@ken kellner.com>

\section*{References}


\section*{See Also}

\texttt{unmarked}, \texttt{unmarkedFrameOccuTTD}

\section*{Examples}

```r
Not run:

Simulate data
M = 1000 # Number of sites
nrep <- 3 # Number of visits per site
Tmax = 5 # Max duration of a visit
alpha1 = -1 # Covariate on rate
beta1 = 1 # Covariate on density
mu.lambda = 1 # Rate at alpha1 = 0
mu.dens = 1 # Density at beta1 = 0

covDet <- matrix(rnorm(M*nrep), nrow = M, ncol = nrep) #Detection covariate
covDens <- rnorm(M) #Abundance/density covariate
dens <- exp(log(mu.dens) + beta1 * covDens)
sum(N <- rpois(M, dens)) # Realized density per site
lambda <- exp(log(mu.lambda) + alpha1 * covDet) # per-individual detection rate
ttd <- NULL
for(i in 1:nrep) {
 ttd <- cbind(ttd, rexp(M, N*lambda[,i])) # Simulate time to first detection per visit
}
ttd[N == 0,] <- 5 # Not observed where N = 0; ttd set to Tmax
ttd[ttd >= Tmax] <- 5 # Crop at Tmax

#Build unmarked frame
```
nonparboot-methods

Nonparametric bootstrapping in unmarked

Description

Call nonparboot on an unmarkedFit to obtain non-parametric bootstrap samples. These can then be used by vcov in order to get bootstrap estimates of standard errors.

Details

Calling nonparboot on an unmarkedFit returns the original unmarkedFit, with the bootstrap samples added on. Then subsequent calls to vcov with the argument method="nonparboot" will use these bootstrap samples. Additionally, standard errors of derived estimates from either linearComb or backTransform can be instructed to use bootstrap samples by providing the argument method = "nonparboot".

For occu and occuRN both sites and occasions are re-sampled. For all other fitting functions, only sites are re-sampled.

Methods

signature(object = "unmarkedFit") Obtain nonparametric bootstrap samples for a general unmarkedFit.

signature(object = "unmarkedFitColExt") Obtain nonparametric bootstrap samples for colext fits.

signature(object = "unmarkedFitDS") Obtain nonparametric bootstrap samples for a distsamp fits.

signature(object = "unmarkedFitMPois") Obtain nonparametric bootstrap samples for a distsamp fits.

signature(object = "unmarkedFitOccu") Obtain nonparametric bootstrap samples for a occu fits.
signature(object = "unmarkedFitOccuPEN") Obtain nonparametric bootstrap samples for an
occuPEN fit.

signature(object = "unmarkedFitOccuPEN_CV") Obtain nonparametric bootstrap samples for
occuPEN_CV fit.

signature(object = "unmarkedFitOccuRN") Obtain nonparametric bootstrap samples for a oc-
cuRN fits.

signature(object = "unmarkedFitPCount") Obtain nonparametric bootstrap samples for a pcount
fits.

Examples

data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
   siteCovs=as.data.frame(scale(ovendata.list$covariates[, -1])), type = "removal")
(fm <- multinomPois(~ 1 ~ ufc + trba, ovenFrame))
fm <- nonparboot(fm, B = 20) # should use larger B in real life.
vcov(fm, method = "hessian")
vcov(fm, method = "nonparboot")
avg.abundance <- backTransform(linearComb(fm, type = "state", coefficients = c(1, 0, 0)))

## Bootstrap sample information propagates through to derived quantities.
vcov(avg.abundance, method = "hessian")
vcov(avg.abundance, method = "nonparboot")
SE(avg.abundance, method = "nonparboot")

occu

Fit the MacKenzie et al. (2002) Occupancy Model

Description

This function fits the single season occupancy model of MacKenzie et al (2002).

Usage

occu(formula, data, knownOcc=numeric(0), linkPsi=c("logit", "cloglog"),
   starts, method="BFGS", se=TRUE, engine=c("C", "R", "TMB"),
   threads = 1, ...)

Arguments

formula Double right-hand side formula describing covariates of detection and occup-
       pancy in that order.
data An unmarkedFrameOccu object
knownOcc Vector of sites that are known to be occupied. These should be supplied as row
       numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a
       priori.
linkPsi Link function for the occupancy model. Options are "logit" for the standard occupancy model or "cloglog" for the complimentary log-log link, which relates occupancy to site-level abundance. See details.

starts Vector of parameter starting values.

method Optimization method used by optim.

se Logical specifying whether or not to compute standard errors.

engine Code to use for optimization. Either "C" for fast C++ code, "R" for native R code, or "TMB" for Template Model Builder. "TMB" is used automatically if your formula contains random effects.

threads Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If threads=1 (the default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccu for a description of how to supply data to the data argument.

occu fits the standard occupancy model based on zero-inflated binomial models (MacKenzie et al. 2006, Royle and Dorazio 2008). The occupancy state process \( z_i \) of site \( i \) is modeled as

\[
z_i \sim \text{Bernoulli}(\psi_i)
\]

The observation process is modeled as

\[
y_{ij} | z_i \sim \text{Bernoulli}(z_i p_{ij})
\]

By default, covariates of \( \psi_i \) and \( p_{ij} \) are modeled using the logit link according to the formula argument. The formula is a double right-hand sided formula like \(~ \text{detform} \sim \text{occform}~\) where \text{detform} is a formula for the detection process and \text{occform} is a formula for the partially observed occupancy state. See formula for details on constructing model formulae in R.

When linkPsi = "cloglog", the complimentary log-log link function is used for psi instead of the logit link. The cloglog link relates occupancy probability to the intensity parameter of an underlying Poisson process (Kery and Royle 2016). Thus, if abundance at a site is can be modeled as \( N_i \sim \text{Poisson}(\lambda_i) \), where \( \log(\lambda_i) = \alpha + \beta \times x \), then presence/absence data at the site can be modeled as \( Z_i \sim \text{Binomial}(\psi_i) \) where \( \text{cloglog}(\psi_i) = \alpha + \beta \times x \).

Value

unmarkedFitOccu object describing the model fit.

Author(s)

Ian Fiske
References


See Also

`unmarked, unmarkedFrameOccu, modSel, parboot`

Examples

data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
plot(pferUMF, panels=4)
  # add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)))

  # observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF)))

  (fm <- occu(~ obsvar1 ~ 1, pferUMF))

  confint(fm, type='det', method = 'normal')
  confint(fm, type='det', method = 'profile')

  # estimate detection effect at obsvars=0.5
  (lc <- linearComb(fm[['det']],c(1,0.5)))

  # transform this to probability (0 to 1) scale and get confidence limits
  (btlc <- backTransform(lc))
  confint(btlc, level = 0.9)

  # Empirical Bayes estimates of proportion of sites occupied
  re <- ranef(fm)
  sum(bup(re, stat="mode"))

---

`occuFP`  
*Fit occupancy models when false positive detections occur (e.g., Royle and Link [2006] and Miller et al. [2011]).*
Description
This function fits the single season occupancy model while allowing for false positive detections.

Usage

occuFP(detformula = ~ 1, FPformula = ~ 1, Bformula = ~ 1, stateformula = ~ 1, data, starts, method="BFGS", se = TRUE, engine = "R", ...)

Arguments

detformula         formula describing covariates of detection.
FPformula          formula describing covariates of false positive detection probability.
Bformula           formula describing covariates of probability detections are certain.
stateformula       formula describing covariates of occupancy.
data               An unmarkedFrameOccuFP object
starts             Vector of parameter starting values.
method             Optimization method used by optim.
se                 Logical specifying whether or not to compute standard errors.
engine             Currently only choice is R.
...                Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccuFP for a description of how to supply data to the data argument.

occuFP fits an extension of the standard single-season occupancy model (MacKenzie et al. 2002), which allows false positive detections. The occupancy status of a site is the same way as with the occu function, where stateformula is used to specify factors that lead to differences in occupancy probabilities among sites.

The observation process differs in that both false negative and false positive errors are modeled for observations. The function allows data to be of 3 types. These types are specified using in unmarkedFrameOccuFP as type. Occasions are specified to belong to 1 of the 3 data types and all or a subset of the data types can be combined in the same model.

For type 1 data, the detection process is assumed to fit the assumptions of the standard MacKenzie model where false negative probabilities are estimated but false positive detections are assumed not to occur. If all of your data is of this type you should use codeoccu to analyze data. The detection parameter p, which is modeled using the detformula is the only observation parameter for these data.

For type 2 data, both false negative and false positive detection probabilities are estimated. If all data is of this type the likelihood follows Royle and Link (2006). Both p (the true positive detection probability) and fp (the false positive detection probability described by fpformula) are estimated for occasions when this data type occurs.

For type 3 data, observations are assumed to include both certain detections (false positives assumed not to occur) and uncertain detections that may include false positive detections. When only this
data type occurs, the estimator is the same as the multiple detection state model described in Miller et al. (2011). Three observation parameters occur for this data type: \( p \) - true positive detection probability, \( fp \) - false positive detection probability, and \( b \) - the probability a true positive detection was designated as certain.

When both type 1 and type 2 data occur, the estimator is equivalent to the multiple detection method model described in Miller et al. (2011). The frog data example in the same paper uses an analysis where type 1 (dipnet surveys) and type 3 (call surveys) data were used.

Data in the \( y \) matrix of the unmarked frame should be all 0s and 1s for type 1 and type 2 data. For type 3 data, uncertain detections are given a value of 1 and certain detections a value of 2.

**Value**

unmarkedFitOccuFP object describing the model fit.

**Author(s)**

David Miller

**References**


**See Also**

unmarked, unmarkedFrameOccuFP, modSel, parboot

**Examples**

```r
n = 100
o = 10
o1 = 5
y = matrix(0,n,o)
p = .7
r = .5
fp = 0.05
y[1:(n*.5),(o-o1+1):o] <- rbinom((n*o1*.5),1,p)
y[1:(n*.5),1:(o-o1)] <- rbinom((o-o1)*n*.5,1,r)
y[(n*.5+1):n,(o-o1+1):o] <- rbinom((n*o1*.5),1,fp)
type <- c((o-o1),o1,0) ### vector with the number of each data type
site <- c(rep(1,n*.5*.8),rep(0,n*.5*.2),rep(1,n*.5*.2),rep(0,n*.8*.5))
occ <- matrix(c(rep(0,n*(o-o1)),rep(1,n*o1)),n,o)
site <- data.frame(habitat = site)
```
occuMS <- function(detformulas, piformulas, phiformulas = NULL, data, parameterization = c("multinomial", "condbinom"), starts, method = "BFGS", se = TRUE, engine = c("C", "R"), silent = FALSE, ...) {
  \textbf{Description}

  This function fits single-season and dynamic multi-state occupancy models with both the multinomial and conditional binomial parameterizations.

  \textbf{Usage}

  \texttt{occuMS(detformulas, piformulas, phiformulas=NULL, data, parameterization=c("multinomial","condbinom"), starts, method="BFGS", se=TRUE, engine=c("C","R"), silent=FALSE, ...)}

  \textbf{Arguments}

  \begin{itemize}
  \item \texttt{detformulas} Character vector of formulas for detection probabilities. See details for a description of how to order these formulas.
  \item \texttt{piformulas} Character vector of formulas for occupancy probabilities. See details for a description of how to order these formulas.
  \item \texttt{phiformulas} Character vector of formulas for state transition probabilities. Only used if you are fitting a dynamic model. See details for a description of how to order these formulas.
  \item \texttt{data} An \texttt{unmarkedFrameOccuMS} object
  \item \texttt{parameterization} Either "multinomial" for the multinomial parameterization (MacKenzie et al. 2009) which allows an arbitrary number of occupancy states, or "condbinom" for the conditional binomial parameterization (Nichols et al. 2007) which requires exactly 3 occupancy states. See details.
  \item \texttt{starts} Vector of parameter starting values.
  \item \texttt{method} Optimization method used by \texttt{optim}.
  \item \texttt{se} Logical specifying whether or not to compute standard errors.
  \item \texttt{engine} Either "C" to use fast C++ code or "R" to use native R code during the optimization.
  \item \texttt{silent} Boolean; if TRUE, suppress warnings.
  \item \ldots Additional arguments to \texttt{optim}, such as lower and upper bounds
  \end{itemize}
Details

Traditional occupancy models fit data with exactly two states: detection and non-detection (MacKenzie et al. 2002). The occuMS function fits models to occupancy data for which there are greater than 2 states (Nichols et al. 2007, MacKenzie et al. 2009). For example, detections may be further divided into multiple biologically relevant categories, e.g. breeding vs. non-breeding, or some/many individuals present. As with detection status, classification of these additional occupancy states is likely to be imperfect.

Multiple parameterizations for multi-state occupancy models have been proposed. The occuMS function fits two at present: the "conditional binomial" parameterization of Nichols et al. (2007), and the more general "multinomial" parameterization of MacKenzie et al. (2009). Both single-season and dynamic models are possible with occuMS (MacKenzie et al. 2009).

The conditional binomial parameterization (parameterization = 'condbinom') models occupancy and the presence or absence of an additional biological state of interest given the species is present (typically breeding status). Thus, there should be exactly 3 occupancy states in the data: 0 (non-detection); 1 (detection, no evidence of breeding); or 2 (detection, evidence of breeding).

Two state parameters are estimated: $\psi$, the probability of occupancy, and $R$, the probability of successful reproduction given an occupied state (although this could be some other binary biological condition). Covariates (in siteCovs) can be supplied for either or both of these parameters with the stateformulas argument, which takes a character vector of R-style formulas with length = 2, with formulas in the order ($\psi$, $R$). For example, to fit a model where $\psi$ varies with a landcover covariate and $R$ is constant, stateformulas = c('~landcover', '~1').

There are three detection parameters associated with the conditional binomial parameterization: $p_1$, the probability of detecting the species given true state 1; $p_2$, the probability of detecting the species given true state 2; and $\delta$, the probability of detecting state 2 (i.e., breeding), given that the species has been detected. See MacKenzie et al. (2009), pages 825-826 for more details. As with occupancy, covariates (in obsCovs) can be supplied for these detection probabilities with the detformulas argument, which takes a character vector of formulas with length = 3 in the order ($p_1, p_2, \delta$). So, to fit a model where $p_1$ varies with temperature and the other two parameters are constant, detformulas = c('~temp', '~1', '~1').

The multinomial parameterization (parameterization = "multinomial") is more general, allowing an arbitrary number of occupancy states $S$. $S - 1$ occupancy probabilities $\psi$ are estimated. Thus, if there are $S = 4$ occupancy states (0, 1, 2, 3), occuMS estimates $\psi_1$, $\psi_2$, and $\psi_3$ (the probability of state 0 can be obtained by subtracting the others from 1). Covariates can be supplied for each occupancy probability with a character vector with length $S - 1$, e.g. stateformulas = c('~landcover', '~1', '~1') where $\psi_1$ varies with landcover and $\psi_2$ and $\psi_3$ are constant.

The number of detection probabilities estimated quickly expands as $S$ increases, equal to $S \times (S - 1)/2$. In the simplest case (when $S = 3$), there are 3 detection probabilities: $p_{11}$, the probability of detecting state 1 given true state 1; $p_{12}$, the probability of detecting state 1 given true state 2; and $p_{22}$, the probability of detecting state 2 given true state 2. Covariates can be supplied for any or all of these detection probabilities with the detformulas argument, which takes a character vector of formulas with length = 3 in the order ($p_{11}, p_{12}, p_{22}$). So, to fit a model where $p_{11}$ varies with temperature and the other two detection probabilities are constant, detformulas = c('~temp', '~1', '~1'). If there were $S = 4$ occupancy states, there are 6 estimated detection probabilities and the order is ($p_{11}, p_{12}, p_{13}, p_{22}, p_{23}, p_{33}$), and so on. See MacKenzie et al. (2009) for a more detailed explanation.
Dynamic (multi-season) models can be fit as well for both parameterizations (MacKenzie et al. 2009). In a standard dynamic occupancy model, additional parameters for probabilities of colonization (i.e., state 0 -> 1) and extinction (1 -> 0) are estimated. In a multi-state context, we must estimate a transition probability matrix (φ) between all possible states. You can provide formulas for some of the probabilities in this matrix using the phiformulas argument. The approach differs depending on parameterization.

For the conditional binomial parameterization, phiformulas is a character vector of length 6. The first three elements are formulas for the probability a site is occupied at time t given that it was previously in states 0, 1, or 2 at time t − 1 (phi0, phi1, phi2). Elements 4-6 are formulas for the probability of reproduction (or other biological state) given state 0, 1, or 2 at time t − 1 (R0, R1, R2). See umf@phiOrder$cond_binom for a reminder of the correct order, where umf is your unmarkedFrameOccuMS.

For the multinomial parameterization, phiformulas can be used to provide formulas for some transitions between different occupancy states. You can’t give formulas for the probabilities of remaining in the same state between seasons to keep the model identifiable. Thus, if there are 3 possible states (0, 1, 2), phiformulas should contain 6 formulas for the following transitions: p(0->1), p(0->2), p(1->0), p(1->2), p(2->0), p(2->1), in that order (and similar for more than 3 states). The remaining probabilities of staying in the same state between seasons can be obtained via subtraction. See umf@phiOrder$multinomial for the correct order matching the number of states in your dataset.

See unmarkedFrame and unmarkedFrameOccuMS for a description of how to supply data to the data argument.

Value

unmarkedFitOccuMS object describing the model fit.

Author(s)

Ken Kellner <contact@kenkellner.com>

References


See Also

unmarked, unmarkedFrameOccuMS
Examples

## Not run:

#Simulate data

#Parameters
N <- 500; J <- 5; S <- 3
site_covs <- matrix(rnorm(N*2),ncol=2)
obs_covs <- matrix(rnorm(N*J*2),ncol=2)
a1 <- -0.5; b1 <- 1; a2 <- -0.6; b2 <- -0.7

#Multinomial parameterization ##

p11 <- -0.4; p12 <- -1.09; p22 <- -0.84
truth <- c(a1,b1,a2,b2,p11,0,p12,p22)

#State process
lp <- matrix(NA,ncol=S,nrow=N)
for (n in 1:N){
  lp[n,2] <- exp(a1+b1*site_covs[n,1])
  lp[n,3] <- exp(a2+b2*site_covs[n,2])
  lp[n,1] <- 1
}
psi_mat <- lp/rowSums(lp)
z <- rep(NA,N)
for (n in 1:N){
  z[n] <- sample(0:2, 1, replace=T, prob=psi_mat[n,])
}
probs_raw <- matrix(c(1,0,0,1,exp(p11),0,1,exp(p12),exp(p22)),nrow=3,byrow=T)
probs_raw <- probs_raw/rowSums(probs_raw)
y <- matrix(0,nrow=N,ncol=J)
for (n in 1:N){
  probs <- switch(z[n]+1,
                 probs_raw[1,,],
                 probs_raw[2,,],
                 probs_raw[3,,])
  if(z[n]>0){
    y[n,] <- sample(0:2, J, replace=T, probs)
  }
}

#Construct unmarkedFrame
umf <- unmarkedFrameOccuMS(y=y,siteCovs=as.data.frame(site_covs),
                           obsCovs=as.data.frame(obs_covs))
# Formulas

# 3 states, so `detformulas` is a character vector of formulas of length 3 in following order:
# 1) `p[11]`: prob of detecting state 1 given true state 1
# 2) `p[12]`: prob of detecting state 1 given true state 2
# 3) `p[22]`: prob of detecting state 2 given true state 2

defformulas <- \texttt{c(\texttt{\textasciitilde V1,\textasciitilde -1,\textasciitilde -1})}

# If you had 4 states, it would be \texttt{p[11],p[12],p[13],p[22],p[23],p[33]} and so on

# 3 states, so `stateformulas` is a character vector of length 2 in following order:
# 1) `psi[1]`: probability of state 1
# 2) `psi[2]`: probability of state 2

stateformulas <- \texttt{c(\texttt{\textasciitilde V1,\textasciitilde V2})}

# Fit model
fit <- \texttt{occuMS(detformulas, stateformulas, data=umf, parameterization="multinomial")}

# Look at results
fit

# Compare with truth
cbind(truth=truth, estimate=\texttt{coef(fit)})

# Generate predicted values
lapply(\texttt{predict(fit, type='psi')}, \texttt{\textbf{head}})
lapply(\texttt{predict(fit, type='det')}, \texttt{\textbf{head}})

# Fit a null model

defformulas <- \texttt{rep(\texttt{\textasciitilde 1}, 3)}
stateformulas <- \texttt{rep(\texttt{\textasciitilde 1}, 2)}
fit_null <- \texttt{occuMS(detformulas, stateformulas, data=umf, parameterization="multinomial")}

# Compare fits
\texttt{modSel(fitList(fit, fit_null))}

# Conditional binomial parameterization

p11 <- 0.4; p12 <- 0.6; p22 <- 0.8

truth_cb <- \texttt{c(a1, b1, a2, b2, qlogis(p11), 0, qlogis(c(p12, p22)))}

# Simulate data

psi_mat <- \texttt{matrix(NA, ncol=5, nrow=N)}
for (n in 1:N){
    psi_mat[n, 2] <- \texttt{qlogis(a1+b1*site_covs[n, 1])}
    psi_mat[n, 3] <- \texttt{qlogis(a2+b2*site_covs[n, 2])}
}

# State process

psi_mat <- \texttt{matrix(NA, ncol=5, nrow=N)}
for (n in 1:N){
    psi_mat[n, 2] <- \texttt{qlogis(a1+b1*site_covs[n, 1])}
    psi_mat[n, 3] <- \texttt{qlogis(a2+b2*site_covs[n, 2])}
}
psi_bin <- matrix(NA, nrow=nrow(psi_mat), ncol=ncol(psi_mat))
psi_bin[,1] <- 1-psi_mat[,2]
psi_bin[,2] <- (1-psi_mat[,3])*psi_mat[,2]
psi_bin[,3] <- psi_mat[,2]*psi_mat[,3]
z <- rep(NA, N)
for (n in 1:N){
  z[n] <- sample(0:2, 1, replace=T, prob=psi_bin[n,])
}

#Detection process
y_cb <- matrix(0, nrow=N, ncol=J)
for (n in 1:N){
  #p11 = p1; p12 = p2; p22 = delta
  probs <- switch(z[n]+1,
    c(1,0,0),
    c(1-p11,p11,0),
    c(1-p12,p12*(1-p22),p12*p22)
  )
  if(z[n]>0){
    y_cb[n,] <- sample(0:2, J, replace=T, probs)
  }
}

#Build unmarked frame
umf2 <- unmarkedFrameOccuMS(y=y_cb, siteCovs=as.data.frame(site_covs),
  obsCovs=as.data.frame(obs_covs))

#Formulas
#detformulas is a character vector of formulas of length 3 in following order:
#1) p[1]: prob of detecting species given true state 1
#2) p[2]: prob of detecting species given true state 2
#3) delta: prob of detecting state 2 (eg breeding) given species was detected
detformulas <- c('~V1', '~1', '~1')

#stateformulas is a character vector of length 2 in following order:
#1) psi: probability of occupancy
#2) R: probability state 2 (eg breeding) given occupancy
stateformulas <- c('~V1', '~V2')

#Fit model
fit_cb <- occuMS(detformulas, stateformulas, data=umf2,
  parameterization='condbinom')

#Look at results
fit_cb
#Compare with truth
cbind(truth=truth_cb, estimate=coef(fit_cb))

#Generate predicted values
lapply(predict(fit_cb, type='psi'), head)
lapply(predict(fit_cb, type='det'), head)
# Simulate data -----------------------------------------------
N <- 500  # Number of sites
T <- 3   # Number of primary periods
J <- 5  # Number of secondary periods
S <- 3  # Number of occupancy states (0, 1, 2)

# Generate covariates
site_covs <- as.data.frame(matrix(rnorm(N*2), ncol=2))
yearly_site_covs <- as.data.frame(matrix(rnorm(N*T*2), ncol=2))
obs_covs <- as.data.frame(matrix(rnorm(N*J*T*2), ncol=2))

# True parameter values
b <- c(
  # Occupancy parameters
  a1=-0.5, b1=1, a2=-0.6, b2=-0.7,
  # Transition prob (phi) parameters
  phi01=0.7, phi01_cov=-0.5, phi02=-0.5, phi10=1.2,
  phi12=0.3, phi12_cov=1.1, phi20=-0.3, phi21=1.4, phi21_cov=0,
  # Detection prob parameters
  p11=-0.4, p11_cov=0, p12=-1.09, p22=-0.84
)

# Generate occupancy probs (multinomial parameterization)
lp <- matrix(1, ncol=S, nrow=N)
lp[,2] <- exp(b[1]+b[2]*site_covs[,1])
lp[,3] <- exp(b[3]+b[4]*site_covs[,2])
psi <- lp/rowSums(lp)

# True occupancy state matrix
z <- matrix(NA, nrow=N, ncol=T)
# Initial occupancy
for (n in 1:N){
  z[n,1] <- sample(0:(S-1), 1, prob=psi[n,])
}

# Raw phi probs
phi_raw <- matrix(NA, nrow=N*T, ncol=S^2-S)
phi_raw[,1] <- exp(b[5]+b[6]*yearly_site_covs[,1])  # p[0->1]
phi_raw[,2] <- exp(b[7])  # p[0->2]
phi_raw[,3] <- exp(b[8])  # p[1->0]
phi_raw[,5] <- exp(b[11])  # p[2->0]

# Generate states in times 2..T
px <- 1
for (n in 1:N){
  for (t in 2:T){
    z[n,t] <- sample(0:(S-1), 1, prob=phi_raw[z[n,t-1],])
  }
}
phi_mat <- matrix(c(1, phi_raw[px,1], phi_raw[px,2], # phi|z=0
                        phi_raw[px,3], 1, phi_raw[px,4], # phi|z=1
                        phi_raw[px,5], phi_raw[px,6], 1), # phi|z=2
                    nrow=S, byrow=T)

phi_mat <- phi_mat/rowSums(phi_mat)

z[n, t] <- sample(0:(S-1), 1, prob=phi_mat[z[n,(t-1)]+1,])
px <- px + 1
if(t==T) px <- px + 1 #skip last datapoint for each site

#Raw p probs
p_mat <- matrix(c(1, 0, 0, #p|z=0
                    1, exp(b[14]), 0, #p|z=1
                    1, exp(b[16]), exp(b[17])), #p|z=2
                nrow=S, byrow=T)
p_mat <- p_mat/rowSums(p_mat)

#Simulate observation data
y <- matrix(0, nrow=N, ncol=J*T)
for (n in 1:N){
    yx <- 1
    for (t in 1:T){
        if(z[n,t]==0){
            yx <- yx + J
            next
        }
        for (j in 1:J){
            y[n, yx] <- sample(0:(S-1), 1, prob=p_mat[z[n,t]+1,])
            yx <- yx+1
        }
    }
}

#Model fitting

#Initial occupancy
psiformulas <- c('-V1', '-V2') #on psi[1] and psi[2]

#Transition probs
umf@phiOrder$multinomial
phiformulas <- c('-V1', '-1', '-V2', '-1', '-1', '-V1')
# Detection probability
deformulas <- c('-V1', '-1', '-1')  # on p[1|1], p[1|2], p[2|2]

# Fit model
(fit <- occuMS(detformulas = deformulas, psiformulas = psiformulas, 
              phiformulas = phiformulas, data = umf))

# Compare with truth
colnames(compare) <- c('truth', 'estimate', 'lower', 'upper')
round(compare, 3)

# Estimated phi matrix for site 1
phi_est <- predict(fit, 'phi', se.fit = F)
phi_est <- sapply(phi_est, function(x) x$Predicted[1])
phi_est_mat <- matrix(NA, nrow = S, ncol = S)
phi_est_mat[c(4, 7, 2, 8, 3, 6)] <- phi_est
diag(phi_est_mat) <- 1 - rowSums(phi_est_mat, na.rm = T)

# Actual phi matrix for site 1
phi_act_mat <- diag(S)
phi_act_mat[c(4, 7, 2, 8, 3, 6)] <- phi_raw[1,]
phi_act_mat <- phi_act_mat/rowSums(phi_act_mat)

# Compare
cat('Estimated phi
')
phi_est_mat
cat('Actual phi
')
phi_act_mat

# Rough check of model fit
fit_sim <- simulate(fit, nsim = 20)
hist(sapply(fit_sim, mean), col = 'gray')
abline(v = mean(umf@y), col = 'red', lwd = 2)
# line should fall near middle of histogram

## End(Not run)

---

**occuMulti**

**Fit the Rota et al. (2016) Multi-species Occupancy Model**

**Description**

This function fits the multispecies occupancy model of Rota et al (2016).
Usage

\texttt{occuMulti(detformulas, stateformulas, data, maxOrder, penalty=0, boot=30,}
\texttt{ starts, method=\texttt{\"BFGS\"}, se=\texttt{\true}, engine=\texttt{c(\"C","R\")}, silent=\texttt{\false}, ...)}

Arguments

- \texttt{detformulas}: Character vector of formulas for the detection models, one per species.
- \texttt{stateformulas}: Character vector of formulas for the natural parameters. To fix a natural parameter at 0, specify the corresponding formula as \texttt{\textquoteleft\textquoteleft 0\textquoteright\textquoteright} or \texttt{\textquoteleft\textquoteleft ~0\textquoteright\textquoteright}.
- \texttt{data}: An \texttt{unmarkedFrameOccuMulti} object.
- \texttt{maxOrder}: Optional; specify maximum interaction order. Defaults to number of species (all possible interactions). Reducing this value may speed up optimization if you aren’t interested in higher-order interactions.
- \texttt{penalty}: Penalty term for likelihood. The total penalty is calculated as \texttt{penalty \* 0.5 \* sum(paramvals^2)}. Defaults to 0 (no penalty).
- \texttt{boot}: Number of bootstrap samples to use to generate the variance-covariance matrix when \texttt{penalty > 0}.
- \texttt{starts}: Vector of parameter starting values.
- \texttt{method}: Optimization method used by \texttt{optim}.
- \texttt{se}: Logical specifying whether or not to compute standard errors.
- \texttt{engine}: Either \texttt{\textquoteleft\textquoteleft C\textquoteright\textquoteright} to use fast C++ code or \texttt{\textquoteleft\textquoteleft R\textquoteright\textquoteright} to use native R code during the optimization.
- \texttt{silent}: Boolean; if \texttt{\true}, suppress warnings.
- ...: Additional arguments to \texttt{optim}, such as lower and upper bounds.

Details

See \texttt{unmarkedFrame} and \texttt{unmarkedFrameOccuMulti} for a description of how to supply data to the \texttt{data} argument.

\texttt{occuMulti} fits the multispecies occupancy model from Rota et al. (2016), for two or more interacting species. The model generalizes the standard single-species occupancy model from MacKenzie et al. (2002). The latent occupancy state at site \(i\) for a set of \(s\) potentially interacting species is a vector \(Z_i\) of length \(s\) containing a sequence of the values 0 or 1. For example, when \(s = 2\), the possible states are [11], [10], [01], or [00], corresponding to both species present, only species 1 or species 2 present, or both species absent, respectively. The latent state modeled as a multivariate Bernoulli random variable:

\[ Z_i \sim \text{MVB}(\psi_i) \]

where \(\psi_i\) is a vector of length \(2^s\) containing the probability of each possible combination of 0s and 1s, such that \(\sum \psi_i = 1\).

For \(s = 2\), the corresponding natural parameters \(f\) are

\[ f_1 = \log \left( \frac{\psi_{10}}{\psi_{00}} \right) \]
\[ f_2 = \log \left( \frac{\psi_{01}}{\psi_{00}} \right) \]
\[ f_{12} = \log \left( \frac{\psi_{11} \psi_{00}}{\psi_{10} \psi_{01}} \right) \]

The natural parameters can then be modeled as linear functions of covariates. Covariates for each \( f \) must be specified with the `stateformulas` argument, which takes a character vector of individual formulas of length equal to the number of natural parameters (which in turn depends on the number of species in the model).

The observation process is similar to the standard single-species occupancy model, except that the observations \( y_{ij} \) at site \( i \) on occasion \( j \) are vectors of length \( s \) and there are independent values of detection probability \( p \) for each species \( s \):

\[ y_{ij} | \mathbf{Z}_i \sim \text{MVB}(\mathbf{Z}_i \mathbf{p}_{sij}) \]

Independent detection models (potentially containing different covariates) must be provided for each species with the `detformulas` argument, which takes a character vector of individual formulas with length equal to the number of species \( s \).

If you are having problems with separation or boundary estimates (indicated by very large parameter estimates and SEs), use of penalized likelihood may help: see Clipp et al. (2021). `occuMulti` supports use of the Bayes-inspired penalty of Hutchinson et al. (2015). You can set the penalty value manually using the `penalty` argument, or identify the optimal penalty using K-fold cross validation with the `optimizePenalty` function. See example below.

Value
unmarkedFitOccuMulti object describing the model fit.

Author(s)
Ken Kellner <contact@kenkellner.com>

References

See Also
unmarked, unmarkedFrameOccuMulti
Examples

```r
Not run:
Simulate 3 species data
N <- 1000
nspecies <- 3
J <- 5

occ_covs <- as.data.frame(matrix(rnorm(N * 10), ncol = 10))
names(occ_covs) <- paste('occ_cov', 1:10, sep = '')

det_covs <- list()
for (i in 1:nspecies){
 det_covs[[i]] <- matrix(rnorm(N*J), nrow = N)
}
names(det_covs) <- paste('det_cov', 1:nspecies, sep = '')

True vals
beta <- c(0.5, 0.2, 0.4, 0.5, -0.1, -0.3, 0.2, 0.1, -1, 0.1)
f4 <- beta[7]
f5 <- beta[8]
f6 <- beta[9]
f7 <- beta[10]
f <- cbind(f1, f2, f3, f4, f5, f6, f7)
z <- expand.grid(rep(list(1:0), nspecies))[, nspecies:1]
colnames(z) <- paste('sp', 1:nspecies, sep = '')
dm <- model.matrix(as.formula(paste0("~.^", nspecies, "-1")), z)

psi <- exp(f %*% t(dm))
psi <- psi/rowSums(psi)

True state
ztruth <- matrix(NA, nrow = N, ncol = nspecies)
for (i in 1:N){
 ztruth[i,] <- as.matrix(z[sample(8, 1, prob = psi[i,]),])
}
p_true <- c(0.6, 0.7, 0.5)

fake y data
y <- list()
for (i in 1:nspecies){
 y[[i]] <- matrix(NA, N, J)
 for (j in 1:N){
 for (k in 1:J){
 y[[i]][j,k] <- rbinom(1, 1, ztruth[j,1]*p_true[i])
 }
 }
}
```

names(y) <- c('coyote','tiger','bear')

#Create the unmarked data object
data = unmarkedFrameOccuMulti(y=y,siteCovs=occ_covs,obsCovs=det_covs)

#Summary of data object
summary(data)

# Look at f parameter design matrix
data@fDesign

# Formulas for state and detection processes

# Length should match number/order of columns in fDesign
occFormulas <- c("-occ_cov1","-occ_cov2","-occ_cov3","-1","-1","-1","-1")

#Length should match number/order of species in data@ylist
detFormulas <- c("-1","-1","-1")

fit <- occuMulti(detFormulas,occFormulas,data)

#Look at output
fit

plot(fit)

#Compare with known values
cbind(c(beta,log(p_true/(1-p_true))),fit@opt$par)

#predict method
lapply(predict(fit,'state'),head)
lapply(predict(fit,'det'),head)

#marginal occupancy
head(predict(fit,'state',species=2))
head(predict(fit,'state',species='bear'))
head(predict(fit,'det',species='coyote'))

#probability of co-occurrence of two or more species
head(predict(fit, 'state', species=c('coyote','tiger')))

#conditional occupancy
head(predict(fit,'state',species=2,cond=3)) #tiger | bear present
head(predict(fit,'state',species='tiger',cond='bear')) #tiger | bear present
head(predict(fit,'state',species='tiger',cond='bear')) #bear absent
head(predict(fit,'state',species='tiger',cond=c('coyote','-bear'))) #bear absent

#residuals (by species)
lapply(residuals(fit),head)

#ranef (by species)
fit <- parboot(fit, nsim = 30)

# update model
occFormulas <- c("-occ_cov1", "-occ_cov2", "-occ_cov2+occ_cov3", "-1", "-1", "-1", "-1")
fit2 <- update(fit, stateFormulas = occFormulas)

# List of fitted models
fl <- fitList(fit, fit2)
coef(fl)

# Model selection
modSel(fl)

# Fit model while forcing some natural parameters to be 0
# For example: fit model with no species interactions
occFormulas <- c("-occ_cov1", "-occ_cov2", "-occ_cov2+occ_cov3", "0", "0", "0")
fit3 <- occuMulti(detFormulas, occFormulas, data)

# Alternatively, you can force all interaction parameters above a certain
# order to be zero with maxOrder. This will be faster.
occFormulas <- c("-occ_cov1", "-occ_cov2", "-occ_cov2+occ_cov3")
fit4 <- occuMulti(detFormulas, occFormulas, data, maxOrder = 1)

# Add Bayes penalty term to likelihood. This is useful if your parameter
# estimates are very large, e.g., because of separation.
fit5 <- occuMulti(detFormulas, occFormulas, data, penalty = 1)

# Find optimal penalty term value from a range of possible values using
# K-fold cross validation, and re-fit the model
fit_opt <- optimizePenalty(fit5, penalties = c(0, 1, 2))

## End(Not run)

---

**occuPEN**

*Fit the MacKenzie et al. (2002) Occupancy Model with the penalized likelihood methods of Hutchinson et al. (2015)*

### Description

This function fits the occupancy model of MacKenzie et al. (2002) with the penalized methods of Hutchinson et al. (2015).

### Usage

```r
occuPEN(formula, data, knownOcc = numeric(0), starts, method = "BFGS",
 engine = c("C", "R"), lambda = 0, pen.type = c("Bayes", "Ridge", "MLE"), ...)
```
Arguments

**formula**
- Double right-hand side formula describing covariates of detection and occupancy in that order.

**data**
- An `unmarkedFrameOccu` object

**knownOcc**
- Vector of sites that are known to be occupied. These should be supplied as row numbers of the `y` matrix, e.g., `c(3,8)` if sites 3 and 8 were known to be occupied a priori.

**starts**
- Vector of parameter starting values.

**method**
- Optimization method used by `optim`.

**engine**
- Either "C" or "R" to use fast C++ code or native R code during the optimization.

**lambda**
- Penalty weight parameter.

**pen.type**
- Which form of penalty to use.

**...**
- Additional arguments to `optim`, such as lower and upper bounds

Details

See `unmarkedFrame` and `unmarkedFrameOccu` for a description of how to supply data to the `data` argument.

`occuPEN` fits the standard occupancy model based on zero-inflated binomial models (MacKenzie et al. 2006, Royle and Dorazio 2008) using the penalized likelihood methods described in Hutchinson et al. (2015). See `occu` for model details. `occuPEN` returns parameter estimates that maximize a penalized likelihood in which the penalty is specified by the `pen.type` argument. The penalty function is weighted by `lambda`.

The MPLE method includes an equation for computing `lambda` (Moreno & Lele, 2010). If the value supplied does not equal match the one computed with this equation, the supplied value is used anyway (with a warning).

Value

`unmarkedFitOccuPEN` object describing the model fit.

Author(s)

Rebecca A. Hutchinson

References


See Also

`unmarked`, `unmarkedFrameOccu`, `occu`, `computeMPLElambda`, `occuPEN.CV`, `nonparboot`

Examples

```r
Simulate occupancy data
set.seed(344)
nSites <- 100
nReps <- 2
covariates <- data.frame(veght=rnorm(nSites),
 habitat=factor(c(rep('A', nSites/2), rep('B', nSites/2))))

psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)

y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {
 y[i,] <- rbinom(nReps, 1, z[i]*p[i])
}

Organize data and look at it
umf <- unmarkedFrameOccu(y = y, siteCovs = covariates)
obsCovs(umf) <- covariates
head(umf)
summary(umf)

Fit some models
fmMLE <- occu(~veght+habitat ~veght+habitat, umf)
fml1pen <- occuPEN(~veght+habitat ~veght+habitat, umf, lambda=0.33, pen.type="Ridge")
fml2pen <- occuPEN(~veght+habitat ~veght+habitat, umf, lambda=1, pen.type="Bayes")

MPLE:
fm3pen <- occuPEN(~veght+habitat ~veght+habitat, umf, lambda=0.5, pen.type="MPLE")
MPLElambda = computeMPLElambda(~veght+habitat ~veght+habitat, umf)
fm4pen <- occuPEN(~veght+habitat ~veght+habitat, umf, lambda=MPLElambda, pen.type="MPLE")

nonparametric bootstrap for uncertainty analysis:
fml1pen <- nonparboot(fm1pen,B=20) # should use more samples
vcov(fml1pen,method="nonparboot")
```
occuPEN_CV

Fit the MacKenzie et al. (2002) Occupancy Model with the penalized likelihood methods of Hutchinson et al. (2015) using cross-validation

Description

This function fits the occupancy model of MacKenzie et al (2002) with the penalized methods of Hutchinson et al (2015) using k-fold cross-validation to choose the penalty weight.

Usage

occuPEN_CV(formula, data, knownOcc=numeric(0), starts, method="BFGS", engine=c("C", "R"), lambdaVec=c(0,2^seq(-4,4)), pen.type = c("Bayes","Ridge"), k = 5, foldAssignments = NA, ...)

Arguments

formula Double right-hand side formula describing covariates of detection and occupancy in that order.
data An unmarkedFrameOccu object
knownOcc Vector of sites that are known to be occupied. These should be supplied as row numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a priori.
starts Vector of parameter starting values.
method Optimization method used by optim.
engine Either "C" or "R" to use fast C++ code or native R code during the optimization.
lambdaVec Vector of values to try for lambda.
pen.type Which form of penalty to use.
k Number of folds for k-fold cross-validation.
foldAssignments Vector containing the number of the fold that each site falls into. Length of the vector should be equal to the number of sites, and the vector should contain k unique values. E.g. for 9 sites and 3 folds, c(1,2,3,1,2,3,1,2,3) or c(1,1,1,2,2,2,3,3,3).
...

Additional arguments to optim, such as lower and upper bounds
Details

See `unmarkedFrame` and `unmarkedFrameOccu` for a description of how to supply data to the data argument.

This function wraps k-fold cross-validation around `occuPEN_CV` for the "Bayes" and "Ridge" penalties of Hutchinson et al. (2015). The user may specify the number of folds (k), the values to try (lambdaVec), and the assignments of sites to folds (foldAssignments). If foldAssignments is not provided, the assignments are done pseudo-randomly, and the function attempts to put some sites with and without positive detections in each fold. This randomness introduces variability into the results of this function across runs; to eliminate the randomness, supply foldAssignments.

Value

`unmarkedFitOccuPEN_CV` object describing the model fit.

Author(s)

Rebecca A. Hutchinson

References


See Also

`unmarked`, `unmarkedFrameOccu`, `occu`, `occuPEN`, `nonparboot`

Examples

```r
Simulate occupancy data
set.seed(646)
nSites <- 60
nReps <- 2
covariates <- data.frame(veght=rnorm(nSites),
 habitat=factor(c(rep("A", 30), rep("B", 30))))
psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)

y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {
 y[i,] <- z[i]
}
```
occuRN

Fit the occupancy model of Royle and Nichols (2003)

Description

Fit the occupancy model of Royle and Nichols (2003), which relates probability of detection of the species to the number of individuals available for detection at each site. Probability of occupancy is a derived parameter: the probability that at least one individual is available for detection at the site.
Usage

```r
occuRN(formula, data, K=25, starts, method="BFGS", se=TRUE,
 engine=c("C","R"), threads=1, ...)
```

Arguments

- `formula` double right-hand side formula describing covariates of detection and abundance, in that order.
- `data` Object of class `unmarkedFrameOccu` supplying data to the model.
- `K` the upper summation index used to numerically integrate out the latent abundance. This should be set high enough so that it does not affect the parameter estimates. Computation time will increase with K.
- `starts` initial values for the optimization.
- `method` Optimization method used by `optim`.
- `se` logical specifying whether or not to compute standard errors.
- `engine` Either "C" to use fast C++ code or "R" to use native R code during the optimization.
- `threads` Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If `threads=1` (the default), OpenMP is disabled.
- `...` Additional arguments to `optim`, such as lower and upper bounds

Details

This function fits the latent abundance mixture model described in Royle and Nichols (2003). The number of animals available for detection at site $i$ is modelled as Poisson:

$$N_i \sim \text{Poisson}(\lambda_i)$$

We assume that all individuals at site $i$ during sample $j$ have identical detection probabilities, $r_{ij}$, and that detections are independent. The species will be recorded if at least one individual is detected. Thus, the detection probability for the species is linked to the detection probability for an individual by

$$p_{ij} = 1 - (1 - r_{ij})^{N_i}$$

Note that if $N_i = 0$, then $p_{ij} = 0$, and increasing values of $N_i$ lead to higher values of $p_{ij}$ The equation for the detection history is then:

$$y_{ij} \sim \text{Bernoulli}(p_{ij})$$

Covariates of $\lambda_i$ are modelled with the log link and covariates of $r_{ij}$ are modelled with the logit link.
Value

unmarkedFit object describing the model fit.

Author(s)

Ian Fiske

References


Examples

```r
Not run:
data(birds)
woodthrushUMF <- unmarkedFrameOccu(woodthrush.bin)
survey occasion-specific detection probabilities
(fm.wood.rn <- occuRN(~ obsNum ~ 1, woodthrushUMF))

Empirical Bayes estimates of abundance at each site
re <- ranef(fm.wood.rn)
plot(re)

End(Not run)
```

Description

Fit time-to-detection occupancy models of Garrard et al. (2008, 2013), either single-season or dynamic. Time-to-detection can be modeled with either an exponential or Weibull distribution.

Usage

```r
occuTTD(psiformula= ~1, gammaformula = ~ 1, epsilonformula = ~ 1, detformula = ~ 1, data, ttdDist = c("exp", "weibull"), linkPsi = c("logit", "cloglog"), starts, method="BFGS", se=TRUE, engine = c("C", "R"), ...)
```
Arguments

- **psiformula**: Right-hand sided formula for the initial probability of occupancy at each site.
- **gammaformula**: Right-hand sided formula for colonization probability.
- **epsilonformula**: Right-hand sided formula for extinction probability.
- **detformula**: Right-hand sided formula for mean time-to-detection.
- **data**: `unmarkedFrameOccuTTD` object that supplies the data (see `unmarkedFrameOccuTTD`).
- **ttdDist**: Distribution to use for time-to-detection; either "exp" for the exponential, or "weibull" for the Weibull, which adds an additional shape parameter \( k \).
- **linkPsi**: Link function for the occupancy model. Options are "logit" for the standard occupancy model or "cloglog" for the complimentary log-log link, which relates occupancy to site-level abundance.
- **starts**: optionally, initial values for parameters in the optimization.
- **method**: Optimization method used by `optim`.
- **se**: logical specifying whether or not to compute standard errors.
- **engine**: Either "C" or "R" to use fast C++ code or native R code during the optimization.
- **...**: Additional arguments to optim, such as lower and upper bounds.

Details

Estimates site occupancy and detection probability from time-to-detection (TTD) data, e.g. time to first detection of a particular bird species during a point count or time-to-detection of a plant species while searching a quadrat (Garrard et al. 2008). Time-to-detection can be modeled as an exponential (\( ttdDist="exp" \)) or Weibull (\( ttdDist="weibull" \)) random variable with rate parameter \( \lambda \) and, for the Weibull, an additional shape parameter \( k \). Note that `occuTTD` puts covariates on \( \lambda \) and not \( 1/\lambda \), i.e., the expected time between events.

In the case where there are no detections before the maximum sample time at a site (\( surveyLength \)) is reached, we are not sure if the site is unoccupied or if we just didn’t wait long enough for a detection. We therefore must censor the exponential or Weibull distribution at the maximum survey length, \( Tmax \). Thus, assuming true site occupancy at site \( i \) is \( z_i \), an exponential distribution for the TTD \( y_i \), and that \( d_i = 1 \) indicates \( y_i \) is censored (Kery and Royle 2016):

\[
d_i = z_i \ast I(y_i > Tmax_i) + (1 - z_i)
\]

and

\[
y_i|z_i \sim \text{Exponential}(\lambda_i), d_i = 0
\]

\[
y_i|z_i = \text{Missing}, d_i = 1
\]

Because in `unmarked` values of NA are typically used to indicate missing values that were a result of the sampling structure (e.g., lost data), we indicate a censored \( y_i \) in `occuTTD` instead by setting \( y_i = Tmax_i \) in the \( y \) matrix provided to `unmarkedFrameOccuTTD`. You can provide either a single value of \( Tmax \) to the `surveyLength` argument of `unmarkedFrameOccuTTD`, or provide a matrix, potentially with a unique value of \( Tmax \) for each value of \( y \). Note that in the latter case the value
of \( y \) that will be interpreted by \texttt{OccuTTD} as a censored observation (i.e., \( T_{\text{max}} \)) will differ between observations!

Occupancy and detection can be estimated with only a single survey per site, unlike a traditional occupancy model that requires at least two replicated surveys at at least some sites. However, \texttt{OccuTTD} also supports multiple surveys per site using the model described in Garrard et al. (2013). Furthermore, multi-season dynamic models are supported, using the same basic structure as for standard occupancy models (see \texttt{coext}).

When \texttt{linkPsi = "cloglog"}, the complimentary log-log link function is used for \( \psi \) instead of the logit link. The cloglog link relates occupancy probability to the intensity parameter of an underlying Poisson process (Kery and Royle 2016). Thus, if abundance at a site is can be modeled as \( N_i \sim \text{Poisson}(\lambda_i) \), where \( \log(\lambda_i) = \alpha + \beta * x \), then presence/absence data at the site can be modeled as \( Z_i \sim \text{Binomial}(\psi_i) \) where \( \text{cloglog}(\psi_i) = \alpha + \beta * x \).

Value

\texttt{unmarkedFitOccuTTD} object describing model fit.

Author(s)

Ken Kellner <contact@kenkellner.com>

References


See Also

\texttt{unmarked, unmarkedFrameOccuTTD}

Examples

```r
Not run:
Single season model
N <- 500; J <- 1

#Simulate occupancy
scovs <- data.frame(elev=scale(runif(N, 0,100)),
 forest=runif(N,0,1),
 wind=runif(N,0,1))

beta_psi <- c(-0.69, 0.71, -0.5)
```
psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi)

z <- rbinom(N, 1, psi)

# Simulate detection
Tmax <- 10 # Same survey length for all observations
beta_lam <- c(-2, -0.2, 0.7)
rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam)
ttd <- rexp(N, rate)
ttd[z==0] <- Tmax # Censor at unoccupied sites

# Build unmarkedFrame
umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs)

# Fit model
fit <- occuTTD(psiiformula=~elev+forest, detformula=~elev+wind, data=umf)

# Predict psi values
predict(fit, type='psi', newdata=data.frame(elev=0.5, forest=1))

# Predict lambda values
predict(fit, type='det', newdata=data.frame(elev=0.5, wind=0))

# Calculate p, probability species is detected at a site given it is present
# for a value of lambda. This is equivalent to eq 4 of Garrard et al. 2008
lam <- predict(fit, type='det', newdata=data.frame(elev=0.5, wind=0))$Predicted
pexp(Tmax, lam)

# Estimated p for all observations
head(getP(fit))

### Dynamic model
N <- 1000; J <- 2; T <- 2
scovs <- data.frame(elev=c(scale(runif(N, 0, 100))),
                     forest=runif(N, 0, 1),
                     wind=runif(N, 0, 1))

beta_psi <- c(-0.69, 0.71, -0.5)
psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi)
z <- matrix(NA, N, T)
z[,1] <- rbinom(N, 1, psi)

# Col/Ext process
ysc <- data.frame(forest=rep(scovs$forest, each=T),
                   elev=rep(scovs$elev, each=T))
c_b0 <- -0.4; c_b1 <- 0.3
gam <- plogis(c_b0 + c_b1 * scovs$forest)
e_b0 <- -0.7; e_b1 <- 0.4

for (i in 1:N){
  for (t in 1:(T-1)){

    c_b0 <- c_b0 + c_b1 * scovs$forest
    e_b0 <- e_b0 + e_b1 * scovs$elev
    gam <- plogis(c_b0 + c_b1 * scovs$forest)
  }
}

for (t in 1:T){
  for (i in 1:N){

    ysc$elev[i,t] <- rbinom(1, gam)
    ysc$forest[i,t] <- rbinom(1, c_b0 + c_b1 * scovs$forest)
  }
}
if(z[i,t]==1){
  #ext
  z[i,t+1] <- rbinom(1, 1, (1-ext[i]))
} else {
  #col
  z[i,t+1] <- rbinom(1,1, gam[i])
}

#Simulate detection
ocovs <- data.frame(obs=rep(c('A', 'B'), N*T))
Tmax <- 10
beta_lam <- c(-2, -0.2, 0.7)
rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam)
#Add second observer at each site
rateB <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam - 0.5)
#Across seasons
rate2 <- as.numeric(t(cbind(rate, rateB, rate, rateB)))
ttd <- rexp(N*T*2, rate2)
ttd <- matrix(ttd, nrow=N, byrow=T)
ttd[ttd>Tmax] <- Tmax
ttd[z[,1]==0,1:2] <- Tmax
ttd[z[,2]==0,3:4] <- Tmax

umf <- unmarkedFrameOccuTTD(y = ttd, surveyLength = Tmax,
  siteCovs = scovs, obsCovs=ocovs,
  yearlySiteCovs=ysc, numPrimary=2)
dim(umf@y) #num sites, (num surveys x num primary periods)

fit <- occuTTD(psiformula=~elev+forest,detformula=~elev+wind+obs,
  gammaformula=~forest, epsilonformula=~elev,
  data=umf,se=T,engine="C")

truth <- c(beta_psi, c_b0, c_b1, e_b0, e_b1, beta_lam, -0.5)

#Compare to truth
cbind(coef(fit), truth)

## End(Not run)

---

### optimizePenalty-methods

**Identify Optimal Penalty Parameter Value**

**Description**

Identify the optimal value of the penalty term for unmarked models that support penalized likelihood. For each potential value of the penalty term, K-fold cross validation is performed. Log-
likelihoods for the test data in each fold are calculated and summed. The penalty term that maximizes the sum of the fold log-likelihoods is selected as the optimal value. Finally, the model is re-fit with the full dataset using the selected penalty term. Right now only Bayes-inspired penalty of Hutchinson et al. (2015) is supported.

Currently the only fitting function that supports optimizePenalty is occuMulti for multispecies occupancy modeling; see Clipp et al. (2021).

Usage

```r
S4 method for signature 'unmarkedFitOccuMulti'
optimizePenalty(
 object, penalties = c(0, 2^seq(-4, 4)), k = 5, boot = 30, ...)
```

Arguments

- `object`: A fitted model inheriting class `unmarkedFit`
- `penalties`: Vector of possible penalty values, all of which must be \( \geq 0 \)
- `k`: Number of folds to use for k-fold cross validation
- `boot`: Number of bootstrap samples to use to generate the variance-covariance matrix for the final model.
- `...`: Other arguments, currently ignored

Value

unmarkedFit object of same type as input, with the optimal penalty value applied.

Author(s)

Ken Kellner <contact@kenkellner.com>

References


ovendata  

*Removal data for the Ovenbird*

**Description**

Removal sampling data collected for the Ovenbird (*Seiurus aurocapillus*).

**Usage**

```r
data(ovendata)
```

**Format**

The format is: chr "ovendata.list" which consists of

- **data** matrix of removal counts
- **covariates** data frame of site-level covariates

**Source**

J.A. Royle (see reference below)

**References**


**Examples**

```r
data(ovendata)
str(ovendata.list)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=as.data.frame(scale(ovendata.list$covariates[, -1])), type = "removal")
```

---

**parboot**  

*Parametric bootstrap method for fitted models inheriting class.*

**Description**

Simulate datasets from a fitted model, refit the model, and generate a sampling distribution for a user-specified fit-statistic.
parboot

Arguments

object  a fitted model inheriting class 'unmarkedFit'
statistic  a function returning a vector of fit-statistics. First argument must be the fitted model. Default is sum of squared residuals.
nsim  number of bootstrap replicates
report  print fit statistic every 'report' iterations during resampling
seed  set seed for reproducible bootstrap
parallel  logical (default = TRUE) indicating whether to compute bootstrap on multiple cores, if present. If TRUE, suppresses reporting of bootstrapped statistics.Defaults to serial calculation when nsim < 100. Parallel computation is likely to be slower for simple models when nsim < ~500, but should speed up the bootstrap of more complicated models.
ncores  integer (default = one less than number of available cores) number of cores to use when bootstrapping in parallel.
...  Additional arguments to be passed to statistic

Details

This function simulates datasets based upon a fitted model, refits the model, and evaluates a user-specified fit-statistic for each simulation. Comparing this sampling distribution to the observed statistic provides a means of evaluating goodness-of-fit or assessing uncertainty in a quantity of interest.

Value

An object of class parboot with three slots:
call  parboot call
t0  Numeric vector of statistics for original fitted model.
t.star  nsim by length(t0) matrix of statistics for each simulation fit.

Author(s)

Richard Chandler <rbchan@uga.edu> and Adam Smith

See Also

ranef

Examples

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length
ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
tlength = lengths*1000, survey = "line", unitsIn = "m")
)

# Fit a model
(fm <- distsamp(~area ~habitat, ltUMF))

# Function returning three fit-statistics.
fitstats <- function(fm, na.rm=TRUE) {
  observed <- getY(fm@data)
  expected <- fitted(fm)
  resids <- residuals(fm)
  sse <- sum(resids^2, na.rm=na.rm)
  chisq <- sum((observed - expected)^2 / expected, na.rm=na.rm)
  freeTuke <- sum((sqrt(observed) - sqrt(expected))^2, na.rm=na.rm)
  out <- c(SSE=sse, Chisq=chisq, freemanTukey=freeTuke)
  return(out)
}

(pb <- parboot(fm, fitstats, nsim=25, report=1))
plot(pb, main="")

# Finite-sample inference for a derived parameter.
# Population size in sampled area
Nhat <- function(fm) {
  sum(bup(ranef(fm, K=50)))
}

set.seed(345)
(pb.N <- parboot(fm, Nhat, nsim=25, report=5))

# Compare to empirical Bayes confidence intervals
colSums(confint(ranef(fm, K=50)))

---

**pcount**  
*Fit the N-mixture model of Royle (2004)*

**Description**

Fit the N-mixture model of Royle (2004)

**Usage**

```r
pcount(formula, data, K, mixture=c("P", "NB", "ZIP"),
starts, method="BFGS", se=TRUE, engine=c("C", "R", "TMB"), threads=1, ...)
```
Arguments

- **formula**: Double right-hand side formula describing covariates of detection and abundance, in that order.
- **data**: an unmarkedFramePCount object supplying data to the model.
- **K**: Integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with K.
- **mixture**: character specifying mixture: "P", "NB", or "ZIP".
- **starts**: vector of starting values
- **method**: Optimization method used by *optim*.
- **se**: logical specifying whether or not to compute standard errors.
- **engine**: Either "C", "R", or "TMB" to use fast C++ code, native R code, or TMB (required for random effects) during the optimization.
- **threads**: Set the number of threads to use for optimization in C++, if OpenMP is available on your system. Increasing the number of threads may speed up optimization in some cases by running the likelihood calculation in parallel. If threads=1 (the default), OpenMP is disabled.
- **...**: Additional arguments to optim, such as lower and upper bounds

Details

This function fits N-mixture model of Royle (2004) to spatially replicated count data. See *unmarkedFramePCount* for a description of how to format data for *pcount*.

This function fits the latent N-mixture model for point count data (Royle 2004, Kery et al 2005). The latent abundance distribution, \( f(N| \theta) \) can be set as a Poisson, negative binomial, or zero-inflated Poisson random variable, depending on the setting of the mixture argument, mixture = "P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of \( N_i \) is \( \lambda_i \). If \( N_i \sim NB \), then an additional parameter, \( \alpha \), describes dispersion (lower \( \alpha \) implies higher variance). For the ZIP distribution, the mean is \( \lambda_i(1 - \psi) \), where psi is the zero-inflation parameter.

The detection process is modeled as binomial: \( y_{ij} \sim \text{Binomial}(N_i, p_{ij}) \).

Covariates of \( \lambda_i \) use the log link and covariates of \( p_{ij} \) use the logit link.

Value

- unmarkedFit object describing the model fit.

Author(s)

- Ian Fiske and Richard Chandler
References


See Also

unmarkedFramePCount, pcountOpen, ranef, parboot

Examples

```r
Not run:

Simulate data
set.seed(35)
nSites <- 100
nVisits <- 3
x <- rnorm(nSites) # a covariate
beta0 <- 0
beta1 <- 1
lambda <- exp(beta0 + beta1*x) # expected counts at each site
N <- rpois(nSites, lambda) # latent abundance
y <- matrix(NA, nSites, nVisits)
p <- c(0.3, 0.6, 0.8) # detection prob for each visit
for(j in 1:nVisits) {
 y[,j] <- rbinom(nSites, N, p[j])
}

Organize data
visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE)

umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x),
 obsCovs=list(visit=visitMat))
summary(umf)

Fit a model
fm1 <- pcount(~visit-1 ~ x, umf, K=50)
fml

plogis(coef(fm1, type="det")) # Should be close to p

Empirical Bayes estimation of random effects
(fm1re <- ranef(fm1))
plot(fm1re, subset=site %in% 1:25, xlim=c(-1,40))
sum(bup(fm1re)) # Estimated population size
sum(N) # Actual population size
```
# Real data
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,  
obsCovs = mallard.obs)
(fm.mallard <- pcount(~ ivel + date + I(date^2) ~ length + elev + forest, mallardUMF, K=30))  
(fm.mallard.nb <- pcount(~ date + I(date^2) ~ length + elev, mixture = "NB", mallardUMF, K=30))

## End(Not run)

---

**pcount.spHDS**  
Fit spatial hierarchical distance sampling model.

**Description**

Function fits an N-mixture model for a discrete state space with raster covariates, and a detection function which decreases with distance from the observer, assumed to be at the centre. See Kery & Royle (2016) Section 9.8.4 for details.

**Usage**

pcount.spHDS(formula, data, K, mixture = c("P", "NB", "ZIP"), starts,  
method = "BFGS", se = TRUE, ...)

**Arguments**

- **formula**
  - Double right-hand side formula describing covariates of detection and abundance, in that order.
  - Detection model should be specified without an intercept, for example: ~ -1 + I(dist^2), where dist is a covariate giving the distance of each cell of the raster from the observer. Internally this forces the intercept p(0) = 1, conventional for distance sampling models (see Kery & Royle (2016) for explanation).
  - More general models work but may not honor that constraint. e.g., ~ 1, ~ dist, ~ I(dist^2), ~ dist + I(dist^2)

- **data**
  - an unmarkedFramePCount object supplying data to the model.

- **K**
  - Integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with K.

- **mixture**
  - character specifying mixture: Poisson (P), Negative-Binomial (NB), or Zero Inflated Poisson (ZIP).

- **starts**
  - vector of starting values

- **method**
  - Optimization method used by optim.

- **se**
  - logical specifying whether or not to compute standard errors.

- **...**
  - Additional arguments to optim, such as lower and upper bounds
Value

unmarkedFit object describing the model fit.

Author(s)

Kery & Royle

References

Kery & Royle (2016) Applied Hierarchical Modeling in Ecology Section 9.8.4

Examples

```r
Simulate some data to analyse
This is based on Kery and Royle (2016) section 9.8.3
See AHMbook::sim.spatialDS for more simulation options.

We will simulate distance data for a logit detection function with sigma = 1,
for a 6x6 square, divided into a 30 x 30 grid of pixels (900 in all), with the
observer in the centre.

set.seed(2017)

1. Create coordinates for 30 x 30 grid
grx <- seq(0.1, 5.9, 0.2) # mid-point coordinates
gr <- expand.grid(grx, grx) # data frame with coordinates of pixel centres

2a. Simulate spatially correlated Habitat covariate
Get the pair-wise distances between pixel centres
tmp <- as.matrix(dist(gr)) # a 900 x 900 matrix
Correlation is a negative exponential function of distance, with scale parameter = 1
V <- exp(-tmp/1)
Habitat <- crossprod(t(chol(V)), rnorm(900))

2b. Do a detection covariate: the distance of each pixel centre from the observer
dist <- sqrt((gr[,1]-3)^2 + (gr[,2]-3)^2)

3. Simulate the true population
Probability that an animal is in a pixel depends on the Habitat covariate, with
coefficient beta:
beta <- 1
probs <- exp(beta*Habitat) / sum(exp(beta*Habitat))
Allocate 600 animals to the 900 pixels, get the pixel ID for each animal
pixel.id <- sample(1:900, 600, replace=TRUE, prob=probs)

4. Simulate the detection process
Get the distance of each animal from the observer
(As an approximation, we’ll treat animals as if they are at the pixel centre.)
d <- dist[pixel.id]
Calculate probability of detection with logit detection function with
sigma = 1
p <- 2*plogis(-d^2/(2*sigma^2))
```
```r
Simulate the 1/0 detection/nondetection vector
y <- rbinom(600, 1, p)
Check the number of animals detected
sum(y)
Select the pixel IDs for the animals detected and count the number in each pixel
detected.pixel.id <- pixel.id[y == 1]
pixel.count <- tabulate(detected.pixel.id, nbins=900)

5. Prepare the data for unmarked
Centre the Habitat covariate
Habitat <- Habitat - mean(Habitat)
Construct the unmarkedFramePCount object
umf <- unmarkedFramePCount(y=cbind(pixel.count), # y needs to be a 1-column matrix
 siteCovs=data.frame(dist=dist, Habitat=Habitat))
summary(umf)

6. Fit some models
(fm0 <- pcount.spHDS(~ -1 + I(dist^2) ~ 1, umf, K = 20))
(fm1 <- pcount.spHDS(~ -1 + I(dist^2) ~ Habitat, umf, K = 20))
The true Habitat coefficient (beta above) = 1
fm1 has much lower AIC; look at the population estimate
sum(predict(fm1, type="state")[, 1])
```

---

**pcountOpen**

Fit the open N-mixture models of Dail and Madsen and extensions

**Description**

Fit the models of Dail and Madsen (2011) and Hostetler and Chandler (in press), which are generalized forms of the Royle (2004) N-mixture model for open populations.

**Usage**

```r
pcountOpen(lambdaformula, gammaformula, omegaformula, pformula,
data, mixture = c("P", "NB", "ZIP"), K, dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"), fix=c("none", "gamma", "omega"),
starts, method = "BFGS", se = TRUE, immigration = FALSE,
iotaformula = ~1, ...)
```

**Arguments**

- `lambdaformula`  
  Right-hand sided formula for initial abundance
- `gammaformula`  
  Right-hand sided formula for recruitment rate (when dynamics is "constant", "autoreg", or "notrend") or population growth rate (when dynamics is "trend", "ricker", or "gompertz")
- `omegaformula`  
  Right-hand sided formula for apparent survival probability (when dynamics is "constant", "autoreg", or "notrend") or equilibrium abundance (when dynamics is "ricker" or "gompertz")
pformula  | Right-hand sided formula for detection probability
---|---
data  | An object of class unmarkedFramePCO. See details
mixture  | character specifying mixture: "P", "NB", or "ZIP" for the Poisson, negative binomial, and zero-inflated Poisson distributions.
K  | Integer defining upper bound of discrete integration. This should be higher than the maximum observed count and high enough that it does not affect the parameter estimates. However, the higher the value the slower the computation.
dynamics  | Character string describing the type of population dynamics. "constant" indicates that there is no relationship between omega and gamma. "autoreg" is an auto-regressive model in which recruitment is modeled as gamma*N[i,t-1]. "notrend" model gamma as lambda*(1-omega) such that there is no temporal trend. "trend" is a model for exponential growth, N[i,t] = N[i,t-1]*gamma, where gamma in this case is finite rate of increase (normally referred to as lambda). "ricker" and "gompertz" are models for density-dependent population growth. "ricker" is the Ricker-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-N[i,t-1]/omega)), where gamma is the maximum instantaneous population growth rate (normally referred to as r) and omega is the equilibrium abundance (normally referred to as K). "gompertz" is a modified version of the Gompertz-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-log(N[i,t-1]+1)/log(omega+1))), where the interpretations of gamma and omega are similar to in the Ricker model.
fix  | If "omega", omega is fixed at 1. If "gamma", gamma is fixed at 0.
starts  | vector of starting values
method  | Optimization method used by optim.
se  | logical specifying whether or not to compute standard errors.
immigration  | logical specifying whether or not to include an immigration term (iota) in population dynamics.
iotaformula  | Right-hand sided formula for average number of immigrants to a site per time step
...  | additional arguments to be passed to optim.

Details

These models generalize the Royle (2004) N-mixture model by relaxing the closure assumption. The models include two or three additional parameters: gamma, either the recruitment rate (births and immigrations), the finite rate of increase, or the maximum instantaneous rate of increase; omega, either the apparent survival rate (deaths and emigrations) or the equilibrium abundance (carrying capacity); and iota, the number of immigrants per site and year. Estimates of population size at each time period can be derived from these parameters, and thus so can trend estimates. Or, trend can be estimated directly using dynamics="trend".

When immigration is set to FALSE (the default), iota is not modeled. When immigration is set to TRUE and dynamics is set to "autoreg", the model will separately estimate birth rate (gamma) and number of immigrants (iota). When immigration is set to TRUE and dynamics is set to "trend", "ricker", or "gompertz", the model will separately estimate local contributions to population growth (gamma and omega) and number of immigrants (iota).
The latent abundance distribution, \( f(N|\theta) \) can be set as a Poisson, negative binomial, or zero-inflated Poisson random variable, depending on the setting of the mixture argument, mixture = "P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of \( N_i \) is \( \lambda_i \). If \( N_i \sim NB \), then an additional parameter, \( \alpha \), describes dispersion (lower \( \alpha \) implies higher variance). For the ZIP distribution, the mean is \( \lambda_i (1 - \psi) \), where \( \psi \) is the zero-inflation parameter.

For "constant", "autoreg", or "notrend" dynamics, the latent abundance state following the initial sampling period arises from a Markovian process in which survivors are modeled as \( S_{it} \sim Binomial(N_{it-1}, \omega_{it}) \), and recruits follow \( G_{it} \sim Poisson(\gamma_{it}) \). Alternative population dynamics can be specified using the dynamics and immigration arguments.

The detection process is modeled as binomial: \( y_{ijt} \sim Binomial(N_{it}, p_{ijt}) \).

\( \lambda_i, \gamma_{it}, \) and \( t_{it} \) are modeled using the the log link. \( p_{ijt} \) is modeled using the logit link. \( \omega_{it} \) is either modeled using the logit link (for "constant", "autoreg", or "notrend" dynamics) or the log link (for "ricker" or "gompertz" dynamics). For "trend" dynamics, \( \omega_{it} \) is not modeled.

**Value**

An object of class unmarkedFitPCO.

**Warning**

This function can be extremely slow, especially if there are covariates of gamma or omega. Consider testing the timing on a small subset of the data, perhaps with se=FALSE. Finding the lowest value of K that does not affect estimates will also help with speed.

**Note**

When gamma or omega are modeled using year-specific covariates, the covariate data for the final year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be supplied to unmarkedFramePCO using the primaryPeriod argument.

Secondary sampling periods are optional, but can greatly improve the precision of the estimates.

**Author(s)**

Richard Chandler <rbchan@uga.edu> and Jeff Hostetler

**References**


**See Also**

pcount, unmarkedFramePCO
Examples

## Simulation
## No covariates, constant time intervals between primary periods, and
## no secondary sampling periods

```r
set.seed(3)
M <- 50
T <- 5
lambda <- 4
gamma <- 1.5
omega <- 0.8
p <- 0.7
y <- N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)
N[,1] <- rpois(M, lambda)
for(t in 1:(T-1)) {
 S[,t] <- rbinom(M, N[,t], omega)
 G[,t] <- rpois(M, gamma)
 N[,t+1] <- S[,t] + G[,t]
}
y[] <- rbinom(M*T, N, p)

Prepare data
umf <- unmarkedFramePCO(y = y, numPrimary=T)
summary(umf)

Fit model and backtransform
(m1 <- pcountOpen(~1, ~1, ~1, ~1, umf, K=20)) # Typically, K should be higher

(lam <- coef(backTransform(m1, "lambda"))) # or
lam <- exp(coef(m1, type="lambda"))

(gam <- exp(coef(m1, type="gamma")))

(om <- plogis(coef(m1, type="omega")))

(p <- plogis(coef(m1, type="det")))

Not run:
Finite sample inference. Abundance at site i, year t
re <- ranef(m1)
plot(re, layout=c(5,5), subset = site %in% 1:25 & year %in% 1:2,
xlim=c(-1,15))

(N.hat1 <- colSums(bup(re)))

Expected values of N[i,t]
N.hat2 <- matrix(NA, M, T)
N.hat2[,1] <- lam
for(t in 2:T) {

```
N.hat2[,t] <- om*N.hat2[,t-1] + gam
}

rbind(N=colSums(N), N.hat1=N.hat1, N.hat2=colSums(N.hat2))

## End(Not run)

piFuns  

Compute multinomial cell probabilities

Description

Compute the cell probabilities used in the multinomial-Poisson models multinomPois and gmultmix. These functions use piFuns internally to calculate multinomial likelihoods from the occasion-wise detection probabilities. The only reason to call them directly is to check their behaviour.

Usage

removalPiFun(p)
doublePiFun(p)

Arguments

p matrix of detection probabilities at each site for each observation

Details

These two functions are provided as examples of possible functions to calculate multinomial cell probabilities. Users may write their own functions for specific sampling designs (see the example).

Value

For removalPiFun, a matrix of cell probabilities for each site and sampling period.

For doublePiFun, a matrix of cell probabilities for each site and observer combination. Column one is probability observer 1 but not observer 2 detects the object, column two is probability that observer 2 but not observer 1 detects the object, and column 3 is probability of both detecting.

See Also

makePiFuns for factory functions to create customised piFuns.
Examples

```r
(pRem <- matrix(0.5, nrow=3, ncol=3)) # Capture probabilities
removalPiFun(pRem) # Cell probs

(pDouble <- matrix(0.5, 3, 2)) # Observer detection probs
doublePiFun(pDouble) # Cell probs

A user-defined piFun calculating removal probs when time intervals differ.
Here 10-minute counts were divided into 2, 3, and 5 minute intervals.
This function could be supplied to unmarkedFrameMPois along with the obsToY
argument shown below.
instRemPiFun <- function(p) {
 M <- nrow(p)
 J <- ncol(p)
 pi <- matrix(NA, M, J)
 p[,1] <- pi[,1] <- 1 - (1 - p[,1])^2
 p[,2] <- 1 - (1 - p[,2])^3
 p[,3] <- 1 - (1 - p[,3])^5
 for(i in 2:J) {
 pi[,i] <- pi[, i - 1]/p[, i - 1] * (1 - p[, i - 1]) * p[, i]
 }
 return(pi)
}

instRemPiFun(pRem)

Associated obsToY matrix required by unmarkedFrameMPois
o2y <- diag(3) # if y has 3 columns
o2y[upper.tri(o2y)] <- 1
o2y
```

---

**plotEffects**

*Plot marginal effects of covariates in unmarked models*

**Description**

This function generates a plot visualizing the effects of a single covariate on a parameter (e.g. occupancy, abundance) in an unmarked model. If the covariate is numeric, the result is a line plot with an error ribbon where the x-axis is the range of the covariate and the y-axis is the predicted parameter value. If the covariate is an R factor (i.e., categorical), the x-axis instead contains each unique value of the covariate.

All covariates in the model besides the one being plotted are held either at their median value (if they are numeric) or at their reference level (if they are factors).

Some types of unmarked models may require additional arguments, which are passed to the matching predict method. For example, unmarkedFitOccuMulti models require the species argument to be included in the function call in order to work properly.
If you want to customize a plot, the easiest approach is to get data formatted for plotting using `plotEffectsData`, and use that. If you want to see and/or modify the code used by `plotEffects` to generate the default plots, run `getMethod("plotEffects", "unmarkedFit")` in the R console.

Usage

```r
S4 method for signature 'unmarkedFit'
plotEffects(object, type, covariate, level=0.95, ...)
S4 method for signature 'unmarkedFit'
plotEffectsData(object, type, covariate, level=0.95, ...)
```

Arguments

- `object`: A fitted model inheriting class `unmarkedFit`
- `type`: Submodel in which the covariate of interest can be found, for example "state" or "det". This will depend on the fitted model
- `covariate`: The name of the covariate to be plotted, as a character string
- `level`: Confidence level for the error ribbons or bars
- `...`: Other arguments passed to the `predict` function, required for some `unmarkedFit` types such as `unmarkedFitOccuMulti`

Value

A plot (`plotEffects` or a data frame (`plotEffectsData`) containing values to be used in a plot.

Author(s)

Ken Kellner <contact@kenkellner.com>

Examples

```r
Not run:

Simulate data and build an unmarked frame
set.seed(123)
dat_occ <- data.frame(x1=rnorm(500))
dat_p <- data.frame(x2=rnorm(500*5))
y <- matrix(NA, 500, 5)
z <- rep(NA, 500)
b <- c(0.4, -0.5, 0.3, 0.5)
re_fac <- factor(sample(letters[1:5], 500, replace=T))
dat_occ$group <- re_fac
re <- rnorm(5, 0, 1.2)
re_idx <- as.numeric(re_fac)
idx <- 1
```
for (i in 1:500){
    z[i] <- rbinom(1,1, plogis(b[1] + b[2]*dat_occ$x1[i] + re[re_idx[i]]))
    for (j in 1:5){
        y[i,j] <- z[i]*rbinom(1,1, plogis(b[3] + b[4]*dat_p$x2[idx]))
        idx <- idx + 1
    }
}

umf <- unmarkedFrameOccu(y=y, siteCovs=dat_occ, obsCovs=dat_p)

# Fit model
(fm <- occu(~x2 ~x1 + group, umf))

# Plot marginal effects of various covariates
plotEffects(fm, "state", "x1")
plotEffects(fm, "state", "group")
plotEffects(fm, "det", "x2")

# Get raw data used for a plot
plotEffectsData(fm, "state", "group")

# See code used by plotEffects so you can edit it yourself and customize the plot
methods::getMethod("plotEffects", "unmarkedFit")

## End(Not run)

pointtran  Simulated point-transect data

Description
Response matrix of animals detected in five distance classes plus two covariates.

Usage
data(pointtran)

Format
A data frame with 30 observations on the following 7 variables.
dc1 Counts in distance class 1 [0-5 m]
dc2 Counts in distance class 2 [5-10 m]
dc3 Counts in distance class 3 [10-15 m]
dc4 Counts in distance class 4 [15-20 m]
dc5 Counts in distance class 5 [20-25 m]
area a numeric vector
habitat a factor with levels A B C
posteriorSamples

Examples

data(pointtran)
pointtran

# Format for distsamp()
ptUMF <- with(pointtran, {
  unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4, dc5),
  siteCovs = data.frame(area, habitat),
  dist.breaks = seq(0, 25, by=5), survey = "point", unitsIn = "m"
})

Description

Draw samples from the empirical Bayes posterior predictive distribution derived from unmarked
models or ranef objects

Usage

## S4 method for signature 'unmarkedRanef'
posteriorSamples(object, nsims=100, ...)
## S4 method for signature 'unmarkedFit'
posteriorSamples(object, nsims=100, ...)

Arguments

object An object inheriting class unmarkedRanef or unmarkedFit
nsims Number of draws to make from the posterior predictive distribution
... Other arguments

Value

unmarkedPostSamples object containing the draws from the posterior predictive distribution. The
draws are in the @samples slot.

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

ranef, predict
Examples

```r
Simulate data under N-mixture model
set.seed(4564)
R <- 20
J <- 5
N <- rpois(R, 10)
y <- matrix(NA, R, J)
y[] <- rbinom(R*J, N, 0.5)

Fit model
umf <- unmarkedFramePCount(y=y)
fm <- pcount(~1 ~1, umf, K=50)

Estimates of conditional abundance distribution at each site
(re <- ranef(fm))

Draw from the posterior predictive distribution
(ppd <- posteriorSamples(re, nsims=100))
```

powerAnalysis

Conduct a power analysis on an unmarked model

Description

This function uses a simulation-based approach to estimate power for parameters in unmarked models. At a minimum, users must provide a fitted unmarked model object (preferably fit with simulated data) which ensures the model has been properly specified, a list of effect sizes for each parameter in the model (coefs), and the desired Type I error (alpha). It is also possible to get power for a range of other sample sizes besides the sample size in the fitted model object using the design argument to subsample within the provided dataset. See the unmarkedPower vignette for more details and examples.

Usage

```r
powerAnalysis(object, coefs=NULL, design=NULL, alpha=0.05, nulls=list(),
datalist=NULL, nsim=ifelse(is.null(datalist), 100, length(datalist)),
parallel=FALSE)
```

Arguments

- **object**: A fitted model inheriting class unmarkedFit. This could potentially be fit using real data, but ideally you would simulate an appropriate dataset using simulate.
- **coefs**: A list containing the desired effect sizes for which you want to estimate power. This list must follow a specific format. There is one named entry in the list per submodel (e.g., occupancy, detection). To get the required submodel names call
names(object) on your fitted model. Then, each list entry is a named vector with the names corresponding to the parameter names for that submodel, and the values corresponding to the desired effect sizes. It may be easier to leave coefs=NULL, which will generate an error message with a template that you can fill in.

design An optional list of design/sample size parameters containing at a minimum two named elements: M, the number of sites, and J the number of observations per site. If this list is provided, unmarked will subsample the provided dataset to the specified number of sites and observations, allowing you to test power for different designs. If your model has multiple primary periods you must also include T, the number of periods, in the list.

alpha Desired Type I error rate

nulls If provided, a list matching the structure of coefs which defines the null hypothesis value for each parameter. By default the null is 0 for all parameters.

datalist An optional list of previously-simulated datasets, in the form of unmarkedFrames matching the model type of object, which will be used for the power analysis simulations.

nsim Number of simulations to conduct

parallel If TRUE, run folds in parallel. This may speed up the power analysis in some situations

Value

unmarkedPower object containing the results of the power analysis

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

unmarkedPowerList

Examples

```r
Not run:

Simulate an occupancy dataset
Covariates to include in simulation
forms <- list(state=~elev, det=~1)

Covariate effects and intercept values
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

Study design
design <- list(M=300, J=8) # 300 sites, 8 occasions per site

Simulate an unmarkedFrameOccu
```
predict-methods

Methods for Function predict in Package 'unmarked'

Description
These methods return predicted values from fitted model objects.

Methods
signature(object = "unmarkedFit") "type" must be either 'state' or 'det'.
signature(object = "unmarkedFitColExt") "type" must be 'psi', 'col', 'ext', or 'det'.
signature(object = "unmarkedFitGMM") "type" must be 'lambda', 'psi', 'det'
signature(object = "unmarkedFitList") "type" depends upon the fitted models
signature(object = "unmarkedRanef") Use this method to generate the empirical Bayes posterior predictive distribution for functions of the random variables (latent abundance or occurrence).

In addition to the output object from ranef, you must also supply a custom function to argument func. The function must take as input a matrix with dimensions M x T, where M is the number of sites and T is the number of primary periods (T=1 for single-season models). The output of this function should be a vector or matrix containing the derived parameters of interest.

You may also manually set the number of draws from the posterior predictive distribution with argument nsims; the default is 100.
The output of predict will be a vector or array with one more dimension than the output of the function supplied func, corresponding to the number of draws requested nsims. For example, if func outputs a scalar, the output of predict will be a vector with length equal to nsims. If func outputs a 3x2 matrix, the output of predict will be an array with dimensions 3x2xnsims. See ranef for an example.
Alternatively, you can use the posteriorSamples function on the ranef output object to obtain the full posterior predictive distribution. This is useful if you are having trouble designing your custom function or if you want to obtain multiple different derived parameters from the same posterior predictive distribution.

---

### randomTerms

**Extract estimates of random effect terms**

**Description**

Extract estimates and summary statistics of random effect terms from an unmarkedFit model or an unmarkedEstimate.

**Usage**

```r
S4 method for signature 'unmarkedEstimate'
randomTerms(object, level=0.95, ...)
S4 method for signature 'unmarkedFit'
randomTerms(object, type, level=0.95, ...)
```

**Arguments**

- **object**: An object inheriting class unmarkedEstimate or unmarkedFit
- **level**: Significance level to use for confidence interval
- **type**: If provided, return only random effect terms from the chosen submodel type (as a character string)
- **...**: Other arguments

**Value**

data.frame containing estimates, SEs, and confidence intervals for random effect terms in the model.

**Author(s)**

Ken Kellner <contact@kenkellner.com>
Description

Estimate posterior distributions of the random variables (latent abundance or occurrence) using empirical Bayes methods. These methods return an object storing the posterior distributions of the latent variables at each site, and for each year (primary period) in the case of open population models. See unmarkedRanef-class for methods used to manipulate the returned object.

Methods

signature(object = "unmarkedFitOccu") Computes the conditional distribution of occurrence given the data and the estimates of the fixed effects, \( Pr(z_i = 1 | y_{ij}, \psi_i, \hat{r}_{ij}) \)

signature(object = "unmarkedFitOccuRN") Computes the conditional abundance distribution given the data and the estimates of the fixed effects, \( Pr(N_i = k | y_{ij}, \hat{\lambda}_i, \hat{\rho}_{ij}) \)

signature(object = "unmarkedFitPCount") \( Pr(N_i = k | y_{ij}, \hat{\lambda}_i, \hat{p}_{ij}) \)

signature(object = "unmarkedFitMPois") \( Pr(N_i = k | y_{ij}, \hat{\lambda}_i, \hat{p}_{ij}) \)

signature(object = "unmarkedFitDS") \( Pr(N_i = k | y_{i,1:T}, \hat{\lambda}_i, \hat{\sigma}_i) \)

signature(object = "unmarkedFitGMM") \( Pr(M_i = k | y_{i,1:T}, \hat{\lambda}_i, \hat{\phi}_{it}, \hat{\rho}_{ijt}) \)

signature(object = "unmarkedFitGDS") \( Pr(M_i = k | y_{i,1:T}, \hat{\lambda}_i, \hat{\phi}_{it}, \hat{\sigma}_{it}) \)

signature(object = "unmarkedFitColExt") \( Pr(z_{it} = 1 | y_{ijt}, \hat{\psi}_i, \hat{\gamma}_{it}, \hat{j}_{it}, \hat{\epsilon}_{it}, \hat{p}_{ijt}) \)

signature(object = "unmarkedFitPCO") \( Pr(N_{it} = k | y_{ijt}, \hat{\lambda}_i, \hat{\gamma}_{it}, \hat{\omega}_{it}, \hat{i}_{it}, \hat{p}_{ijt}) \)

Warning

Empirical Bayes methods can underestimate the variance of the posterior distribution because they do not account for uncertainty in the hyperparameters (lambda or psi). Eventually, we hope to add methods to account for the uncertainty of the hyperparameters.

Note also that the posterior mode appears to exhibit some bias as an estimator or abundance. Consider using the posterior mean instead, even though it will not be an integer in general. More simulation studies are needed to evaluate the performance of empirical Bayes methods for these models.

Note

From Carlin and Louis (1996): “... the Bayesian approach to inference depends on a prior distribution for the model parameters. This prior can depend on unknown parameters which in turn may follow some second-stage prior. This sequence of parameters and priors constitutes a hierarchical model. The hierarchy must stop at some point, with all remaining prior parameters assumed known. Rather than make this assumption, the basic empirical Bayes approach uses the observed data to estimate these final stage parameters (or to estimate the Bayes rule), and proceeds as in a standard Bayesian analysis.”
Author(s)
Richard Chandler <rbchan@uga.edu>

References

See Also
unmarkedRanef-class

Examples
# Simulate data under N-mixture model
set.seed(4564)
R <- 20
J <- 5
N <- rpois(R, 10)
y <- matrix(NA, R, J)
y[] <- rbinom(R*J, N, 0.5)

# Fit model
umf <- unmarkedFramePCount(y=y)
fm <- pcount(~1 ~1, umf, K=50)

# Estimates of conditional abundance distribution at each site
(re <- ranef(fm))

# Best Unbiased Predictors
bup(re, stat="mean") # Posterior mean
bup(re, stat="mode") # Posterior mode
confint(re, level=0.9) # 90% CI

# Plots
plot(re, subset=site %in% c(1:10), layout=c(5, 2), xlim=c(-1,20))

# Compare estimates to truth
sum(N)
sum(bup(re))

# Extract all values in convenient formats
post.df <- as(re, "data.frame")
head(post.df)
post.arr <- as(re, "array")

#Generate posterior predictive distribution for a function
#of random variables using predict()
First, create a function that operates on a vector of length M (if you fit a single-season model) or a matrix of dimensions MxT (if a dynamic model), where M = nsites and T = n primary periods. Our function will generate mean abundance for sites 1-10 and sites 11-20.

```r
myfunc <- function(x){
 # Mean of first 10 sites
 group1 <- mean(x[1:10])
 # Mean of sites 11-20
 group2 <- mean(x[11:20])
 # Naming elements of the output is optional but helpful
 return(c(group1=group1, group2=group2))
}
```

Get 100 samples of the values calculated in your function.

```r
pr <- predict(re, func=myfunc, nsims=100)
```

Summarize posterior.

```r
data.frame(mean=rowMeans(pr),
 se=apply(pr, 1, stats::sd),
 lower=apply(pr, 1, stats::quantile, 0.025),
 upper=apply(pr, 1, stats::quantile, 0.975))
```

Alternatively, you can return the posterior predictive distribution and run operations on it separately.

```r
ppd <- posteriorSamples(re, nsims=100)
```

---

**SE-methods**

*Methods for Function SE in Package 'unmarked'*

**Description**

Extract standard errors of parameter estimates from a fitted model.

**Methods**

- `obj = "linCombOrBackTrans"` A model prediction
- `obj = "unmarkedEstimate"` See `unmarkedEstimate-class`
- `obj = "unmarkedFit"` A fitted model
shinyPower  Launch a Shiny app to help with power analysis

Description

Launch a Shiny app to test power under various scenarios. Requires the Shiny package to be installed.

Usage

shinyPower(object, ...)

Arguments

object A template unmarkedFit object; see documentation for powerAnalysis for details on how to create this
...
Currently ignored

Value

No return value, called for its side effects.

sight2perpdist  Convert sight distance and sight angle to perpendicular distance.

Description

When distance data are collected on line transects using sight distances and sight angles, they need to be converted to perpendicular distances before analysis.

Usage

sight2perpdist(sightdist, sightangle)

Arguments

sightdist Distance from observer
sightangle Angle from center line. In degrees between 0 and 180.

Value

Perpendicular distance

See Also

distsamp
Examples

\[
\text{round(sight2perpdist(10, c(0, 45, 90, 135, 180)))}
\]

sigma

Extract estimates of random effect standard deviations

Description

Extract estimates and summary statistics of random effect standard deviations from an \texttt{unmarkedFit} model or an \texttt{unmarkedEstimate}.

Usage

\[
\begin{align*}
\text{## S4 method for signature 'unmarkedEstimate'} \\
\text{sigma(object, level=0.95, ...)} \\
\text{## S4 method for signature 'unmarkedFit'} \\
\text{sigma(object, type, level=0.95, ...)}
\end{align*}
\]

Arguments

- \texttt{object} : An object inheriting class \texttt{unmarkedEstimate} or \texttt{unmarkedFit}
- \texttt{level} : Significance level to use for confidence interval
- \texttt{type} : If provided, return only random effect SDs from the chosen submodel type (as a character string)
- \texttt{...} : Other arguments

Value

\texttt{data.frame} containing estimates, SEs, and confidence intervals for random effect standard deviations in the model.

Author(s)

Ken Kellner <contact@kenkellner.com>
**Simulate data from a fitted model.**

**Usage**

```r
S4 method for signature 'unmarkedFitColExt'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitDS'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitMpois'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitOccu'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitOccuRN'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitPCount'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'character'
simulate(object, nsim=1, seed=NULL, formulas, coefs=NULL,
 design, guide=NULL, ...)
```

**Arguments**

- `object` Fitted model of appropriate S4 class
- `nsim` Number of simulations
- `seed` Seed for random number generator. Not currently implemented
- `na.rm` Logical, should missing values be removed?
- `formulas` A named list of formulas, one per submodel (e.g. a formula for occupancy "state" and a formula for detection "det"). To get the correct submodel names for a given model, fit an example for that model, and then call `names(fitted_model)`
- `coefs` A named list of vectors of coefficients associated with the regression intercepts and slopes for each submodel. List should be named as with `formulas` above. Each element of the list should be a named vector, where the names correspond to the names of the parameters in the model (intercept and covariates). If you are not sure how to structure this list, just run `simulate` with `coefs=NULL`; this will generate a template list you can copy and fill in.
- `design` A named list of components of the study design. Must include at least M, the number of sites, and J the number of observations per site. If you are fitting a model with multiple primary periods you must also provide T, the number of primary periods.
guide 

An optional list defining the format (continuous or categorical/factor) and distribution, if continuous, of covariates you want to simulate. By default all covariates are simulated from a standard normal. See example below for an example of how to specify entries in the guide list.

... 

Additional arguments that are needed to fully specify the simulated dataset for a particular model. For example, mixture for pcount models or keyfun for distsamp models.

Methods

object = "unmarkedFitColExt" A model fit by colext
object = "unmarkedFitDS" A model fit by distsamp
object = "unmarkedFitMPois" A model fit by multinomPois
object = "unmarkedFitOccu" A model fit by occu
object = "unmarkedFitOccuRN" A model fit by occuRN
object = "unmarkedFitPCount" A model fit by pcount
object = "character" An unmarkedFrame of the appropriate type

Examples

## Not run:

# Simulation of an occupancy dataset from scratch

# Formulas for each submodel
# occupancy is a function of elevation, detection is intercept-only
forms <- list(state=~elev, det=~1)

# Specify list of coefficients - there must be a value for each
# covariate plus an intercept for each submodel
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

# Study design
design <- list(M=300, J=8) # 300 sites, 8 occasions per site

# If we don't specify coefs, unmarked will generate a template you can copy and use
simulate("occu", formulas=forms, design=design)

# Generate unmarkedFrameOccu
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)
head(occu_umf) # note one covariate, elev

# What if we wanted to add a categorical/factor covariate or
# customize the distribution of elev?
# Use the guide argument

# Updated formulas with new covariate
forms2 <- list(state=~elev+landcover, det=~1)
# Guide

Guide <- list(landcover = factor(levels = c("forest", "grass")),
               elev = list(dist = rnorm, mean = 2, sd = 0.5)) # custom distribution

# Updated coefficients list
coeffs2 <- list(state = c(intercept = 0, elev = -0.4, landcovergrass = 0.2), det = c(intercept = 0))

# Simulate new dataset
head(simulate("occu", formulas = forms2, coefs = coefs2, design = design, guide = guide))

# For some models you may want to specify other arguments, such as 'mixture'
# or 'keyfun' for distsamp
# See the documentation for the associated fitting function and unmarkedFrame
# for what arguments are possible to include for a given model
head(simulate("pcount", formulas = forms, coefs = coefs, design = design, mixture = "NB"))

## End(Not run)

---

**SSE**

*Compute Sum of Squared Residuals for a Model Fit.*

**Description**

Compute the sum of squared residuals for an unmarked fit object. This is useful for a parboot.

**Usage**

SSE(fit, ...)

**Arguments**

- **fit**
  - An unmarked fit object.

- **...**
  - Additional arguments to be passed to statistic

**Value**

A numeric value for the models SSE.

**See Also**

parboot
**Switzerland**

**Swiss landscape data**

**Description**

Spatially-referenced data on elevation, forest cover, and water at a 1km-sq resolution.

**Usage**

```r
data(Switzerland)
```

**Format**

A data frame with 42275 observations on the following 5 variables.

- **x**  Easting (m)
- **y**  Northing (m)
- **elevation**  a numeric vector (m)
- **forest**  a numeric vector (percent cover)
- **water**  a numeric vector (percent cover)

**Details**

Forest and water coverage (in percent area) was computed using the 1992-97 landcover dataset of the Swiss Federal Statistical Office (http://www.bfs.admin.ch). Median elevation (in metres) was computed using a median aggregation of the digital elevation model of the Swiss Federal Statistical Office.

x and y are the coordinates of the center of each 1km2 pixel.

The coordinate reference system intentionally not specified.

These data can only be used for non-profit projects. Otherwise, written permission must be obtained from the Swiss Federal Statistical Office.

**Source**

Swiss Federal Statistical Office (http://www.bfs.admin.ch)

**Examples**

```r
library(lattice)
data(Switzerland)
str(Switzerland)
levelplot(elevation ~ x + y, Switzerland, aspect="iso",
 col.regions=terrain.colors(100))
```

## Not run:
library(raster)
el.r <- rasterFromXYZ(Switzerland[,c("x","y","elevation")], crs = "+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs")
plot(el.r)
spplot(el.r)

## End(Not run)

---

## unmarkedEstimate-class

### Class "unmarkedEstimate"

#### Description

Contains parameter estimates, covariance matrix, and metadata

#### Objects from the Class

Creating these objects is done internally not by users.

#### Slots

- `name`: Object of class "character" storing parameter names
- `short.name`: Object of class "character" storing abbreviated parameter names
- `estimates`: Object of class "numeric"
- `covMat`: Object of class "matrix"
- `covMatBS`: Object of class "matrix"
- `fixed`: Object of class "numeric"
- `invlink`: Object of class "character"
- `invlinkGrad`: Object of class "character"
- `randomVarInfo`: Object of class "list"

#### Methods

- `backTransform` signature(obj = "unmarkedEstimate")
- `coef` signature(object = "unmarkedEstimate")
- `confint` signature(object = "unmarkedEstimate")
- `linearComb` signature(obj = "unmarkedEstimate",coefficients = "matrixOrVector")
- `SE` signature(obj = "unmarkedEstimate")
- `show` signature(object = "unmarkedEstimate")
- `vcov` signature(object = "unmarkedEstimate")
Note

These methods are typically called within a call to a method for \texttt{unmarkedFit-class}

Examples

\begin{verbatim}
showClass("unmarkedEstimate")
\end{verbatim}

\begin{verbatim}
unmarkedEstimateList-class

\textit{Class "unmarkedEstimateList"}
\end{verbatim}

Description

Class to hold multiple \texttt{unmarkedEstimates} in an \texttt{unmarkedFit}

Slots

\begin{verbatim}
estimates: A "list" of models.
\end{verbatim}

\begin{verbatim}
unmarkedFit-class

\textit{Class "unmarkedFit"}
\end{verbatim}

Description

Contains fitted model information which can be manipulated or extracted using the methods described below.

Slots

\begin{verbatim}
fitType: Object of class "character"
call: Object of class "call"
formula: Object of class "formula"
data: Object of class "unmarkedFrame"
sitesRemoved: Object of class "numeric"
estimates: Object of class "unmarkedEstimateList"
AIC: Object of class "numeric"
opt: Object of class "list" containing results from \texttt{optim}
negLogLike: Object of class "numeric"
nllFun: Object of class "function"
knownOcc: \texttt{unmarkedFitOccu} only: sites known to be occupied
K: \texttt{unmarkedFitPCount} only: upper bound used in integration
mixture: \texttt{unmarkedFitPCount} only: Mixing distribution
keyfun: \texttt{unmarkedFitDS} only: detection function used by \texttt{distsamp}
unitsOut: \texttt{unmarkedFitDS} only: density units
\end{verbatim}
Methods

- **signature(x = "unmarkedFit", i = "ANY", j = "ANY", drop = "ANY")**: extract one of names(obj), eg 'state' or 'det'

- **backTransform signature(obj = "unmarkedFit")**: back-transform parameters to original scale when no covariate effects are modeled

- **coef signature(object = "unmarkedFit")**: returns parameter estimates. Type can be one of names(obj), eg 'state' or 'det'. If altNames=TRUE estimate names are more specific.

- **confint signature(object = "unmarkedFit")**: Returns confidence intervals. Must specify type and method (either "normal" or "profile")

- **fitted signature(object = "unmarkedFit")**: returns expected values of Y

- **getD signature(object = "unmarkedFit")**: extracts data

- **getP signature(object = "unmarkedFit")**: calculates and extracts expected detection probabilities

- **getFP signature(object = "unmarkedFit")**: calculates and extracts expected false positive detection probabilities

- **getB signature(object = "unmarkedFit")**: calculates and extracts expected probabilities a true positive detection was classified as certain

- **hessian signature(object = "unmarkedFit")**: Returns hessian matrix

- **linearComb signature(obj = "unmarkedFit", coefficients = "matrixOrVector")**: Returns estimate and SE on original scale when covariates are present

- **mle signature(object = "unmarkedFit")**: Same as coef(fit)?

- **names signature(x = "unmarkedFit")**: Names of parameter levels

- **nllFun signature(object = "unmarkedFit")**: returns negative log-likelihood used to estimate parameters

- **parboot signature(object = "unmarkedFit")**: Parametric bootstrapping method to assess goodness-of-fit

- **plot signature(x = "unmarkedFit", y = "missing")**: Plots expected vs. observed values

- **predict signature(object = "unmarkedFit")**: Returns predictions and standard errors for original data or for covariates in a new data.frame

- **profile signature(fitted = "unmarkedFit")**: used by confint method = 'profile'

- **residuals signature(object = "unmarkedFit")**: returns residuals

- **sampleSize signature(object = "unmarkedFit")**: returns number of sites in sample

- **SE signature(obj = "unmarkedFit")**: returns standard errors

- **show signature(object = "unmarkedFit")**: concise results

- **summary signature(object = "unmarkedFit")**: results with more details

- **update signature(object = "unmarkedFit")**: refit model with changes to one or more arguments

- **vcov signature(object = "unmarkedFit")**: returns variance-covariance matrix

- **smoothed signature(object="unmarkedFitColExt")**: Returns the smoothed trajectory from a colonization-extinction model fit. Takes additional logical argument mean which specifies whether or not to return the average over sites.
**projected** signature(object="unmarkedFitColExt"): Returns the projected trajectory from a colonization-extinction model fit. Takes additional logical argument mean which specifies whether or not to return the average over sites.

**logLik** signature(object="unmarkedFit"): Returns the log-likelihood.

**LRT** signature(m1="unmarkedFit", m2="unmarkedFit"): Returns the chi-squared statistic, degrees-of-freedom, and p-value from a Likelihood Ratio Test.

**Note**

This is a superclass with child classes for each fit type

**Examples**

```
showClass("unmarkedFit")

Format removal data for multinomPois
data(ovendata)
ovenFrame <- unmarkedFrameMPois(y = ovendata.list$data,
siteCovs = as.data.frame(scale(ovendata.list$covariates[, -1]),
type = "removal")

Fit a couple of models
(fm1 <- multinomPois(~ 1 ~ ufc + trba, ovenFrame))
summary(fm1)

Apply a bunch of methods to the fitted model

Look at the different parameter types
names(fm1)
fml['state']
fml['det']

Coefficients from abundance part of the model
coeff(fm1, type='state')

Variance-covariance matrix
vcov(fm1, type='state')

Confidence intervals using profiled likelihood
confint(fm1, type='state', method='profile')

Expected values
fitted(fm1)

Original data
getData(fm1)

Detection probabilities
getP(fm1)

log-likelihood
logLik(fm1)
```
# Back-transform detection probability to original scale
# backTransform only works on models with no covariates or
# in conjunction with linearComb (next example)
backTransform(fm1, type = 'det')

# Predicted abundance at specified covariate values
(lc <- linearComb(fm1, c(Int = 1, ufc = 0, trba = 0), type = 'state'))
backTransform(lc)

# Assess goodness-of-fit
parboot(fm1)
plot(fm1)

# Predict abundance at specified covariate values.
newdat <- data.frame(ufc = 0, trba = seq(-1, 1, length = 10))
predict(fm1, type = 'state', newdata = newdat)

# Number of sites in the sample
sampleSize(fm1)

# Fit a new model without covariates
(fmNull <- update(fm1, formula = ~1 ~1))

# Likelihood ratio test
LRT(fm1, fmNull)

unmarkedFitList-class  Class "unmarkedFitList"

Description
Class to hold multiple fitted models from one of unmarked’s fitting functions

Objects from the Class
Objects can be created by using the fitList function.

Slots
fits: A "list" of models.

Methods
c coef signature(object = "unmarkedFitList"): Extract coefficients
SE signature(object = "unmarkedFitList"): Extract standard errors
modSel signature(object = "unmarkedFitList"): Model selection
predict signature(object = "unmarkedFitList"): Model-averaged prediction
Note

Model-averaging regression coefficients is intentionally not implemented.

See Also

fitList, unmarkedFit

Examples

showClass("unmarkedFitList")

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
    unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
    siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
    tlength = lengths, survey = "line", unitsIn = "m"
})

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp(~ 1 ~area, ltUMF)

fl <- fitList(Null=fm1, A.=fm2, .A=fm3)
fl

coef(fl)
SE(fl)

ms <- modSel(fl, nullmod="Null")
ms
unmarkedFrame

Arguments

y                An MxJ matrix of the observed measured data, where M is the number of sites and J is the maximum number of observations per site.

siteCovs        A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate

obsCovs         Either a named list of data.frames of covariates that vary within sites, or a data.frame with MxJ rows in site-major order.

obsToY          optional matrix specifying relationship between observation-level covariates and response matrix

mapInfo         geographic coordinate information. Currently ignored.

Details

unmarkedFrame is the S4 class that holds data structures to be passed to the model-fitting functions in unmarked.

An unmarkedFrame contains the observations (y), covariates measured at the observation level (obsCovs), and covariates measured at the site level (siteCovs). For a data set with M sites and J observations at each site, y is an M x J matrix. obsCovs and siteCovs are both data frames (see data.frame). siteCovs has M rows so that each row contains the covariates for the corresponding sites. obsCovs has M*obsNum rows so that each covariates is ordered by site first, then observation number. Missing values are coded with NA in any of y, siteCovs, or obsCovs.

Additionally, unmarkedFrames contain metadata: obsToY, mapInfo. obsToY is a matrix describing relationship between response matrix and observation-level covariates. Generally this does not need to be supplied by the user; however, it may be needed when using multinomPois. For example, double observer sampling, y has 3 columns corresponding the observer 1, observer 2, and both, but there were only two independent observations. In this situation, y has 3 columns, but obsToY must be specified.

Several child classes of unmarkedFrame require additional metadata. For example, unmarkedFrameDS is used to organize distance sampling data for the distsamp function, and it has arguments dist.breaks, length, survey, and unitsIn, which specify the distance interval cut points, transect lengths, "line" or "point" transect, and units of measure, respectively.

All site-level covariates are automatically copied to obsCovs so that site level covariates are available at the observation level.

Value

an unmarkedFrame object

See Also

unmarkedFrame-class, unmarkedFrameOccu, unmarkedFramePCount, unmarkedFrameDS

Examples

# Set up data for pcount()
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
summary(mallardUMF)

# Set up data for occu()
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)

# Set up data for distsamp()
data(linetran)
ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")
})
summary(ltUMF)

# Set up data for multinomPois()
data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs = as.data.frame(scale(ovendata.list$covariates[, -1]),
type = "removal")
summary(ovenFrame)

## Not run:
# Set up data for colext()
frogUMF <- formatMult(masspcru)
summary(frogUMF)

## End(Not run)

---

**unmarkedFrame-class**  
Class "unmarkedFrame"

**Description**

Methods for manipulating, summarizing and viewing unmarkedFrames

**Objects from the Class**

Objects can be created by calls to the constructor function `unmarkedFrame`. These objects are passed to the data argument of the fitting functions.
unmarkedFrame-class

Slots

y: Object of class "matrix"
obsCovs: Object of class "optionalDataframe"
siteCovs: Object of class "optionalDataframe"
mapInfo: Object of class "optionalMapInfo"
obsToY: Object of class "optionalMatrix"

Methods

[ signature(x = "unmarkedFrame", i = "numeric", j = "missing", drop = "missing"): ...
[ signature(x = "unmarkedFrame", i = "numeric", j = "numeric", drop = "missing"): ...
[ signature(x = "unmarkedFrame", i = "missing", j = "numeric", drop = "missing"): ...
coordinates signature(object = "unmarkedFrame"): extract coordinates
getY signature(object = "unmarkedFrame"): extract y matrix
numSites signature(object = "unmarkedFrame"): extract M
numY signature(object = "unmarkedFrame"): extract ncol(y)
obscovs signature(object = "unmarkedFrame"): extract observation-level covariates
obscovs<- signature(object = "unmarkedFrame"): add or modify observation-level covariates
obsNum signature(object = "unmarkedFrame"): extract number of observations
obstoy signature(object = "unmarkedFrame"): ...
obstoy<- signature(object = "unmarkedFrame"): ...
plot signature(x = "unmarkedFrame", y = "missing"): visualize response variable. Takes additional argument panels which specifies how many panels data should be split over.
projection signature(object = "unmarkedFrame"): extract projection information
show signature(object = "unmarkedFrame"): view data as data.frame
siteCovs signature(object = "unmarkedFrame"): extract site-level covariates
siteCovs<- signature(object = "unmarkedFrame"): add or modify site-level covariates
summary signature(object = "unmarkedFrame"): summarize data

Note

This is a superclass with child classes for each fitting function

See Also

unmarkedFrame, unmarkedFit, unmarked-package
Examples

```
Organize data for pcount()
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
 obsCovs = mallard.obs)

Visualize it
plot(mallardUMF)
mallardUMF

Summarize it
summary(mallardUMF)
str(mallardUMF)
numSites(mallardUMF)
numY(mallardUMF)
obsNum(mallardUMF)

Extract components of data
getY(mallardUMF)
obsCovs(mallardUMF)
obsCovs(mallardUMF, matrices = TRUE)
siteCovs(mallardUMF)
mallardUMF[1:5,] # First 5 rows in wide format
mallardUMF[,1:2] # First 2 observations
```

---

**unmarkedFrameDS**

Organize data for the distance sampling model of Royle et al. (2004)
fit by distsamp

**Description**

Organizes count data along with the covariates and metadata. This S4 class is required by the data argument of `distsamp`
unmarkedFrameDS

Usage

unmarkedFrameDS(y, siteCovs=NULL, dist.breaks, tlength, survey, unitsIn, mapInfo)

Arguments

y An RxJ matrix of count data, where R is the number of sites (transects) and J is the number of distance classes.

siteCovs A data.frame of covariates that vary at the site level. This should have R rows and one column per covariate
dist.breaks vector of distance cut-points delimiting the distance classes. It must be of length J+1.
tlength A vector of length R containing the transect lengths. This is ignored when survey="point".
survey Either "point" or "line" for point- and line-transects.
unitsIn Either "m" or "km" defining the measurement units for both dist.breaks and tlength.
mapInfo Currently ignored

Details

unmarkedFrameDS is the S4 class that holds data to be passed to the distsamp model-fitting function.

Value

an object of class unmarkedFrameDS

Note

If you have continuous distance data, they must be "binned" into discrete distance classes, which are delimited by dist.breaks.

References


See Also

unmarkedFrame-class, unmarkedFrame, distsamp
Examples

```r
Fake data
R <- 4 # number of sites
J <- 3 # number of distance classes

db <- c(0, 10, 20, 30) # distance break points

y <- matrix(c(5, 4, 3, # 5 detections in 0-10 distance class at this transect
0, 0, 0,
2, 1, 1,
1, 1, 0), nrow=R, ncol=J, byrow=TRUE)
y

site.covs <- data.frame(x1=1:4, x2=factor(c('A', 'B', 'A', 'B')))
site.covs

umf <- unmarkedFrameDS(y=y, siteCovs=site.covs, dist.breaks=db, survey="point",
unitsIn="m") # organize data
summary(umf) # summarize
fm <- distsamp(~1 ~1, umf) # fit a model
```

```r
c Create an object of class unmarkedFrameDSO that contains data used by distsampOpen.
```

Description

Organizes distance sampling data and experimental design information from multiple primary periods along with associated covariates. This S4 class is required by the data argument of `distsampOpen`.

Usage

```r
unmarkedFrameDSO(y, siteCovs=NULL, yearlySiteCovs=NULL, numPrimary,
primaryPeriod, dist.breaks, tlength, survey, unitsIn)
```

Arguments

- `y`: An MxJT matrix of the repeated count data, where M is the number of sites (i.e., points or transects), J is the number of distance classes and T is the maximum number of primary sampling periods per site.
- `siteCovs`: A `data.frame` of covariates that vary at the site level. This should have M rows and one column per covariate.
yearlySiteCovs Either a named list of MxT data.frames, or a site-major data.frame with MT rows and 1 column per covariate
numPrimary Maximum number of observed primary periods for each site
primaryPeriod An MxJT matrix of integers indicating the primary period of each observation
dist.breaks vector of distance cut-points delimiting the distance classes. It must be of length J+1
tlength A vector of length R containing the transect lengths. This is ignored when survey="point"
survey Either "point" or "line" for point- and line-transects
unitsIn Either "m" or "km" defining the measurement units for both dist.breaks and tlength

Details

unmarkedFrameDSO is the S4 class that holds data to be passed to the distsampOpen model-fitting function. Unlike most unmarked functions, obsCovs cannot be supplied.

If you have continuous distance data, they must be "binned" into discrete distance classes, which are delimited by dist.breaks.

When gamma or omega are modeled using year-specific covariates, the covariate data for the final year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be supplied using the primaryPeriod argument.

Value

an object of class unmarkedFrameDSO

See Also

unmarkedFrame-class, unmarkedFrame, distsampOpen

Examples

# Fake data
M <- 4 # number of sites
J <- 3 # number of distance classes
T <- 2 # number of primary periods
db <- c(0, 10, 20, 30) # distance break points

y <- matrix(c(  
  5, 4, 3, 6, 2, 1, # In bin 1: 5 detections in primary period 1, 6 in period 2  
  0, 0, 0, 0, 1, 0,  
  2, 1, 1, 0, 0, 0,  
  1, 1, 0, 1, 1, 1), nrow=M, ncol=J*T, byrow=TRUE)
y
# Primary periods of observations
# In this case there are no gaps
primPer <- matrix(as.integer(c(1, 2, 1, 2, 1, 2, 1, 2)), nrow=M, ncol=T, byrow=TRUE)

# Site covs: M rows and 1 column per covariate
site.covs <- data.frame(x1=1:4, x2=factor(c('A', 'B', 'A', 'B')))

# Yearly site covs on gamma/omega
ysc <- list(x3 = matrix(c(1, 2, 1, 2, 1, 2, 1, 2), nrow=M, ncol=T, byrow=TRUE))

umf <- unmarkedFrameDSO(y=y, siteCovs=site.covs, yearlySiteCovs=ysc,
                        numPrimary=T, primaryPeriod=primPer,
                        dist.breaks=db, survey="point", unitsIn="m")

umf # look at data
summary(umf) # summarize

unmarkedFrameGDR  

Organize data for the combined distance and removal point-count model of Amundson et al. (2014) fit by gdistremoval

Description

Organize data for the combined distance and removal point-count model of Amundson et al. (2014) fit by gdistremoval

Usage

unmarkedFrameGDR(yDistance, yRemoval, numPrimary=1, siteCovs=NULL, obsCovs=NULL,
                  yearlySiteCovs=NULL, dist.breaks, unitsIn, period.lengths=NULL)

Arguments

yDistance      An MxTJ matrix of count data, where M is the number of sites (points), T is the number of primary periods (can be 1) and J is the number of distance classes
yRemoval       An MxTJ matrix of count data, where M is the number of sites (points), T is the number of primary periods (can be 1) and J is the number of time removal periods
numPrimary Number of primary periods in the dataset
siteCovs A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate
obsCovs A data.frame of covariates that vary at the site level. This should have MxTJ rows and one column per covariate. These covariates are used only by the removal part of the model
yearlySiteCovs A data.frame of covariates that vary by site and primary period. This should have MxT rows and one column per covariate
dist.breaks vector of distance cut-points delimiting the distance classes. It must be of length J+1
unitsIn Either "m" or "km" defining the measurement units for dist.breaks
period.lengths Optional vector of time lengths of each removal period. Each value in the vector must be a positive integer, and the total length of the vector must be equal to the number of removal periods J. If this is not provided (the default), then all periods are assumed to have an equal length of 1 time unit

Details
unmarkedFrameGDR is the S4 class that holds data to be passed to the gdistremoval model-fitting function.

Value
an object of class unmarkedFrameGDR

Note
If you have continuous distance data, they must be "binned" into discrete distance classes, which are delimited by dist.breaks.

Author(s)
Ken Kellner <contact@kenkellner.com>

References

See Also
unmarkedFrame-class, unmarkedFrame, gdistremoval
unmarkedFrameMMO  

Create an object of class unmarkedFrameMMO that contains data used by multmixOpen.

Description

Organizes count data and experimental design information from multiple primary periods along with associated covariates. This S4 class is required by the data argument of multmixOpen

Usage

unmarkedFrameMMO(y, siteCovs=NULL, obsCovs=NULL, yearlySiteCovs=NULL, numPrimary, type, primaryPeriod)

Arguments

y  
An MxJT matrix of the repeated count data, where M is the number of sites (i.e., points or transects), J is the number of distance classes and T is the maximum number of primary sampling periods per site

siteCovs  
A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate

obsCovs  
Either a named list of data.frames of covariates that vary within sites, or a data.frame with MxJT rows in site-major order.

yearlySiteCovs  
Either a named list of MxT data.frames, or a site-major data.frame with MT rows and 1 column per covariate

numPrimary  
Maximum number of observed primary periods for each site

type  
Either "removal" for removal sampling, "double" for standard double observer sampling, or "depDouble" for dependent double observer sampling

primaryPeriod  
An MxJT matrix of integers indicating the primary period of each observation

Details

unmarkedFrameMMO is the S4 class that holds data to be passed to the multmixOpen model-fitting function.

Options for the detection process (type) include equal-interval removal sampling ("removal"), double observer sampling ("double"), or dependent double-observer sampling ("depDouble"). Note that unlike the related functions multinomPois and gmultmix, custom functions for the detection process (i.e., piFuns) are not supported. To request additional options contact the author.

When gamma or omega are modeled using year-specific covariates, the covariate data for the final year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be supplied using the primaryPeriod argument.
Value

an object of class \texttt{unmarkedFrameMMO}

See Also

\texttt{unmarkedFrame-class}, \texttt{unmarkedFrame}, \texttt{multmixOpen}

Examples

```r
#Generate some data
set.seed(123)
lambda=4; gamma=0.5; omega=0.8; p=0.5
M <- 100; T <- 5
y <- array(NA, c(M, 3, T))
N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)
for(i in 1:M) {
 N[i,1] <- rpois(1, lambda)
y[i,1,1] <- rbinom(1, N[i,1], p) # Observe some
 Nleft1 <- N[i,1] - y[i,1,1] # Remove them
 y[i,2,1] <- rbinom(1, Nleft1, p) # ...
 Nleft2 <- Nleft1 - y[i,2,1]
y[i,3,1] <- rbinom(1, Nleft2, p)
}
for(t in 1:(T-1)) {
 S[i,t] <- rbinom(1, N[i,t], omega)
 G[i,t] <- rpois(1, gamma)
 N[i,t+1] <- S[i,t] + G[i,t]
y[i,1,t+1] <- rbinom(1, N[i,t+1], p) # Observe some
 Nleft1 <- N[i,t+1] - y[i,1,t+1] # Remove them
 y[i,2,t+1] <- rbinom(1, Nleft1, p) # ...
 Nleft2 <- Nleft1 - y[i,2,t+1]
y[i,3,t+1] <- rbinom(1, Nleft2, p)
}
y=matrix(y, M)
#Create some random covariate data
sc <- data.frame(x1=rnorm(100))
#Create unmarked frame
umf <- unmarkedFrameMMO(y=y, numPrimary=5, siteCovs=sc, type="removal")
summary(umf)
```
Description

Organizes count data along with the covariates. This S4 class is required by the data argument of `multinomPois`.

Usage

`unmarkedFrameMPOis(y, siteCovs=NULL, obsCovs=NULL, type, obsToY, mapInfo, piFun)`

Arguments

- **y**: An RxJ matrix of count data, where R is the number of sites (transects) and J is the maximum number of observations per site.
- **siteCovs**: A `data.frame` of covariates that vary at the site level. This should have R rows and one column per covariate.
- **obsCovs**: Either a named list of RxJ `data.frame`s or a `data.frame` with RxJ rows and one column per covariate. For the latter format, the covariates should be in site-major order.
- **type**: Either "removal" for removal sampling, "double" for standard double observer sampling, or "depDouble" for dependent double observer sampling. If this argument not specified, the user must provide an `obsToY` matrix. See details.
- **obsToY**: A matrix describing the relationship between `obsCovs` and `y`. This is necessary because under some sampling designs the dimensions of `y` do not equal the dimensions of each observation-level covariate. For example, in double observer sampling there are 3 observations (seen only by observer A, detected only by observer B, and detected by both), but each observation-level covariate can only have 2 columns, one for each observer. This matrix is created automatically if `type` is specified.
- **mapInfo**: Currently ignored
- **piFun**: Function used to compute the multinomial cell probabilities from a matrix of detection probabilities. This is created automatically if `type` is specified.

Details

`unmarkedFrameMPOis` is the S4 class that holds data to be passed to the `multinomPois` model-fitting function.

Value

An object of class `unmarkedFrameMPOis`
References


See Also

unmarkedFrame-class, unmarkedFrame, multinomPois, piFuns

Examples

# Fake double observer data
R <- 4 # number of sites
J <- 2 # number of observers

y <- matrix(c(1,0,3,
              0,0,0,
              2,0,1,
              0,0,2), nrow=R, ncol=J+1, byrow=TRUE)
y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

obs.covs <- list(
x3 = matrix(c(-1,0,
             -2,0,
             -3,1,
             0,0), nrow=R, ncol=J, byrow=TRUE),
x4 = matrix(c('a','b','a','b','a','b','a','b'), nrow=R, ncol=J, byrow=TRUE))

obs.covs

# Create unmarkedFrame
umf <- unmarkedFrameMPois(y=y, siteCovs=site.covs, obsCovs=obs.covs,
type="double")

# The above is the same as:
O2y <- matrix(1, 2, 3)
pifun <- function(p)
{
  M <- nrow(p)
  pi <- matrix(NA, M, 3)
  pi[, 1] <- p[, 1] * (1 - p[, 2])
pi[, 2] <- p[, 2] * (1 - p[, 1])
pi[, 3] <- p[, 1] * p[, 2]
return(pi)
}

umf <- unmarkedFrameMPois(y=y, siteCovs=site.covs, obsCovs=obs.covs,
obsToY=o2y, piFun="pifun")

# Fit a model
fm <- multinomPois(~1 ~1, umf)

unmarkedFrameOccu

---

**unmarkedFrameOccu**  
Organize data for the single season occupancy models fit by occu and occuRN

### Description

Organizes detection, non-detection data along with the covariates. This S4 class is required by the data argument of `occu` and `occuRN`.

### Usage

```r
unmarkedFrameOccu(y, siteCovs=NULL, obsCovs=NULL, mapInfo)
```

### Arguments

- **y**: An RxJ matrix of the detection, non-detection data, where R is the number of sites, J is the maximum number of sampling periods per site.
- **siteCovs**: A `data.frame` of covariates that vary at the site level. This should have M rows and one column per covariate.
- **obsCovs**: Either a named list of `data.frames` of covariates that vary within sites, or a `data.frame` with RxJ rows in site-major order.
- **mapInfo**: Currently ignored

### Details

`unmarkedFrameOccu` is the S4 class that holds data to be passed to the `occu` and `occuRN` model-fitting function.

### Value

An object of class `unmarkedFrameOccu`
# Fake data
R <- 4  # number of sites
J <- 3  # number of visits
y <- matrix(c(1,1,0,
              0,0,0,
              1,1,1,
              1,0,1), nrow=R, ncol=J, byrow=TRUE)
y
site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

obs.covs <- list(x3 = matrix(c(-1,0,1,
                              -2,0,0,
                              -3,1,0,
                              0,0,0), nrow=R, ncol=J, byrow=TRUE),
                 x4 = matrix(c('a','b','c',
                              'd','b','a',
                              'a','a','c',
                              'a','b','a'), nrow=R, ncol=J, byrow=TRUE))
obs.covs

umf <- unmarkedFrameOccu(y=y, siteCovs=site.covs,
                          obsCovs=obs.covs)  # organize data
umf  # look at data
summary(umf)  # summarize
fm <- occu(~1 ~1, umf)  # fit a model

---

### unmarkedFrameOccuFP

**Organize data for the single season occupancy models fit by occuFP**

**Description**

Organizes detection, non-detection data along with the covariates. This S4 class is required by the data argument of `occu` and `occuRN`.
Usage

unmarkedFrameOccuFP(y, siteCovs=NULL, obsCovs=NULL, type, mapInfo)

Arguments

y
An RxJ matrix of the detection, non-detection data, where R is the number of
sites, J is the maximum number of sampling periods per site.

siteCovs
A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs
Either a named list of data.frames of covariates that vary within sites, or a
data.frame with RxJ rows in site-major order.

type
A vector with 3 values designating the number of occasions where data is of
type 1, type 2, and type 3 - see occuFP for more details about data types.

mapInfo
Currently ignored

Details

unmarkedFrameOccuFP is the S4 class that holds data to be passed to the occu and occuRN model-
fitting function.

Value

an object of class unmarkedFrameOccuFP

See Also

unmarkedFrame-class, unmarkedFrame, occuFP

Examples

n = 100
o = 10
o1 = 5
y = matrix(0,n,o)
p = .7
r = .5
fp = 0.05
y[1:(n*.5),(o-o1+1):o] <- rbinom((n*o1*.5),1,p)
y[1:(n*.5),1:(o-o1)] <- rbinom((o-o1)*n*.5,1,r)
y[(n*.5+1):n,(o-o1+1):o] <- rbinom((n*o1*.5),1,fp)
type <- c((o-o1),o1,0) ### vector with the number of each data type
site <- c(rep(1,n*.5*.8),rep(0,n*.5*.2),rep(1,n*.5*.2),rep(0,n*.8*.5))
occ <- matrix(c(rep(0,n*(o-o1)),rep(1,n*o1)),n,o)
site <- data.frame(habitat = site)
occ <- list(METH = occ)

umf1 <- unmarkedFrameOccuFP(y,site,occ, type = type)
unmarkedFrameOccuMS

m1 <- occuFP(detformula = ~ METH, FPformula = -1, stateformula = ~ habitat, data = umf1)

--

unmarkedFrameOccuMS

Organize data for the multi-state occupancy model fit by occuMS

Description

Organizes multi-state occupancy data (currently single-season only) along with covariates. This S4 class is required by the data argument of occuMS

Usage

unmarkedFrameOccuMS(y, siteCovs=NULL, obsCovs=NULL, numPrimary=1, yearlySiteCovs=NULL)

Arguments

y
An MxR matrix of multi-state occupancy data for a species, where M is the number of sites and R is the maximum number of observations per site (across all primary and secondary periods, if you have multi-season data). Values in y should be integers ranging from 0 (non-detection) to the number of total states - 1. For example, if you have 3 occupancy states, y should contain only values 0, 1, or 2.

siteCovs
A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate

obsCovs
Either a named list of data.frames of covariates that vary within sites, or a data.frame with MxR rows in the ordered by site-observation (if single-season) or site-primary period-observation (if multi-season).

numPrimary
Number of primary time periods (e.g. seasons) for the dynamic or multi-season version of the model. There should be an equal number of secondary periods in each primary period.

yearlySiteCovs
A data frame with one column per covariate that varies among sites and primary periods (e.g. years). It should have MxT rows where M is the number of sites and T the number of primary periods, ordered by site-primary period. These covariates only used for dynamic (multi-season) models.

Details

unmarkedFrameOccuMS is the S4 class that holds data to be passed to the occuMS model-fitting function.

Value

an object of class unmarkedFrameOccuMS
Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

unmarkedFrame-class, unmarkedFrame, occuMS

Examples

# Fake data
# Parameters
N <- 100; J <- 3; S <- 3
psi <- c(0.5, 0.3, 0.2)
p11 <- 0.4; p12 <- 0.25; p22 <- 0.3

# Simulate state
z <- sample(0:2, N, replace=TRUE, prob=psi)

# Simulate detection
y <- matrix(0, nrow=N, ncol=J)
for (n in 1:N)
  probs <- switch(z[n]+1,
    c(0,0,0),
    c(1-p11,p11,0),
    c(1-p12-p22,p12,p22))
  if(z[n]>0){
    y[n,] <- sample(0:2, J, replace=TRUE, probs)
  }

# Covariates
site_covs <- as.data.frame(matrix(rnorm(N*2), ncol=2)) # nrow = # of sites
obs_covs <- as.data.frame(matrix(rnorm(N*J*2), ncol=2)) # nrow = N*J

# Build unmarked frame
umf <- unmarkedFrameOccuMS(y=y, siteCovs=site_covs, obsCovs=obs_covs)

summary(umf) # summarize
plot(umf) # visualize
umf@numStates # check number of occupancy states detected
Description
Organizes detection, non-detection data for multiple species along with the covariates. This S4 class is required by the data argument of `occuMulti`.

Usage

```r
unmarkedFrameOccuMulti(y, siteCovs=NULL, obsCovs=NULL,
 maxOrder, mapInfo)
```

Arguments

- **y**: A list (optionally a named list) of length S where each element is an MxJ matrix of the detection, non-detection data for one species, where M is the number of sites, J is the maximum number of sampling periods per site, and S is the number of species in the analysis.
- **siteCovs**: A `data.frame` of covariates that vary at the site level. This should have M rows and one column per covariate.
- **obsCovs**: Either a named list of `data.frames` of covariates that vary within sites, or a `data.frame` with MxJ rows in site-major order.
- **maxOrder**: Optional; specify maximum interaction order. Defaults to number of species (all possible interactions). Reducing this value may speed up creation of unmarked frame if you aren’t interested in higher-order interactions.
- **mapInfo**: Currently ignored

Details

`unmarkedFrameOccuMulti` is the S4 class that holds data to be passed to the `occuMulti` model-fitting function.

Value

an object of class `unmarkedFrameOccuMulti`

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

`unmarkedFrame-class`, `unmarkedFrame`, `occuMulti`

Examples

```r
Fake data
S <- 3 # number of species
M <- 4 # number of sites
J <- 3 # number of visits
```
y <- list(matrix(rbinom(M*J,1,0.5),M,J), # species 1
          matrix(rbinom(M*J,1,0.5),M,J), # species 2
          matrix(rbinom(M*J,1,0.2),M,J)) # species 3

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))

umf <- unmarkedFrameOccuMulti(y=y, siteCovs=site.covs,
                               obsCovs=NULL) # organize data

summary(umf) # look at data
plot(umf) # visualize
#fm <- occu(~1 ~1, umf) # fit a model

unmarkedFrameOccuTTD

Create an unmarkedFrameOccuTTD object for the time-to-detection model fit by occuTTD

Description

Organizes time-to-detection occupancy data along with covariates. This S4 class is required by the data argument of occuTTD

Usage

unmarkedFrameOccuTTD(y, surveyLength, siteCovs=NULL, obsCovs=NULL,
                       numPrimary=1, yearlySiteCovs=NULL)

Arguments

y An MxR matrix of time-to-detection data for a species, where M is the number of sites and R is the maximum number of observations per site (across all primary periods and observations, if you have multi-season data). Values in y should be positive.
surveyLength The maximum length of a survey, in the same units as y. You can provide either a single value (if all surveys had the same max length), or a matrix matching the dimensions of y (if surveys had different max lengths).
siteCovs A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate
obsCovs Either a named list of data.frames of covariates that vary within sites, or a data.frame with MxR rows in the ordered by site-observation (if single-season) or site-primary period-observation (if multi-season).
numPrimary Number of primary time periods (e.g. seasons) for the dynamic or multi-season version of the model. There should be an equal number of secondary periods in each primary period.
yearlySiteCovs  A data frame with one column per covariate that varies among sites and primary periods (e.g. years). It should have MxT rows where M is the number of sites and T the number of primary periods, ordered by site-primary period. These covariates only used for dynamic (multi-season) models.

Details

unmarkedFrameOccuTTD is the S4 class that holds data to be passed to the occuTTD model-fitting function.

Value

an object of class unmarkedFrameOccuTTD

Note

If the time-to-detection values in \( y \) are very large (e.g., because they are expressed as numbers of seconds) you may have issues fitting models. An easy solution is to convert your units (e.g., from seconds to decimal minutes) to keep the values as close to 0 as possible.

Author(s)

Ken Kellner <contact@kenkellner.com>

Examples

```r
For a single-season model
N <- 100 #Number of sites
psi <- 0.4 #Occupancy probability
lam <- 7 #Parameter for exponential distribution of time to detection
Tmax <- 10 #Maximum survey length
z <- rbinom(N, 1, psi) #Simulate occupancy
y <- rexp(N, 1/lam) #Simulate time to detection
y[z==0] <- Tmax
y[y>Tmax] <- Tmax
sc <- as.data.frame(matrix(rnorm(N*2),ncol=2)) #Site covs
oc <- as.data.frame(matrix(rnorm(N*2),ncol=2)) #obs covs
umf <- unmarkedFrameOccuTTD(y=y, surveyLength=Tmax, siteCovs=sc, obsCovs=oc)
```
Create an object of class unmarkedFramePCO that contains data used by pcountOpen.

Description

Organizes repeated count data along with the covariates and possibly the dates on which each survey was conducted. This S4 class is required by the data argument of pcountOpen.

Usage

unmarkedFramePCO(y, siteCovs=NULL, obsCovs=NULL, yearlySiteCovs, mapInfo, numPrimary, primaryPeriod)

Arguments

y An MxJT matrix of the repeated count data, where M is the number of sites, J is the maximum number of secondary sampling periods per site and T is the maximum number of primary sampling periods per site.
siteCovs A data.frame of covariates that vary at the site level. This should have M rows and one column per covariate.obsCovs Either a named list of data.frames of covariates that vary within sites, or a data.frame with MxJT rows in site-major order.
yearlySiteCovs Either a named list of MxT dataframes, or a site-major data.frame with MT rows and 1 column per covariate.
mapInfo Currently ignored
numPrimary Maximum number of observed primary periods for each site
primaryPeriod matrix of integers indicating the primary period of each survey.

Details

unmarkedFramePCO is the S4 class that holds data to be passed to the pcountOpen model-fitting function.

The unmarkedFramePCO class is similar to the unmarkedFramePCount class except that it contains the dates for each survey, which needs to be supplied.

Value

an object of class unmarkedFramePCO

See Also

unmarkedFrame-class, unmarkedFrame, pcountOpen
Examples

# Repeated count data with 5 primary periods and
# no secondary sampling periods (ie J=1)
y1 <- matrix(c(0, 2, 3, 2, 0,
               2, 2, 3, 1, 1,
               1, 1, 0, 0, 3,
               0, 0, 0, 0, 0), nrow=4, ncol=5, byrow=TRUE)

# Site-specific covariates
sc1 <- data.frame(x1 = 1:4, x2 = c('A', 'A', 'B', 'B'))

# Observation-specific covariates
oc1 <- list(x3 = matrix(1:5, nrow=4, ncol=5, byrow=TRUE),
            x4 = matrix(letters[1:5], nrow=4, ncol=5, byrow=TRUE))

# Primary periods of surveys
primaryPeriod1 <- matrix(as.integer(c(1, 2, 5, 7, 8,
                                     1, 2, 3, 4, 5,
                                     1, 2, 4, 5, 6,
                                     1, 3, 5, 6, 7)), nrow=4, ncol=5, byrow=TRUE)

# Create the unmarkedFrame
umf1 <- unmarkedFramePCO(y=y1, siteCovs=sc1, obsCovs=oc1, numPrimary=5,
                          primaryPeriod=primaryPeriod1)

# Take a look
umf1
summary(umf1)

# Repeated count data with 4 primary periods and
# no 2 secondary sampling periods (ie J=2)
y2 <- matrix(c(0, 0, 2, 2, 3, 2, 2, 2,
               2, 2, 2, 1, 3, 2, 1, 1,
               1, 0, 0, 0, 0, 0, 0, 0), nrow=4, ncol=8, byrow=TRUE)

# Site-specific covariates
sc2 <- data.frame(x1 = 1:4, x2 = c('A', 'A', 'B', 'B'))

# Observation-specific covariates
oc2 <- list(  
x3 = matrix(1:8, nrow=4, ncol=8, byrow=TRUE),  
x4 = matrix(letters[1:8], nrow=4, ncol=8, byrow=TRUE))

# Yearly-site covariates
ysc <- list(  
x5 = matrix(c(1,2,3,4,  
            1,2,3,4,  
            1,2,3,4,  
            1,2,3,4), nrow=4, ncol=4, byrow=TRUE))

# Primary periods of surveys
primaryPeriod2 <- matrix(as.integer(c(1,2,3,4,  
                                     1,2,4,5,  
                                     1,3,5,6)), nrow=4, ncol=4, byrow=TRUE)

# Create the unmarkedFrame
umf2 <- unmarkedFramePCO(y=y2, siteCovs=sc2, obsCovs=oc2,  
                          yearlySiteCovs=ysc,  
                          numPrimary=4, primaryPeriod=primaryPeriod2)

# Take a look
umf2
summary(umf2)

---

**unmarkedFramePCount**  
*Organize data for the N-mixture model fit by pcount*

**Description**

Organizes repeated count data along with the covariates. This S4 class is required by the data argument of `pcount`.

**Usage**

`unmarkedFramePCount(y, siteCovs=NULL, obsCovs=NULL, mapInfo)`

**Arguments**

- **y**: An RxJ matrix of the repeated count data, where R is the number of sites, J is the maximum number of sampling periods per site.

- **siteCovs**: A `data.frame` of covariates that vary at the site level. This should have R rows and one column per covariate.
obsCovs Either a named list of `data.frame`s of covariates that vary within sites, or a `data.frame` with RxJ rows in site-major order.

mapInfo Currently ignored

Details

`unmarkedFramePCount` is the S4 class that holds data to be passed to the `pcount` model-fitting function.

Value

an object of class `unmarkedFramePCount`

See Also

`unmarkedFrame-class`, `unmarkedFrame`, `pcount`

Examples

# Fake data
R <- 4 # number of sites
J <- 3 # number of visits
y <- matrix(c(1,2,0,
0,0,0,
1,1,1,
2,2,1), nrow=R, ncol=J, byrow=TRUE)
y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

obs.covs <- list(
  x3 = matrix(c(-1,0,1,
               -2,0,0,
               -3,1,0,
               0,0,0), nrow=R, ncol=J, byrow=TRUE),
  x4 = matrix(c('a','b','c',
               'd','b','a',
               'a','a','c',
               'a','b','a'), nrow=R, ncol=J, byrow=TRUE))
obs.covs

umf <- unmarkedFramePCount(y=y, siteCovs=site.covs,
                             obsCovs=obs.covs) # organize data
umf # take a l
summary(umf) # summarize data
fm <- pcount(~1 ~1, umf, K=10) # fit a model
Create an `unmarkedMultFrame`, `unmarkedFrameGMM`, `unmarkedFrameGDS`, or `unmarkedFrameGPC` object

**Description**

These functions construct unmarkedFrames for data collected during primary and secondary sampling periods.

**Usage**

```r
unmarkedMultFrame(y, siteCovs, obsCovs, numPrimary, yearlySiteCovs)
unmarkedFrameGMM(y, siteCovs, obsCovs, numPrimary, yearlySiteCovs, type, obsToY, piFun)
unmarkedFrameGDS(y, siteCovs, numPrimary, yearlySiteCovs, dist.breaks, survey, unitsIn, tlength)
unmarkedFrameGPC(y, siteCovs, obsCovs, numPrimary, yearlySiteCovs)
```

**Arguments**

- `y`: A matrix of the observed data.
- `siteCovs`: Data frame of covariates that vary at the site level.
- `obsCovs`: Data frame of covariates that vary within site-year-observation level.
- `numPrimary`: Number of primary time periods (seasons in the multiseason model).
- `yearlySiteCovs`: Data frame containing covariates at the site-year level.
- `type`: Set to "removal" for constant-interval removal sampling, "double" for standard double observer sampling, or "depDouble" for dependent double observer sampling. This should be not be specified for other types of survey designs.
- `obsToY`: A matrix specifying relationship between observation-level covariates and response matrix.
- `piFun`: A function converting an MxJ matrix of detection probabilities into an MxJ matrix of multinomial cell probabilities.
- `dist.breaks`: see `unmarkedFrameDS`
- `survey`: see `unmarkedFrameDS`
- `unitsIn`: see `unmarkedFrameDS`
- `tlength`: see `unmarkedFrameDS`
unmarkedMultFrame

Details

unmarkedMultFrame objects are used by colext.
unmarkedFrameGMM objects are used by gmultmix.
unmarkedFrameGDS objects are used by gdistsamp.
unmarkedFrameGPC objects are used by gpcount.

For a study with $M$ sites, $T$ years, and a maximum of $J$ observations per site-year, the data can be supplied in a variety of ways but are stored as follows. $y$ is an $M \times T \times J$ matrix, with each row corresponding to a site. siteCovs is a data frame with $M$ rows. yearlySiteCovs is a data frame with $MT$ rows which are in site-major, year-minor order. obsCovs is a data frame with $MT \times J$ rows, which are ordered by site-year-observation, so that a column of obsCovs corresponds to $\text{as.vector(t(y))}$, element-by-element. The number of years must be specified in numPrimary. If the data are in long format, the convenience function formatMult is useful for creating the unmarkedMultFrame.

unmarkedFrameGMM and unmarkedFrameGDS are superclasses of unmarkedMultFrame containing information on the survey design used that resulted in multinomial outcomes. For unmarkedFrameGMM and constant-interval removal sampling, you can set type="removal" and ignore the arguments obsToY and piFun. Similarly, for double-observer sampling, setting type="double" or type="depDouble" will automatically create an appropriate obsToY matrix and piFuns. For all other situations, the type argument of unmarkedFrameGMM should be ignored and the obsToY and piFun arguments must be specified. piFun must be a function that converts an $M \times J$ matrix of detection probabilities into an $M \times J$ matrix of multinomial cell probabilities. obsToY is a matrix describing how the obsCovs relate to the observed counts $y$. For further discussion and examples see the help page for multinomPois and piFuns.

unmarkedFrameGMM and unmarkedFrameGDS objects can be created from an unmarkedMultFrame using the "as" conversion method. See examples.

Value

an unmarkedMultFrame or unmarkedFrameGMM object

Note

Data used with colext, gmultmix, and gdistsamp may be collected during a single year, so yearlySiteCovs may be a misnomer is some cases.

See Also

formatMult, colext, gmultmix, gpcount

Examples

```
n <- 50 # number of sites
T <- 4 # number of primary periods
J <- 3 # number of secondary periods
site <- 1:50
```
years <- data.frame(matrix(rep(2010:2013, each=n), n, T))
years <- data.frame(lapply(years, as.factor))
ocasions <- data.frame(matrix(rep(1:(J*T), each=n), n, J*T))

y <- matrix(0:1, n, J*T)

umf <- unmarkedMultFrame(y=y,
    siteCovs = data.frame(site=site),
    obsCovs=list(occasion=occasions),
    yearlySiteCovs=list(year=years),
    numPrimary=T)

umfGMM1 <- unmarkedFrameGMM(y=y,
    siteCovs = data.frame(site=site),
    obsCovs=list(occasion=occasions),
    yearlySiteCovs=data.frame(year=c(t(years))),
    # or: yearlySiteCovs=list(year=years),
    numPrimary=T, type="removal")

# A user-defined piFun calculating removal probs when time intervals differ.
instRemPiFun <- function(p) {
  M <- nrow(p)
  J <- ncol(p)
  pi <- matrix(NA, M, J)
  p[,1] <- pi[,1] <- 1 - (1 - p[,1])^2
  p[,2] <- 1 - (1 - p[,2])^3
  p[,3] <- 1 - (1 - p[,3])^5
  for(i in 2:J) {
    pi[,i] <- pi[, i - 1]/p[, i - 1] * (1 - p[, i - 1]) * p[, i]
  }
  return(pi)
}

# Associated obsToY matrix required by unmarkedFrameMPois
o2y <- diag(ncol(y))
o2y[upper.tri(o2y)] <- 1

umfGMM2 <- unmarkedFrameGMM(y=y,
    siteCovs = data.frame(site=site),
    obsCovs=list(occasion=occasions),
    yearlySiteCovs=data.frame(year=years),
    numPrimary=T, obsToY=o2y, piFun="instRemPiFun")

str(umfGMM2)
Methods for unmarkedPower objects

Description

Various functions to summarize and update unmarkedPower objects

Usage

```r
S4 method for signature 'unmarkedPower'
show(object)
S4 method for signature 'unmarkedPower'
summary(object, ...)
S4 method for signature 'unmarkedPower'
update(object, ...)
```

Arguments

- `object`: An object of class `unmarkedPower` created with the `powerAnalysis` function.
- `...`: For `update`, arguments to change in the updated power analysis. Not used by `summary`.

Value

For `show` and `summary`, summary output is printed to the console. For `update`, a new `powerAnalysis` object corresponding to the new arguments provided.

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

- `powerAnalysis`

Examples

```r
Not run:

Simulate an occupancy dataset
forms <- list(state=~elev, det=~1)
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))
design <- list(M=300, J=8) # 300 sites, 8 occasions per site
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)

Fit occupancy model to simulated data
template_model <- occu(~1~elev, occu_umf)
```
# Set desired effect sizes to pass to coefs
effect_sizes <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

# Run power analysis
pa <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05)

# Look at summary
summary(pa)

# Update the analysis with new arguments
(pa2 <- update(pa, alpha=0.01))

## End(Not run)

---

**unmarkedPowerList**  
Create or summarize a series of unmarked power analyses

**Description**

A list of power analyses created with `powerAnalysis` can be combined using `unmarkedPowerList`, allowing comparison e.g. between different study designs/sample sizes. Additionally an `unmarkedPowerList` can be created directly from an `unmarkedFit` template model by specifying a series of study designs (number of sites, number of observations) as a `data.frame`. A series of methods for `unmarkedPowerList` objects are available including a `plot` method.

**Usage**

```r
S4 method for signature 'list'
unmarkedPowerList(object, ...)
```

```r
S4 method for signature 'unmarkedFit'
unmarkedPowerList(object, coefs, design, alpha=0.05,
 nulls=list(), nsim=100, parallel=FALSE, ...)
```

```r
S4 method for signature 'unmarkedPowerList'
show(object)
```

```r
S4 method for signature 'unmarkedPowerList'
summary(object, ...)
```

```r
S4 method for signature 'unmarkedPowerList,ANY'
plot(x, power=NULL, param=NULL, ...)
```

**Arguments**

- `object, x` A list of `unmarkedPower` objects, a fitted model inheriting class `unmarkedFit`, or an `unmarkedPowerList` object, depending on the method
- `coefs` A named list of effect sizes, see documentation for `powerAnalysis`
A data.frame with one row per study design to test, and at least 2 named columns: M for number of sites and J for number of observations. If you have >1 primary period a T column must also be provided

alpha
Type I error rate

nulls
If provided, a list matching the structure of coefs which defines the null hypothesis value for each parameter. By default the null is 0 for all parameters.

nsim
The number of simulations to run for each scenario/study design

parallel
If TRUE, run simulations in parallel

power
When plotting, the target power. Draws a horizontal line at a given value of power on the plot

param
When plotting, the model parameter to plot power vs. sample size for. By default this is the first parameter (which is usually an intercept, so not very interesting)

... Not used

Value
A unmarkedPowerList object, a summary of the object in the console, or a summary plot, depending on the method

Author(s)
Ken Kellner <contact@kenkellner.com>

See Also
powerAnalysis

Examples

## Not run:

# Simulate an occupancy dataset and build template model
forms <- list(state=~elev, det=~1)
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))
design <- list(M=300, J=8) # 300 sites, 8 occasions per site
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)
template_model <- occu(~1~elev, occu_umf)

# Generate two power analysis
effect_sizes <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))
pa <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05)
pa2 <- powerAnalysis(template_model, effect_sizes, design=list(M=100,J=2))

# Build unmarkedPowerList and look at summary
(pl <- unmarkedPowerList(list(pa,pa2)))

# Run a bunch of power analyses for different scenarios all at once
scenarios <- expand.grid(M=c(50,200,400),
J=c(3,5,8))
(pl2 <- unmarkedPowerList(template_model, effect_sizes, design=scenarios, nsim=20))

# Look at summary plot for elev effect
plot(pl2, power=0.8, param='elev')

## End(Not run)

### unmarkedRanef-class

**unmarkedRanef-class**  
Class "unmarkedRanef"

#### Description
Stores the estimated posterior distributions of the latent abundance or occurrence variables.

#### Objects from the Class
Objects can be created by calls of the form `ranef`.

#### Slots
- **post**: An array with nSites rows and Nmax (K+1) columns and nPrimaryPeriod slices

#### Methods
- **bup** signature(object = "unmarkedRanef"): Extract the Best Unbiased Predictors (BUPs) of the latent variables (abundance or occurrence state). Either the posterior mean or median can be requested using the `stat` argument.
- **confint** signature(object = "unmarkedRanef"): Compute confidence intervals.
- **plot** signature(x = "unmarkedRanef", y = "missing"): Plot the posteriors using `xyplot`
- **show** signature(object = "unmarkedRanef"): Display the modes and confidence intervals

#### Warnings
Empirical Bayes methods can underestimate the variance of the posterior distribution because they do not account for uncertainty in the hyperparameters (lambda or psi). Simulation studies indicate that the posterior mode can exhibit (3-5 percent) negatively bias as a point estimator of site-specific abundance. It appears to be safer to use the posterior mean even though this will not be an integer in general.

#### References
Methods for Function `vcov` in Package 'unmarked'

Description

Extract variance-covariance matrix from a fitted model.

Methods

- `object = "linCombOrBackTrans"` See `linearComb-methods`
- `object = "unmarkedEstimate"` See `unmarkedEstimate-class`
- `object = "unmarkedFit"` A fitted model

`vif`  
Compute Variance Inflation Factors for an unmarkedFit Object.

Description

Compute the variance inflation factors (VIFs) for covariates in one level of the model (i.e., occupancy or detection). Calculation of VIFs follows the approach of function `vif` in package `car`, using the correlation matrix of fitted model parameters.

Usage

`vif(mod, type)`

Arguments

- `mod` An unmarked fit object.
- `type` Level of the model for which to calculate VIFs (for example, 'state')

Value

A named vector of variance inflation factor values for each covariate.
Methods for bracket extraction [ in Package ‘unmarked’]

Usage

```r
S4 method for signature 'unmarkedEstimateList,ANY,ANY,ANY'
x[i, j, drop]
S4 method for signature 'unmarkedFit,ANY,ANY,ANY'
x[i, j, drop]
S4 method for signature 'unmarkedFrame,numeric,numeric,missing'
x[i, j]
S4 method for signature 'unmarkedFrame,list,missing,missing'
x[i, j]
S4 method for signature 'unmarkedMultiFrame,missing,numeric,missing'
x[i, j]
S4 method for signature 'unmarkedMultiFrame,numeric,missing,missing'
x[i, j]
S4 method for signature 'unmarkedFrameGMM,numeric,missing,missing'
x[i, j]
S4 method for signature 'unmarkedFrameGDS,numeric,missing,missing'
x[i, j]
S4 method for signature 'unmarkedFramePCO,numeric,missing,missing'
x[i, j]
```

Arguments

- `x`: Object of appropriate S4 class
- `i`: Row numbers
- `j`: Observation numbers (eg occasions, distance classes, etc...)
- `drop`: Not currently used

Methods

```r
x = "unmarkedEstimateList", i = "ANY", j = "ANY", drop = "ANY" # Extract a unmarkedEstimate object from an unmarkedEstimateList by name (either 'det' or 'state')
x = "unmarkedFit", i = "ANY", j = "ANY", drop = "ANY" # Extract a unmarkedEstimate object from an unmarkedFit by name (either 'det' or 'state')
x = "unmarkedFrame", i = "missing", j = "numeric", drop = "missing" # Extract observations from an unmarkedFrame.
x = "unmarkedFrame", i = "numeric", j = "missing", drop = "missing" # Extract rows from an unmarkedFrame
```
methods

- Extract rows and observations from an unmarkedFrame
  
x = "unmarkedFrame", i = "numeric", j = "numeric", drop = "missing"

- Extract primary sampling periods from an unmarkedMultFrame
  
x = "unmarkedMultFrame", i = "missing", j = "numeric", drop = "missing"

- List is the index of observations to subset for each site.
  
x = "unmarkedFrame", i = "list", j = "missing", drop = "missing"

- Extract rows (sites) from an unmarkedMultFrame
  
x = "unmarkedMultFrame", i = "numeric", j = "missing", drop = "missing"

- Extract rows (sites) from an unmarkedFrameGMM object
  
x = "unmarkedGMM", i = "numeric", j = "missing", drop = "missing"

- Extract rows (sites) from an unmarkedFrameGDS object
  
x = "unmarkedGDS", i = "numeric", j = "missing", drop = "missing"

- Extract rows (sites) from an unmarkedFramePCO object
  
x = "unmarkedPCO", i = "numeric", j = "missing", drop = "missing"

Examples

data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
summary(mallardUMF)

mallardUMF[1:5,]
mallardUMF[,1:2]
mallardUMF[1:5, 1:2]
Index

* classes
  - unmarkedEstimate-class, 131
  - unmarkedEstimateList-class, 132
  - unmarkedFit-class, 132
  - unmarkedFitList-class, 135
  - unmarkedFrame-class, 138
  - unmarkedRanef-class, 168

* datasets
  - birds, 9
  - crossbill, 15
  - cruz, 19
  - frogs, 37
  - gf, 43
  - issj, 50
  - jay, 51
  - linetran, 54
  - mallard, 57
  - masspcru, 58
  - MesoCarnivores, 59
  - ovendata, 102
  - pointtran, 116
  - Switzerland, 130

* methods
  - [.methods, 170
  - backTransform-methods, 8
  - coef-methods, 10
  - confint-methods, 15
  - fitted-methods, 32
  - getB-methods, 42
  - getFP-methods, 42
  - getP-methods, 43
  - linearComb-methods, 53
  - nonparboot-methods, 70
  - predict-methods, 120
  - ranef-methods, 122
  - SE-methods, 124
  - simulate-methods, 127
  - vcov-methods, 169

* models
  - colext, 11
  - computeMLElambda, 14
  - distsamp, 23
  - distsampOpen, 26
  - gdistremoval, 38
  - gdistsamp, 39
  - multinomPois, 61
  - multmixOpen, 63
  - nmixTTD, 67
  - occu, 71
  - occuFP, 73
  - occuMS, 76
  - occuMulti, 84
  - occuPEN, 89
  - occuPEN.CV, 92
  - occuRN, 94
  - occuTTD, 96
  - pcount, 104
  - pcountOpen, 109

* package
  - unmarked-package, 4

* utilities
  - csvToUMF, 21
  - imputeMissing, 49
  - [,unmarkedEstimateList,ANY,ANY,ANY-method ([-.methods), 170
  - [,unmarkedFit,ANY,ANY,ANY-method ([-.methods), 170
  - [,unmarkedFrame,list,missing,missing-method ([-.methods), 170
  - [,unmarkedFrame,missing,numeric,missing-method ([-.methods), 170
  - [,unmarkedFrame,numeric,missing,missing-method ([-.methods), 170
  - [,unmarkedFrame,numeric,numeric,missing-method ([-.methods), 170
  - [,unmarkedFrameDSO,numeric,missing,missing-method ([-.methods), 170

172
(unmarkedFrame-class), 138
[,unmarkedFrameGDR,logical,missing,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameGDR,missing,numeric,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameGDR,numeric,missing,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameGDS,numeric,missing,missing-method
([-methods), 170
[,unmarkedFrameGMM,numeric,missing,missing-method
([-methods), 170
[,unmarkedFrameGPC,missing,numeric,missing-method
([-methods), 170
[,unmarkedFrameGPC,numeric,missing,missing-method
([-methods), 170
[,unmarkedFrameOccuMS,numeric,missing,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameOccuMulti,missing,numeric,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameOccuMulti,numeric,missing,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameOccuTTD,missing,numeric,missing-method
(unmarkedFrame-class), 138
[,unmarkedFrameOccuTTD,numeric,missing,missing-method
(unmarkedFrame-class), 138
[,unmarkedFramePCO,missing,numeric,missing-method
([-methods), 170
[,unmarkedFramePCO,numeric,missing,missing-method
([-methods), 170
[,unmarkedMultFrame,missing,numeric,missing-method
([-methods), 170
[,unmarkedMultFrame,numeric,missing,missing-method
([-methods), 170
[,unmarkedPostSamples,ANY,ANY,ANY-method
(posteriorSamples), 117
([-methods), 170
array, 168
backTransform, 70
backTransform (backTransform-methods), 8
backTransform (backTransform-methods), 8
backTransform, unmarkedFrameGDR-method
(backTransform-methods), 8
backTransform, unmarkedFrameGMM-method
(backTransform-methods), 8
backTransform, unmarkedFrameGDS-method
(backTransform-methods), 8
backTransform, unmarkedFrameGPC-method
(backTransform-methods), 8
backTransform, unmarkedFrameOccuMS-method
(backTransform-methods), 8
backTransform, unmarkedFrameOccuMulti-method
(backTransform-methods), 8
backTransform, unmarkedFrameOccuTTD-method
(backTransform-methods), 8
backTransform, unmarkedFramePCO-method
(backTransform-methods), 8
bup (unmarkedRanef-class), 168
catbird (birds), 9
crossbill, 15
crossVal, 18
crossVal, unmarkedFit-method (crossVal), 18
crossVal, unmarkedFitList-method (crossVal), 18
cruz, 19, 51
csvToUMF, 5, 21, 37
data.frame, 137, 141–143, 145, 146, 148,
150, 152, 153, 155, 156, 158, 160, 161
detFuns, 22, 25
distsamp, 5, 22, 23, 29, 33, 34, 41, 53,
125, 128, 132, 137, 140, 141
distsampOpen, 26, 142, 143
doublePiFun, 45, 62
doublePiFun (piFuns), 113
drexp (detFuns), 22
drhaz (detFuns), 22
dhaz (detFuns), 22
dxhaz (detFuns), 22
dxhn (detFuns), 22

fitList, 19, 25, 31, 60, 135, 136
fitted, unmarkedFit-method (fitted-methods), 32
fitted, unmarkedFitColExt-method (fitted-methods), 32
fitted, unmarkedFitDailMadsen-method (fitted-methods), 32
fitted, unmarkedFitDS-method (fitted-methods), 32
fitted, unmarkedFitGDR-method (fitted-methods), 32
fitted, unmarkedFitGMM-method (fitted-methods), 32
fitted, unmarkedFitNmixTTD-method (fitted-methods), 32
fitted, unmarkedFitOccu-method (fitted-methods), 32
fitted, unmarkedFitOccuFP-method (fitted-methods), 32
fitted, unmarkedFitOccuMS-method (fitted-methods), 32
fitted, unmarkedFitOccuMulti-method (fitted-methods), 32
fitted, unmarkedFitOccuRN-method (fitted-methods), 32
fitted, unmarkedFitOccuTTD-method (fitted-methods), 32
fitted, unmarkedFitPCO-method (fitted-methods), 32
fitted-methods, 32
formatDistData, 25, 33
formatLong (formatWideLong), 36
formatMult, 12, 35, 163
formatWide (formatWideLong), 36
formula, 72
frog2001pcru (frogs), 37
frog2001pfer (frogs), 37
frogs, 37
gdistremoval, 38, 145
gdistsamp, 5, 24, 29, 33, 34, 39, 39, 48, 163
gdB (getB-methods), 42
gdB, unmarkedFitOccuFP-method (getB-methods), 42
gdB-methods, 42
data (unmarkedFit-class), 132
data, unmarkedFit-method (unmarkedFit-class), 132
getFP (getFP-methods), 42
getFP, unmarkedFitOccuFP-method (getFP-methods), 42
getFP-methods, 42
getP (getP-methods), 43
getP, unmarkedFit-method (getP-methods), 43
getP, unmarkedFitColExt-method (getP-methods), 43
getP, unmarkedFitDS-method (getP-methods), 43
getP, unmarkedFitDSO-method (getP-methods), 43
getP, unmarkedFitGDR-method (getP-methods), 43
getP, unmarkedFitGDS-method (getP-methods), 43
getP, unmarkedFitGMM-method (getP-methods), 43
getP, unmarkedFitGPC-method (getP-methods), 43
getP, unmarkedFitMMO-method (getP-methods), 43
getP, unmarkedFitMPois-method (getP-methods), 43
getP, unmarkedFitOccuFP-method (getP-methods), 43
getP, unmarkedFitOccuMS-method (getP-methods), 43
getP, unmarkedFitOccuMulti-method (getP-methods), 43
getP, unmarkedFitOccuTTD-method (getP-methods), 43
getP, unmarkedFitPCO-method (getP-methods), 43
getP-methods, 43
getY (unmarkedFrame-class), 138
getY, unmarkedFit-method
(unmarkedFit-class), 132
getY, unmarkedFitColExt-method (unmarkedFit-class), 132
getY, unmarkedFitOccu-method (unmarkedFit-class), 132
getY, unmarkedFitOccuMulti-method (unmarkedFit-class), 132
getY, unmarkedFitOccuRN-method (unmarkedFit-class), 132
getY, unmarkedFrame-method (unmarkedFrame-class), 138
gf, 43
gmultmix, 5, 39, 44, 48, 65, 66, 113, 146, 163
gpcount, 5, 46, 163
grexp (detFuns), 22
grhaz (detFuns), 22
grh (detFuns), 22
gxexp (detFuns), 22
gxhaz (detFuns), 22
gxhn (detFuns), 22
head, unmarkedFrame-method (unmarkedFrame-class), 138
hessian (unmarkedFit-class), 132
hessian, unmarkedFit-method (unmarkedFit-class), 132
hist, unmarkedFitDS-method (unmarkedFit-class), 132
hist, unmarkedFrameDS-method (unmarkedFrame-class), 138
imputeMissing, 49
integrate, 24, 40
issj, 50

jay, 51

lambda2psi, 53
linearComb, 70
linearComb (linearComb-methods), 53
linearComb, unmarkedEstimate, matrixOrVector-method (linearComb-methods), 53
linearComb, unmarkedFit, matrixOrVector-method (linearComb-methods), 53
linearComb-methods, 53
linetran, 54
logLik (unmarkedFit-class), 132
logLik, unmarkedFit-method (unmarkedFit-class), 132
logLik, unmarkedFitColExt-method (unmarkedFit-class), 132
LRT (unmarkedFit-class), 132
LRT, unmarkedFit, unmarkedFit-method (unmarkedFit-class), 132
makeCrPiFun (makePiFuns), 55
makeCrPiFunMb (makePiFuns), 55
makeCrPiFunMh (makePiFuns), 55
makePiFuns, 55, 113
makeRemPiFun (makePiFuns), 55
mallard, 57
mapInfo (unmarkedFrame-class), 138
masspcru, 58
MesoCarnivores, 59
mle (unmarkedFit-class), 132
mle, unmarkedFit-method (unmarkedFit-class), 132
modSel, 60, 73, 75
modSel, unmarkedFitList-method (unmarkedFitList-class), 135
modSel-methods (modSel), 60
multinomPi, 5, 45, 53, 61, 65, 66, 113, 128, 137, 146, 149, 163
multimixOpen, 63, 146, 147
names, unmarkedEstimateList-method (unmarkedEstimateList-class), 132
names, unmarkedFit-method (unmarkedFit-class), 132
nllFun (unmarkedFit-class), 132
nllFun, unmarkedFit-method (unmarkedFit-class), 132
nmixTTD, 67
nonparboot, 12, 14, 91, 93
nonparboot (nonparboot-methods), 70
nonparboot, unmarkedFit-method (nonparboot-methods), 70
nonparboot, unmarkedFitColExt-method (nonparboot-methods), 70
nonparboot, unmarkedFitDailMadsen-method (nonparboot-methods), 70
nonparboot, unmarkedFitDS-method (nonparboot-methods), 70
nonparboot, unmarkedFitGDR-method (nonparboot-methods), 70
nonparboot, unmarkedFitGDS-method (nonparboot-methods), 70
nonparboot, unmarkedFitGMM-method (nonparboot-methods), 70

ISSJ, 50
obsCovs (unmarkedFrame-class), 138
obsCovs, unmarkedFrame-method
(unmarkedFrame-class), 138
obsCovs<- (unmarkedFrame-class), 138
obsCovs<-, unmarkedFrame-method
(unmarkedFrame-class), 138
obsNum (unmarkedFrame-class), 138
obsNum, unmarkedFrame-method
(unmarkedFrame-class), 138
obsToY (unmarkedFrame-class), 138
obsToY, unmarkedFrame-method
(unmarkedFrame-class), 138
obsToY<-, unmarkedFrame-method
(unmarkedFrame-class), 138
occu, 5, 14, 33, 70, 71, 74, 90, 91, 93, 128, 150–152
occuFP, 5, 73, 152
occuMS, 76, 153, 154
occuMulti, 5, 84, 155
occuPEN, 14, 89, 93
occuPEN_CV, 14, 91, 92
occuRN, 5, 33, 70, 94, 128, 150–152
occuTTD, 96, 156, 157
optim, 11, 14, 24, 28, 38, 40, 44, 47, 61, 64,
68, 72, 74, 76, 85, 90, 92, 95, 97,
105, 110, 132
optimizePenalty
(optimizePenalty-methods), 100
optimizePenalty, unmarkedFitOccuMulti-method
(optimizePenalty-methods), 100
optimizePenalty-methods, 100
ovendata, 102
parboot, 25, 73, 75, 102, 106, 129
parboot, unmarkedFit-method
(unmarkedFit-class), 132
parboot, unmarkedFitOccuMulti-method
(unmarkedFit-class), 132
pcount, 5, 33, 53, 104, 111, 128, 160, 161
pcount.spHDS, 107
pcountOpen, 5, 106, 109, 158
pcru.bin (frogs), 37
pcru.data (frogs), 37
pcru.y (frogs), 37
pfer.bin (frogs), 37
pfer.data (frogs), 37
pfer.y (frogs), 37
piFuns, 45, 55, 62, 113, 149, 163
plot,parboot,missing-method (parboot), 102
plot,profile,missing-method
(unmarkedfit-class), 132
plot,unmarkedFit,missing-method
(unmarkedfit-class), 132
plot,unmarkedFitGDR,missing-method
(unmarkedfit-class), 132
plot,unmarkedFitOccuMulti,missing-method
(unmarkedfit-class), 132
plot,unmarkedFrame,missing-method
(unmarkedFrame-class), 138
plot,unmarkedFrameOccuMulti,missing-method
(unmarkedFrame-class), 138
plot,unmarkedFrameOccuTTD,missing-method
(unmarkedFrame-class), 138
plot,unmarkedPowerList,ANY-method
(unmarkedPowerList), 166
plot,unmarkedRanef,missing-method
(unmarkedRanef-class), 168
plotEffects, 114
plotEffects,unmarkedFit-method
(plotEffects), 114
plotEffects-methods (plotEffects), 114
plotEffectsData (plotEffects), 114
plotEffectsData, unmarkedFit-method (plotEffects), 114
plotEffectsData-methods (plotEffects), 114
pointtran, 116
posteriorSamples, 117, 121
posteriorSamples, unmarkedFit-method (posteriorSamples), 117
posteriorSamples, unmarkedRanef-method (posteriorSamples), 117
posteriorSamples-methods (posteriorSamples), 117
powerAnalysis, 118, 165, 167
predict, 9, 117
predict (predict-methods), 120
predict, ANY-method (predict-methods), 120
predict, unmarkedFit-method (predict-methods), 120
predict, unmarkedFitColExt-method (predict-methods), 120
predict, unmarkedFitDSO-method (predict-methods), 120
predict, unmarkedFitGDR-method (predict-methods), 120
predict, unmarkedFitGDS-method (predict-methods), 120
predict, unmarkedFitGMM-method (predict-methods), 120
predict, unmarkedFitGMMorGDS-method (predict-methods), 120
predict, unmarkedFitGPC-method (predict-methods), 120
predict, unmarkedFitMPois-method (predict-methods), 120
predict, unmarkedFitOccuFP-method (predict-methods), 120
predict, unmarkedFitOccuMS-method (predict-methods), 120
predict, unmarkedFitOccuMulti-method (predict-methods), 120
predict, unmarkedFitOccuTTD-method (predict-methods), 120
predict, unmarkedFitPCO-method (predict-methods), 120
predict, unmarkedRanef-method (predict-methods), 120
predict-methods, 120
profile, unmarkedFit-method (unmarkedFit-class), 132
projected (unmarkedFit-class), 132
projected, unmarkedFitColExt-method (unmarkedFit-class), 132
projection (unmarkedFrame-class), 138
projection, unmarkedFrame-method (unmarkedFrame-class), 138
ranTerms, 121
ranTerms, unmarkedEstimate-method (ranTerms), 121
ranTerms-methods (ranTerms), 121
ranTerms-methods (ranTerms), 121
ranf, 25, 103, 106, 117, 121, 168, 169
ranf (ranf-methods), 122
ranf, unmarkedFitColExt-method (ranf-methods), 122
ranf, unmarkedFitDailMadsen-method (ranf-methods), 122
ranf, unmarkedFitDS-method (ranf-methods), 122
ranf, unmarkedFitGDR-method (ranf-methods), 122
ranf, unmarkedFitGDS-method (ranf-methods), 122
ranf, unmarkedFitGMM-method (ranf-methods), 122
ranf, unmarkedFitGMMorGDS-method (ranf-methods), 122
ranf, unmarkedFitGPC-method (ranf-methods), 122
ranf, unmarkedFitMPois-method (ranf-methods), 122
ranf, unmarkedFitNmixTTD-method (ranf-methods), 122
ranf, unmarkedFitOccu-method (ranf-methods), 122
ranf, unmarkedFitOccuFP-method (ranf-methods), 122
ranf, unmarkedFitOccuMS-method (ranf-methods), 122
ranf, unmarkedFitOccuMulti-method (ranf-methods), 122
ranf, unmarkedFitOccuRN-method (ranf-methods), 122
ranef, unmarkedFitOccuTTD-method (ranef-methods), 122
ranef, unmarkedFitPCO-method (ranef-methods), 122
ranef, unmarkedFitPCount-method (ranef-methods), 122
ranef-methods, 122
removalPiFun, 45, 62
removalPiFun (piFuns), 113
residuals, unmarkedFit-method (unmarkedFit-class), 132
residuals, unmarkedFitGDR-method (unmarkedFit-class), 132
residuals, unmarkedFitOccu-method (unmarkedFit-class), 132
residuals, unmarkedFitOccuFP-method (unmarkedFit-class), 132
residuals, unmarkedFitOccuMulti-method (unmarkedFit-class), 132
residuals, unmarkedFitOccu-method (unmarkedFit-class), 132
residuals, unmarkedFitOccuTTD-method (unmarkedFit-class), 132
sampleSize (unmarkedFit-class), 132
sampleSize, unmarkedFit-method (unmarkedFit-class), 132
SE (SE-methods), 124
SE, linCombOrBackTrans-method (SE-methods), 124
SE, unmarkedEstimate-method (SE-methods), 124
SE, unmarkedFit-method (SE-methods), 124
SE, unmarkedFitList-method (unmarkedFitList-class), 135
SE, unmarkedModSel-method (modSel), 60
SE-methods, 124
shinyPower, 125
show, parboot-method (parboot), 102
show, unmarkedBackTrans-method (backTransform-methods), 8
show, unmarkedCrossVal-method (crossVal), 18
show, unmarkedCrossValList-method (crossVal), 18
show, unmarkedEstimate-method (unmarkedEstimate-class), 131
show, unmarkedEstimateList-method (unmarkedEstimateList-class), 132
show, unmarkedFit-method (unmarkedFit-class), 132
show, unmarkedFrame-method (unmarkedFrame-class), 138
show, unmarkedFrameOccuMulti-method (unmarkedFrame-class), 138
show, unmarkedFrameOccuTTD-method (unmarkedFrame-class), 138
show, unmarkedLinComb-method (linearComb-methods), 53
show, unmarkedModSel-method (modSel), 60
show, unmarkedMultFrame-method (unmarkedFrame-class), 138
show, unmarkedPostSamples-method (posteriorSamples), 117
show, unmarkedPower-method (unmarkedPower-methods), 165
show, unmarkedPowerList-method (unmarkedPowerList), 166
show, unmarkedRanef-method (unmarkedRanef-class), 168
sight2perpdist, 25, 125
sigma, 126
sigma, unmarkedEstimate-method (sigma), 126
sigma, unmarkedFit-method (sigma), 126
sigma-methods (sigma), 126
simulate, character-method (simulate-methods), 127
simulate, unmarkedFitColExt-method (simulate-methods), 127
simulate, unmarkedFitDailMadsen-method (simulate-methods), 127
simulate, unmarkedFitDS-method (simulate-methods), 127
simulate, unmarkedFitGDR-method (simulate-methods), 127
simulate, unmarkedFitGDS-method (simulate-methods), 127
simulate, unmarkedFitGMM-method (simulate-methods), 127
simulate, unmarkedFitGPC-method (simulate-methods), 127
simulate, unmarkedFitMPois-method (simulate-methods), 127
simulate, unmarkedFitNmixTTD-method (simulate-methods), 127
simulate, unmarkedFitOccu-method (simulate-methods), 127
simulate, unmarkedFitOccuFP-method (simulate-methods), 127
simulate, unmarkedFitOccuMS-method (simulate-methods), 127
simulate, unmarkedFitOccuMulti-method (simulate-methods), 127
simulate, unmarkedFitOccuRN-method (simulate-methods), 127
simulate, unmarkedFitPCO-method (simulate-methods), 127
simulate, unmarkedFitPCount-method (simulate-methods), 127
simulate-methods, 127
siteCovs (unmarkedFrame-class), 138
siteCovs, unmarkedFrame-method (unmarkedFrame-class), 138
siteCovs<-, unmarkedFrame-method (unmarkedFrame-class), 138
smoothed (unmarkedFit-class), 132
smoothed, unmarkedFitCoExt-method (unmarkedFit-class), 132
SSE, 129
SSE, unmarkedFit-method (SSE), 129
SSE, unmarkedFitGDR-method (SSE), 129
SSE, unmarkedFitOccuMulti-method (SSE), 129
SSE-methods (SSE), 129
summary, unmarkedEstimate-method (unmarkedEstimate-class), 131
summary, unmarkedEstimateList-method (unmarkedEstimateList-class), 132
summary, unmarkedFit-method (unmarkedFit-class), 132
summary, unmarkedFitDS-method (unmarkedFit-class), 132
summary, unmarkedFitList-method (unmarkedFitList-class), 135
summary, unmarkedFrame-method (unmarkedFrame-class), 138
summary, unmarkedFrameDS-method (unmarkedFrame-class), 138
summary, unmarkedFrameOccuMulti-method (unmarkedFrame-class), 138
summary, unmarkedFrameOccuTTD-method (unmarkedFrame-class), 138
summary, unmarkedModSel-method (modSel), 60
summary, unmarkedMultFrame-method (unmarkedPower-methods), 165
summary, unmarkedPowerList-method (unmarkedPowerList), 166
Switzerland, 17, 130
unmarked, 14, 21, 69, 73, 75, 78, 86, 91, 93, 98
unmarked (unmarked-package), 4
unmarked-package, 4
unmarkedCrossVal-class (crossVal), 18
unmarkedCrossValList-class (crossVal), 18
unmarkedEstimate (unmarkedEstimate-class), 131
unmarkedEstimate-class, 131
unmarkedEstimateList-class, 132
unmarkedFit, 19, 132, 136, 139
unmarkedFit (unmarkedFit-class), 132
unmarkedFit-class, 132
unmarkedFitDS-class (unmarkedFit-class), 132
unmarkedFitDSO-class (unmarkedFit-class), 132
unmarkedFitGMM-class (unmarkedFit-class), 132
unmarkedFitList-class, 135
unmarkedFitMMO-class (unmarkedFit-class), 132
unmarkedFitMPois-class (unmarkedFit-class), 132
unmarkedFitNmixTTD-class (unmarkedFit-class), 132
unmarkedFitNmixTTD-class (unmarkedFit-class), 132
unmarkedFitNmixTTD-class (unmarkedFit-class), 132
unmarkedFitOccu-class (unmarkedFit-class), 132
unmarkedFitOccuFP-class (unmarkedFit-class), 132
unmarkedFitOccuMS-class (unmarkedFit-class), 132
unmarkedFitOccuMulti-class (unmarkedFit-class), 132
unmarkedFitOccuPEN-class (unmarkedFit-class), 132
unmarked
unmarkedFitOccuPEN_CV-class
(unmarkedFit-class), 132
unmarkedFitOccuTTD-class
(unmarkedFit-class), 132
unmarkedFitPCO-class
(unmarkedFit-class), 132
unmarkedFitPCount-class
(unmarkedFit-class), 132
unmarkedFrame, 5, 34, 72, 74, 78, 85, 90, 93, 136, 138, 141, 143, 145, 147, 149, 151, 152, 154, 155, 158, 161
unmarkedFrame-class, 138
unmarkedFrameDS, 25, 137, 140, 162
unmarkedFrameDS-class
(unmarkedFrame-class), 138
unmarkedFrameDSO, 27, 29, 142
unmarkedFrameDSO-class
(unmarkedFrame-class), 138
unmarkedFrameGDR, 39, 144
unmarkedFrameGDR-class
(unmarkedFrameGDR), 144
unmarkedFrameGDS, 34, 40
unmarkedFrameGDS (unmarkedMultFrame), 162
unmarkedFrameGDS-class
(unmarkedFrame-class), 138
unmarkedFrameGMM, 45
unmarkedFrameGMM (unmarkedMultFrame), 162
unmarkedFrameGMM-class
(unmarkedFrame-class), 138
unmarkedFrameGPC, 45, 48
unmarkedFrameGPC (unmarkedMultFrame), 162
unmarkedFrameGPC-class
(unmarkedFrame-class), 138
unmarkedFrameMMO, 64–66, 146
unmarkedFrameMMO-class
(unmarkedFrame-class), 138
unmarkedFrameMPois, 62, 148
unmarkedFrameMPois-class
(unmarkedFrame-class), 138
unmarkedFrameOccu, 14, 71–73, 90–93, 95, 137, 150
unmarkedFrameOccu-class
(unmarkedFrame-class), 138
unmarkedFrameOccuFP, 74, 75, 151
unmarkedFrameOccuMS, 76, 78, 153
vcov, 70
vcov,linCombOrBackTrans-method
   (vcov-methods), 169
vcov,unmarkedEstimate-method
   (vcov-methods), 169
vcov,unmarkedFit-method (vcov-methods), 169
vcov,unmarkedFitOccuMulti-method
   (vcov-methods), 169
vcov-methods, 169
vif, 169

woodthrush (birds), 9

xyplot, 168

yearlySiteCovs (unmarkedMultFrame), 162
yearlySiteCovs,unmarkedMultFrame-method
   (unmarkedMultFrame), 162
yearlySiteCovs<- (unmarkedMultFrame), 162
yearlySiteCovs<-,unmarkedMultFrame-method
   (unmarkedMultFrame), 162