Package ‘ushr’

Type Package
Title Understanding Suppression of HIV
Version 0.2.2
Date 2020-03-22
Maintainer Sinead E. Morris <sinead.morris@columbia.edu>
Description Analyzes longitudinal data of HIV decline in patients on antiretroviral therapy using the canonical biphasic exponential decay model (pioneered, for example, by work in Perelson et al. (1997) <doi:10.1038/387188a0>; and Wu and Ding (1999) <doi:10.1111/j.0006-341X.1999.00410.x>). Model fitting and parameter estimation are performed, with additional options to calculate the time to viral suppression. Plotting and summary tools are also provided for fast assessment of model results.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends dplyr (>= 0.8.0.1), tidyr (>= 0.8.3), ggplot2 (>= 3.1.1), stats
Suggests GGally (>= 1.4.0), knitr (>= 1.22), rmarkdown (>= 1.12), testthat (>= 2.2.0)
VignetteBuilder knitr
URL https://github.com/SineadMorris/ushr
NeedsCompilation no
Author Sinead E. Morris [aut, cre] <https://orcid.org/0000-0001-8626-1698>, Luise Dziobek-Garrett [ctb], Andrew Yates [ctb]
Repository CRAN
Date/Publication 2020-03-23 02:50:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>actg315raw</td>
<td>3</td>
</tr>
<tr>
<td>add_noise</td>
<td>4</td>
</tr>
<tr>
<td>biphasic_root</td>
<td>4</td>
</tr>
<tr>
<td>filter_data</td>
<td>5</td>
</tr>
<tr>
<td>filter_dataTTS</td>
<td>6</td>
</tr>
<tr>
<td>fit_model</td>
<td>7</td>
</tr>
<tr>
<td>fit_model_triphasic</td>
<td>8</td>
</tr>
<tr>
<td>get_biphasic</td>
<td>9</td>
</tr>
<tr>
<td>get_CI</td>
<td>10</td>
</tr>
<tr>
<td>get_CItable</td>
<td>10</td>
</tr>
<tr>
<td>get_curve</td>
<td>11</td>
</tr>
<tr>
<td>get_error</td>
<td>12</td>
</tr>
<tr>
<td>get_error_triphasic</td>
<td>12</td>
</tr>
<tr>
<td>get_nonparametricTTS</td>
<td>13</td>
</tr>
<tr>
<td>get_optim_fit</td>
<td>14</td>
</tr>
<tr>
<td>get_optim_fit_triphasic</td>
<td>15</td>
</tr>
<tr>
<td>get_parametricTTS</td>
<td>15</td>
</tr>
<tr>
<td>get_params</td>
<td>16</td>
</tr>
<tr>
<td>get_plottheme</td>
<td>17</td>
</tr>
<tr>
<td>get_singlephase</td>
<td>17</td>
</tr>
<tr>
<td>get_transformed_params</td>
<td>18</td>
</tr>
<tr>
<td>get_triphasic</td>
<td>18</td>
</tr>
<tr>
<td>get_TTS</td>
<td>19</td>
</tr>
<tr>
<td>plot_data</td>
<td>20</td>
</tr>
<tr>
<td>plot_model</td>
<td>21</td>
</tr>
<tr>
<td>plot_pairs</td>
<td>22</td>
</tr>
<tr>
<td>plot_TTS</td>
<td>22</td>
</tr>
<tr>
<td>remove_vl0</td>
<td>23</td>
</tr>
<tr>
<td>simulate_data</td>
<td>23</td>
</tr>
<tr>
<td>simulate_time</td>
<td>24</td>
</tr>
<tr>
<td>simulate_time_fixed</td>
<td>25</td>
</tr>
<tr>
<td>simulate_vl</td>
<td>25</td>
</tr>
<tr>
<td>single_root</td>
<td>26</td>
</tr>
<tr>
<td>summarize_model</td>
<td>26</td>
</tr>
<tr>
<td>switch_params</td>
<td>27</td>
</tr>
<tr>
<td>switch_simulated_params</td>
<td>27</td>
</tr>
<tr>
<td>transformVL</td>
<td>28</td>
</tr>
<tr>
<td>triphasic_root</td>
<td>28</td>
</tr>
<tr>
<td>tri_switch_params</td>
<td>29</td>
</tr>
<tr>
<td>ushr</td>
<td>29</td>
</tr>
<tr>
<td>ushr_triphasic</td>
<td>31</td>
</tr>
</tbody>
</table>

Index 33
Description

Data from the ACTG315 clinical trial of HIV-infected adults undergoing ART. Data are included for 46 individuals, with HIV viral load measurements observed on specific days up to 28 weeks after treatment initiation, and converted to log10 RNA copies/ml. The RNA assay detection threshold was 100 copies/ml. Additional columns include patient identifiers and CD4 T cell counts.

Usage

```r
library(dplyr)
data(actg315raw)
```

Format

A data frame with 361 rows and 5 columns:

- **Obs.No** Row number
- **Patid** Numerical patient identifier
- **Day** Time of each observation, in days since treatment initiation
- **log10.RNA.** HIV viral load measurements, in log10 RNA copies/ml
- **CD4** CD4 T cell counts, in cells/mm^3

Source

Hulin Wu, Data Sets

References

Examples

```r
library(dplyr)
data(actg315raw)

actg315 <- actg315raw %>%
  mutate(vl = 10^log10.RNA.) %>%
  select(id = Patid, time = Day, vl)

print(head(actg315))

plot_data(actg315, detection_threshold = 100)
```
add_noise

Description
This function adds noise to vl measurements for each subject.

Usage
add_noise(vl, sd_noise)

Arguments
vl numeric vector of viral load measurements.
sd_noise numeric value indicating the standard deviation level to be used when adding noise to the simulated data (on the log10 scale).

biphasic_root

Description
This function defines the root equation for the biphasic model, i.e. V(t) - suppression_threshold = 0.

Usage
biphasic_root(timevec, params, suppression_threshold)

Arguments
timevec numeric vector of the times, t, at which V(t) should be calculated
params named vector of all parameters needed to compute the biphasic model, V(t)
suppression_threshold suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
filter_data

Prepare input data

Description

This function prepares the raw input data for model fitting.

Usage

```
filter_data(data, detection_threshold = 20, censortime = 365,
            decline_buffer = 500, initial_buffer = 3, n_min_single = 3,
            threshold_buffer = 10, nsuppression = 1)
```

Arguments

data: raw data set. Must be a data frame with the following columns: ‘id’ - stating the unique identifier for each subject; ‘vl’ - numeric vector with the viral load measurements for each subject; ‘time’ - numeric vector of the times at which each measurement was taken.
detection_threshold: numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral load levels. Default value is 20.
censortime: numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the ‘time’ column. Default value is 365.
decline_buffer: numeric value indicating the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.
initial_buffer: numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.
n_min_single: numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 3. It is highly advised not to go below this threshold.
threshold_buffer: numerical value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.
nsuppression: numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.
Details

Steps include: 1. Setting values below the detection threshold to half the detection threshold (following standard practice). 2. Filtering out subjects who do not suppress viral load below the detection threshold by a certain time. 3. Filtering out subjects who do not have a decreasing sequence of viral load (within some buffer range). 4. Filtering out subjects who do not have enough data for model fitting. 5. Removing the last data point of subjects with the last two points very close to the detection threshold. This prevents skewing of the model fit. Further details can be found in the Vignette.

Value

data frame of individuals whose viral load trajectories meet the criteria for model fitting. Includes columns for 'id', 'vl', and 'time'.

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
filter_data(simulated_data)
```

filter_dataTTS
Prepare input data for non-parametric TTS calculations.

Description

This function prepares the raw input data for TTS interpolation. Individuals whose data do not meet specific inclusion criteria are removed (see Vignette for more details).

Usage

```r
filter_dataTTS(data, suppression_threshold = 20, censor_time = 365,
                decline_buffer = 500, initial_buffer = 3)
```

Arguments

data
raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.

suppression_threshold
numeric value indicating the suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
The maximum time point to include in the analysis. Subjects who do not suppress viral load below the suppression threshold within this time will be discarded from model fitting. Units are assumed to be the same as the 'time' column. Default value is 365.

the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

Details
Steps include: 1. Setting values below the suppression threshold to half the suppression threshold (following standard practice). 2. Filtering out subjects who do not suppress viral load below the suppression threshold by a certain time. 3. Filtering out subjects who do not have a decreasing sequence of viral load (within some buffer range).

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
filter_dataTTS(data = simulated_data)
```

Description
This function fits either the biphasic or single phase model to the processed data and extracts the best-fit parameters.

Usage

```r
fit_model(data, id_vector, param_names, initial_params, free_param_index, n_min_biphasic, model_list, which_curve = get_biphasic, forward_param_transform_fn, inv_param_transform_fn, searchmethod)
```

Arguments

- `data` dataframe with columns for each subject's identifier ('id'), viral load measurements ('vl'), and timing of sampling ('time')
- `id_vector` vector of identifiers corresponding to the subjects to be fitted.
- `param_names` names of parameter vector.
initial_params named vector of the initial parameter guess.
free_param_index logical vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
n_min_biphasic the minimum number of data points required to fit the biphasic model. Defaults to 6. It is highly advised not to go below this threshold.
model_list character indicating which model is to be fit. Can be either 'four' for the biphasic model, or 'two' for the single phase model. Defaults to 'four'.
whichcurve indicates which model prediction function to use. Should be get_biphasic for the biphasic model or get_singlephase for the singlephase model. Defaults to get_biphasic.
forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).
inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.
searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

fit_model_triphasic *Fit model and obtain parameter estimates*

Description

This function fits the triphasic model to the processed data and extracts the best-fit parameters.

Usage

```r
fit_model_triphasic(data, id_vector, param_names, initial_params, free_param_index, n_min_biphasic, forward_param_transform_fn, inv_param_transform_fn, searchmethod)
```

Arguments

- `data` dataframe with columns for each subject’s identifier ('id'), viral load measurements ('vl'), and timing of sampling ('time')
- `id_vector` vector of identifiers corresponding to the subjects to be fitted.
- `param_names` names of parameter vector.
- `initial_params` named vector of the initial parameter guess.
free_param_index
logical vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) for the triphasic model.

n_min_triphasic
the minimum number of data points required to fit the triphasic model.

forward_param_transform_fn
list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).

inv_param_transform_fn
list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

searchmethod
optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_biphasic
Compute the biphasic model curve

Description
This function calculates the biphasic model, V(t), for a vector of input times, t

Usage
get_biphasic(params, timevec)

Arguments
params	named numeric vector of all parameters needed to compute the biphasic model, V(t)
timevec
numeric vector of the times, t, at which V(t) should be calculated

Value
numeric vector of viral load predictions, V(t), for each time point in 'timevec'

Examples
get_biphasic(params = c(A = 10000, delta = 0.068, B = 1000, gamma = 0.03),
timevec = seq(1, 100, length.out = 100))
get_CI

Calculate parameter confidence intervals

Description
This function calculates parameter 95

Usage

```
get_CI(fit)
```

Arguments

- `fit` the output of optim i.e. the fitted model for a particular subject

get_CItable

Make parameter summary table

Description
This function collate confidence intervals and parameter estimates from all subjects (fitted with the same model) into a nice table.

Usage

```
get_CItable(CIlist, param_names, free_param_index, fitted)
```

Arguments

- `CIlist` a list of confidence intervals and parameter estimates obtained from fitting either the single or biphasic model to each eligible subject.
- `param_names` character vector of the parameter names. This should be c("A", "delta", "B", "gamma") for the biphasic model or c("B", "gamma") for the single phase model.
- `free_param_index` logical vector indicating whether the parameters A, delta, B, gamma are to be included. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
- `fitted` data frame with an 'id' column of the unique identifiers for each subject represented in CIlist. Identifiers should be ordered according to their appearance in CIlist.
get_curve

Compute the model for a given subject’s data and best-fit parameters

Description

This function calculates the biphasic or single phase model given a subject’s data and best-fit parameters.

Usage

```r
get_curve(data, best_param, param_names, whichcurve = get_biphasic)
```

Arguments

- `data`
 data frame with columns for the subject’s identifier (‘id’) and timing of sampling (‘time’)

- `best_param`
 named numeric vector of best fit parameters obtained from fitting the biphasic or single phase model to the subjects data

- `param_names`
 character vector containing the names of the parameters in ‘best_param’

- `whichcurve`
 character indicating which model function should be used. Use ‘get_biphasic’ for the biphasic model, or ‘get_singlephase’ for the single phase model. Defaults to ‘get_biphasic’.

Value

data frame with columns for the sampling times (‘time’), fitted viral load predictions (‘fit’), and the corresponding subject identifier (‘id’)

Examples

```r
nobs <- 7
example_param <- c(A = 10000, delta = 0.03, B = 1000, gamma = 0.68)

vldata <- get_biphasic(params = example_param, timevec = seq(5, 100, length.out = nobs))

subjectdata <- data.frame(id = 123, time = seq(5, 100, length.out = nobs),
                        vl = 10^(log10(vldata) + rnorm(nobs, 0, 0.2)))

get_curve(data = subjectdata, best_param = example_param, param_names = names(example_param))
```
get_error

Evaluate error metric between data and model prediction

Description
For a given parameter set, this function computes the predicted viral load curve and evaluates the error metric between the prediction and observed data (to be passed to optim).

Usage
get_error(params, param_names, free_param_index, data, model_list, inv_param_transform_fn)

Arguments

params named vector of the parameters from which the model prediction should be generated.

param_names names of parameter vector.

free_param_index logical TRUE/FALSE vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.

data dataframe with columns for the subject’s viral load measurements ('vl'), and timing of sampling ('time')

model_list character indicating which model is to be fit. Can be either 'four' for the biphasic model, or 'two' for the single phase model.

inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

get_error_triphasic

Evaluate error metric between data and model prediction

Description
For a given parameter set, this function computes the predicted viral load curve and evaluates the error metric between the prediction and observed data (to be passed to optim).

Usage
get_error_triphasic(params, param_names, free_param_index, data, inv_param_transform_fn)
get_nonparametricTTS

Non-parametric TTS function

This function computes the non-parametric form of the time to suppression.

Usage

```r
get_nonparametricTTS(vl, suppression_threshold, time, npoints)
```

Arguments

- **vl**: numeric vector of viral load measurements.
- **suppression_threshold**: numeric value for the suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
- **time**: numeric vector indicating the time when vl measurements were taken.
- **npoints**: numeric value indicating the number of interpolation points to be considered.
get_optim_fit

Fit model to data using optim

Description

This function uses optim to fit either the biphasic or single phase model to data from a given subject.

Usage

get_optim_fit(initial_params, param_names, free_param_index, data,
model_list = "four",
forward_param_transform_fn = forward_param_transform_fn,
inv_param_transform_fn = inv_param_transform_fn, searchmethod)

Arguments

initial_params named vector of the initial parameter guess.
param_names names of parameter vector.
free_param_index logical vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
data dataframe with columns for the subject's viral load measurements ('vl'), and timing of sampling ('time')
model_list character indicating which model is begin fit. Can be either 'four' for the biphasic model, or 'two' for the single phase model. Defaults to 'four'.
forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).
inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.
searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.
get_optim_fit_triphasic

Fit triphasic model to data using optim

Description

This function uses optim to fit the triphasic model to data from a given subject

Usage

get_optim_fit_triphasic(initial_params, param_names, free_param_index, data, forward_param_transform_fn = forward_param_transform_fn, inv_param_transform_fn = inv_param_transform_fn, searchmethod)

Arguments

initial_params named vector of the initial parameter guess.
param_names names of parameter vector.
free_param_index logical vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) for the triphasic model.
data dataframe with columns for the subject’s viral load measurements (‘vl’), and timing of sampling (‘time’)
forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).
inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.
searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_parametricTTS Parametric TTS function

Description

This function computes the parametric form of the time to suppression

Usage

get_parametricTTS(params, rootfunction, suppression_threshold, uppertime)
Arguments

params
- named vector of all parameters needed to compute the suppression model, \(V(t) \)

rootfunction
- specifies which function should be used to calculate the root: biphasic or single phase.

suppression_threshold
- suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.

uppertime
- numeric value indicating the maximum time that will be considered. Default value is 365.

get_params

Extract fitted parameters

Description

This function extracts all untransformed parameters from the output of optim (i.e. the fitted model).

Usage

get_params(fit, initial_params, free_param_index, param_names, inv_param_transform_fn, index = NULL)

Arguments

fit
- the output of optim i.e. the fitted model for a particular subject

initial_params
- named vector of the initial parameter guess

free_param_index
- logical TRUE/FALSE vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.

param_names
- character vector of the parameter names. This should be c("A", "delta", "B", "gamma") for the biphasic model or c("B", "gamma") for the single phase model.

inv_param_transform_fn
- list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions.

index
- indicator value used inside the master function to indicate the subject number.
get_plottheme

Description
This function sets the plotting theme for ggplot.

Usage
get_plottheme(textsize)

Arguments

- textsize numeric value for base text size. Default is 9.

get_singlephase

Description
This function calculates the single phase model, V(t), for vector of input times, t.

Usage
get_singlephase(params, timevec)

Arguments

- params named numeric vector of all parameters needed to compute the single phase model, V(t)
- timevec numeric vector of the times, t, at which V(t) should be calculated

Value
numeric vector of viral load predictions, V(t), for each time point in 'timevec'

Examples
get_singlephase(params = c(B = 1000, gamma = 0.68), timevec = seq(1, 100, length.out = 100))
get_transformed_params

Transform parameters

Description

This function transforms parameter estimates according to user defined functions.

Usage

```r
get_transformed_params(params, param_transform_fn)
```

Arguments

- `params`
 vector of parameters
- `param_transform_fn`
 vector of functions for parameter transformation

get_triphasic

Compute the triphasic model curve

Description

This function calculates the triphasic model, $V(t)$, for a vector of input times, t.

Usage

```r
get_triphasic(params, timevec)
```

Arguments

- `params`
 named numeric vector of all parameters needed to compute the triphasic model, $V(t)$
- `timevec`
 numeric vector of the times, t, at which $V(t)$ should be calculated

Value

numeric vector of viral load predictions, $V(t)$, for each time point in 'timevec'

Examples

```r
get_triphasic(params = c(A = 10000, delta = 1, B = 1000, gamma = 0.1, C = 100, omega = 0.03),
timevec = seq(1, 100, length.out = 100))
```
get_TTS

Time to suppression (TTS) function

Description

This function calculates the time to suppress HIV below a specified threshold.

Usage

```r
get_TTS(model_output = NULL, data = NULL, suppression_threshold = 20,
         uppertime = 365, decline_buffer = 500, initial_buffer = 3,
         parametric = TRUE, ARTstart = FALSE, npoints = 1000)
```

Arguments

- `model_output` output from fitting model. Only required if parametric = TRUE.
- `data` raw data set. Must be a data frame with the following columns: `id` - stating the unique identifier for each subject; `vl` - numeric vector stating the viral load measurements for each subject; `time` - numeric vector stating the time at which each measurement was taken. Only required if parametric = FALSE.
- `suppression_threshold` suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
- `uppertime` the maximum time interval to search for the time to suppression. Default value is 365.
- `decline_buffer` the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.
- `initial_buffer` numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.
- `parametric` logical TRUE/FALSE indicating whether time to suppression should be calculated using the parametric (TRUE) or non-parametric (FALSE) method. If TRUE, a fitted model object is required. If FALSE, the raw data frame is required. Defaults to TRUE.
- `ARTstart` logical TRUE/FALSE indicating whether the time to suppression should be represented as time since ART initiation. Default = FALSE. If TRUE, ART initiation times must be included as a data column named ‘ART’.
- `npoints` numeric value of the number of interpolation points to be considered. Default is 1000.

Details

Options include: parametric (i.e. using the fitted model) or non-parametric (i.e. interpolating the processed data).
Value

a data frame containing all individuals who fit the inclusion criteria, along with their TTS estimates, and a column indicating whether the parametric or nonparametric approach was used.

Examples

```
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
get_TTS(data = simulated_data, parametric = FALSE)
```

Description

This function plots raw, filtered, or simulated data.

Usage

```
plot_data(data, textsize = 9, pointsize = 1, linesize = 0.5,
          facet_col = NULL, detection_threshold = 20)
```

Arguments

data
data frame of raw, filtered, or simulated data. Must include the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.

textsize
numeric value for base text size in ggplot. Default is 9.

pointsize
numeric value for point size in ggplot. Default is 1.

linesize
numeric value for line width in ggplot. Default is 0.5.

facet_col
numeric value for number of columns to use when faceting subject panels. Defaults to NULL (i.e. ggplot default).

detection_threshold
numeric value indicating the detection threshold of the assay used to measure viral load. Default value is 20.
Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
plot_data(simulated_data)
```

Description

This function plots the output from model fitting.

Usage

```r
plot_model(model_output, type = "biphasic", detection_threshold = 20,
  textsize = 9, pointsize = 1, linesize = 0.5, facet_col = NULL)
```

Arguments

- `model_output`: output from model fitting using ushr().
- `type`: character string indicating whether the biphasic or single phase fits should be plotted. Must be either "biphasic", "single", or "triphasic". Defaults to "biphasic".
- `detection_threshold`: numeric value indicating the detection threshold of the assay used to measure viral load. Default value is 20.
- `textsize`: numeric value for base text size in ggplot. Default is 9.
- `pointsize`: numeric value for point size in ggplot. Default is 1.
- `linesize`: numeric value for line width in ggplot. Default is 0.5.
- `facet_col`: numeric value for number of columns to use when faceting subject panels. Defaults to NULL (i.e. ggplot default).

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
plot_model(model_output, type = "biphasic")
```
plot_pairs

Plot pairwise parameter distributions

Description

This function creates pairwise scatterplots of the estimates parameters. The default plotting method requires GGally; if this package is not available, base R is used instead.

Usage

```r
plot_pairs(model_output, type = "biphasic", textsize = 9, 
            pointsize = 1, linesize = 0.5)
```

Arguments

- `model_output`: output from model fitting using ushr().
- `type`: character string indicating whether the biphasic or single phase fits should be plotted. Must be either "biphasic", "single", or "triphasic". Defaults to "biphasic".
- `textsize`: numeric value for base text size. Default is 9.
- `pointsize`: numeric value for point size. Default is 1.
- `linesize`: numeric value for line width; only used for GGally plots. Default is 0.5.

Examples

```r
set.seed(1234567)

simulated_data <- simulate_data(nsubjects = 20)

model_output <- ushr(data = simulated_data)

plot_pairs(model_output)
```

plot_TTS

Plot time to suppression distribution

Description

This function plots a histogram of the time to suppression estimates.

Usage

```r
plot_TTS(TTS_output, textsize = 9, bins = 20)
```
Arguments

- **TTS_output**: output from estimating time to suppression (TTS) values using get_TTS().
- **textsize**: numeric value for base text size on ggplot. Default is 9.
- **bins**: numeric value indicating the number of bins for the histogram. Default is 20.

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
TTSestimates <- get_TTS(data = simulated_data, parametric = FALSE)
plot_TTS(TTSestimates, bins = 5)
```

remove_vl0

Prune viral load data

Description

This function removes the first viral load data point for specific subjects

Usage

```r
remove_vl0(id, which_ids, subset)
```

Arguments

- **id**: vector of subject ids
- **which_ids**: vector of ids that should have the first point removed
- **subset**: data frame to which the function should be applied

simulate_data

Create data function

Description

This function simulates example data that can be used to explore model fitting and plotting within the package. Subjects are assumed to be observed at regular intervals until either the end of the study or they are lost to follow up.
Usage

```r
simulate_data(nsubjects = 10, detection_threshold = 20,
              censortime = 365, max_datapoints = 24, min_datapoints = 6,
              sd_noise = 0.1, param_noise = c(1.5, 0.1, 1.5, 0.1),
              mean_params = c(A = 10000, delta = 0.3, B = 10000, gamma = 0.03))
```

Arguments

- `nsubjects`: numeric value indicating the number of subjects you want to simulate data for. Default is 10.
- `detection_threshold`: numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral load levels. Default value is 20.
- `censortime`: numeric value indicating the maximum time point to include in the analysis. Default value is 365.
- `max_datapoints`: numeric value indicating the maximum number of data points collected from any subject. Defaults to 24.
- `min_datapoints`: numeric value indicating the minimum number of data points collected from any subject. Defaults to 6.
- `sd_noise`: numeric value indicating the standard deviation level to be used when adding noise to the simulated data (on the log10 scale). Default value is 0.1.
- `param_noise`: numeric vector indicating the standard deviation to be used when selecting parameter values (on the log scale). Order of entries should be: A, delta, B, gamma. Default value is c(1.5, 0.1, 1.5, 0.1).
- `mean_params`: named numeric vector indicating the mean parameter values for the subject decay curves. Default is c(A = 10000, delta = 0.3, B = 10000, gamma = 0.03).

Examples

```r
cat(1234567)
simulated_data <- simulate_data(nsubjects = 20)
```

simulate_time

Simulate timepoints for subjects

Description

This function chooses the correct function for sampling observation times.

Usage

```r
simulate_time(npoints, censortime, id, index, max_datapoints)
```
simulate_time_fixed

Arguments

- **npoints** numeric value indicating the number of observations to be sampled.
- **censortime** numeric value indicating the maximum time point to include in the analysis.
- **id** subject id. Can be numeric or a character.
- **index** numeric identifier for each subject/model combination.
- **max_datapoints** numeric value indicating the maximum number of data points collected from any subject.

Description

This function simulates observed timepoints for each subject according to a fixed sampling design.

Usage

```r
simulate_time_fixed(npoints, censortime, id, index, max_datapoints)
```

Arguments

- **npoints** numeric value indicating the number of observations to be sampled.
- **censortime** numeric value indicating the maximum time point to include in the analysis.
- **id** subject id. Can be numeric or a character.
- **index** numeric identifier for each subject/model combination.
- **max_datapoints** numeric value indicating the maximum number of data points collected from any subject.

simulate_vl

Simulate vl for subjects

Description

This function simulates observed vl for each subject.

Usage

```r
simulate_vl(params, timevec, id)
```

Arguments

- **params** named numeric vector of parameter values to simulate the biphasic model.
- **timevec** numeric vector of observed timepoints.
- **id** subject id. Can be numeric or a character.
single_root Single phase root function

Description
This function defines the root equation for the single phase model, i.e. V(t) - suppression_threshold = 0.

Usage
single_root(timevec, params, suppression_threshold)

Arguments
- timevec: numeric vector of the times, t, at which V(t) should be calculated
- params: named vector of all parameters needed to compute the single phase model, V(t)
- suppression_threshold: suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.

summarize_model Summarize model output

Description
This function summarizes the output of model fitting.

Usage
summarize_model(model_output, data, stats = FALSE)

Arguments
- model_output: output from model fitting using ushr().
- data: dataframe of original data used for model fitting. Must include named 'id' column with subject identifiers.
- stats: logical TRUE/FALSE: should the median and sd lifespans also be returned? Default is FALSE.

Value
a list containing (i) a summary of which subjects were successfully fit using the biphasic or single phase models, with their corresponding infected cell lifespan estimates ('summary'); (ii) if stats = TRUE: summary statistics for the estimated parameters from the biphasic model ('biphasicstats'); and (iii) if stats = TRUE: summary statistics for the estimated parameters from the single phase model ('singlestats').
switch_params

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
summarize_model(model_output, data = simulated_data)
```

switch_params

Switch names of rate parameters

Description

This function switches the names of delta and gamma estimates if gamma > delta.

Usage

```
switch_params(biphasicCI)
```

Arguments

- `biphasicCI` data frame of parameter estimates and confidence intervals for the biphasic model.

switch_simulated_params

Switch names of simulated rate parameters

Description

This function switches the names of delta and gamma estimates if gamma > delta.

Usage

```
switch_simulated_params(params)
```

Arguments

- `params` matrix of parameter estimates
transformVL
Transform viral load data

Description

This function takes the log10 transform of viral load data & checks for NAs

Usage

```r
transformVL(VL)
```

Arguments

- `VL` vector of viral load data

triphasic_root
Triphasic root function

Description

This function defines the root equation for the triphasic model, i.e. \(V(t) - \text{suppression_threshold} = 0 \).

Usage

```r
triphasic_root(timevec, params, suppression\_threshold)
```

Arguments

- `timevec` numeric vector of the times, \(t \), at which \(V(t) \) should be calculated
- `params` named vector of all parameters needed to compute the triphasic model, \(V(t) \)
- `suppression_threshold` suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
tri_switch_params

Switch names of rate parameters

Description
This function switches the names of delta and gamma estimates if gamma > delta.

Usage
tri_switch_params(triphasicCI)

Arguments

- triphasicCI: data frame of parameter estimates and confidence intervals for the biphasic model.

ushr

Master function

Description
This function performs the entire analysis, from data filtering to fitting the biphasic/single phase models. The biphasic/single phase models should be used when ART comprises of RTI/PIs.

Usage
ushr(data, filter = TRUE, detection_threshold = 20, censortime = 365,
decline_buffer = 500, initial_buffer = 3, threshold_buffer = 10,
VL_max_decline = 10000, CI_max_diff = 1000, n_min_single = 3,
n_min_biphasic = 6, nsuppression = 1,
forward_param_transform_fn = list(log, log, log, log),
inv_param_transform_fn = list(exp, exp, exp, exp),
initial_params = c(A = 10000, delta = 0.68, B = 1000, gamma = 0.03),
ssearchmethod = "Nelder-Mead")

Arguments

- data: raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time'- numeric vector stating the time at which each measurement was taken.

- filter: Logical TRUE/FALSE indicating whether the data should be processed (highly recommended) prior to model fitting. Default is TRUE.
detection_threshold

numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral levels. Default value is 20.

censortime

numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded from model fitting. Units are assumed to be same as the 'time' measurements. Default value is 365.

decline_buffer

numeric value indicating the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer

integer value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

threshold_buffer

numeric value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.

VL_max_decline

numeric value indicating the maximum allowable difference between first and second viral load measurements. Default is 10,000.

CI_max_diff

numeric value indicating the maximum allowable relative difference between lower and upper 95% confidence intervals i.e. (upper CI - lower CI)/lower CI. Default is 1000.

n_min_single

numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 3. It is highly advised not to go below this threshold.

n_min_biphasic

numeric value indicating the minimum number of data points required to fit the biphasic model. Defaults to 6. It is highly advised not to go below this threshold.

nsuppression

numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.

forward_param_transform_fn

list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).

inv_param_transform_fn

list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

initial_params

named numeric vector of initial parameter guesses. Defaults to c(A = 10000, delta = 0.68, B = 1000, gamma = 0.03).

searchmethod

optimization algorithm to be passed to 'optim()'. Defaults to 'Nelder-Mead'.

Details

Steps include: 1. Processing the raw data. 2. Fitting the biphasic model to subjects with eligible data e.g. those with enough data points and reliable confidence interval estimates. 3. Fitting the single phase model to the remaining subjects.
ushr_triphasic

Value

- a list containing the filtered data ('data_filtered'); parameter estimates for the biphasic and single phase models ('biphasicCI' and 'singleCI'); and predictions from the biphasic and single phase models ('biphasic_fits' and 'single_fits').

Examples

```r
set.seed(1234567)

simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
```

ushr_triphasic Master function for the triphasic model

Description

This function performs the entire analysis, from data filtering to triphasic model fitting. The triphasic model should be used when ART includes an integrase inhibitor.

Usage

```r
ushr_triphasic(data, filter = TRUE, detection_threshold = 20,
censortime = 365, decline_buffer = 500, initial_buffer = 3,
threshold_buffer = 10, VL_max_decline = 10000, CI_max_diff = 1000,
n_min_triphasic = 9, nsuppression = 1,
forward_param_transform_fn = list(log, log, log, log, log, log),
inv_param_transform_fn = list(exp, exp, exp, exp, exp, exp),
initial_params = c(A = 10000, delta = 1, A_b = 1000, delta_b = 0.15, B
= 10, gamma = 0.05), searchmethod = "Nelder-Mead")
```

Arguments

data raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time'- numeric vector stating the time at which each measurement was taken.

filter Logical TRUE/FALSE indicating whether the data should be processed (highly recommended) prior to model fitting. Default is TRUE.

detection_threshold numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral levels. Default value is 20.
censortime numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded from model fitting. Units are assumed to be same as the 'time' measurements. Default value is 365.

decline_buffer numeric value indicating the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer integer value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

threshold_buffer numeric value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.

VL_max_decline numeric value indicating the maximum allowable difference between first and second viral load measurements. Default is 10,000.

CI_max_diff numeric value indicating the maximum allowable relative difference between lower and upper 95% confidence intervals i.e. (upper CI - lower CI)/lower CI. Default is 1000.

n_min_triphasic numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 9. It is highly advised not to go below this threshold.

nsuppression numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.

forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).

inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

initial_params named numeric vector of initial parameter guesses. Defaults to c(A = 10000, delta = 1, A_b = 1000, delta_b = 0.15, B = 10, gamma = 0.05).

searchmethod optimization algorithm to be passed to 'optim()'. Defaults to 'Nelder-Mead'.

Details
Steps include: 1. Processing the raw data. 2. Fitting the triphasic model to subjects with eligible data e.g. those with enough data points and reliable confidence interval estimates.

Value
a list containing the filtered data ('data_filtered'); parameter estimates for the triphasic model ('triphasicCI'); and predictions from the triphasic model ('triphasic_fits').
Index

*Topic datasets
 actg315raw, 3

actg315raw, 3
add_noise, 4

biphasic_root, 4

filter_data, 5
filter_dataTTS, 6
fit_model, 7
fit_model_triphasic, 8

get_biphasic, 9
get_CI, 10
get_CItable, 10
get_curve, 11
get_error, 12
get_error_triphasic, 12
get_nonparametricTTS, 13
get_optim_fit, 14
get_optim_fit_triphasic, 15
get_parametricTTS, 15
get_params, 16
get_plottheme, 17
get_singlephase, 17
get_transformed_params, 18
get_triphasic, 18
get_TTS, 19

plot_data, 20
plot_model, 21
plot_pairs, 22
plot_TTS, 22

remove_vl0, 23

simulate_data, 23
simulate_time, 24
simulate_time_fixed, 25
simulate_vl, 25

single_root, 26
summarize_model, 26
switch_params, 27
switch_simulated_params, 27
transformVL, 28
tri_switch_params, 29
triphasic_root, 28
ushr, 29
ushr_triphasic, 31