Package ‘valse’

May 31, 2021

Title Variable Selection with Mixture of Models
Date 2021-05-16
Version 0.1-0

Description Two methods are implemented to cluster data with finite mixture
regression models. Those procedures deal with high-dimensional covariates and
responses through a variable selection procedure based on the Lasso estimator.
A low-rank constraint could be added, computed for the Lasso-Rank procedure.
A collection of models is constructed, varying the level of sparsity and the
number of clusters, and a model is selected using a model selection criterion
(slope heuristic, BIC or AIC). Details of the procedure are provided in
``Model-based clustering for high-dimensional data. Application to functional data''
by Emilie Devijver (2016) <arXiv:1409.1333v2>,
published in Advances in Data Analysis and Clustering.

Author Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut,cre],
 Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut],
 Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [ctb]

Maintainer Benjamin Auder <benjamin.auder@universite-paris-saclay.fr>

Depends R (>= 3.5.0)
Imports MASS, parallel, cowplot, ggplot2, reshape2
Suggests capushe, roxygen2

URL https://git.auder.net/?p=valse.git
License MIT + file LICENSE
RoxygenNote 7.1.1

Collate 'plot_valse.R' 'main.R' 'selectVariables.R'
 'constructionModelesLassoRank.R'
 'constructionModelesLassoMLE.R' 'computeGridLambda.R'
 'initSmallEM.R' 'EMGrank.R' 'EMGLLF.R' 'generateXY.R'
 'A_NAMESPACE.R' 'util.R'

NeedsCompilation yes
Repository CRAN
Date/Publication 2021-05-31 08:00:02 UTC
DESCRIPTION

Two methods are implemented to cluster data with finite mixture regression models. Those proce-
dures deal with high-dimensional covariates and responses through a variable selection procedure
based on the Lasso estimator. A low-rank constraint could be added, computed for the Lasso-Rank
procedure. A collection of models is constructed, varying the level of sparsity and the number of
clusters, and a model is selected using a model selection criterion (slope heuristic, BIC or AIC).
Details of the procedure are provided in "Model-based clustering for high-dimensional data. Appli-
cation to functional data" by Emilie Devijver (2016) <arXiv:1409.1333v2>, published in Advances
in Data Analysis and Clustering.

DETAILS

Two methods are implemented to cluster data with finite mixture regression models. Those proce-
dures deal with high-dimensional covariates and responses through a variable selection procedure
based on the Lasso estimator.

The main function is runValse(), which calls all other functions. See also plot_valse() which plots
the relevant parameters after a run.

AUTHOR(S)

Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut, cre], Emilie Devijver <Emilie.Devijver@kuleuven.be>
[aut], Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [ctb]
Maintainer: Benjamin Auder <benjamin.auder@universite-paris-saclay.fr>
computeGridLambda

Description

Construct the data-driven grid for the regularization parameters used for the Lasso estimator.

Usage

```r
computeGridLambda(
  phiInit, rhoInit, piInit, gamInit,
  X, Y,
  gamma, mini, maxi,
  eps, fast
)
```

Arguments

- `phiInit`: value for phi
- `rhoInit`: for rho
- `piInit`: for pi
- `gamInit`: value for gamma
- `X`: matrix of covariates (of size n*p)
- `Y`: matrix of responses (of size n*m)
- `gamma`: power of weights in the penalty
- `mini`: minimum number of iterations in EM algorithm
- `maxi`: maximum number of iterations in EM algorithm
- `eps`: threshold to stop EM algorithm
- `fast`: boolean to enable or not the C function call

Value

The grid of regularization parameters for the Lasso estimator. The output is a vector with nonnegative values that are relevant to be considered as regularization parameter as they are equivalent to a 0 in the regression parameter.
constructionModelesLassoMLE

Description

Construct a collection of models with the Lasso-MLE procedure.

Usage

```r
constructionModelesLassoMLE(
  phiInit,
  rhoInit,
  piInit,
  gamInit,
  mini,
  maxi,
  gamma,
  X,
  Y,
  eps,
  S,
  ncores,
  fast,
  verbose
)
```

Arguments

- `phiInit` an initialization for phi, get by `initSmallEM.R`
- `rhoInit` an initialization for rho, get by `initSmallEM.R`
- `piInit` an initialization for pi, get by `initSmallEM.R`
- `gamInit` an initialization for gam, get by `initSmallEM.R`
- `mini` integer, minimum number of iterations in the EM algorithm, by default = 10
- `maxi` integer, maximum number of iterations in the EM algorithm, by default = 100
- `gamma` integer for the power in the penalty, by default = 1
- `X` matrix of covariates (of size n*p)
- `Y` matrix of responses (of size n*m)
- `eps` real, threshold to say the EM algorithm converges, by default = 1e-4
- `S` output of `selectVariables.R`
- `ncores` Number of cores, by default = 3
- `fast` TRUE to use compiled C code, FALSE for R code only
- `verbose` TRUE to show some execution traces
Value

A list with several models, defined by phi (the regression parameter reparametrized), rho (the covariance parameter reparametrized), pi (the proportion parameter is the mixture model), llh (the value of the loglikelihood function for this estimator on the training dataset). The list is given for several levels of sparsity, given by several regularization parameters computed automatically.

Description

Construct a collection of models with the Lasso-Rank procedure.

Usage

constructionModelesLassoRank(
 S,
 k,
 mini,
 maxi,
 X,
 Y,
 eps,
 rank.min,
 rank.max,
 ncores,
 fast,
 verbose
)

Arguments

S output of selectVariables.R
k number of components
mini integer, minimum number of iterations in the EM algorithm, by default = 10
maxi integer, maximum number of iterations in the EM algorithm, by default = 100
X matrix of covariates (of size n*p)
Y matrix of responses (of size n*m)
eps real, threshold to say the EM algorithm converges, by default = 1e-4
rank.min integer, minimum rank in the low rank procedure, by default = 1
rank.max integer, maximum rank in the low rank procedure, by default = 5
ncores Number of cores, by default = 3
fast TRUE to use compiled C code, FALSE for R code only
verbose TRUE to show some execution traces
Value

a list with several models, defined by phi (the regression parameter reparametrized), rho (the covariance parameter reparametrized), pi (the proportion parameter is the mixture model), llh (the value of the loglikelihood function for this estimator on the training dataset). The list is given for several levels of sparsity, given by several regularization parameters computed automatically, and several ranks (between rank.min and rank.max).

Description

Run a generalized EM algorithm developed for mixture of Gaussian regression models with variable selection by an extension of the Lasso estimator (regularization parameter lambda). Reparametrization is done to ensure invariance by homothetic transformation. It returns a collection of models, varying the number of clusters and the sparsity in the regression mean.

Usage

```r
EMGLLF(
  phiInit, 
  rhoInit, 
  piInit, 
  gamInit, 
  mini, 
  maxi, 
  gamma, 
  lambda, 
  X, 
  Y, 
  eps, 
  fast 
)
```

Arguments

- **phiInit**: an initialization for phi
- **rhoInit**: an initialization for rho
- **piInit**: an initialization for pi
- **gamInit**: initialization for the a posteriori probabilities
- **mini**: integer, minimum number of iterations in the EM algorithm, by default = 10
- **maxi**: integer, maximum number of iterations in the EM algorithm, by default = 100
- **gamma**: integer for the power in the penalty, by default = 1
- **lambda**: regularization parameter in the Lasso estimation
EMGrank

- **X**: matrix of covariates (of size n*p)
- **Y**: matrix of responses (of size n*m)
- **eps**: real, threshold to say the EM algorithm converges, by default = 1e-4
- **fast**: boolean to enable or not the C function call

Value

A list (corresponding to the model collection) defined by (phi,rho,pi,llh,S,affec): phi : regression mean for each cluster, an array of size p*m*k rho : variance (homothetic) for each cluster, an array of size m*m*k pi : proportion for each cluster, a vector of size k llh : log likelihood with respect to the training set S : selected variables indexes, an array of size p*m*k affec : cluster affectation for each observation (of the training set)

Description

Run an generalized EM algorithm developed for mixture of Gaussian regression models with variable selection by an extension of the low rank estimator. Reparametrization is done to ensure invariance by homothetic transformation. It returns a collection of models, varying the number of clusters and the rank of the regression mean.

Usage

```
EMGrank(Pi, Rho, mini, maxi, X, Y, eps, rank, fast)
```

Arguments

- **Pi**: An initialization for pi
- **Rho**: An initialization for rho, the variance parameter
- **mini**: integer, minimum number of iterations in the EM algorithm, by default = 10
- **maxi**: integer, maximum number of iterations in the EM algorithm, by default = 100
- **X**: matrix of covariates (of size n*p)
- **Y**: matrix of responses (of size n*m)
- **eps**: real, threshold to say the EM algorithm converges, by default = 1e-4
- **rank**: vector of possible ranks
- **fast**: boolean to enable or not the C function call

Value

A list (corresponding to the model collection) defined by (phi,LLF): phi : regression mean for each cluster, an array of size p*m*k LLF : log likelihood with respect to the training set
generateXY

Description

Generate a sample of (X,Y) of size n

Usage

generateXY(n, prop, meanX, beta, covX, covY)

Arguments

- n: sample size
- prop: proportion for each cluster
- meanX: matrix of group means for covariates (of size p)
- beta: regression matrix, of size p*m*k
- covX: covariance for covariates (of size p*p)
- covY: covariance for the response vector (of size m*m)

Value

list with X (of size n*p) and Y (of size n*m)

initSmallEM

Description

initialization of the EM algorithm

Usage

initSmallEM(k, X, Y, fast)

Arguments

- k: number of components
- X: matrix of covariates (of size n*p)
- Y: matrix of responses (of size n*m)
- fast: boolean to enable or not the C function call
\textbf{plot_valse}

\textbf{Value}

a list with phiInit (the regression parameter reparametrized), rhoInit (the covariance parameter reparametrized), pilInit (the proportion parameter is the mixture model), gamInit (the conditional expectation)

\textbf{Description}

A function which plots relevant parameters.

\textbf{Usage}

\begin{verbatim}
plot_valse(X, Y, model, comp = FALSE, k1 = NA, k2 = NA)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{X} \hspace{1cm} \text{matrix of covariates (of size n*p)}
 \item \textbf{Y} \hspace{1cm} \text{matrix of responses (of size n*m)}
 \item \textbf{model} \hspace{1cm} \text{the model constructed by valse procedure}
 \item \textbf{comp} \hspace{1cm} \text{TRUE to enable pairwise clusters comparison}
 \item \textbf{k1} \hspace{1cm} \text{index of the first cluster to be compared}
 \item \textbf{k2} \hspace{1cm} \text{index of the second cluster to be compared}
\end{itemize}

\textbf{Value}

No return value (only plotting).

\textbf{runValse}

\textbf{Description}

Main function
Usage

runValse(
 X,
 Y,
 procedure = "LassoMLE",
 selecMod = "DDSE",
 gamma = 1,
 mini = 10,
 maxi = 50,
 eps = 1e-04,
 kmin = 2,
 kmax = 3,
 rank.min = 1,
 rank.max = 5,
 ncores_outer = 1,
 ncores_inner = 1,
 thresh = 1e-08,
 grid_lambda = numeric(0),
 size_coll_mod = 50,
 fast = TRUE,
 verbose = FALSE,
 plot = TRUE
)

Arguments

X matrix of covariates (of size n*p)
Y matrix of responses (of size n*m)
procedure among 'LassoMLE' or 'LassoRank'
selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
gamma integer for the power in the penalty, by default = 1
mini integer, minimum number of iterations in the EM algorithm, by default = 10
maxi integer, maximum number of iterations in the EM algorithm, by default = 100
eps real, threshold to say the EM algorithm converges, by default = 1e-4
kmin integer, minimum number of clusters, by default = 2
kmax integer, maximum number of clusters, by default = 10
rank.min integer, minimum rank in the low rank procedure, by default = 1
rank.max integer, maximum rank in the low rank procedure, by default = 5
ncores_outer Number of cores for the outer loop on k
ncores_inner Number of cores for the inner loop on lambda
thresh real, threshold to say a variable is relevant, by default = 1e-8
grid_lambda, a vector with regularization parameters if known, by default numeric(0)
size_coll_mod (Maximum) size of a collection of models, by default 50
selectVariables

Description

For a given lambda, construct the sets of relevant variables for each cluster.

Usage

```r
selectVariables(
  phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, glambda, X, Y,
  thresh = 1e-08, eps, ncores = 3, fast
)
```

Value

The selected model (except if the collection of models has less than 11 models, the function returns the collection as it can not select one using Capushe)

Examples

```r
n = 50; m = 10; p = 5
beta = array(0, dim=c(p,m,2))
beta[,1] = 1
beta[,2] = 2
data = generateXY(n, c(0.4,0.6), rep(0,p), beta, diag(0.5, p), diag(0.5, m))
X = data$X
Y = data$Y
res = runValse(X, Y, kmax = 5, plot=FALSE)
X <- matrix(runif(100), nrow=50)
Y <- matrix(runif(100), nrow=50)
res = runValse(X, Y, plot=FALSE)
```
selectVariables

Arguments

phiInit an initial estimator for phi (size: p*m*k)
rhoInit an initial estimator for rho (size: m*m*k)
piInit an initial estimator for pi (size: k)
gamInit an initial estimator for gamma
mini minimum number of iterations in EM algorithm
maxi maximum number of iterations in EM algorithm
gamma power in the penalty
glambdas grid of regularization parameters
X matrix of regressors
Y matrix of responses
thresh real, threshold to say a variable is relevant, by default = 1e-8
eps threshold to say that EM algorithm has converged
ncores Number or cores for parallel execution (1 to disable)
fast boolean to enable or not the C function call

Value

a list, varying lambda in a grid, with selected (the indices of variables that are selected), Rho (the covariance parameter, reparametrized), Pi (the proportion parameter)
Index

computeGridLambda, 3
constructionModelesLassoMLE, 4
constructionModelesLassoRank, 5

EMGLLF, 6
EMGrank, 7

generateXY, 8
initSmallEM, 8
plot_valse, 9
runValse, 9
selectVariables, 11
valse (valse-package), 2
valse-package, 2