Package ‘unusualprofile’

February 15, 2024

Type Package

Title Calculates Conditional Mahalanobis Distances

Version 0.1.4

Description Calculates a Mahalanobis distance for every row of a set of outcome variables (Mahalanobis, 1936 <doi:10.1007/s13171-019-00164-5>). The conditional Mahalanobis distance is calculated using a conditional covariance matrix (i.e., a covariance matrix of the outcome variables after controlling for a set of predictors). Plotting the output of the cond_maha() function can help identify which elements of a profile are unusual after controlling for the predictors.

License GPL (>= 3)

BugReports https://github.com/wjschne/unusualprofile/issues

Depends R (>= 3.1)

Imports dplyr, ggnormalviolin, ggplot2, magrittr, purrr, rlang, stats, tibble, tidyr

Suggests bookdown, covr, extrafont, forcats, glue, kableExtra, knitr, lavaan, lifecycle, mvtnorm, patchwork, ragg, rmarkdown, roxygen2, scales, simstandard (>= 0.6.3), stringr, sysfonts, testthat

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData TRUE

RoxygenNote 7.3.1

NeedsCompilation no

Author W. Joel Schneider [aut, cre] (<https://orcid.org/0000-0002-8393-5316>), Feng Ji [aut]
cond_maha

Maintainer W. Joel Schneider <w.joel.schneider@gmail.com>

Repository CRAN

Date/Publication 2024-02-14 23:20:03 UTC

R topics documented:

cond_maha ... 2
d_example ... 5
plot.cond_maha ... 5
plot.maha .. 6
proportion2percentile .. 7
proportion_round .. 7
R_example .. 8

Index 9

cond_maha Calculate the conditional Mahalanobis distance for any variables.

Description

Calculate the conditional Mahalanobis distance for any variables.

Usage

cond_maha(
 data,
 R,
 v_dep,
 v_ind = NULL,
 v_ind_composites = NULL,
 mu = 0,
 sigma = 1,
 use_sample_stats = FALSE,
 label = NA
)

Arguments

data Data.frame with the independent and dependent variables. Unless mu and sigma are specified, data are assumed to be z-scores.

R Correlation among all variables.

v_dep Vector of names of the dependent variables in your profile.

v_ind Vector of names of independent variables you would like to control for.
cond_maha

v_ind_composites
Vector of names of independent variables that are composites of dependent variables

mu
A vector of means. A single value means that all variables have the same mean.

sigma
A vector of standard deviations. A single value means that all variables have the same standard deviation

use_sample_stats
If TRUE, estimate R, mu, and sigma from data. Only complete cases are used (i.e., no missing values in v_dep, v_ind, v_ind_composites).

label
optional tag for labeling output

Value

a list with the conditional Mahalanobis distance

- dCM = Conditional Mahalanobis distance
- dCM_df = Degrees of freedom for the conditional Mahalanobis distance
- dCM_p = A proportion that indicates how unusual this profile is compared to profiles with the same independent variable values. For example, if dCM_p = 0.88, this profile is more unusual than 88 percent of profiles after controlling for the independent variables.
- dM_dep = Mahalanobis distance of just the dependent variables
- dM_dep_df = Degrees of freedom for the Mahalanobis distance of the dependent variables
- dM_dep_p = Proportion associated with the Mahalanobis distance of the dependent variables
- dM_ind = Mahalanobis distance of just the independent variables
- dM_ind_df = Degrees of freedom for the Mahalanobis distance of the independent variables
- dM_ind_p = Proportion associated with the Mahalanobis distance of the independent variables
- v_dep = Dependent variable names
- v_ind = Independent variable names
- v_ind_singular = Independent variables that can be perfectly predicted from the dependent variables (e.g., composite scores)
- v_ind_nonsingular = Independent variables that are not perfectly predicted from the dependent variables
- data = data used in the calculations
- d_ind = independent variable data
- d_inp_p = Assuming normality, cumulative distribution function of the independent variables
- d_dep = dependent variable data
- d_dep_predicted = predicted values of the dependent variables
- d_dep_deviations = d_dep - d_dep_predicted (i.e., residuals of the dependent variables)
- d_dep_residuals_z = standardized residuals of the dependent variables
- d_dep_cp = conditional proportions associated with standardized residuals
- d_dep_p = Assuming normality, cumulative distribution function of the dependent variables
• R2 = Proportion of variance in each dependent variable explained by the independent variables
• zSEE = Standardized standard error of the estimate for each dependent variable
• SEE = Standard error of the estimate for each dependent variable
• ConditionalCovariance = Covariance matrix of the dependent variables after controlling for the independent variables
• distance_reduction = 1 - (dCM / dM_dep) (Degree to which the independent variables decrease the Mahalanobis distance of the dependent variables. Negative reductions mean that the profile is more unusual after controlling for the independent variables. Returns 0 if dM_dep is 0.)
• variability_reduction = 1 - sum((X_dep - predicted_dep) ^ 2) / sum((X_dep - mu_dep) ^ 2) (Degree to which the independent variables decrease the variability the dependent variables (X_dep). Negative reductions mean that the profile is more variable after controlling for the independent variables. Returns 0 if X_dep == mu_dep)
• mu = Variable means
• sigma = Variable standard deviations
• d_person = Data frame consisting of Mahalanobis distance data for each person
• d_variable = Data frame consisting of variable characteristics
• label = label slot

Examples

```r
library(unusualprofile)
library(simstandard)

m <- "
Gc =~ 0.85 * Gc1 + 0.68 * Gc2 + 0.8 * Gc3
Gf =~ 0.8 * Gf1 + 0.9 * Gf2 + 0.8 * Gf3
Gs =~ 0.7 * Gs1 + 0.8 * Gs2 + 0.8 * Gs3
Read =~ 0.66 * Read1 + 0.85 * Read2 + 0.91 * Read3
Math =~ 0.4 * Math1 + 0.9 * Math2 + 0.7 * Math3
Gc ~ 0.6 * Gf + 0.1 * Gs
Gf ~ 0.5 * Gs
Read ~ 0.4 * Gc + 0.51 * Gf
Math ~ 0.2 * Gc + 0.3 * Gf + 0.1 * Gs"
# Generate 10 cases
d_demo <- simstandard::sim_standardized(m = m, n = 10)

# Get model-implied correlation matrix
R_all <- simstandard::sim_standardized_matrices(m)$Correlations$R_all

cond_maha(data = d_demo,
R = R_all,
v_dep = c("Math", "Read"),
v_ind = c("Gf", "Gs", "Gc"))
```
An example data.frame

Description
A dataset with 1 row of data for a single case.

Usage
d_example

Format
A data frame with 1 row and 8 variables:

X_1 A predictor variable
X_2 A predictor variable
X_3 A predictor variable
Y_1 An outcome variable
Y_2 An outcome variable
Y_3 An outcome variable
X A latent predictor variable
Y A latent outcome variable

plot.cond_maha
Plot the variables from the results of the cond_maha function.

Description
Plot the variables from the results of the cond_maha function.

Usage
S3 method for class 'cond_maha'
plot(
 x,
 ...,
 p_tail = 0,
 family = "sans",
 score_digits = ifelse(min(x$sigma) >= 10, 0, 2)
)
Arguments

- **x**: The results of the `cond_maha` function.
- **...**: Arguments passed to print function
- **p_tail**: The proportion of the tail to shade
- **family**: Font family.
- **score_digits**: Number of digits to round scores.

Value

A ggplot2-object

`plot.maha`
Plot objects of the maha class (i.e. the results of the cond_maha function using dependent variables only).

Description

Plot objects of the maha class (i.e. the results of the cond_maha function using dependent variables only).

Usage

```r
## S3 method for class 'maha'
plot(
  x,
  ...,
  p_tail = 0,
  family = "sans",
  score_digits = ifelse(min(x$sigma) >= 10, 0, 2)
)
```

Arguments

- **x**: The results of the `cond_maha` function.
- **...**: Arguments passed to print function
- **p_tail**: Proportion in violin tail (defaults to 0).
- **family**: Font family.
- **score_digits**: Number of digits to round scores.

Value

A ggplot2-object
proportion2percentile
Rounds proportions to significant digits both near 0 and 1, then converts to percentiles

Description

Rounds proportions to significant digits both near 0 and 1, then converts to percentiles

Usage

```r
proportion2percentile(p, digits = 2, remove_leading_zero = TRUE, add_percent_character = FALSE)
```

Arguments

- `p` probability
- `digits` rounding digits. Defaults to 2
- `remove_leading_zero` Remove leading zero for small percentiles, Defaults to TRUE
- `add_percent_character` Append percent character. Defaults to FALSE

Value

character vector

Examples

```r
proportion2percentile(0.01111)
```

proportion_round
Rounds proportions to significant digits both near 0 and 1

Description

Rounds proportions to significant digits both near 0 and 1

Usage

```r
proportion_round(p, digits = 2)
```
Arguments

p probability
digits rounding digits

Value

numeric vector

Examples

proportion_round(0.01111)

R_example

An example correlation matrix

Description

A correlation matrix used for demonstration purposes. It is the model-implied correlation matrix for this structural model:

\[
X = 0.7 \times X_1 + 0.5 \times X_2 + 0.8 \times X_3
\]

\[
Y = 0.8 \times Y_1 + 0.7 \times Y_2 + 0.9 \times Y_3
\]

Y ~ 0.6 * X

Usage

R_example

Format

A matrix with 8 rows and 8 columns:

X_1 A predictor variable
X_2 A predictor variable
X_3 A predictor variable
Y_1 An outcome variable
Y_2 An outcome variable
Y_3 An outcome variable
X A latent predictor variable
Y A latent outcome variable
Index

* datasets
 d_example, 5
 R_example, 8

cond_maha, 2

d_example, 5

plot.cond_maha, 5
plot.maha, 6
proportion2percentile, 7
proportion_round, 7

R_example, 8