Package ‘ushr’

October 12, 2022

Type Package

Title Understanding Suppression of HIV

Version 0.2.3

Date 2020-04-21

Maintainer Sinead E. Morris <sinead.morris@columbia.edu>

Description Analyzes longitudinal data of HIV decline in patients on antiretroviral therapy using the canonical biphasic exponential decay model (pioneered, for example, by work in Perelson et al. (1997) <doi:10.1038/387188a0>; and Wu and Ding (1999) <doi:10.1111/j.0006-341X.1999.00410.x>). Model fitting and parameter estimation are performed, with additional options to calculate the time to viral suppression. Plotting and summary tools are also provided for fast assessment of model results.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Depends dplyr (>= 0.8.0.1), tidyr (>= 0.8.3), ggplot2 (>= 3.1.1), stats

Suggests GGally (>= 1.4.0), knitr (>= 1.22), rmarkdown (>= 1.12), testthat (>= 2.2.0)

VignetteBuilder knitr

URL https://github.com/SineadMorris/ushr

NeedsCompilation no

Author Sinead E. Morris [aut, cre] (<https://orcid.org/0000-0001-8626-1698>), Luise Dziobek-Garrett [ctb], Andrew Yates [ctb]

Repository CRAN

Date/Publication 2020-04-21 18:20:03 UTC
R topics documented:

actg315raw ................................................................. 3
add_noise ................................................................. 4
biphasic_root ............................................................. 4
filter_data ................................................................. 5
filter_dataTTS ............................................................ 6
fit_model ................................................................. 7
fit_model_triphasic ....................................................... 8
get_biphasic ............................................................... 9
get_CI ................................................................. 10
get_CItable ............................................................... 10
get_curve ................................................................. 11
get_error ................................................................. 12
get_error_triphasic ...................................................... 12
get_nonparametricTTS .................................................. 13
get_optim_fit ............................................................ 14
get_optim_fit_triphasic ................................................ 15
get_parametricTTS ...................................................... 15
get_params ............................................................... 16
get_plottheme ........................................................... 17
get_singlephase ........................................................ 17
get_transformed_params ................................................. 18
get_triphasic ............................................................ 18
get_TTS ................................................................. 19
plot_data ................................................................. 20
plot_model ............................................................... 21
plot_pairs ............................................................... 22
plot_TTS ................................................................. 22
remove_vl0 ............................................................... 23
simulate_data ............................................................ 23
simulate_time ........................................................... 24
simulate_time_fixed ..................................................... 25
simulate_vl ............................................................... 25
single_root .............................................................. 26
summarize_model ....................................................... 26
switch_params ........................................................... 27
switch_simulated_params .............................................. 27
transformVL ............................................................. 28
triphasic_root ........................................................... 28
tri_switch_params ....................................................... 29
ushr ................................................................. 29
ushr_triphasic .......................................................... 31

Index 34
Description

Data from the ACTG315 clinical trial of HIV-infected adults undergoing ART. Data are included for 46 individuals, with HIV viral load measurements observed on specific days up to 28 weeks after treatment initiation, and converted to log10 RNA copies/ml. The RNA assay detection threshold was 100 copies/ml. Additional columns include patient identifiers and CD4 T cell counts.

Usage

data(actg315raw)

Format

A data frame with 361 rows and 5 columns:

- **Obs.No**: Row number
- **Patid**: Numerical patient identifier
- **Day**: Time of each observation, in days since treatment initiation
- **log10.RNA**: HIV viral load measurements, in log10 RNA copies/ml
- **CD4**: CD4 T cell counts, in cells/mm^3

Source

Hulin Wu, Data Sets

References


Examples

code

```r
library(dplyr)
data(actg315raw)

actg315 <- actg315raw %>%
  mutate(vl = 10^log10.RNA) %>%
  select(id = Patid, time = Day, vl)

print(head(actg315))

plot_data(actg315, detection_threshold = 100)
```
add_noise

Add noise to viral load observations

Description

This function adds noise to vl measurements for each subject.

Usage

add_noise(vl, sd_noise)

Arguments

vl numeric vector of viral load measurements.

sd_noise numeric value indicating the standard deviation level to be used when adding noise to the simulated data (on the log10 scale).

biphasic_root

Biphasic root function

Description

This function defines the root equation for the biphasic model, i.e. V(t) - suppression_threshold = 0.

Usage

biphasic_root(timevec, params, suppression_threshold)

Arguments

timevec numeric vector of the times, t, at which V(t) should be calculated

params named vector of all parameters needed to compute the biphasic model, V(t)

suppression_threshold suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
filter_data

Prepare input data

Description
This function prepares the raw input data for model fitting.

Usage
```r
filter_data(data, detection_threshold = 20, censortime = 365,
censor_value = 10, decline_buffer = 500, initial_buffer = 3,
n_min_single = 3, threshold_buffer = 10, nsuppression = 1)
```

Arguments
- **data**
rw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector with the viral load measurements for each subject; 'time' - numeric vector of the times at which each measurement was taken.
- **detection_threshold**
numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral load levels. Default value is 20.
- **censortime**
numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.
- **censor_value**
positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.
- **decline_buffer**
numeric value indicating the value assigned to measurements below the detection threshold. Must be less than or equal to the detection threshold.
- **initial_buffer**
numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.
- **n_min_single**
numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 3. It is highly advised not to go below this threshold.
- **threshold_buffer**
umerical value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.
- **nsuppression**
numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.
Details
Steps include: 1. Setting values below the detection threshold to half the detection threshold (following standard practice). 2. Filtering out subjects who do not suppress viral load below the detection threshold by a certain time. 3. Filtering out subjects who do not have a decreasing sequence of viral load (within some buffer range). 4. Filtering out subjects who do not have enough data for model fitting. 5. Removing the last data point of subjects with the last two points very close to the detection threshold. This prevents skewing of the model fit. Further details can be found in the Vignette.

Value
data frame of individuals whose viral load trajectories meet the criteria for model fitting. Includes columns for 'id', 'vl', and 'time'.

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
filter_data(simulated_data)
```

---

filter_dataTTS Prepare input data for non-parametric TTS calculations.

Description
This function prepares the raw input data for TTS interpolation. Individuals whose data do not meet specific inclusion criteria are removed (see Vignette for more details).

Usage

```r
filter_dataTTS(data, suppression_threshold = 20, uppertime = 365,
censor_value = 10, decline_buffer = 500, initial_buffer = 3)
```

Arguments
data raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.
suppression_threshold numeric value indicating the suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
uppertime the maximum time point to include in the analysis. Subjects who do not suppress viral load below the suppression threshold within this time will be discarded from model fitting. Units are assumed to be the same as the 'time' column. Default value is 365.

censor_value positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.

decay_buffer the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

Details
Steps include: 1. Setting values below the suppression threshold to half the suppression threshold (following standard practice). 2. Filtering out subjects who do not suppress viral load below the suppression threshold by a certain time. 3. Filtering out subjects who do not have a decreasing sequence of viral load (within some buffer range).

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
filter_dataTTS(data = simulated_data)
```

Description

This function fits either the biphasic or single phase model to the processed data and extracts the best-fit parameters.

Usage

```r
fit_model(data, id_vector, param_names, initial_params, free_param_index, n_min_biphasic, model_list, whichcurve = get_biphasic, forward_param_transform_fn, inv_param_transform_fn, searchmethod)
```
Arguments

data dataframe with columns for each subject’s identifier ('id'), viral load measurements ('vl'), and timing of sampling ('time')
id_vector vector of identifiers corresponding to the subjects to be fitted.
param_names names of parameter vector.
initial_params named vector of the initial parameter guess.
free_param_index logical vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
n_min_biphasic the minimum number of data points required to fit the biphasic model. Defaults to 6. It is highly advised not to go below this threshold.
model_list character indicating which model is to be fit. Can be either 'four' for the biphasic model, or 'two' for the single phase model. Defaults to 'four'.
whichcurve indicates which model prediction function to use. Should be get_biphasic for the biphasic model or get_singlephase for the singlephase model. Defaults to get_biphasic.
forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).
inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.
searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

fit_model_triphasic (data, id_vector, param_names, initial_params, free_param_index, n_min_biphasic, forward_param_transform_fn, inv_param_transform_fn, searchmethod)

Description

This function fits the triphasic model to the processed data and extracts the best-fit parameters.

Usage

fit_model_triphasic(data, id_vector, param_names, initial_params, free_param_index, n_min_biphasic, forward_param_transform_fn, inv_param_transform_fn, searchmethod)
get_biphasic

Arguments

data dataframe with columns for each subject’s identifier (‘id’), viral load measurements (‘vl’), and timing of sampling (‘time’)
id_vector vector of identifiers corresponding to the subjects to be fitted.
param_names names of parameter vector.
initial_params named vector of the initial parameter guess.
free_param_index logical vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) for the triphasic model.
n_min_triphasic the minimum number of data points required to fit the triphasic model.
forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).
inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.
searchmethod optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_biphasic Compute the biphasic model curve

Description

This function calculates the biphasic model, V(t), for a vector of input times, t

Usage

get_biphasic(params, timevec)

Arguments

params named numeric vector of all parameters needed to compute the biphasic model, V(t)
timevec numeric vector of the times, t, at which V(t) should be calculated

Value

numeric vector of viral load predictions, V(t), for each time point in ’timevec’
get_CItable

Examples

```r
get_biphasic(params = c(A = 10000, delta = 0.68, B = 1000, gamma = 0.03),
              timevec = seq(1, 100, length.out = 100))
```

get_CI

*Calculate parameter confidence intervals*

**Description**

This function calculates parameter 95

**Usage**

```r
get_CI(fit)
```

**Arguments**

- `fit` the output of optim i.e. the fitted model for a particular subject

get_CItable

*Make parameter summary table*

**Description**

This function collate confidence intervals and parameter estimates from all subjects (fitted with the same model) into a nice table.

**Usage**

```r
get_CItable(CIlist, param_names, free_param_index, fitted)
```

**Arguments**

- `CIlist` a list of confidence intervals and parameter estimates obtained from fitting either the single or biphasic model to each eligible subject.
- `param_names` character vector of the parameter names. This should be c("A", "delta", "B", "gamma") for the biphasic model or c("B", "gamma") for the single phase model.
- `free_param_index` logical vector indicating whether the parameters A, delta, B, gamma are to be included. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
- `fitted` data frame with an 'id' column of the unique identifiers for each subject represented in CIlist. Identifiers should be ordered according to their appearance in CIlist.
**get_curve**

*Compute the model for a given subject’s data and best-fit parameters*

**Description**

This function calculates the biphasic or single phase model given a subject’s data and best-fit parameters.

**Usage**

```r
get_curve(data, best_param, param_names, whichcurve = get_biphasic)
```

**Arguments**

- `data`: data frame with columns for the subject’s identifier ('id') and timing of sampling ('time').
- `best_param`: named numeric vector of best fit parameters obtained from fitting the biphasic or single phase model to the subjects data.
- `param_names`: character vector containing the names of the parameters in 'best_param'.
- `whichcurve`: character indicating which model function should be used. Use 'get_biphasic' for the biphasic model, or 'get_singlephase' for the single phase model. Defaults to 'get_biphasic'.

**Value**

data frame with columns for the sampling times ('time'), fitted viral load predictions ('fit'), and the corresponding subject identifier ('id').

**Examples**

```r
nobs <- 7
example_param <- c(A = 10000, delta = 0.03, B = 1000, gamma = 0.68)
vlndata <- get_biphasic(params = example_param, timevec = seq(5, 100, length.out = nobs))
subjectdata <- data.frame(id = 123, time = seq(5, 100, length.out = nobs),
                          vl = 10^ (log10(vlndata) + rnorm(nobs, 0, 0.2)))
get_curve(data = subjectdata, best_param = example_param, param_names = names(example_param))
```
**get_error**

*Evaluate error metric between data and model prediction*

**Description**

For a given parameter set, this function computes the predicted viral load curve and evaluates the error metric between the prediction and observed data (to be passed to optim).

**Usage**

```r
get_error(params, param_names, free_param_index, data, model_list, inv_param_transform_fn)
```

**Arguments**

- **params**: named vector of the parameters from which the model prediction should be generated.
- **param_names**: names of parameter vector.
- **free_param_index**: logical TRUE/FALSE vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
- **data**: dataframe with columns for the subject’s viral load measurements ('vl'), and timing of sampling ('time')
- **model_list**: character indicating which model is being fit. Can be either 'four' for the biphasic model, or 'two' for the single phase model.
- **inv_param_transform_fn**: list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

---

**get_error_triphasic**

*Evaluate error metric between data and model prediction*

**Description**

For a given parameter set, this function computes the predicted viral load curve and evaluates the error metric between the prediction and observed data (to be passed to optim).

**Usage**

```r
get_error_triphasic(params, param_names, free_param_index, data, inv_param_transform_fn)
```
get_nonparametricTTS

Non-parametric TTS function

Arguments

params  named vector of the parameters from which the model prediction should be generated.

param_names  names of parameter vector.

free_param_index  logical TRUE/FALSE vector indicating whether the parameters A, delta, A_b, delta_b, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) for the triphasic model.

data  dataframe with columns for the subject’s viral load measurements (’vl’), and timing of sampling (’time’).

inv_param_transform_fn  list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

Description

This function computes the non-parametric form of the time to suppression

Usage

get_nonparametricTTS(vl, suppression_threshold, time, npoints)

Arguments

vl  numeric vector of viral load measurements.

suppression_threshold  numeric value for the suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.

time  numeric vector indicating the time when vl measurements were taken.

npoints  numeric value indicating the number of interpolation points to be considered.
**get_optim_fit**

*Fit model to data using optim*

---

**Description**

This function uses optim to fit either the biphasic or single phase model to data from a given subject.

**Usage**

```r
get_optim_fit(initial_params, param_names, free_param_index, data,
               model_list = "four",
               forward_param_transform_fn = forward_param_transform_fn,
               inv_param_transform_fn = inv_param_transform_fn, searchmethod)
```

**Arguments**

- `initial_params`: named vector of the initial parameter guess.
- `param_names`: names of parameter vector.
- `free_param_index`: logical vector indicating whether the parameters $A$, $\delta$, $B$, $\gamma$ are to be recovered. This should be `c(TRUE, TRUE, TRUE, TRUE)` for the biphasic model and `c(FALSE, FALSE, TRUE, TRUE)` for the single phase model.
- `data`: dataframe with columns for the subject’s viral load measurements (‘vl’), and timing of sampling (‘time’).
- `model_list`: character indicating which model is being fit. Can be either ’four’ for the biphasic model, or ’two’ for the single phase model. Defaults to ’four’.
- `forward_param_transform_fn`: list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).
- `inv_param_transform_fn`: list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.
- `searchmethod`: optimization algorithm to be used in optim. Defaults to Nelder-Mead.
get_optim_fit_triphasic

Fit triphasic model to data using optim

Description
This function uses optim to fit the triphasic model to data from a given subject

Usage
get_optim_fit_triphasic(initial_params, param_names, free_param_index, 
data, forward_param_transform_fn = forward_param_transform_fn, 
inv_param_transform_fn = inv_param_transform_fn, searchmethod)

Arguments

initial_params  named vector of the initial parameter guess.
param_names     names of parameter vector.
free_param_index logical vector indicating whether the parameters A, delta, A_b, delta_b, B, 
gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE, 
TRUE, TRUE) for the triphasic model.
data            dataframe with columns for the subject’s viral load measurements (‘vl’), and 
timing of sampling (‘time’)
forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. De-
defaults to log transformations for all parameters (to allow unconstrained optimiza-
tion).
inv_param_transform_fn list of transformation functions to be used when back-transforming the trans-
formed parameters. Should be the inverse of the forward transformation func-
tions. Defaults to exponential.
searchmethod    optimization algorithm to be used in optim. Defaults to Nelder-Mead.

get_parametricTTS  Parametric TTS function

Description
This function computes the parametric form of the time to suppression

Usage
get_parametricTTS(params, rootfunction, suppression_threshold, upptime)
get_params

Arguments

params named vector of all parameters needed to compute the suppression model, V(t)
rootfunction specifies which function should be used to calculate the root: biphasic or single phase.
suppression_threshold suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
uppertime numeric value indicating the maximum time that will be considered. Default value is 365.

get_params Extract fitted parameters

Description

This function extracts all untransformed parameters from the output of optim (i.e. the fitted model).

Usage

get_params(fit, initial_params, free_param_index, param_names, inv_param_transform_fn, index = NULL)

Arguments

fit the output of optim i.e. the fitted model for a particular subject
initial_params named vector of the initial parameter guess
free_param_index logical TRUE/FALSE vector indicating whether the parameters A, delta, B, gamma are to be recovered. This should be c(TRUE, TRUE, TRUE, TRUE) for the biphasic model and c(FALSE, FALSE, TRUE, TRUE) for the single phase model.
param_names character vector of the parameter names. This should be c("A", "delta", "B", "gamma") for the biphasic model or c("B", "gamma") for the single phase model.
inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions.
index indicator value used inside the master function to indicate the subject number.
get_plottheme

Description
This function sets the plotting theme for ggplot.

Usage
get_plottheme(textsize)

Arguments
- textsize: numeric value for base text size. Default is 9.

get_singlephase

Description
This function calculates the single phase model, V(t), for vector of input times, t

Usage
get_singlephase(params, timevec)

Arguments
- params: named numeric vector of all parameters needed to compute the single phase model, V(t)
- timevec: numeric vector of the times, t, at which V(t) should be calculated

Value
numeric vector of viral load predictions, V(t), for each time point in 'timevec'

Examples
get_singlephase(params = c(B = 1000, gamma = 0.68), timevec = seq(1, 100, length.out = 100))
get_transformed_params

*Transform parameters*

**Description**
This function transforms parameter estimates according to user defined functions.

**Usage**
get_transformed_params(params, param_transform_fn)

**Arguments**
- **params**: vector of parameters
- **param_transform_fn**: vector of functions for parameter transformation

get_triphasic

*Compute the triphasic model curve*

**Description**
This function calculates the triphasic model, $V(t)$, for a vector of input times, $t$.

**Usage**
get_triphasic(params, timevec)

**Arguments**
- **params**: named numeric vector of all parameters needed to compute the triphasic model, $V(t)$
- **timevec**: numeric vector of the times, $t$, at which $V(t)$ should be calculated

**Value**
numeric vector of viral load predictions, $V(t)$, for each time point in 'timevec'

**Examples**
get_triphasic(params = c(A = 10000, delta = 1, B = 1000, gamma = 0.1, C = 100, omega = 0.03),
timevec = seq(1, 100, length.out = 100))
get_TTS

**Time to suppression (TTS) function**

**Description**

This function calculates the time to suppress HIV below a specified threshold.

**Usage**

```r
get_TTS(model_output = NULL, data = NULL, suppression_threshold = 20,
        uppertime = 365, censor_value = 10, decline_buffer = 500,
        initial_buffer = 3, parametric = TRUE, ARTstart = FALSE,
        npoints = 1000)
```

**Arguments**

- `model_output` output from fitting model. Only required if parametric = TRUE.
- `data` raw data set. Must be a data frame with the following columns: `id` - stating the unique identifier for each subject; `vl` - numeric vector stating the viral load measurements for each subject; `time` - numeric vector stating the time at which each measurement was taken. Only required if parametric = FALSE.
- `suppression_threshold` suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
- `uppertime` the maximum time interval to search for the time to suppression. Default value is 365.
- `censor_value` positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the `time` column. Default value is 365.
- `decline_buffer` the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.
- `initial_buffer` numeric (integer) value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.
- `parametric` logical TRUE/FALSE indicating whether time to suppression should be calculated using the parametric (TRUE) or non-parametric (FALSE) method. If TRUE, a fitted model object is required. If FALSE, the raw data frame is required. Defaults to TRUE.
- `ARTstart` logical TRUE/FALSE indicating whether the time to suppression should be represented as time since ART initiation. Default = FALSE. If TRUE, ART initiation times must be included as a data column named 'ART'.
- `npoints` numeric value of the number of interpolation points to be considered. Default is 1000.
Details

Options include: parametric (i.e. using the fitted model) or non-parametric (i.e. interpolating the processed data).

Value

a data frame containing all individuals who fit the inclusion criteria, along with their TTS estimates, and a column indicating whether the parametric or nonparametric approach was used.

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
get_TTS(data = simulated_data, parametric = FALSE)
```

plot_data

Description

This function plots raw, filtered, or simulated data.

Usage

```r
plot_data(data, textsize = 9, pointsize = 1, linesize = 0.5,
          facet_col = NULL, detection_threshold = 20)
```

Arguments

data  data frame of raw, filtered, or simulated data. Must include the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time' - numeric vector stating the time at which each measurement was taken.
textsize  numeric value for base text size in ggplot. Default is 9.
pointsize  numeric value for point size in ggplot. Default is 1.
linesize  numeric value for line width in ggplot. Default is 0.5.
facet_col  numeric value for number of columns to use when faceting subject panels. Defaults to NULL (i.e. ggplot default).
detection_threshold  numeric value indicating the detection threshold of the assay used to measure viral load. Default value is 20.
Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
plot_data(simulated_data)
```

---

Description

This function plots the output from model fitting.

Usage

```r
plot_model(model_output, type = "biphasic", detection_threshold = 20,
textsize = 9, pointsize = 1, linesize = 0.5, facet_col = NULL)
```

Arguments

- `model_output`: output from model fitting using ushr().
- `type`: character string indicating whether the biphasic or single phase fits should be plotted. Must be either "biphasic", "single", or "triphasic". Defaults to "biphasic".
- `detection_threshold`: numeric value indicating the detection threshold of the assay used to measure viral load. Default value is 20.
- `textsize`: numeric value for base text size in ggplot. Default is 9.
- `pointsize`: numeric value for point size in ggplot. Default is 1.
- `linesize`: numeric value for line width in ggplot. Default is 0.5.
- `facet_col`: numeric value for number of columns to use when faceting subject panels. Defaults to NULL (i.e. ggplot default).

Examples

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
plot_model(model_output, type = "biphasic")
```
plot_pairs

*Plot pairwise parameter distributions*

**Description**

This function creates pairwise scatterplots of the estimates parameters. The default plotting method requires GGally; if this package is not available, base R is used instead.

**Usage**

```r
plot_pairs(model_output, type = "biphasic", textsize = 9,
           pointsize = 1, linesize = 0.5)
```

**Arguments**

- `model_output`: output from model fitting using ushr().
- `type`: character string indicating whether the biphasic or single phase fits should be plotted. Must be either "biphasic", "single", or "triphasic". Defaults to "biphasic".
- `textsize`: numeric value for base text size. Default is 9.
- `pointsize`: numeric value for point size. Default is 1.
- `linesize`: numeric value for line width; only used for GGally plots. Default is 0.5.

**Examples**

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
model_output <- ushr(data = simulated_data)
plot_pairs(model_output)
```

---

plot_TTS

*Plot time to suppression distribution*

**Description**

This function plots a histogram of the time to suppression estimates.

**Usage**

```r
plot_TTS(TTS_output, textsize = 9, bins = 20)
```
**Arguments**

- **TTS_output**
  - output from estimating time to suppression (TTS) values using get_TTS()..

- **textsize**
  - numeric value for base text size on ggplot. Default is 9.

- **bins**
  - numeric value indicating the number of bins for the histogram. Default is 20.

**Examples**

```r
set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)
TTSestimates <- get_TTS(data = simulated_data, parametric = FALSE)
plot_TTS(TTSestimates, bins = 5)
```

---

**remove_vl0**

*Prune viral load data*

**Description**

This function removes the first viral load data point for specific subjects.

**Usage**

```r
remove_vl0(id, which_ids, subset)
```

**Arguments**

- **id**
  - vector of subject ids

- **which_ids**
  - vector of ids that should have the first point removed

- **subset**
  - data frame to which the function should be applied

**simulate_data**

*Create data function*

**Description**

This function simulates example data that can be used to explore model fitting and plotting within the package. Subjects are assumed to be observed at regular intervals until either the end of the study or they are lost to follow up.
Usage

simulate_data(nsubjects = 10, detection_threshold = 20, censortime = 365, max_datapoints = 24, min_datapoints = 6, sd_noise = 0.1, param_noise = c(1.5, 0.1, 1.5, 0.1), mean_params = c(A = 10000, delta = 0.3, B = 10000, gamma = 0.03))

Arguments

nsubjects numeric value indicating the number of subjects you want to simulate data for. Default is 10.
detection_threshold numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral load levels. Default value is 20.
censortime numeric value indicating the maximum time point to include in the analysis. Default value is 365.
max_datapoints numeric value indicating the maximum number of data points collected from any subject. Defaults to 24.
min_datapoints numeric value indicating the minimum number of data points collected from any subject. Defaults to 6.
sd_noise numeric value indicating the standard deviation level to be used when adding noise to the simulated data (on the log10 scale). Default value is 0.1
param_noise numeric vector indicating the standard deviation to be used when selecting parameter values (on the log scale). Order of entries should be: A, delta, B, gamma. Default value is c(1.5, 0.1, 1.5, 0.1).
mean_params named numeric vector indicating the mean parameter values for the subject decay curves. Default is c(A = 10000, delta = 0.3, B = 10000, gamma = 0.03).

Examples

set.seed(1234567)
simulated_data <- simulate_data(nsubjects = 20)

+ simulate_time +
  + Simulate timepoints for subjects +

Description

This function chooses the correct function for sampling observation times.

Usage

simulate_time(npoints, censortime, id, index, max_datapoints)
simulate_time_fixed

**Arguments**

- `npoints` numeric value indicating the number of observations to be sampled.
- `censortime` numeric value indicating the maximum time point to include in the analysis.
- `id` subject id. Can be numeric or a character.
- `index` numeric identifier for each subject/model combination.
- `max_datapoints` numeric value indicating the maximum number of data points collected from any subject.

**Description**

This function simulates observed timepoints for each subject according to a fixed sampling design.

**Usage**

```r
simulate_time_fixed(npoints, censortime, id, index, max_datapoints)
```

**Arguments**

- `npoints` numeric value indicating the number of observations to be sampled.
- `censortime` numeric value indicating the maximum time point to include in the analysis.
- `id` subject id. Can be numeric or a character.
- `index` numeric identifier for each subject/model combination.
- `max_datapoints` numeric value indicating the maximum number of data points collected from any subject.

simulate_vl

**Simulate vl for subjects**

**Description**

This function simulates observed vl for each subject.

**Usage**

```r
simulate_vl(params, timevec, id)
```

**Arguments**

- `params` named numeric vector of parameter values to simulate the biphasic model.
- `timevec` numeric vector of observed timepoints.
- `id` subject id. Can be numeric or a character.
single_root  Single phase root function

Description
This function defines the root equation for the single phase model, i.e. \( V(t) - \text{suppression\_threshold} = 0 \).

Usage
\[
single\_root(t, \text{params}, \text{suppression\_threshold})
\]

Arguments
- **timevec**: numeric vector of the times, \( t \), at which \( V(t) \) should be calculated
- **params**: named vector of all parameters needed to compute the single phase model, \( V(t) \)
- **suppression\_threshold**: suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.

summarize_model  Summarize model output

Description
This function summarizes the output of model fitting.

Usage
\[
\text{summarize\_model(} \text{model\_output, data, stats = FALSE)}
\]

Arguments
- **model\_output**: output from model fitting using ushr().
- **data**: dataframe of original data used for model fitting. Must include named 'id' column with subject identifiers.
- **stats**: logical TRUE/FALSE: should the median and sd lifespans also be returned? Default is FALSE.

Value
A list containing (i) a summary of which subjects were successfully fit using the biphasic or single phase models, with their corresponding infected cell lifespan estimates ('summary'); (ii) if stats = TRUE: summary statistics for the estimated parameters from the biphasic model ('biphasicstats'); and (iii) if stats = TRUE: summary statistics for the estimated parameters from the single phase model ('singlestats').
Examples

```r
set.seed(1234567)

simulated_data <- simulate_data(nsubjects = 20)

model_output <- ushr(data = simulated_data)

summarize_model(model_output, data = simulated_data)
```

---

### switch_params

**Switch names of rate parameters**

#### Description

This function switches the names of delta and gamma estimates if gamma > delta.

#### Usage

```r
switch_params(biphasicCI)
```

#### Arguments

- `biphasicCI`: data frame of parameter estimates and confidence intervals for the biphasic model.

---

### switch_simulated_params

**Switch names of simulated rate parameters**

#### Description

This function switches the names of delta and gamma estimates if gamma > delta.

#### Usage

```r
switch_simulated_params(params)
```

#### Arguments

- `params`: matrix of parameter estimates
transformVL  Transform viral load data

Description

This function takes the log10 transform of viral load data & checks for NAs

Usage

transformVL(VL)

Arguments

VL  vector of viral load data

triphasic_root  Triphasic root function

Description

This function defines the root equation for the triphasic model, i.e. \( V(t) - \text{suppression\_threshold} = 0 \).

Usage

triphasic_root(timevec, params, suppression\_threshold)

Arguments

timevec  numeric vector of the times, \( t \), at which \( V(t) \) should be calculated
params  named vector of all parameters needed to compute the triphasic model, \( V(t) \)
suppression\_threshold  suppression threshold: measurements below this value will be assumed to represent viral suppression. Typically this would be the detection threshold of the assay. Default value is 20.
tri_switch_params

Switch names of rate parameters

Description
This function switches the names of delta and gamma estimates if gamma > delta.

Usage
tri_switch_params(triphasicCI)

Arguments
- triphasicCI: data frame of parameter estimates and confidence intervals for the biphasic model.

ushr

Master function

Description
This function performs the entire analysis, from data filtering to fitting the biphasic/single phase models. The biphasic/single phase models should be used when ART comprises of RTI/PIs.

Usage
ushr(data, filter = TRUE, detection_threshold = 20, censortime = 365, censor_value = 10, decline_buffer = 500, initial_buffer = 3, threshold_buffer = 10, VL_max_decline = 10000, CI_max_diff = 1000, n_min_single = 3, n_min_biphasic = 6, nsuppression = 1, forward_param_transform_fn = list(log, log, log, log), inv_param_transform_fn = list(exp, exp, exp, exp), initial_params = c(A = 10000, delta = 0.68, B = 1000, gamma = 0.03), searchmethod = "Nelder-Mead")

Arguments
- data: raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time'- numeric vector stating the time at which each measurement was taken.
- filter: Logical TRUE/FALSE indicating whether the data should be processed (highly recommended) prior to model fitting. Default is TRUE.
detection_threshold
numeric value indicating the detection threshold of the assay used to measure
viral load. Measurements below this value will be assumed to represent unde-
tectable viral levels. Default value is 20.

censor_time
numeric value indicating the maximum time point to include in the analysis.
Subjects who do not suppress viral load below the detection threshold within
this time will be discarded from model fitting. Units are assumed to be the same as
the 'time' measurements. Default value is 365.

censor_value
positive numeric value indicating the maximum time point to include in the
analysis. Subjects who do not suppress viral load below the detection thresh-
hold within this time will be discarded. Units are assumed to be the same as the
'time' column. Default value is 365.

decline_buffer
numeric value indicating the maximum allowable deviation of values away from
a strictly decreasing sequence in viral load. This allows for e.g. measurement
noise and small fluctuations in viral load. Default value is 500.

initial_buffer
integer value indicating the maximum number of initial observations from which
the beginning of each trajectory will be chosen. Default value is 3.

threshold_buffer
numeric value indicating the range above the detection threshold which repre-
sents potential skewing of model fits. Subjects with their last two data points
within this range will have the last point removed. Default value is 10.

VL_max_decline
numeric value indicating the maximum allowable difference between first and
second viral load measurements. Default is 10,000.

CI_max_diff
numeric value indicating the maximum allowable relative difference between
lower and upper 95% confidence intervals i.e. (upper CI - lower CI)/lower CI.
Default is 1000.

n_min_single
numeric value indicating the minimum number of data points required to be
included in the analysis. Defaults to 3. It is highly advised not to go below this
threshold.

n_min_biphasic
numeric value indicating the minimum number of data points required to fit the
biphasic model. Defaults to 6. It is highly advised not to go below this threshold.

nsuppression
numerical value (1 or 2) indicating whether suppression is defined as having
one observation below the detection threshold, or two sustained observations.
Default value is 1.

forward_param_transform_fn
list of transformation functions to be used when fitting the model in optim. De-
faults to log transformations for all parameters (to allow unconstrained optimiza-
tion).

inv_param_transform_fn
list of transformation functions to be used when back-transforming the trans-
formed parameters. Should be the inverse of the forward transformation func-
tions. Defaults to exponential.

initial_params
named numeric vector of initial parameter guesses. Defaults to c(A = 10000,
delta = 0.68, B = 1000, gamma = 0.03).

searchmethod
optimization algorithm to be passed to 'optim()'. Defaults to 'Nelder-Mead'.
Details

Steps include: 1. Processing the raw data. 2. Fitting the biphasic model to subjects with eligible data e.g. those with enough data points and reliable confidence interval estimates. 3. Fitting the single phase model to the remaining subjects.

Value

a list containing the filtered data (`data_filtered'); parameter estimates for the biphasic and single phase models (`biphasicCI' and `singleCI'); and predictions from the biphasic and single phase models (`biphasic_fits' and `single_fits').

Examples

```r
set.seed(1234567)

simulated_data <- simulate_data(nsubjects = 20)

model_output <- ushr(data = simulated_data)
```

Description

This function performs the entire analysis, from data filtering to triphasic model fitting. The triphasic model should be used when ART includes an integrase inhibitor.

Usage

```r
ushr_triphasic(data, filter = TRUE, detection_threshold = 20,
censortime = 365, censor_value = 10, decline_buffer = 500,
initial_buffer = 3, threshold_buffer = 10, VL_max_decline = 10000,
CI_max_diff = 1000, n_min_triphasic = 9, nsuppression = 1,
forward_param_transform_fn = list(log, log, log, log, log, log),
inv_param_transform_fn = list(exp, exp, exp, exp, exp, exp),
initial_params = c(A = 10000, delta = 1, A_b = 1000, delta_b = 0.15, B = 10, gamma = 0.05), searchmethod = "Nelder-Mead")
```

Arguments

data raw data set. Must be a data frame with the following columns: 'id' - stating the unique identifier for each subject; 'vl' - numeric vector stating the viral load measurements for each subject; 'time'- numeric vector stating the time at which each measurement was taken.

filter Logical TRUE/FALSE indicating whether the data should be processed (highly recommended) prior to model fitting. Default is TRUE.
detection_threshold numeric value indicating the detection threshold of the assay used to measure viral load. Measurements below this value will be assumed to represent undetectable viral levels. Default value is 20.

censor_time numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded from model fitting. Units are assumed to be the same as the 'time' measurements. Default value is 365.

censor_value positive numeric value indicating the maximum time point to include in the analysis. Subjects who do not suppress viral load below the detection threshold within this time will be discarded. Units are assumed to be the same as the 'time' column. Default value is 365.

decline_buffer numeric value indicating the maximum allowable deviation of values away from a strictly decreasing sequence in viral load. This allows for e.g. measurement noise and small fluctuations in viral load. Default value is 500.

initial_buffer integer value indicating the maximum number of initial observations from which the beginning of each trajectory will be chosen. Default value is 3.

threshold_buffer numeric value indicating the range above the detection threshold which represents potential skewing of model fits. Subjects with their last two data points within this range will have the last point removed. Default value is 10.

VL_max_decline numeric value indicating the maximum allowable difference between first and second viral load measurements. Default is 10,000.

CI_max_diff numeric value indicating the maximum allowable relative difference between lower and upper 95% confidence intervals i.e. (upper CI - lower CI)/lower CI. Default is 1000.

n_min_triphasic numeric value indicating the minimum number of data points required to be included in the analysis. Defaults to 9. It is highly advised not to go below this threshold.

nsuppression numerical value (1 or 2) indicating whether suppression is defined as having one observation below the detection threshold, or two sustained observations. Default value is 1.

forward_param_transform_fn list of transformation functions to be used when fitting the model in optim. Defaults to log transformations for all parameters (to allow unconstrained optimization).

inv_param_transform_fn list of transformation functions to be used when back-transforming the transformed parameters. Should be the inverse of the forward transformation functions. Defaults to exponential.

initial_params named numeric vector of initial parameter guesses. Defaults to \( c(A = 10000, \delta_t = 1, A_b = 1000, \delta_b = 0.15, B = 10, \gamma = 0.05) \).

searchmethod optimization algorithm to be passed to `optim()`. Defaults to 'Nelder-Mead'. 
Details
Steps include: 1. Processing the raw data. 2. Fitting the triphasic model to subjects with eligible data e.g. those with enough data points and reliable confidence interval estimates.

Value
a list containing the filtered data (‘data_filtered’); parameter estimates for the triphasic model (‘triphasicCI’); and predictions from the triphasic model (‘triphasic_fits’).
Index

* datasets
  actg315raw, 3
  add_noise, 4
  biphasic_root, 4
  filter_data, 5
  filter_dataTTS, 6
  fit_model, 7
  fit_model_triphasic, 8
  get_biphasic, 9
  get_CI, 10
  get_CItable, 10
  get_curve, 11
  get_error, 12
  get_error_triphasic, 12
  get_nonparametricTTS, 13
  get_optim_fit, 14
  get_optim_fit_triphasic, 15
  get_parametricTTS, 15
  get_params, 16
  get_plottheme, 17
  get_singlephase, 17
  get_transformed_params, 18
  get_triphasic, 18
  get_TTS, 19
  plot_data, 20
  plot_model, 21
  plot_pairs, 22
  plot_TTS, 22
  remove_vl0, 23
  simulate_data, 23
  simulate_time, 24
  simulate_time_fixed, 25
  simulate_vl, 25

single_root, 26
summarize_model, 26
switch_params, 27
switch_simulated_params, 27
transformVl, 28
tri_switch_params, 29
triphasic_root, 28
ushr, 29
ushr_triphasic, 31