Package ‘vMF’

March 10, 2024

Type Package
Title Sampling from the von Mises-Fisher Distribution
Version 0.0.3
Date 2024-03-20
License GPL-3
Encoding UTF-8
BugReports https://github.com/ahoundetoungan/vMF/issues
URL https://github.com/ahoundetoungan/vMF
Depends R (>= 3.5.0)
Imports Rcpp
LinkingTo Rcpp, RcppArmadillo
Suggests movMF, rbenchmark, knitr, rmarkdown, ggplot2, ddpcr
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation yes
Author Aristide Houndetoungan [cre, aut]
Maintainer Aristide Houndetoungan <ahoundetoungan@gmail.com>
Repository CRAN
Date/Publication 2024-03-09 23:30:02 UTC

R topics documented:

CpvMF ... 2
dvMF .. 3
evMF ... 4

Index 6
Description
CpvMF returns the normalization constant of von Mises - Fisher density.

Usage
CpvMF(p, k)

Arguments
- p : as sphere dimension.
- k : as the intensity parameter.

Details
The probability density function of the von Mises - Fisher distribution is defined by:

\[f(z|\theta) = C_p(|\theta|) \exp(z\theta) \]

|\theta| is the intensity parameter and \(\frac{\theta}{|\theta|} \) the mean directional parameter. The normalization constant \(C_p() \) depends on the Bessel function of the first kind. See more details here.

Value
the normalization constant.

References

See Also
rvMF and dvMF

Examples
CpvMF(2, 3.1)
dvMF

PDF of the von Mises - Fisher distribution.

Description

dvMF computes the density of the von Mises - Fisher distribution, given a set of spherical coordinates and the distribution parameters.

Usage

dvMF(z, theta)

Arguments

- **z** as the set of points at which the spherical coordinate will be evaluated. z may be an one row matrix or vector if it contain one spherical coordinates or a matrix whose each row is one spherical coordinates.
- **theta** as the distribution parameter.

Details

The probability density function of the von Mises - Fisher distribution is defined by:

\[f(z|\theta) = C_p(\theta) \exp(z\theta) \]

|\theta| is the intensity parameter and \(\frac{\theta}{|\theta|}\) the mean directional parameter. The normalization constant \(C_p()\) depends on the Bessel function of the first kind. See more details here.

Value

the densities computed at each point

Author(s)

Aristide Houndetoungan <<arie192and@gmail.com>>

References

See Also

rvMF and CpvMF
Examples

{}
Draw 1000 vectors from vM-F with parameter 1, (1,0)
z <- rvMF(1000,c(1,0))

Compute the density at these points
dvMF(z,c(1,0))

Density of (0,1,0,0) with the parameter 3, (0,1,0,0)
dvMF(c(0,1,0,0),c(0,3,0,0))

rvMF

Sample from von Mises - Fisher distribution.

Description

rvMF returns random draws from von Mises - Fisher distribution.

Usage

rvMF(size, theta)

Arguments

size as the number of draws needed.
theta as the distribution parameter.

Details

The parameter theta is such that \(\text{dim}(\theta) \) is the sphere dimension, \(|\theta|\) the intensity parameter and \(\frac{\theta}{|\theta|} \) the mean directional parameter.

Value

A matrix whose each row is a random draw from the distribution.

References

Examples

Draw 1000 vectors from vM-F with parameter 1, (1,0)
rvMF(1000, c(1,0))

Draw 10 vectors from vM-F with parameter sqrt(14), (2,1,3)
rvMF(10, c(2,1,3))

Draw from the vMF distribution with mean direction proportional to c(1, -1) and concentration parameter 3
rvMF(10, 3 * c(1, -1) / sqrt(2))
Index

* coordinates
 CpvMF, 2
 dvMF, 3
 rvMF, 4

* directional
 CpvMF, 2
 dvMF, 3
 rvMF, 4

* distribution
 CpvMF, 2
 dvMF, 3
 rvMF, 4

* simulations
 CpvMF, 2
 dvMF, 3
 rvMF, 4

* statistics
 CpvMF, 2
 dvMF, 3
 rvMF, 4

CpvMF, 2, 3

dvMF, 2, 3

rvMF, 2, 4