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vegan-package Community Ecology Package: Ordination, Diversity and Dissimilari-
ties
Description

The vegan package provides tools for descriptive community ecology. It has most basic functions
of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools
can be used for other data types as well.

Details

The functions in the vegan package contain tools for diversity analysis, ordination methods and
tools for the analysis of dissimilarities. Together with the labdsv package, the vegan package
provides most standard tools of descriptive community analysis. Package ade4 provides an alter-
native comprehensive package, and several other packages complement vegan and provide tools
for deeper analysis in specific fields. Package BiodiversityR provides a GUI for a large subset of
vegan functionality.

The vegan package is developed at GitHub (https://github.com/vegandevs/vegan/). GitHub
provides up-to-date information and forums for bug reports.

Most important changes in vegan documents can be read with news(package="vegan") and vi-
gnettes can be browsed with browseVignettes(”vegan”). The vignettes include a vegan FAQ,
discussion on design decisions, short introduction to ordination and discussion on diversity meth-
ods.

To see the preferable citation of the package, type citation("vegan").

Author(s)

The vegan development team is Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Leg-
endre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens,
Helene Wagner. Many other people have contributed to individual functions: see credits in function
help pages.


https://github.com/vegandevs/vegan/

addl.cca

Examples

### Example 1: Unconstrained ordination

## NMDS

data(varespec)

data(varechem)

ord <- metaMDS(varespec)

plot(ord, type = "t")

## Fit environmental variables

ef <- envfit(ord, varechem)

ef

plot(ef, p.max = 0.05)

#i## Example 2: Constrained ordination (RDA)

## The example uses formula interface to define the model

data(dune)

data(dune.env)

## No constraints: PCA

modd <- rda(dune ~ 1, dune.env)

mod@

plot(mod@)

## All environmental variables: Full model

mod1 <- rda(dune ~ ., dune.env)

mod1

plot(mod1)

## Automatic selection of variables by permutation P-values

mod <- ordistep(modd, scope=formula(mod1))

mod

plot(mod)

## Permutation test for all variables

anova(mod)

## Permutation test of "type III" effects, or significance when a term

## is added to the model after all other terms

anova(mod, by = "margin")

## Plot only sample plots, use different symbols and draw SD ellipses

## for Managemenet classes

plot(mod, display = "sites”, type = "n")

with(dune.env, points(mod, disp = "si"”, pch = as.numeric(Management)))

with(dune.env, legend("topleft”, levels(Management), pch = 1:4,
title = "Management”))

with(dune.env, ordiellipse(mod, Management, label = TRUE))

## add fitted surface of diversity to the model

ordisurf(mod, diversity(dune), add = TRUE)

### Example 3: analysis of dissimilarites a.k.a. non-parametric

### permutational anova

adonis(dune ~ ., dune.env)

adonis(dune ~ Management + Moisture, dune.env)

add1.cca Add or Drop Single Terms to a Constrained Ordination Model
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Description

Compute all single terms that can be added to or dropped from a constrained ordination model.

Usage
## S3 method for class 'cca'
add1(object, scope, test = c("none”, "permutation”),
permutations = how(nperm=199), ...)
## S3 method for class 'cca'
drop1(object, scope, test = c("none”, "permutation”),
permutations = how(nperm=199), ...)
Arguments
object A constrained ordination object from cca, rda or capscale.
scope A formula giving the terms to be considered for adding or dropping; see add1

for details.
test Should a permutation test be added using anova. cca.

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

Other arguments passed to add1.default, drop1.default, and anova.cca.

Details

With argument test = "none” the functions will only call add1.default or drop1.default. With
argument test = "permutation” the functions will add test results from anova.cca. Function
drop1.cca will call anova. cca with argument by = "margin”. Function add1. cca will implement
a test for single term additions that is not directly available in anova. cca.

Functions are used implicitly in step, ordiR2step and ordistep. The deviance.ccaand deviance.rda
used in step have no firm basis, and setting argument test = "permutation” may help in get-

ting useful insight into validity of model building. Function ordistep calls alternately drop1.cca

and add1.cca with argument test = "permutation” and selects variables by their permutation
P-values. Meticulous use of add1.cca and drop1.cca will allow more judicious model building.

The default number of permutations is set to a low value, because permutation tests can take a
long time. It should be sufficient to give a impression on the significances of the terms, but higher
values of permutations should be used if P values really are important.

Value

Returns a similar object as add1 and drop1.

Author(s)

Jari Oksanen
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See Also

add1, drop1 and anova. cca for basic methods. You probably need these functions with step and
ordistep. Functions deviance.cca and extractAIC.cca are used to produce the other arguments
than test results in the output. Functions cca, rda and capscale produce result objects for these
functions.

Examples

data(dune)
data(dune.env)
## Automatic model building based on AIC but with permutation tests

step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")
## see ?ordistep to do the same, but based on permutation P-values

## Not run:

ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env)))

## End(Not run)

## Manual model building

## -- define the maximal model for scope
mbig <- rda(dune ~ ., dune.env)

## -- define an empty model to start with
m@ <- rda(dune ~ 1, dune.env)

## -- manual selection and updating
add1(m@, scope=formula(mbig), test="perm")
mo <- update(m@, . ~ . + Management)
add1(m@, scope=formula(mbig), test="perm")
mo@ <- update(m@, . ~ . + Moisture)

## -- included variables still significant?

drop1(mo, test="perm")
add1(m@, scope=formula(mbig), test="perm")

adipart Additive Diversity Partitioning and Hierarchical Null Model Testing

Description

In additive diversity partitioning, mean values of alpha diversity at lower levels of a sampling hi-
erarchy are compared to the total diversity in the entire data set (gamma diversity). In hierarchical
null model testing, a statistic returned by a function is evaluated according to a nested hierarchical
sampling design (hiersimu).

Usage
adipart(...)
## Default S3 method:
adipart(y, x, index=c(”"richness"”, "shannon"”, "simpson"),

weights=c("unif”, "prop"), relative = FALSE, nsimul=99,
method = "r2dtable”, ...)



adipart

## S3 method for class 'formula'

adipart(formula, data, index=c("richness"”, "shannon"”, "simpson"),
weights=c("unif”, "prop"), relative = FALSE, nsimul=99,
method = "r2dtable”, ...)

hiersimu(...)

## Default S3 method:

hiersimu(y, x, FUN, location = c(”"mean”, "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99,
method = "r2dtable”, ...)
## S3 method for class 'formula'
hiersimu(formula, data, FUN, location = c("mean”, "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99,
method = "r2dtable”, ...)
Arguments
y A community matrix.
A matrix with same number of rows as in y, columns coding the levels of sam-
pling hierarchy. The number of groups within the hierarchy must decrease from
left to right. If x is missing, function performs an overall decomposition into
alpha, beta and gamma diversities.
formula A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must be
grouping variables referring to levels of sampling hierarchy, terms from right to
left will be treated as nested (first column is the lowest, last is the highest level,
at least two levels specified). Interaction terms are not allowed.
data A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.
index Character, the diversity index to be calculated (see Details).
weights Character, "unif"” for uniform weights, "prop” for weighting proportional to
sample abundances to use in weighted averaging of individual alpha values
within strata of a given level of the sampling hierarchy.
relative Logical, if TRUE then alpha and beta diversity values are given relative to the
value of gamma for function adipart.
nsimul Number of permutations to use. If nsimul = @, only the FUN argument is evalu-
ated. It is thus possible to reuse the statistic values without a null model.
method Null model method: either a name (character string) of a method defined in
make.commsimor a commsim function. The default "r2dtable” keeps row sums
and column sums fixed. See oecosimu for Details and Examples.
FUN A function to be used by hiersimu. This must be fully specified, because cur-
rently other arguments cannot be passed to this function via . . ..
location Character, identifies which function (mean or median) is to be used to calculate

drop.highest

location of the samples.

Logical, to drop the highest level or not. When FUN evaluates only arrays with
at least 2 dimensions, highest level should be dropped, or not selected at all.
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Other arguments passed to functions, e.g. base of logarithm for Shannon diver-
sity, or method, thin or burnin arguments for oecosimu.

Details

Additive diversity partitioning means that mean alpha and beta diversities add up to gamma diver-
sity, thus beta diversity is measured in the same dimensions as alpha and gamma (Lande 1996).
This additive procedure is then extended across multiple scales in a hierarchical sampling design
withi = 1,2,3,...,m levels of sampling (Crist et al. 2003). Samples in lower hierarchical levels
are nested within higher level units, thus from ¢ = 1 to ¢ = m grain size is increasing under constant
survey extent. At each level 7, o; denotes average diversity found within samples.

At the highest sampling level, the diversity components are calculated as
Bm =79 —Qan

For each lower sampling level as
Bi = aip1 —

Then, the additive partition of diversity is
m
v=oa+ Z Bi
i=1

Average alpha components can be weighted uniformly (weight="unif") to calculate it as simple
average, or proportionally to sample abundances (weight="prop") to calculate it as weighted aver-

age as follows
n;
o = E Dijwij
Jj=1

where D;; is the diversity index and w;; is the weight calculated for the jth sample at the ith
sampling level.

The implementation of additive diversity partitioning in adipart follows Crist et al. 2003. It is
based on species richness (.5, not S — 1), Shannon’s and Simpson’s diversity indices stated as the
index argument.

The expected diversity components are calculated nsimul times by individual based randomisation
of the community data matrix. This is done by the "r2dtable” method in oecosimu by default.

hiersimu works almost in the same way as adipart, but without comparing the actual statistic
values returned by FUN to the highest possible value (cf. gamma diversity). This is so, because in
most of the cases, it is difficult to ensure additive properties of the mean statistic values along the
hierarchy.

Value

An object of class "adipart” or "hiersimu” with same structure as oecosimu objects.

Author(s)

Péter S6lymos, <solymos@ualberta.ca>
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References

Crist, T.O., Veech, J.A., Gering, J.C. and Summerville, K.S. (2003). Partitioning species diversity
across landscapes and regions: a hierarchical analysis of «, 3, and ~-diversity. Am. Nat., 162,
734-743.

Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple
communities. Oikos, 76, 5—13.

See Also

See oecosimu for permutation settings and calculating p-values. multipart for multiplicative di-
versity partitioning.

Examples

## NOTE: 'nsimul' argument usually needs to be >= 99
## here much lower value is used for demonstration

data(mite)
data(mite.xy)
data(mite.env)
## Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(@, 10, by = 2.5)) {
out <- rep(1, length(x))
for (i in 2:(length(cut) - 1))
out[which(x > cut[i] & x <= cut[(i + 1)1)] <- i
return(out)}
## The hierarchy of sample aggregation
levsm <- with(mite.xy, data.frame(
11=1:nrow(mite),

12=cutter(y, cut = seq(@, 10, by = 2.5)),
13=cutter(y, cut = seq(@, 10, by = 5)),
l4=cutter(y, cut = seq(@, 10, by = 10))))

## Let's see in a map

par(mfrow=c(1,3))

plot(mite.xy, main="11", col=as.numeric(levsm$l1)+1, asp = 1)
plot(mite.xy, main="12", col=as.numeric(levsm$12)+1, asp = 1)
plot(mite.xy, main="13", col=as.numeric(levsm$l3)+1, asp = 1)
par(mfrow=c(1,1))

## Additive diversity partitioning

adipart(mite, index="richness"”, nsimul=19)

adipart(mite ~ ., levsm, index="richness"”, nsimul=19)

## Hierarchical null model testing

## diversity analysis (similar to adipart)

hiersimu(mite, FUN=diversity, relative=TRUE, nsimul=19)
hiersimu(mite ~., levsm, FUN=diversity, relative=TRUE, nsimul=19)
## Hierarchical testing with the Morisita index

morfun <- function(x) dispindmorisita(x)$imst

hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=19)
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adonis Permutational Multivariate Analysis of Variance Using Distance Ma-
trices

Description

Analysis of variance using distance matrices — for partitioning distance matrices among sources of
variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a
permutation test with pseudo-F' ratios.

Usage
adonis2(formula, data, permutations = 999, method = "bray”,
sqrt.dist = FALSE, add = FALSE, by = "terms",
parallel = getOption("mc.cores"), ...)
adonis(formula, data, permutations = 999, method = "bray",
strata = NULL, contr.unordered = "contr.sum”,
contr.ordered = "contr.poly"”, parallel = getOption("mc.cores”), ...)
Arguments
formula Model formula. The LHS must be either a community data matrix or a dis-
similarity matrix, e.g., from vegdist or dist. If the LHS is a data matrix,
function vegdist will be used to find the dissimilarities. The RHS defines the
independent variables. These can be continuous variables or factors, they can
be transformed within the formula, and they can have interactions as in a typi-
cal formula. If a dissimilarity object is supplied, no species coefficients can be
calculated in adonis (see Value below).
data the data frame for the independent variables.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

method the name of any method used in vegdist to calculate pairwise distances if the
left hand side of the formula was a data frame or a matrix.

sgrt.dist Take square root of dissimilarities. This often euclidifies dissimilarities.

add Add a constant to the non-diagonal dissimilarities such that all eigenvalues are

non-negative in the underlying Principal Co-ordinates Analysis (see wecmdscale
for details). Choice "lingoes” (or TRUE) use the recommended method of Leg-
endre & Anderson (1999: “method 1) and "cailliez” uses their “method 2”.

by by = "terms” will assess significance for each term (sequentially from first to
last), setting by = "margin” will assess the marginal effects of the terms (each
marginal term analysed in a model with all other variables), and by = NULL will
assess the overall significance of all terms together. The arguments is passed on
to anova. cca.

strata groups (strata) within which to constrain permutations.



12 adonis

contr.unordered, contr.ordered
contrasts used for the design matrix (default in R is dummy or treatment con-
trasts for unordered factors).

parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

Other arguments passed to vegdist.

Details

adonis2 and adonis are functions for the analysis and partitioning sums of squares using dissim-
ilarities. Function adonis is directly based on the algorithm of Anderson (2001) and performs a
sequential test of terms. Function adonis2 is based on the principles of McArdle & Anderson
(2001) and can perform sequential, marginal and overall tests. Function adonis?2 also allows using
additive constants or squareroot of dissimilarities to avoid negative eigenvalues. but both functions
can handle semimetric indices (such as Bray-Curtis) that produce negative eigenvalues. Function
adonis?2 can be much slower than adonis, in particular with several terms. With the same random
permutation, tests are identical in both functions, and the results are also identical to anova. cca of
dbrda and capscale. With Euclidean distances, the tests are also identical to anova. cca of rda.

The functions partition sums of squares of a multivariate data set, and they are directly analogous to
MANOVA (multivariate analysis of variance). McArdle and Anderson (2001) and Anderson (2001)
refer to the method as “permutational manova” (formerly “nonparametric manova”). Further, as the
inputs are linear predictors, and a response matrix of an arbitrary number of columns, they are
a robust alternative to both parametric MANOVA and to ordination methods for describing how
variation is attributed to different experimental treatments or uncontrolled covariates. Functions are
also analogous to distance-based redundancy analysis in functions dbrda and capscale (Legendre
and Anderson 1999). Functions provide an alternative to AMOVA (nested analysis of molecular
variance, Excoffier, Smouse, and Quattro, 1992; amova in the ade4 package) for both crossed and
nested factors.

Value

Function adonis2 returns an anova. cca result object with a new column for partial R?: This is the
proportion of sum of squares from the total, and in marginal models (by = "margin”) the R? terms
donotadd upto 1.

Function adonis returns an object of class "adonis” with following components:

aov.tab Typical AOV table showing sources of variation, degrees of freedom, sequential
sums of squares, mean squares, F' statistics, partial R? and P values, based on
N permutations.

coefficients  matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing species; each column represents a fit of a
species abundance to the linear model. These are what you get when you fit one
species to your predictors. These are NOT available if you supply the distance
matrix in the formula, rather than the site x species matrix

coef.sites matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing sites; each column represents a fit of a sites
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distances (from all other sites) to the linear model. These are what you get when
you fit distances of one site to your predictors.

f.perms an N by m matrix of the null F' statistics for each source of variation based on NV
permutations of the data. The permutations can be inspected with permustats
and its support functions.

model.matrix The model.matrix for the right hand side of the formula.

terms The terms component of the model.

Note

Anderson (2001, Fig. 4) warns that the method may confound location and dispersion effects:
significant differences may be caused by different within-group variation (dispersion) instead of
different mean values of the groups (see Warton et al. 2012 for a general analysis). However,
it seems that adonis is less sensitive to dispersion effects than some of its alternatives (anosim,
mrpp). Function betadisper is a sister function to adonis to study the differences in dispersion
within the same geometric framework.

Author(s)

Martin Henry H. Stevens (adonis) and Jari Oksanen (adonis?2).

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26: 32-46.

Excoffier, L., PE. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from
metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction
data. Genetics, 131:479-491.

Legendre, P. and M.J. Anderson. 1999. Distance-based redundancy analysis: Testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs, 69:1-24.

McArdle, B.H. and M.J. Anderson. 2001. Fitting multivariate models to community data: A com-
ment on distance-based redundancy analysis. Ecology, 82: 290-297.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89-101.

See Also

mrpp, anosim, mantel, varpart.

Examples

data(dune)

data(dune.env)

## default test by terms

adonis2(dune ~ Management*A1, data = dune.env)

## overall tests

adonis2(dune ~ Management*A1, data = dune.env, by = NULL)
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#i## Example of use with strata, for nested (e.g., block) designs.
dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)),field=gl(3,1) )
dat
Agropyron <- with(dat, as.numeric(field) + as.numeric(N03)+2) +rnorm(12)/2
Schizachyrium <- with(dat, as.numeric(field) - as.numeric(N03)+2) +rnorm(12)/2
total <- Agropyron + Schizachyrium
dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,
type=c('p','a'), xlab="N03", auto.key=list(columns=3, lines=TRUE) )

Y <- data.frame(Agropyron, Schizachyrium)

mod <- metaMDS(Y, trace = FALSE)

plot(mod)

### Ellipsoid hulls show treatment

with(dat, ordiellipse(mod, field, kind = "ehull”, label = TRUE))
### Spider shows fields

with(dat, ordispider(mod, field, 1lty=3, col="red"))

### Incorrect (no strata)
perm <- how(nperm = 199)
adonis2 (Y ~ NO3, data = dat, permutations = perm)

## Correct with strata
setBlocks(perm) <- with(dat, field)
adonis2(Y ~ NO3, data = dat, permutations = perm)

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage
anosim(x, grouping, permutations = 999, distance = "bray"”, strata = NULL,
parallel = getOption("mc.cores"))
Arguments
X Data matrix or data frame in which rows are samples and columns are response
variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.
grouping Factor for grouping observations.

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.
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distance Choice of distance metric that measures the dissimilarity between two observa-
tions. See vegdist for options. This will be used if x was not a dissimilarity
structure or a symmetric square matrix.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.
parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.
Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Function anosim operates directly on
a dissimilarity matrix. A suitable dissimilarity matrix is produced by functions dist or vegdist.
The method is philosophically allied with NMDS ordination (monoMDS), in that it uses only the rank
order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groups. The anosim
statistic R is based on the difference of mean ranks between groups (r ) and within groups (ry):

R=(rp—rw)/(N(N —1)/4)

The divisor is chosen so that R will be in the interval —1... 4+ 1, value 0 indicating completely
random grouping.

The statistical significance of observed R is assessed by permuting the grouping vector to obtain
the empirical distribution of R under null-model. See permutations for additional details on per-
mutation tests in Vegan. The distribution of simulated values can be inspected with the permustats
function.

The function has summary and plot methods. These both show valuable information to assess the
validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. The plot method uses boxplot with options notch=TRUE and
varwidth=TRUE.

Value

The function returns a list of class "anosim” with following items:

call Function call.

statistic The value of ANOSIM statistic R

signif Significance from permutation.

perm Permutation values of R. The distribution of permutation values can be in-

spected with function permustats.

class.vec Factor with value Between for dissimilarities between classes and class name
for corresponding dissimilarity within class.

dis.rank Rank of dissimilarity entry.
dissimilarity The name of the dissimilarity index: the "method” entry of the dist object.

control A list of control values for the permutations as returned by the function how.



16 anova.cca

Note

The anosim function can confound the differences between groups and dispersion within groups
and the results can be difficult to interpret (cf. Warton et al. 2012). The function returns a lot of
information to ease studying its performance. Most anosim models could be analysed with adonis2
which seems to be a more robust alternative.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecology 18, 117-143.

Warton, D.I., Wright, T.W., Wang, Y. 2012. Distance-based multivariate analyses confound location
and dispersion effects. Methods in Ecology and Evolution, 3, 89-101

See Also

mrpp for a similar function using original dissimilarities instead of their ranks. dist and vegdist
for obtaining dissimilarities, and rank for ranking real values. For comparing dissimilarities against
continuous variables, see mantel. Function adonis2 is a more robust alternative that should pre-
ferred.

Examples

data(dune)

data(dune.env)

dune.dist <- vegdist(dune)

dune.ano <- with(dune.env, anosim(dune.dist, Management))
summary (dune. ano)

plot(dune.ano)

anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates

Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca), Redundancy Analysis (rda) or distance-based Redundancy Analysis (dAbRDA, capscale) to
assess the significance of constraints.



anova.cca 17

Usage

## S3 method for class 'cca'
anova(object, ..., permutations = how(nperm=999),
by = NULL, model = c("reduced”, "direct”, "full"),
parallel = getOption("mc.cores"), strata = NULL,
cutoff = 1, scope = NULL)
## S3 method for class 'cca'
permutest(x, permutations = how(nperm = 99),
model = c("reduced”, "direct”, "full”), by = NULL, first = FALSE,

strata = NULL, parallel = getOption("mc.cores"), ...)
Arguments
object One or several result objects from cca, rda, dbrda or capscale. If there are

several result objects, they are compared against each other in the order they
were supplied. For a single object, a test specified in by or an overall test is
given.

X A single ordination result object.

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

by Setting by = "axis" will assess significance for each constrained axis, and set-
ting by = "terms” will assess significance for each term (sequentially from first
to last), and setting by = "margin” will assess the marginal effects of the terms
(each marginal term analysed in a model with all other variables). Function
permutest accepts choices "terms" for sequential test of terms, and "onedf”
for sequential test of one-degree-of-freedom contrasts.

model Permutation model: model="direct"” permutes community data, model="reduced”
permutes residuals of the community data after Conditions (partial model), model
= "full” permutes residuals after Conditions and Constraints.

parallel Use parallel processing with the given number of cores.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata. It is an error to
use this when permutations is a matrix, or a how defines blocks. This is
a legacy argument that will be deprecated in the future: use permutations =
how(. . .,blocks) instead.

cutoff Only effective with by="axis"” where stops permutations after an axis exceeds
the cutoff p-value.

scope Only effective with by="margin" where it can be used to select the marginal
terms for testing. The default is to test all marginal terms in drop. scope.

first Analyse only significance of the first axis.

Parameters passed to other functions. anova. cca passes all arguments to permutest. cca.
In anova with by = "axis" you can use argument cutoff (defaults 1) which
stops permutations after exceeding the given level.
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Details

Functions anova.cca and permutest.cca implement ANOVA like permutation tests for the joint
effect of constraints in cca, rda, dbrda or capscale. Function anova is intended as a more user-
friendly alternative to permutest (that is the real workhorse).

Function anova can analyse a sequence of constrained ordination models. The analysis is based on
the differences in residual deviance in permutations of nested models.

The default test is for the sum of all constrained eigenvalues. Setting first = TRUE will perform
a test for the first constrained eigenvalue. Argument first can be set either in anova.cca or
in permutest.cca. It is also possible to perform significance tests for each axis or for each term
(constraining variable) using argument by in anova. cca. Setting by = "axis" will perform separate
significance tests for each constrained axis. All previous constrained axes will be used as conditions
(“partialled out”) and a test for the first constrained eigenvalues is performed (Legendre et al. 2011).
You can stop permutation tests after exceeding a given significance level with argument cutoff to
speed up calculations in large models. Setting by = "terms"” will perform separate significance test
for each term (constraining variable). The terms are assessed sequentially from first to last, and the
order of the terms will influence their significances. Setting by = "margin” will perform separate
significance test for each marginal term in a model with all other terms. The marginal test also
accepts a scope argument for the drop. scope which can be a character vector of term labels that
are analysed, or a fitted model of lower scope. The marginal effects are also known as “Type III”
effects, but the current function only evaluates marginal terms. It will, for instance, ignore main
effects that are included in interaction terms. In calculating pseudo-F, all terms are compared to
the same residual of the full model.

Community data are permuted with choice model="direct", and residuals after partial CCA/ RDA/
dbRDA with choice model="reduced” (default). If there is no partial CCA/ RDA/ dbRDA stage,
model="reduced” simply permutes the data and is equivalent to model="direct”. The test statis-
tic is “pseudo-F"’, which is the ratio of constrained and unconstrained total Inertia (Chi-squares,
variances or something similar), each divided by their respective degrees of freedom. If there are
no conditions (“partial” terms), the sum of all eigenvalues remains constant, so that pseudo-F" and
eigenvalues would give equal results. In partial CCA/ RDA/ dbRDA, the effect of conditioning
variables (“covariables”) is removed before permutation, and the total Chi-square is not fixed, and
test based on pseudo-F' would differ from the test based on plain eigenvalues.

Value

The function anova.cca calls permutest.cca and fills an anova table. Additional attributes are
Random. seed (the random seeds used), control (the permutation design, see how) and F . perm (the
permuted test statistics).

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012). Numerical Ecology. 3rd English ed. Elsevier.

Legendre, P., Oksanen, J. and ter Braak, C.J.F. (2011). Testing the significance of canonical axes in
redundancy analysis. Methods in Ecology and Evolution 2, 269-2717.
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See Also

anova.cca, cca, rda, capscale to get something to analyse. Function drop1.cca calls anova.cca
with by = "margin”, and add1.cca an analysis for single terms additions, which can be used in
automatic or semiautomatic model building (see deviance.cca).

Examples

data(varespec, varechem)

mod <- cca(varespec ~ Al + P + K, varechem)
## overall test

anova(mod)

## tests for individual terms

anova(mod, by="term")

anova(mod, by="margin")

## test for adding all environmental variables

anova(mod, cca(varespec ~ ., varechem))
avgdist Averaged Subsampled Dissimilarity Matrices
Description

The function computes the dissimilarity matrix of a dataset multiple times using vegdist while
randomly subsampling the dataset each time. All of the subsampled iterations are then averaged
(mean) to provide a distance matrix that represents the average of multiple subsampling iterations.
This emulates the behavior of the distance matrix calculator within the Mothur microbial ecology

toolkit.
Usage
avgdist(x, sample, distfun = vegdist, meanfun = mean,
transf = NULL, iterations = 100, dmethod = "bray"”, ...)
Arguments
X Community data matrix.
sample The subsampling depth to be used in each iteration. Samples that do not meet

this threshold will be removed from the analysis, and their identify returned to
the user in stdout.

distfun The dissimilarity matrix function to be used. Default is the vegan vegdist
meanfun The calculation to use for the average (mean or median).
transf Option for transforming the count data before calculating the distance matrix.

Any base transformation option can be used (e.g. sqrt)

iterations The number of random iterations to perform before averaging. Default is 100
iterations.
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avgdist
dmethod Dissimilarity index to be used with the specified dissimilarity matrix function.
Default is Bray-Curtis

Any additional arguments to add to the distance function or mean/median func-
tion specified.

Note

The function builds on the function rrarefy and and additional distance matrix function (e.g.
vegdist) to add more meaningful representations of distances among randomly subsampled datasets
by presenting the average of multiple random iterations. This function runs using the vegdist. This
functionality has been utilized in the Mothur standalone microbial ecology toolkit here.

Author(s)

Geoffrey Hannigan.

See Also

This function utilizes the vegdist and rrarefy functions.

Examples

# Import an example count dataset

data(BCI)

# Test the base functionality

mean.avg.dist <- avgdist(BCI, sample = 50, iterations = 10)

# Test the transformation function

mean.avg.dist.t <- avgdist(BCI, sample = 50, iterations = 10, transf = sqrt)
# Test the median functionality
median.avg.dist <- avgdist(BCI, sample
# Print the resulting tables
head(as.matrix(mean.avg.dist))
head(as.matrix(mean.avg.dist.t))
head(as.matrix(median.avg.dist))

# Run example to illustrate low variance of mean, median, and stdev results
# Mean and median std dev are around 0.05

sdd <- avgdist(BCI, sample = 50, iterations = 100, meanfun = sd)

summary (mean.avg.dist)

summary(median.avg.dist)

summary (sdd)

# Test for when subsampling depth excludes some samples

# Return samples that are removed for not meeting depth filter
depth.avg.dist <- avgdist(BCI, sample = 450, iterations = 10)

# Print the result

depth.avg.dist

50, iterations = 10, meanfun = median)


https://www.mothur.org/wiki/Dist.shared#subsample
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BCI Barro Colorado Island Tree Counts

Description

Tree counts in 1-hectare plots in the Barro Colorado Island and associated site information.

Usage

data(BCI)
data(BCI.env)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225
species (columns). Full Latin names are used for tree species. The names were updated against
http://www.theplantlist.org and Kress et al. (2009) which allows matching 207 of species
against doi: 10.5061/dryad.63q27 (Zanne et al., 2014). The original species names are available as
attribute original.names of BCI. See Examples for changed names.

For BCI.env, a data frame with 50 plots (rows) and nine site variables derived from Pyke et al.
(2001) and Harms et al. (2001):

UTM.EW: UTM coordinates (zone 17N) East-West.
UTM.NS: UTM coordinates (zone 17N) North-South.
Precipitation: Precipitation in mm per year.
Elevation: Elevation in m above sea level.
Age.cat: Forest age category.

Geology: The Underlying geological formation.

Habitat: Dominant habitat type based on the map of habitat types in 25 grid cells in each plot
(Harms et al. 2001, excluding streamside habitat). The habitat types are Young forests (ca.
100 years), old forests on > 7 degree slopes (01dSlope), old forests under 152 m elevation
(OldLow) and at higher elevation (01dHigh) and Swamp forests.

River: "Yes" if there is streamside habitat in the plot.

EnvHet: Environmental Heterogeneity assessed as the Simpson diversity of frequencies of Habitat
types in 25 grid cells in the plot.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground)
in each one hectare square of forest. Within each one hectare square, all individuals of all species
were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

The quadrats are located in a regular grid. See BCI.env for the coordinates.

A full description of the site information in BCI.env is given in Pyke et al. (2001) and Harms et al.

(2001). N.B. Pyke et al. (2001) and Harms et al. (2001) give conflicting information about forest
age categories and elevation.


http://www.theplantlist.org
https://doi.org/10.5061/dryad.63q27
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Source

https://science.sciencemag.org/content/suppl/2002/01/24/295.5555.666.DC1 for com-
munity data and References for environmental data.

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nufiez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees. Science 295, 666—669.

Harms K.E., Condit R., Hubbell S.P. & Foster R.B. (2001) Habitat associations of trees and shrubs
in a 50-ha neotropical forest plot. J. Ecol. 89, 947-959.

Kress W.J., Erickson D.L, Jones F.A., Swenson N.G, Perez R., Sanjur O. & Bermingham E. (2009)
Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.
PNAS 106, 18621-18626.

Zanne A.E., Tank D.C., Cornwell, W.K., Eastman J.M., Smith, S.A., FitzJohn, R.G., McGlinn,
DJ., O’Meara, B.C., Moles, A.T., Reich, P.B., Royer, D.L., Soltis, D.E., Stevens, P.F., Westoby,
M., Wright, L.J., Aarssen, L., Bertin, R.I., Calaminus, A., Govaerts, R., Hemmings, F., Leishman,
M.R., Oleksyn, J., Soltis, P.S., Swenson, N.G., Warman, L. & Beaulieu, J.M. (2014) Three keys
to the radiation of angiosperms into freezing environments. Nature 506, 89-92. doi: 10.1038/
nature 12872 (published online Dec 22, 2013).

Pyke, C. R., Condit, R., Aguilar, S., & Lao, S. (2001). Floristic composition across a climatic
gradient in a neotropical lowland forest. Journal of Vegetation Science 12, 553-566. doi: 10.2307/
3237007

See Also

Extra-CRAN package natto (https://github.com/jarioksa/natto) has data set BCI.env2 with
original grid data of Harms et al. (2001) habitat classification, and data set BCI.taxon of APG III
classification of tree species.

Examples

data(BCI, BCI.env)

head(BCI.env)

## see changed species names

oldnames <- attr(BCI, "original.names")

taxa <- cbind("”0ld Names” = oldnames, "Current Names” = names(BCI))
noquote(taxal[taxal,1] != taxa[,2], 1)

beals Beals Smoothing and Degree of Absence

Description

Beals smoothing replaces each entry in the community data with a probability of a target species
occurring in that particular site, based on the joint occurrences of the target species with the species
that actually occur in the site. Swan’s (1970) degree of absence applies Beals smoothing to zero
items so long that all zeros are replaced with smoothed values.


https://science.sciencemag.org/content/suppl/2002/01/24/295.5555.666.DC1
https://doi.org/10.1038/nature12872
https://doi.org/10.1038/nature12872
https://doi.org/10.2307/3237007
https://doi.org/10.2307/3237007
https://github.com/jarioksa/natto

beals 23

Usage

beals(x, species = NA, reference = x, type = 0, include = TRUE)
swan(x, maxit = Inf, type = 0)

Arguments
X Community data frame or matrix.
species Column index used to compute Beals function for a single species. The default
(NA) indicates that the function will be computed for all species.
reference Community data frame or matrix to be used to compute joint occurrences. By
default, x is used as reference to compute the joint occurrences.
type Numeric. Specifies if and how abundance values have to be used in function
beals. See details for more explanation.
include This logical flag indicates whether the target species has to be included when
computing the mean of the conditioned probabilities. The original Beals (1984)
definition is equivalent to include=TRUE, while the formulation of Miinzber-
gova and Herben is equal to include=FALSE.
maxit Maximum number of iterations. The default Inf means that iterations are con-
tinued until there are no zeros or the number of zeros does not change. Probably
only maxit = 1 makes sense in addition to the default.
Details

Beals smoothing is the estimated probability p;; that species j occurs at site ¢. It is defined as p;; =

Si > k N@GkIM , where S; is the number of species at site 4, [V, is the number of joint occurrences
of species j and k, Ny, is the number of occurrences of species k, and I is the incidence (0 or 1)
of species (this last term is usually omitted from the equation, but it is necessary). As IV;; can be
interpreted as a mean of conditional probability, the beals function can be interpreted as a mean
of conditioned probabilities (De Caceres & Legendre 2008). The present function is generalized to
abundance values (De Céceres & Legendre 2008).

The type argument specifies if and how abundance values have to be used. type = @ presence/absence
mode. type =1 abundances in reference (or x) are used to compute conditioned probabilities.
type = 2 abundances in x are used to compute weighted averages of conditioned probabilities. type
= 3 abundances are used to compute both conditioned probabilities and weighted averages.

Beals smoothing was originally suggested as a method of data transformation to remove excessive
zeros (Beals 1984, McCune 1994). However, it is not a suitable method for this purpose since
it does not maintain the information on species presences: a species may have a higher proba-
bility of occurrence at a site where it does not occur than at sites where it occurs. Moreover, it
regularizes data too strongly. The method may be useful in identifying species that belong to the
species pool (Ewald 2002) or to identify suitable unoccupied patches in metapopulation analysis
(Miinzbergova & Herben 2004). In this case, the function should be called with include=FALSE
for cross-validation smoothing for species; argument species can be used if only one species is
studied.

Swan (1970) suggested replacing zero values with degrees of absence of a species in a community
data matrix. Swan expressed the method in terms of a similarity matrix, but it is equivalent to
applying Beals smoothing to zero values, at each step shifting the smallest initially non-zero item
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to value one, and repeating this so many times that there are no zeros left in the data. This is
actually very similar to extended dissimilarities (implemented in function stepacross), but very
rarely used.

Value

The function returns a transformed data matrix or a vector if Beals smoothing is requested for a
single species.

Author(s)

Miquel De Ciceres and Jari Oksanen

References

Beals, E.W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecolog-
ical data. Pp. 1-55 in: MacFadyen, A. & E.D. Ford [eds.] Advances in Ecological Research, 14.
Academic Press, London.

De Ciceres, M. & Legendre, P. 2008. Beals smoothing revisited. Oecologia 156: 657-669.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional
matrices. J. Veg. Sci. 13: 191-198.

McCune, B. 1994. Improving community ordination with the Beals smoothing function. Eco-
science 1: 82-86.

Miinzbergovd, Z. & Herben, T. 2004. Identification of suitable unoccupied habitats in metapopula-
tion studies using co-occurrence of species. Oikos 105: 408-414.

Swan, J.M.A. 1970. An examination of some ordination problems by use of simulated vegetational
data. Ecology 51: 89-102.

See Also

decostand for proper standardization methods, specpool for an attempt to assess the size of
species pool. Function indpower assesses the power of each species to estimate the probabilities
predicted by beals.

Examples

data(dune)

## Default

X <- beals(dune)

## Remove target species

x <- beals(dune, include = FALSE)

## Smoothed values against presence or absence of species

pa <- decostand(dune, "pa")

boxplot(as.vector(x) ~ unlist(pa), xlab="Presence”, ylab="Beals")
## Remove the bias of tarbet species: Yields lower values.
beals(dune, type =3, include = FALSE)

## Uses abundance information.

## Vector with beals smoothing values corresponding to the first species
## in dune.

beals(dune, species=1, include=TRUE)
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betadisper Multivariate homogeneity of groups dispersions (variances)

Description

Implements Marti Anderson’s PERMDISP2 procedure for the analysis of multivariate homogeneity
of group dispersions (variances). betadisper is a multivariate analogue of Levene’s test for homo-
geneity of variances. Non-euclidean distances between objects and group centroids are handled by
reducing the original distances to principal coordinates. This procedure has latterly been used as a
means of assessing beta diversity. There are anova, scores, plot and boxplot methods.

TukeyHSD.betadisper creates a set of confidence intervals on the differences between the mean
distance-to-centroid of the levels of the grouping factor with the specified family-wise probability
of coverage. The intervals are based on the Studentized range statistic, Tukey’s "Honest Significant

Difference’ method.

Usage

non

betadisper(d, group, type = c("median”,"centroid”), bias.adjust =

sqrt.dist = FALSE, add = FALSE)

## S3 method for class 'betadisper'
anova(object, ...)

## S3 method for class 'betadisper'
scores(x, display = c("sites"”, "centroids"),
choices = ¢(1,2), ...)

## S3 method for class 'betadisper'
eigenvals(x, ...)

## S3 method for class 'betadisper'

plot(x, axes = c¢(1,2), cex = 0.7,
pch = seq_len(ng), col = NULL, 1ty = "solid”, 1lwd = 1, hull
ellipse = FALSE, conf,
segments = TRUE, seg.col = "grey"”, seg.lty = 1lty, seg.lwd =
label = TRUE, label.cex =1,
ylab, xlab, main, sub, ...)

## S3 method for class 'betadisper'
boxplot(x, ylab = "Distance to centroid”, ...)

## S3 method for class 'betadisper'
TukeyHSD(x, which = "group”, ordered = FALSE,
conf.level = 0.95, ...)

## S3 method for class 'betadisper'

FALSE,

= TRUE,

Iwd,
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print(x, digits

Arguments

d

group

type

bias.adjust
sqrt.dist
add

display
object, x
choices, axes
hull

ellipse

conf

pch

col

1ty, lwd
segments

seg.col

seg.lty, seg.lwd

label

label.cex

betadisper

= max(3, getOption("digits”) - 3),
neigen = 8, ...)

a distance structure such as that returned by dist, betadiver or vegdist.

vector describing the group structure, usually a factor or an object that can be
coerced to a factor using as. factor. Can consist of a factor with a single level
(i.e., one group).

the type of analysis to perform. Use the spatial median or the group centroid?
The spatial median is now the default.

logical: adjust for small sample bias in beta diversity estimates?
Take square root of dissimilarities. This often euclidifies dissimilarities.

Add a constant to the non-diagonal dissimilarities such that all eigenvalues are
non-negative in the underlying Principal Co-ordinates Analysis (see wecmdscale
for details). Choice "lingoes” (or TRUE) use the recommended method of Leg-
endre & Anderson (1999: “method 1) and "cailliez" uses their “method 2”.

character; partial match to access scores for "sites"” or "species”.

an object of class "betadisper”, the result of a call to betadisper.

the principal coordinate axes wanted.

logical; should the convex hull for each group be plotted?

logical; should the standard deviation data ellipse for each group be plotted?

Expected fractions of data coverage for data ellipses, e.g. 0.95. The default is
to draw a 1 standard deviation data ellipse, but if supplied, conf is multiplied
with the corresponding value found from the Chi-squared distribution with 2df
to provide the requested coverage (probability contour).

plot symbols for the groups, a vector of length equal to the number of groups.

colors for the plot symbols for the groups, a vector of length equal to the number
of groups.

linetype, linewidth for convex hulls and confidence ellipses.
logical; should segments joining points to their centroid be drawn?

colour to draw segments between points and their centroid. Can be a vector, in
which case one colour per group.

linetype and line width for segments.
logical; should the centroids by labelled with their respective factor label?

numeric; character expansion for centroid labels.

cex, ylab, xlab, main, sub

which

ordered

graphical parameters. For details, see plot.default.

A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to the grouping factor.

logical; see TukeyHSD.
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conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

digits, neigen numeric; for the print method, sets the number of digits to use (as per print.default)
and the maximum number of axes to display eigenvalues for, repsectively.

arguments, including graphical parameters (for plot.betadisper and boxplot.betadisper),
passed to other methods.

Details

One measure of multivariate dispersion (variance) for a group of samples is to calculate the average
distance of group members to the group centroid or spatial median (both referred to as ’centroid’
from now on unless stated otherwise) in multivariate space. To test if the dispersions (variances) of
one or more groups are different, the distances of group members to the group centroid are subject
to ANOVA. This is a multivariate analogue of Levene’s test for homogeneity of variances if the
distances between group members and group centroids is the Euclidean distance.

However, better measures of distance than the Euclidean distance are available for ecological data.
These can be accommodated by reducing the distances produced using any dissimilarity coefficient
to principal coordinates, which embeds them within a Euclidean space. The analysis then proceeds
by calculating the Euclidean distances between group members and the group centroid on the basis
of the principal coordinate axes rather than the original distances.

Non-metric dissimilarity coefficients can produce principal coordinate axes that have negative Eigen-
values. These correspond to the imaginary, non-metric part of the distance between objects. If
negative Eigenvalues are produced, we must correct for these imaginary distances.

The distance to its centroid of a point is

2y = /A2 (uf cF) — A2, ¢),
where A? is the squared Euclidean distance between u;;, the principal coordinate for the jth point
in the 7th group, and c¢;, the coordinate of the centroid for the ith group. The super-scripted ‘4’ and
‘—’ indicate the real and imaginary parts respectively. This is equation (3) in Anderson (2006). If
the imaginary part is greater in magnitude than the real part, then we would be taking the square
root of a negative value, resulting in NaN, and these cases are changed to zero distances (with a
warning). This is in line with the behaviour of Marti Anderson’s PERMDISP2 programme.

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F'. An alter-
native is to use a permutation test. permutest.betadisper permutes model residuals to generate
a permutation distribution of F' under the Null hypothesis of no difference in dispersion between
groups.

Pairwise comparisons of group mean dispersions can also be performed using permutest.betadisper.
An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest
Significant Differences between groups, via TukeyHSD.betadisper. This is a simple wrapper to
TukeyHSD. The user is directed to read the help file for TukeyHSD before using this function. In
particular, note the statement about using the function with unbalanced designs.

The results of the analysis can be visualised using the plot and boxplot methods.

One additional use of these functions is in assessing beta diversity (Anderson et al 2006). Function
betadiver provides some popular dissimilarity measures for this purpose.
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As noted in passing by Anderson (2006) and in a related context by O’Neill (2000), estimates of
dispersion around a central location (median or centroid) that is calculated from the same data will
be biased downward. This bias matters most when comparing diversity among treatments with
small, unequal numbers of samples. Setting bias.adjust=TRUE when using betadisper imposes

ay/n/(n — 1) correction (Stier et al. 2013).

Value

The anova method returns an object of class "anova” inheriting from class "data. frame"”.
The scores method returns a list with one or both of the components "sites"” and "centroids”.

The plot function invisibly returns an object of class "ordiplot”, a plotting structure which can
be used by identify.ordiplot (to identify the points) or other functions in the ordiplot family.

The boxplot function invisibly returns a list whose components are documented in boxplot.
eigenvals.betadisper returns a named vector of eigenvalues.
TukeyHSD.betadisper returns a list. See TukeyHSD for further details.

betadisper returns a list of class "betadisper"” with the following components:

eig numeric; the eigenvalues of the principal coordinates analysis.
vectors matrix; the eigenvectors of the principal coordinates analysis.
distances numeric; the Euclidean distances in principal coordinate space between the sam-

ples and their respective group centroid.

group factor; vector describing the group structure
centroids matrix; the locations of the group centroids on the principal coordinates.
call the matched function call.

Warning

Stewart Schultz noticed that the permutation test for type="centroid"” had the wrong type I error
and was anti-conservative. As such, the default for type has been changed to "median”, which uses
the spatial median as the group centroid. Tests suggests that the permutation test for this type of
analysis gives the correct error rates.

Note

If group consists of a single level or group, then the anova and permutest methods are not appro-
priate and if used on such data will stop with an error.

Missing values in either d or group will be removed prior to performing the analysis.

Author(s)

Gavin L. Simpson; bias correction by Adrian Stier and Ben Bolker.
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References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62, 245-253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683—693.

O’Neill, M.E. (2000) A Weighted Least Squares Approach to Levene’s Test of Homogeneity of
Variance. Australian & New Zealand Journal of Statistics 42, 81-—100.

Stier, A.C., Geange, S.W., Hanson, K.M., & Bolker, B.M. (2013) Predator density and timing of
arrival affect reef fish community assembly. Ecology 94, 1057-1068.

See Also

permutest.betadisper, anova.lm, scores, boxplot, TukeyHSD. Further measure of beta diver-
sity can be found in betadiver.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed"”,"ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
permutest(mod, pairwise = TRUE, permutations = 99)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## Plot the groups and distances to centroids on the
## first two PCoA axes
plot(mod)

## with data ellipses instead of hulls
plot(mod, ellipse = TRUE, hull = FALSE) # 1 sd data ellipse
plot(mod, ellipse = TRUE, hull = FALSE, conf = 0.90) # 90% data ellipse

## can also specify which axes to plot, ordering respected
plot(mod, axes = c(3,1), seg.col = "forestgreen”", seg.lty = "dashed")
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## Draw a boxplot of the distances to centroid for each group
boxplot(mod)

## “scores® and ‘eigenvals‘ also work
scrs <- scores(mod)

str(scrs)

head(scores(mod, 1:4, display = "sites"))
# group centroids/medians

scores(mod, 1:4, display = "centroids")
# eigenvalues from the underlying principal coordinates analysis
eigenvals(mod)

## try out bias correction; compare with mod3

(mod3B <- betadisper(dis, groups, type = "median”, bias.adjust=TRUE))
anova(mod3B)

permutest(mod3B, permutations = 99)

## should always work for a single group

group <- factor(rep("grazed”, NROW(varespec)))
(tmp <- betadisper(dis, group, type = "median"))
(tmp <- betadisper(dis, group, type = "centroid"))

## simulate missing values in 'd' and 'group'
## using spatial medians

groups[c(2,20)] <- NA

dis[c(2, 20)] <- NA

mod2 <- betadisper(dis, groups) ## messages
mod?2

permutest(mod2, permutations = 99)
anova(mod?2)

plot(mod2)

boxplot(mod2)

plot(TukeyHSD(mod2))

## Using group centroids

mod3 <- betadisper(dis, groups, type = "centroid")
mod3

permutest(mod3, permutations = 99)

anova(mod3)

plot(mod3)

boxplot(mod3)

plot(TukeyHSD(mod3))

betadiver Indices of beta Diversity

Description

The function estimates any of the 24 indices of beta diversity reviewed by Koleff et al. (2003).
Alternatively, it finds the co-occurrence frequencies for triangular plots (Koleff et al. 2003).
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Usage
betadiver(x, method = NA, order = FALSE, help = FALSE, ...)
## S3 method for class 'betadiver'
plot(x, ...)
## S3 method for class 'betadiver'
scores(x, triangular = TRUE, ...)
Arguments
X Community data matrix, or the betadiver result for plot and scores functions.
method The index of beta diversity as defined in Koleff et al. (2003), Table 1. You can
use either the subscript of 3 or the number of the index. See argument help
below.
order Order sites by increasing number of species. This will influence the configura-
tion in the triangular plot and non-symmetric indices.
help Show the numbers, subscript names and the defining equations of the indices
and exit.
triangular Return scores suitable for triangular plotting of proportions. If FALSE, returns a
3-column matrix of raw counts.
Other arguments to functions.
Details

The most commonly used index of beta diversity is 8,, = S/« — 1, where S is the total number
of species, and « is the average number of species per site (Whittaker 1960). A drawback of this
model is that S increases with sample size, but the expectation of « remains constant, and so the
beta diversity increases with sample size. A solution to this problem is to study the beta diversity of
pairs of sites (Marion et al. 2017). If we denote the number of species shared between two sites as a
and the numbers of unique species (not shared) as b and ¢, then S = a+b+cand a = (2a+b+c)/2
so that 8, = (b+ ¢)/(2a + b + ¢). This is the Sgrensen dissimilarity as defined in vegan function
vegdist with argument binary = TRUE. Many other indices are dissimilarity indices as well.

Function betadiver finds all indices reviewed by Koleff et al. (2003). All these indices could
be found with function designdist, but the current function provides a conventional shortcut.
The function only finds the indices. The proper analysis must be done with functions such as
betadisper, adonis2 or mantel.

The indices are directly taken from Table 1 of Koleff et al. (2003), and they can be selected either
by the index number or the subscript name used by Koleff et al. The numbers, names and defining
equations can be seen using betadiver (help = TRUE). In all cases where there are two alternative
forms, the one with the term —1 is used. There are several duplicate indices, and the number of
distinct alternatives is much lower than 24 formally provided. The formulations used in functions
differ occasionally from those in Koleff et al. (2003), but they are still mathematically equivalent.
With method = NA, no index is calculated, but instead an object of class betadiver is returned.
This is a list of elements a, b and c. Function plot can be used to display the proportions of these
elements in triangular plot as suggested by Koleff et al. (2003), and scores extracts the triangular
coordinates or the raw scores. Function plot returns invisibly the triangular coordinates as an
"ordiplot” object.
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Value

With method = NA, the function returns an object of class "betadisper” with elements a, b, and
c. If method is specified, the function returns a "dist"” object which can be used in any function
analysing dissimilarities. For beta diversity, particularly useful functions are betadisper to study
the betadiversity in groups, adonis2 for any model, and mantel to compare beta diversities to
other dissimilarities or distances (including geographical distances). Although betadiver returns a
"dist" object, some indices are similarities and cannot be used as such in place of dissimilarities,
but that is a severe user error. Functions 10 ("j") and 11 ("sor") are two such similarity indices.

Warning

Some indices return similarities instead of dissimilarities.

Author(s)

Jari Oksanen

References

Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global
Ecology and Biogeography 19, 134—143.

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data.
Journal of Animal Ecology 72, 367-382.

Marion, Z.H., Fordyce, J.A. and Fitzpatrick, B.M. (2017) Pairwise beta diversity resolves an under-
appreciated source of confusion in calculating species turnover. Ecology 98, 933-939.

Whittaker, R.H. (1960) Vegetation of Siskiyou mountains, Oregon and California. Ecological
Monographs 30, 279-338.

See Also

designdist can be used to implement all these functions, and also allows using notation with alpha
and gamma diversities. vegdist has some canned alternatives. Functions betadisper, adonis2 and
mantel can be used for analysing beta diversity objects. The returned dissimilarities can be used
in any distance-based methods, such as metaMDS, capscale and dbrda. Functions nestedbetasor
and nestedbetajac implement decomposition beta diversity measures (Sgrensen and Jaccard) into
turnover and nestedness components following Baselga (2010).

Examples

## Raw data and plotting

data(sipoo)

m <- betadiver(sipoo)

plot(m)

## The indices

betadiver (help=TRUE)

## The basic Whittaker index

d <- betadiver(sipoo, "w")

## This should be equal to Sorensen index (binary Bray-Curtis in
## vegan)
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range(d - vegdist(sipoo, binary=TRUE))

bgdispersal Coefficients of Biogeographical Dispersal Direction

Description

This function computes coefficients of dispersal direction between geographically connected areas,
as defined by Legendre and Legendre (1984), and also described in Legendre and Legendre (2012,
section 13.3.4).

Usage
bgdispersal(mat, PAonly = FALSE, abc = FALSE)

Arguments
mat Data frame or matrix containing a community composition data table (species
presence-absence or abundance data).
PAonly FALSE if the four types of coefficients, DD1 to DD4, are requested; TRUE if DD1
and DD2 only are sought (see Details).
abc If TRUE, return tables a, b and c used in DD1 and DD2.
Details

The signs of the DD coefficients indicate the direction of dispersal, provided that the asymmetry is
significant. A positive sign indicates dispersal from the first (row in DD tables) to the second region
(column); a negative sign indicates the opposite. A McNemar test of asymmetry is computed from
the presence-absence data to test the hypothesis of a significant asymmetry between the two areas
under comparison.

In the input data table, the rows are sites or areas, the columns are taxa. Most often, the taxa
are species, but the coefficients can be computed from genera or families as well. DD1 and DD2
only are computed for presence-absence data. The four types of coefficients are computed for
quantitative data, which are converted to presence-absence for the computation of DD1 and DD2.
PAonly = FALSE indicates that the four types of coefficients are requested. PAonly = TRUE if DD1
and DD2 only are sought.

Value
Function bgdispersal returns a list containing the following matrices:

DD1 DD1;y = (a(b—1c¢))/((a+ b+ c)?)

DD2 DD2; = (2a(b—¢))/((2a + b+ ¢)(a + b+ ¢)) where a, b, and ¢ have the
same meaning as in the computation of binary similarity coefficients.

DD3 DD3;,=W(A-B)/(A+B—-W)?
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DD4 DD4; ), =2W(A-B)/((A+B)(A+B—W)) where W = sum(pmin(vector1,vector2)),
A =sum(vector1l), B = sum(vector2)

McNemar McNemar chi-square statistic of asymmetry (Sokal and Rohlf 1995): 2(blog(b)+
clog(c) — (b+ ¢)log((b + ¢)/2))/q, where ¢ = 1 + 1/(2(b + ¢)) (Williams
correction for continuity)

prob.McNemar  probabilities associated with McNemar statistics, chi-square test. HO: no asym-
metry in (b — ¢).

Note

The function uses a more powerful alternative for the McNemar test than the classical formula. The
classical formula was constructed in the spirit of Pearson’s Chi-square, but the formula in this func-
tion was constructed in the spirit of Wilks Chi-square or the G statistic. Function mcnemar . test
uses the classical formula. The new formula was introduced in vegan version 1.10-11, and the older
implementations of bgdispersal used the classical formula.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal

References

Legendre, P. and V. Legendre. 1984. Postglacial dispersal of freshwater fishes in the Québec
peninsula. Can. J. Fish. Aquat. Sci. 41: 1781-1802.

Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV,
Amsterdam.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry. The principles and practice of statistics in biological
research. 3rd edn. W. H. Freeman, New York.

Examples

mat <- matrix(c(32,15,14,10,70,30,100,4,10,30,25,0,18,0,40,
0,0,20,0,0,0,0,4,0,30,20,0,0,0,0,25,74,42,1,45,89,5,16,16,20),
4, 10, byrow=TRUE)

bgdispersal (mat)
bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities
Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.
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Usage
## Default S3 method:
bioenv(comm, env, method = "spearman”, index = "bray",
upto = ncol(env), trace = FALSE, partial = NULL,
metric = c("euclidean”, "mahalanobis”, "manhattan”, "gower"),
parallel = getOption("mc.cores”), ...)
## S3 method for class 'formula’
bioenv(formula, data, ...)
bioenvdist(x, which = "best")
Arguments
comm Community data frame or a dissimilarity object or a square matrix that can be

interpreted as dissimilarities.

env Data frame of continuous environmental variables.

method The correlation method used in cor.

index The dissimilarity index used for community data (comm) in vegdist. This is
ignored if comm are dissimilarities.

upto Maximum number of parameters in studied subsets.

formula, data

Model formula and data.

trace Trace the calculations

partial Dissimilarities partialled out when inspecting variables in env.

metric Metric used for distances of environmental distances. See Details.

parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.

X bioenv result object.

which The number of the model for which the environmental distances are evaluated,
or the "best"” model.
Other arguments passed to cor.

Details

The function calculates a community dissimilarity matrix using vegdist. Then it selects all possible
subsets of environmental variables, scales the variables, and calculates Euclidean distances for
this subset using dist. The function finds the correlation between community dissimilarities and
environmental distances, and for each size of subsets, saves the best result. There are 2P — 1 subsets
of p variables, and an exhaustive search may take a very, very, very long time (parameter upto
offers a partial relief).

The argument metric defines distances in the given set of environmental variables. With metric
= "euclidean", the variables are scaled to unit variance and Euclidean distances are calculated.
With metric = "mahalanobis”, the Mahalanobis distances are calculated: in addition to scaling
to unit variance, the matrix of the current set of environmental variables is also made orthogonal
(uncorrelated). With metric = "manhanttan”, the variables are scaled to unit range and Manhattan
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distances are calculated, so that the distances are sums of differences of environmental variables.
With metric = "gower"”, the Gower distances are calculated using function daisy. This allows also
using factor variables, but with continuous variables the results are equal tometric = "manhattan”.

The function can be called with a model formula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

With argument partial you can perform “partial” analysis. The partializing item must be a dis-
similarity object of class dist. The partial item can be used with any correlation method, but it
is strictly correct only for Pearson.

Function bioenvdist recalculates the environmental distances used within the function. The de-
fault is to calculate distances for the best model, but the number of any model can be given.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.

Value

The function returns an object of class bioenv with a summary method.

Note

If you want to study the ‘significance’ of bioenv results, you can use function mantel ormantel.partial
which use the same definition of correlation. However, bioenv standardizes environmental vari-
ables depending on the used metric, and you must do the same in mantel for comparable results

(the standardized data are returned as item x in the result object). It is safest to use bioenvdist

to extract the environmental distances that really were used within bioenv. NB., bioenv selects
variables to maximize the Mantel correlation, and significance tests based on a priori selection of
variables are biased.

Author(s)

Jari Oksanen

References
Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variables. Marine Ecology Progress Series, 92, 205-219.

See Also

vegdist, dist, cor for underlying routines, monoMDS and metaMDS for ordination, procrustes
for Procrustes analysis, protest for an alternative, and rankindex for studying alternatives to the
default Bray-Curtis index.
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# The method is very slow for large number of possible subsets.
# Therefore only 6 variables in this example.

data(varespec)
data(varechem)

sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + AL, varechem)

sol
summary (sol)

biplot.rda

PCA biplot

Description

Draws a PCA biplot with species scores indicated by biplot arrows

Usage
## S3 method for class 'rda’
biplot(x, choices = c(1, 2), scaling = "species”,
display = c("sites"”, "species"), type, xlim, ylim, col = c(1,2),
const, correlation = FALSE, ...)
Arguments

X A rda result object.

choices Axes to show.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. With negative scaling
values in rda, species scores are divided by standard deviation of each species
and multiplied with an equalizing constant. Unscaled raw scores stored in the
result can be accessed with scaling = 0.
The type of scores can also be specified as one of "none"”, "sites", "species”,
or "symmetric”, which correspond to the values 9, 1, 2, and 3 respectively. Ar-
gument correlation can be used in combination with these character descrip-
tions to get the corresponding negative value.

correlation logical; if scaling is a character description of the scaling type, correlation
can be used to select correlation-like scores for PCA. See argument scaling for
details.

display Scores shown. These must some of the alternatives "species” for species
scores, and/or "sites"” for site scores.

type Type of plot: partial match to text for text labels, points for points, and none

for setting frames only. If omitted, text is selected for smaller data sets, and
points for larger. Can be of length 2 (e.g. type =c("text"”,"points")), in
which case the first element describes how species scores are handled, and the

second how site scores are drawn.
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x1lim, ylim the x and y limits (min, max) of the plot.

col Colours used for sites and species (in this order). If only one colour is given, it
is used for both.

const General scaling constant for scores. rda.

Other parameters for plotting functions.

Details

Produces a plot or biplot of the results of a call to rda. It is common for the "species" scores in a
PCA to be drawn as biplot arrows that point in the direction of increasing values for that variable.
The biplot.rda function provides a wrapper to plot.cca to allow the easy production of such a
plot.

biplot.rda is only suitable for unconstrained models. If used on an ordination object with con-
straints, an error is issued.

If species scores are drawn using "text", the arrows are drawn from the origin to 0.85 * species
score, whilst the labels are drawn at the species score. If the type used is "points”, then no labels
are drawn and therefore the arrows are drawn from the origin to the actual species score.

Value

The plot function returns invisibly a plotting structure which can be used by identify.ordiplot
to identify the points or other functions in the ordiplot family.

Author(s)

Gavin Simpson, based on plot.cca by Jari Oksanen.

See Also

plot.cca, rda for something to plot, ordiplot for an alternative plotting routine and more support
functions, and text, points and arrows for the basic routines.

Examples
data(dune)
mod <- rda(dune, scale = TRUE)
biplot(mod, scaling = "symmetric")

## different type for species and site scores
biplot(mod, scaling = "symmetric”, type = c("text”, "points"))
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capscale [Partial] Distance-based Redundancy Analysis

Description

Distance-based redundancy analysis (dbRDA) is an ordination method similar to Redundancy Anal-
ysis (rda), but it allows non-Euclidean dissimilarity indices, such as Manhattan or Bray—Curtis
distance. Despite this non-Euclidean feature, the analysis is strictly linear and metric. If called
with Euclidean distance, the results are identical to rda, but dbRDA will be less efficient. Func-
tions capscale and dbrda are constrained versions of metric scaling, a.k.a. principal coordinates
analysis, which are based on the Euclidean distance but can be used, and are more useful, with
other dissimilarity measures. The functions can also perform unconstrained principal coordinates
analysis, optionally using extended dissimilarities.

Usage
capscale(formula, data, distance = "euclidean”, sqrt.dist = FALSE,
comm = NULL, add = FALSE, dfun = vegdist, metaMDSdist = FALSE,
na.action = na.fail, subset = NULL, ...)

dbrda(formula, data, distance = "euclidean”, sqrt.dist = FALSE,
add = FALSE, dfun = vegdist, metaMDSdist = FALSE,

na.action = na.fail, subset = NULL, ...)
Arguments
formula Model formula. The function can be called only with the formula interface.

Most usual features of formula hold, especially as defined in cca and rda. The
LHS must be either a community data matrix or a dissimilarity matrix, e.g., from
vegdist or dist. If the LHS is a data matrix, function vegdist or function
given in dfun will be used to find the dissimilarities. The RHS defines the
constraints. The constraints can be continuous variables or factors, they can be
transformed within the formula, and they can have interactions as in a typical
formula. The RHS can have a special term Condition that defines variables to
be “partialled out” before constraints, just like in rda or cca. This allows the
use of partial dbRDA.

data Data frame containing the variables on the right hand side of the model formula.

distance The name of the dissimilarity (or distance) index if the LHS of the formulaisa
data frame instead of dissimilarity matrix.

sgrt.dist Take square roots of dissimilarities. See section Details below.

comm Community data frame which will be used for finding species scores when the

LHS of the formula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are unavailable when
dissimilarities were supplied. N.B., this is only available in capscale: dbrda
does not return species scores. Function sppscores can be used to add species
scores if they are missing.
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add Add a constant to the non-diagonal dissimilarities such that all eigenvalues are
non-negative in the underlying Principal Co-ordinates Analysis (see wecmdscale
for details). "lingoes"” (or TRUE) uses the recommended method of Legendre
& Anderson (1999: “method 1) and "cailliez” uses their “method 2”. The
latter is the only one in cmdscale.

dfun Distance or dissimilarity function used. Any function returning standard "dist"
and taking the index name as the first argument can be used.

metaMDSdist Use metaMDSdist similarly as in metaMDS. This means automatic data transfor-
mation and using extended flexible shortest path dissimilarities (function stepacross)
when there are many dissimilarities based on no shared species.

na.action Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing values. Choices na.omit and na.exclude delete rows
with missing values, but differ in representation of results. With na.omit only
non-missing site scores are shown, but na. exclude gives NA for scores of miss-
ing observations. Unlike in rda, no WA scores are available for missing con-
straints or conditions.

subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data (if given in the for-
mula or as comm argument).

Other parameters passed to underlying functions (e.g., metaMDSdist).

Details

Functions capscale and dbrda provide two alternative implementations of dbRDA. Function capscale
is based on Legendre & Anderson (1999): the dissimilarity data are first ordinated using metric
scaling, and the ordination results are analysed as rda. Function dbrda is based on McArdle &
Anderson (2001) and directly decomposes dissimilarities. It does not use rda but a parallel imple-
mentation adapted for analysing dissimilarities and returns a subset of rda items. With Euclidean
distances both results are identical to rda. Other dissimilarities may give negative eigenvalues
associated with imaginary axes. Negative eigenvalues are handled differently: capscale ignores
imaginary axes and analyses only real axes with positive eigenvalues, and dbrda directly analyses
dissimilarities and can give negative eigenvalues in any component.

If the user supplied a community data frame instead of dissimilarities, the functions will find dissim-
ilarities using vegdist or distance function given in dfun with specified distance. The functions
will accept distance objects from vegdist, dist, or any other method producing compatible ob-
jects. The constraining variables can be continuous or factors or both, they can have interaction
terms, or they can be transformed in the call. Moreover, there can be a special term Condition just
like in rda and cca so that “partial” analysis can be performed.

Function dbrda does not return species scores, and they can also be missing in capscale, but they
can be added after the analysis using function sppscores.

Non-Euclidean dissimilarities can produce negative eigenvalues (Legendre & Anderson 1999, McAr-
dle & Anderson 2001). If there are negative eigenvalues, the printed output of capscale will add a
column with sums of positive eigenvalues and an item of sum of negative eigenvalues, and dbrda
will add a column giving the number of real dimensions with positive eigenvalues. If negative
eigenvalues are disturbing, functions let you to distort the dissimilarities so that only non-negative
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eigenvalues will be produced with argument add = TRUE. Alternatively, with sqrt.dist = TRUE,
square roots of dissimilarities will be used which may help in avoiding negative eigenvalues (Leg-
endre & Anderson 1999).

The functions can be also used to perform ordinary metric scaling a.k.a. principal coordinates anal-
ysis by using a formula with only a constant on the left hand side, or comm ~ 1. With metaMDSdist
= TRUE, the function can do automatic data standardization and use extended dissimilarities using
function stepacross similarly as in non-metric multidimensional scaling with metaMDS.

Value

The functions return an object of class capscale or dbrda which inherits from rda. See cca.object
for description of the result object.

Note

The function capscale was originally developed as a variant of constrained analysis of proximities
(Anderson & Willis 2003), but these developments made it similar to dbRDA. However, it discards
the imaginary dimensions with negative eigenvalues and ordination and significance tests area only
based on real dimensions and positive eigenvalues.

The inertia is named after the dissimilarity index as defined in the dissimilarity data, or as unknown
distance if such information is missing. If the largest original dissimilarity was larger than 4,
capscale handles input similarly as rda and bases its analysis on variance instead of sum of
squares. Keyword mean is added to the inertia in these cases, e.g. with Euclidean and Manhattan
distances. Inertia is based on squared index, and keyword squared is added to the name of distance,
unless data were square root transformed (argument sqrt.dist=TRUE). If an additive constant was
used with argument add, Lingoes or Cailliez adjusted is added to the the name of inertia, and
the value of the constant is printed.

Author(s)

Jari Oksanen

References

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84, 511-525.

Gower, J.C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81-97.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1-24.

Legendre, P. & Legendre, L. (2012). Numerical Ecology. 3rd English Edition. Elsevier.

McArdle, B.H. & Anderson, M.J. (2001). Fitting multivariate models to community data: a com-
ment on distance-based redundancy analysis. Ecology 82, 290-297.
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See Also
rda, cca, plot.cca, anova.cca, vegdist, dist, cmdscale, wemdscale for underlying and related
functions. Function sppscores can add species scores or replace existing species scores.
The function returns similar result object as rda (see cca.object). This section for rda gives a
more complete list of functions that can be used to access and analyse dbRDA results.
Examples
data(varespec)
data(varechem)
## Basic Analysis
vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem,
dist="bray")
vare.cap
plot(vare.cap)
anova(vare.cap)
## Avoid negative eigenvalues with additive constant
capscale(varespec ~ N + P + K + Condition(Al), varechem,
dist="bray", add =TRUE)
## Avoid negative eigenvalues by taking square roots of dissimilarities
capscale(varespec ~ N + P + K + Condition(Al), varechem,
dist = "bray"”, sqrt.dist= TRUE)
## Principal coordinates analysis with extended dissimilarities
capscale(varespec ~ 1, dist="bray", metaMDS = TRUE)
## dbrda
dbrda(varespec ~ N + P + K + Condition(Al), varechem,
dist="bray")
## avoid negative eigenvalues also with Jaccard distances
dbrda(varespec ~ N + P + K + Condition(Al), varechem,
dist="jaccard")
cascadekM K-means partitioning using a range of values of K
Description
This function is a wrapper for the kmeans function. It creates several partitions forming a cascade
from a small to a large number of groups.
Usage

cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski")
cIndexKM(y, x, index = "all")
## S3 method for class 'cascadekM'

plot(x, min.g, max.g, grpmts.plot = TRUE,
sortg = FALSE, gridcol = NA, ...)
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Arguments

data
inf.gr

sup.gr

iter

criterion

index

min.g, max.g
grpmts.plot

sortg

gridcol

Details

43

The data matrix. The objects (samples) are the rows.

The number of groups for the partition with the smallest number of groups of
the cascade (min).

The number of groups for the partition with the largest number of groups of the
cascade (max).

The number of random starting configurations for each value of K.

The criterion that will be used to select the best partition. The default value is
"calinski”, which refers to the Calinski-Harabasz (1974) criterion. The simple
structure index ("ssi") is also available. Other indices are available in function
clustIndex (package cclust). In our experience, the two indices that work best
and are most likely to return their maximum value at or near the optimal number
of clusters are "calinski” and "ssi”.

Object of class "kmeans” returned by a clustering algorithm such as kmeans

Data matrix where columns correspond to variables and rows to observations,
or the plotting object in plot

The available indices are: "calinski” and "ssi”. Type "all" to obtain both
indices. Abbreviations of these names are also accepted.

The minimum and maximum numbers of groups to be displayed.
Show the plot (TRUE or FALSE).

Sort the objects as a function of their group membership to produce a more
easily interpretable graph. See Details. The original object names are kept; they
are used as labels in the output table x, although not in the graph. If there were
no row names, sequential row numbers are used to keep track of the original
order of the objects.

The colour of the grid lines in the plots. NA, which is the default value, removes
the grid lines.

Other parameters to the functions (ignored).

The function creates several partitions forming a cascade from a small to a large number of groups
formed by kmeans. Most of the work is performed by function cIndex which is based on the
clustIndex function (package cclust). Some of the criteria were removed from this version be-
cause computation errors were generated when only one object was found in a group.

The default value is "calinski”, which refers to the well-known Calinski-Harabasz (1974) cri-
terion. The other available index is the simple structure index "ssi” (Dolnicar et al. 1999). In
the case of groups of equal sizes, "calinski” is generally a good criterion to indicate the correct
number of groups. Users should not take its indications literally when the groups are not equal in
size. Type "all” to obtain both indices. The indices are defined as:

calinski: (SSB/(K —1))/(SSW/(n — K)), where n is the number of data points and K is the
number of clusters. SSSW is the sum of squares within the clusters while SSB is the sum of
squares among the clusters. This index is simply an /' (ANOVA) statistic.
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ssi: the “Simple Structure Index” multiplicatively combines several elements which influence the
interpretability of a partitioning solution. The best partition is indicated by the highest SSI
value.

In a simulation study, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion re-
covered the correct number of groups the most often. We recommend this criterion because, if the
groups are of equal sizes, the maximum value of "calinski"” usually indicates the correct number
of groups. Another available index is the simple structure index "ssi”. Users should not take the
indications of these indices literally when the groups are not equal in size and explore the groups
corresponding to other values of K.

Function cascadekM has a plot method. Two plots are produced. The graph on the left has the
objects in abscissa and the number of groups in ordinate. The groups are represented by colours.
The graph on the right shows the values of the criterion ("calinski” or "ssi") for determining the
best partition. The highest value of the criterion is marked in red. Points marked in orange, if any,
indicate partitions producing an increase in the criterion value as the number of groups increases;
they may represent other interesting partitions.

If sortg=TRUE, the objects are reordered by the following procedure: (1) a simple matching distance
matrix is computed among the objects, based on the table of K-means assignments to groups, from
K =min.gto K =max.g. (2) A principal coordinate analysis (PCoA, Gower 1966) is computed on
the centred distance matrix. (3) The first principal coordinate is used as the new order of the objects
in the graph. A simplified algorithm is used to compute the first principal coordinate only, using
the iterative algorithm described in Legendre & Legendre (2012). The full distance matrix among
objects is never computed; this avoids the problem of storing it when the number of objects is large.
Distance values are computed as they are needed by the algorithm.

Value

Function cascadeKM returns an object of class cascadekM with items:

partition Table with the partitions found for different numbers of groups K, from K =
inf.gr to K =sup.gr.

results Values of the criterion to select the best partition.

criterion The name of the criterion used.

size The number of objects found in each group, for all partitions (columns).

Function cIndex returns a vector with the index values. The maximum value of these indices is
supposed to indicate the best partition. These indices work best with groups of equal sizes. When
the groups are not of equal sizes, one should not put too much faith in the maximum of these indices,
and also explore the groups corresponding to other values of K.

Author(s)
Marie-Helene Ouellette <Marie-Helene.Ouellette@UMontreal.ca>, Sebastien Durand <Sebastien.Durand@UMontreal.
and Pierre Legendre <Pierre.Legendre@UMontreal.ca>. Edited for vegan by Jari Oksanen.

References

Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.
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the number of clusters in binary data sets. Psychometrika 67: 137-160.

See Also

kmeans, clustIndex.

Examples

# Partitioning a (1@ x 10) data matrix of random numbers

mat <- matrix(runif(100),10,10)

res <- cascadeKM(mat, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning an autocorrelated time series

vec <- sort(matrix(runif(30),30,1))

res <- cascadeKM(vec, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning a large autocorrelated time series

# Note that we remove the grid lines

vec <- sort(matrix(runif(1000),1000,1))

res <- cascadeKM(vec, 2, 7, iter = 10, criterion = 'calinski')
toto <- plot(res, gridcol=NA)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Function cca performs correspondence analysis, or optionally constrained correspondence anal-
ysis (a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence
analysis. Function rda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.
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Usage

cca

## S3 method for class 'formula'
cca(formula, data, na.action = na.fail, subset = NULL,

)

## S3 method for class 'formula'

rda(formula, data, scale=FALSE, na.action = na.fail,
subset = NULL, ...)

## Default S3 method:

cca(X, Y, Z, ...)
## Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)
Arguments
formula Model formula, where the left hand side gives the community data matrix, right

data

scale

na.action

subset

Details

hand side gives the constraining variables, and conditioning variables can be
given within a special function Condition.

Data frame containing the variables on the right hand side of the model formula.
Community data matrix.

Constraining matrix, typically of environmental variables. Can be missing. If
this is a data. frame, it will be expanded to a model.matrix where factors are
expanded to contrasts (“dummy variables”). It is better to use formula instead
of this argument, and some further analyses only work when formula was used.

Conditioning matrix, the effect of which is removed (“partialled out”) before
next step. Can be missing. If this is a data.frame, it is expanded similarly as
constraining matrix.

Scale species to unit variance (like correlations).

Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing value. Choice na.omit removes all rows with missing
values. Choice na.exclude keeps all observations but gives NA for results that
cannot be calculated. The WA scores of rows may be found also for missing
values in constraints. Missing values are never allowed in dependent community
data.

Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data.

Other arguments for print or plot functions (ignored in other functions).

Since their introduction (ter Braak 1986), constrained, or canonical, correspondence analysis and
its spin-off, redundancy analysis, have been the most popular ordination methods in community
ecology. Functions cca and rda are similar to popular proprietary software Canoco, although the
implementation is completely different. The functions are based on Legendre & Legendre’s (2012)
algorithm: in cca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
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singular value decomposition (svd). Function rda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD. Legendre & Legendre (2012), Table 11.5 (p. 650) give a skeleton
of the RDA algorithm of vegan. The algorithm of CCA is similar, but involves standardization by
row and column weights.

The functions can be called either with matrix-like entries for community data and constraints, or
with formula interface. In general, the formula interface is preferred, because it allows a better con-
trol of the model and allows factor constraints. Some analyses of ordination results are only possible
if model was fitted with formula (e.g., most cases of anova. cca, automatic model building).

In the following sections, X, Y and Z, although referred to as matrices, are more commonly data
frames.

In the matrix interface, the community data matrix X must be given, but the other data matrices
may be omitted, and the corresponding stage of analysis is skipped. If matrix Z is supplied, its
effects are removed from the community matrix, and the residual matrix is submitted to the next
stage. This is called partial correspondence or redundancy analysis. If matrix Y is supplied, it
is used to constrain the ordination, resulting in constrained or canonical correspondence analysis,
or redundancy analysis. Finally, the residual is submitted to ordinary correspondence analysis (or
principal components analysis). If both matrices Z and Y are missing, the data matrix is analysed by
ordinary correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a model formula. The left hand side
must be the community data matrix (X). The right hand side defines the constraining model. The
constraints can contain ordered or unordered factors, interactions among variables and functions of
variables. The defined contrasts are honoured in factor variables. The constraints can also be
matrices (but not data frames). The formula can include a special term Condition for conditioning
variables (“‘covariables”) partialled out before analysis. So the following commands are equiva-
lent: cca(X,Y,Z), cca(X~Y +Condition(Z)), where Y and Z refer to constraints and conditions
matrices respectively.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Conse-
quently, the results are strongly dependent on the set of constraints and their transformations or
interactions among the constraints. The shotgun method is to use all environmental variables as
constraints. However, such exploratory problems are better analysed with unconstrained meth-
ods such as correspondence analysis (decorana, corresp) or non-metric multidimensional scaling
(metaMDS) and environmental interpretation after analysis (envfit, ordisurf). CCA is a good
choice if the user has clear and strong a priori hypotheses on constraints and is not interested in the
major structure in the data set.

CCA is able to correct the curve artefact commonly found in correspondence analysis by forcing
the configuration into linear constraints. However, the curve artefact can be avoided only with a
low number of constraints that do not have a curvilinear relation with each other. The curve can
reappear even with two badly chosen constraints or a single factor. Although the formula interface
makes it easy to include polynomial or interaction terms, such terms often produce curved artefacts
(that are difficult to interpret), these should probably be avoided.

According to folklore, rda should be used with “short gradients” rather than cca. However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric. However, standardized Euclidean distance may be an appropri-
ate measures (see Hellinger standardization in decostand in particular).
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Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some con-
ditioning or background or random variables or covariables before CCA proper. In fact, pCCA
compares models cca(X ~Z) and cca(X ~Y +Z) and attributes their difference to the effect of
Y cleansed of the effect of Z. Some people have used the method for extracting “components of
variance” in CCA. However, if the effect of variables together is stronger than sum of both sep-
arately, this can increase total Chi-square after partialling out some variation, and give negative
“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The functions have summary and plot methods which are documented separately (see plot.cca,
summary.cca).

Value

Function cca returns a huge object of class cca, which is described separately in cca.object.

Function rda returns an object of class rda which inherits from class cca and is described in
cca.object. The scaling used in rda scores is described in a separate vignette with this pack-
age.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (Mon-
tana State University, USA).

References

The original method was by ter Braak, but the current implementation follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology 78, 2617-2623.

Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-
dence analysis. Ecology 74,2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for
multivariate direct gradient analysis. Ecology 67, 1167-1179.

See Also

This help page describes two constrained ordination functions, cca and rda. A related method,
distance-based redundancy analysis (dlbRDA) is described separately (capscale). All these func-
tions return similar objects (described in cca.object). There are numerous support functions that
can be used to access the result object. In the list below, functions of type cca will handle all three
constrained ordination objects, and functions of rda only handle rda and capscale results.

The main plotting functions are plot. cca for all methods, and biplot.rda for RDA and dbRDA.
However, generic vegan plotting functions can also handle the results. The scores can be accessed
and scaled with scores. cca, and summarized with summary . cca. The eigenvalues can be accessed
with eigenvals.cca and the regression coefficients for constraints with coef.cca. The eigenval-
ues can be plotted with screeplot. cca, and the (adjusted) R? can be found with RsquareAdj . rda.
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The scores can be also calculated for new data sets with predict. cca which allows adding points to
ordinations. The values of constraints can be inferred from ordination and community composition
with calibrate.cca.

Diagnostic statistics can be found with goodness. cca, inertcomp, spenvcor, intersetcor, tolerance.cca,
and vif.cca. Function as.mlm. cca refits the result object as a multiple 1m object, and this allows
finding influence statistics (1m. influence, cooks.distance etc.).

Permutation based significance for the overall model, single constraining variables or axes can
be found with anova.cca. Automatic model building with R step function is possible with
deviance.cca, addl.cca and drop1.cca. Functions ordistep and ordiR2step (for RDA) are
special functions for constrained ordination. Randomized data sets can be generated with simulate. cca.

Separate methods based on constrained ordination model are principal response curves (prc) and
variance partitioning between several components (varpart).

Design decisions are explained in vignette on “Design decisions” which can be accessed with
browseVignettes("vegan").

Package ade4 provides alternative constrained ordination function pcaiv.

Examples

data(varespec)

data(varechem)

## Common but bad way: use all variables you happen to have in your
## environmental data matrix

vare.cca <- cca(varespec, varechem)

vare.cca

plot(vare.cca)

## Formula interface and a better model

vare.cca <- cca(varespec ~ Al + Px(K + Baresoil), data=varechem)
vare.cca

plot(vare.cca)

## Partialling out and negative components of variance
cca(varespec ~ Ca, varechem)

cca(varespec ~ Ca + Condition(pH), varechem)

## RDA

data(dune)

data(dune.env)

dune.Manure <- rda(dune ~ Manure, dune.env)

plot(dune.Manure)

cca.object Result Object from Constrained Ordination

Description

Ordination methods cca, rda, dbrda and capscale return similar result objects. All these methods
use the same internal function ordConstrained. They differ only in (1) initial transformation of
the data and in defining inertia, (2) weighting, and (3) the use of rectangular rows x columns
data or symmetric rows x rows dissimilarities: rda initializes data to give variance or correlations
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as inertia, cca is based on double-standardized data to give Chi-square inertia and uses row and
column weights, capscale maps the real part of dissimilarities to rectangular data and performs
RDA, and dbrda performs an RDA-like analysis directly on symmetric dissimilarities.

Function ordConstrained returns the same result components for all these methods, and the calling
function may add some more components to the final result. However, you should not access these
result components directly (using $): the internal structure is not regarded as stable application
interface (API), but it can change at any release. If you access the results components directly,
you take a risk of breakage at any vegan release. The vegan provides a wide set of accessor
functions to those components, and these functions are updated when the result object changes.
This documentation gives an overview of accessor functions to the cca result object.

Usage

ordiYbar(x, model = c("CCA", "CA", "pCCA", "partial”, "initial"))
## S3 method for class 'cca'

model. frame(formula, ...)

## S3 method for class 'cca'

model.matrix(object, ...)

## S3 method for class 'cca'

weights(object, display = "sites”, ...)
Arguments

object, x, formula
A result object from cca, rda, dbrda, or capscale.

model Show constrained ("CCA"), unconstrained ("CA") or conditioned “partial” ("pCCA")
results. In ordiYbar the value can also be "initial” for the internal working
input data, and "partial” for the internal working input data after removing
the partial effects.

display Display either "sites"” or "species”.

Other arguments passed to the the function.

Details

The internal (“working”) form of the dependent (community) data can be accessed with function
ordiYbar. The form depends on the ordination method: for instance, in cca the data are weighted
and Chi-square transformed, and in dbrda they are Gower-centred dissimilarities. The input data
in the original (“response”) form can be accessed with fitted.cca and residuals.cca. Function
predict.cca can return either working or response data, and also their lower-rank approximations.

The model matrix of independent data (“Constraints” and “Conditions”) can be extracted with
model.matrix. In partial analysis, the function returns a list of design matrices called Conditions
and Constraints. If either component was missing, a single matrix is returned. The redundant
(aliased) terms do not appear in the model matrix. These terms can be found with alias.cca.
Function model. frame tries to reconstruct the data frame from which the model matrices were de-
rived. This is only possible if the original model was fitted with formula and data arguments, and
still fails if the data are unavailable.
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The number of observations can be accessed with nobs. cca, and the residual degrees of freedom
with df . residual.cca. The information on observations with missing values can be accessed with
na.action. The terms and formula of the fitted model can be accessed with formula and terms.

The weights used in cca can be accessed with weights. In unweighted methods (rda) all weights
are equal.

The ordination results are saved in separate components for partial terms, constraints and residual
unconstrained ordination. There is no guarantee that these components will have the same internal
names as currently, and you should be cautious when developing scripts and functions that directly
access these components.

The constrained ordination algorithm is based on QR decomposition of constraints and conditions
(environmental data), and the QR component is saved separately for partial and constrained com-
ponents. The QR decomposition of constraints can be accessed with qr.cca. This will also
include the residual effects of partial terms (Conditions), and it should be used together with
ordiYbar(x,"partial”). The environmental data are first centred in rda or weighted and cen-
tred in cca. The QR decomposition is used in many functions that access cca results, and it can
be used to find many items that are not directly stored in the object. For examples, see coef.cca,
coef.rda, vif.cca, permutest.cca, predict.cca, predict.rda, calibrate.cca. See gr for
other possible uses of this component. For instance, the rank of the constraints can be found from
the QR decomposition.

The eigenvalues of the solution can be accessed with eigenvals. cca. Eigenvalues are not evaluated
for partial component, and they will only be available for constrained and residual components.

The ordination scores are internally stored as (weighted) orthonormal scores matrices. These results
can be accessed with scores.cca and scores.rda functions. The ordination scores are scaled
when accessed with scores functions, but internal (weighted) orthonormal scores can be accessed
by setting scaling = FALSE. Unconstrained residual component has species and site scores, and
constrained component has also fitted site scores or linear combination scores for sites and biplot
scores and centroids for constraint variables. The biplot scores correspond to the model.matrix,
and centroids are calculated for factor variables when they were used. The scores can be selected
by defining the axes, and there is no direct way of accessing all scores of a certain component.
The number of dimensions can be assessed from eigenvals. In addition, some other types can
be derived from the results although not saved in the results. For instance, regression scores and
model coefficients can be accessed with scores and coef functions. Partial component will have
no scores.

Distance-based methods (dbrda, capscale) can have negative eigenvalues and associated imagi-
nary axis scores. There is no way of accessing these imaginary scores. In addition, species scores
are initially missing in dbrda and they are accessory and found after analysis in capscale (and may
be misleading). Function sppscores can be used to add species scores or replace them with more
meaningful ones.

Note

Saving of “working” dependent (community) data changed in vegan version 2.5-0, and you should
use ordiYbar function instead of direct access, or your scripts and functions will fail (ordiYbar has
been available since vegan version 2.4-3, and it works both with the old and current result objects).

The model.matrix returns the unweighted model matrix also for cca. Prior to vegan version 2.5-0
it returned the weighted model matrix
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Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

See Also

The core function is ordConstrained which is called by cca, rda, dbrda and capscale. The basic

classis "cca" for all methods, and the following functions are defined for this class: RsquareAdj.cca,

SSD.cca, add1.cca, alias.cca, anova.cca, as.mlm.cca, biplot.cca, bstick.cca, calibrate.cca,
coef.cca, cooks.distance.cca, deviance.cca, df.residual.cca, dropl.cca, eigenvals.cca,
extractAIC.cca, fitted.cca, goodness.cca, hatvalues.cca, model. frame.cca, model.matrix.cca,
nobs.cca, permutest.cca, plot.cca, points.cca, predict.cca, print.cca, gr.cca, residuals.cca,
rstandard.cca, rstudent.cca, scores.cca, screeplot.cca, sigma.cca, simulate.cca, stressplot.cca,
summary.cca, text.cca, tolerance.cca, vcov.cca, weights.cca. Other functions handling

"cca" objects include inertcomp, intersetcor, mso, ordiresids, ordistep and ordiR2step.

CCorA Canonical Correlation Analysis

Description
Canonical correlation analysis, following Brian McArdle’s unpublished graduate course notes, plus
improvements to allow the calculations in the case of very sparse and collinear matrices, and per-
mutation test of Pillai’s trace statistic.

Usage
CCorA(Y, X, stand.Y=FALSE, stand.X=FALSE, permutations = @, ...)

## S3 method for class 'CCorA'
biplot(x, plot.type="ov", xlabs, plot.axes = 1:2, int=0.5,

col.Y="red", col.X="blue", cex=c(0.7,0.9), ...)
Arguments
Y Left matrix (object class: matrix or data. frame).
X Right matrix (object class: matrix or data.frame).
stand.Y Logical; should Y be standardized?
stand. X Logical; should X be standardized?

permutations a list of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.
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X CCoaR result object.

plot.type A character string indicating which of the following plots should be produced:
"objects”, "variables”, "ov" (separate graphs for objects and variables), or
"biplots"”. Any unambiguous subset containing the first letters of these names

can be used instead of the full names.

xlabs Row labels. The default is to use row names, NULL uses row numbers instead,
and NA suppresses plotting row names completely.

plot.axes A vector with 2 values containing the order numbers of the canonical axes to be
plotted. Default: first two axes.

int Radius of the inner circles plotted as visual references in the plots of the vari-
ables. Default: int=0.5. With int=0, no inner circle is plotted.

col.Y Color used for objects and variables in the first data table (Y) plots. In biplots,
the objects are in black.

col.X Color used for objects and variables in the second data table (X) plots.

cex A vector with 2 values containing the size reduction factors for the object and

variable names, respectively, in the plots. Default values: cex=c(0.7,0.9).

Other arguments passed to these functions. The function biplot.CCorA passes
graphical arguments to biplot and biplot.default. CCorA currently ignores
extra arguments.

Details

Canonical correlation analysis (Hotelling 1936) seeks linear combinations of the variables of Y that
are maximally correlated to linear combinations of the variables of X. The analysis estimates the re-
lationships and displays them in graphs. Pillai’s trace statistic is computed and tested parametrically
(F-test); a permutation test is also available.

Algorithmic note — The blunt approach would be to read the two matrices, compute the covariance
matrices, then the matrix S12 %*% inv(S22) %*% t(S12) %*% inv(S11). Its trace is Pillai’s trace
statistic. This approach may fail, however, when there is heavy multicollinearity in very sparse data
matrices. The safe approach is to replace all data matrices by their PCA object scores.

The function can produce different types of plots depending on the option chosen: "objects”
produces two plots of the objects, one in the space of Y, the second in the space of X; "variables”
produces two plots of the variables, one of the variables of Y in the space of Y, the second of
the variables of X in the space of X; "ov" produces four plots, two of the objects and two of the
variables; "biplots” produces two biplots, one for the first matrix (Y) and one for second matrix
(X) solutions. For biplots, the function passes all arguments to biplot.default; consult its help
page for configuring biplots.

Value

Function CCorA returns a list containing the following elements:

Pillai Pillai’s trace statistic = sum of the canonical eigenvalues.
Eigenvalues Canonical eigenvalues. They are the squares of the canonical correlations.

CanCorr Canonical correlations.
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Mat.ranks
RDA.Rsquares
RDA.adj.Rsq
nperm
p.Pillai
p.perm
Cy
Cx
corr.Y.Cy
corr.X.Cx
corr.Y.Cx
corr.X.Cy
control
call

Author(s)

CCorA

Ranks of matrices Y and X.

Bimultivariate redundancy coefficients (R-squares) of RDAs of YIX and XIY.
RDA.Rsquares adjusted for n and the number of explanatory variables.
Number of permutations.

Parametric probability value associated with Pillai’s trace.

Permutational probability associated with Pillai’s trace.

Object scores in Y biplot.

Object scores in X biplot.

Scores of Y variables in Y biplot, computed as cor(Y,Cy).

Scores of X variables in X biplot, computed as cor(X,Cx).

cor(Y,Cy) available for plotting variables Y in space of X manually.
cor(X,Cx) available for plotting variables X in space of Y manually.

A list of control values for the permutations as returned by the function how.
Call to the CCorA function.

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal. Implemented in
vegan with the help of Jari Oksanen.

References

Hotelling, H. 1936.

Legendre, P. 2005.

Relations between two sets of variates. Biometrika 28: 321-377.

Species associations: the Kendall coefficient of concordance revisited. Journal

of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Examples

# Example using two mite groups. The mite data are available in vegan

data(mite)

# Two mite species associations (Legendre 2005, Fig. 4)
group.1 <- ¢(1,2,4:8,10:15,17,19:22,24,26:30)

group.2 <- c(3,9,

16,18,23,25,31:35)

# Separate Hellinger transformations of the two groups of species
mite.hel.1 <- decostand(mite[,group.1], "hel")

mite.hel.2 <- decostand(mite[,group.2], "hel")
rownames(mite.hel.1) = paste(”S"”,1:nrow(mite),sep="")

rownames (mite.hel.2) = paste(”"S",1:nrow(mite),sep="")

out <- CCorA(mite.hel.1, mite.hel.2)

out

biplot(out, "ob")
biplot(out, "v",
biplot(out, "ov",
biplot(out, "b",

# Two plots of objects
cex=c(0.7,0.6)) # Two plots of variables
cex=c(0.7,0.6)) # Four plots (2 for objects, 2 for variables)
cex=c(0.7,0.6)) # Two biplots

biplot(out, xlabs = NA, plot.axes = c(3,5)) # Plot axes 3, 5. No object names

biplot(out, plot.

type="biplots”, xlabs = NULL) # Replace object names by numbers
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# Example using random numbers. No significant relationship is expected
matl <- matrix(rnorm(60),20,3)

mat2 <- matrix(rnorm(100),20,5)

out2 = CCorA(matl, mat2, permutations=99)

out2

biplot(out2, "b")

clamtest Multinomial Species Classification Method (CLAM)

Description

The CLAM statistical approach for classifying generalists and specialists in two distinct habitats is
described in Chazdon et al. (2011).

Usage

clamtest(comm, groups, coverage.limit = 10, specialization = 2/3,
npoints = 20, alpha = 0.05/20)

## S3 method for class 'clamtest'

summary (object, ...)

## S3 method for class 'clamtest'

plot(x, xlab, ylab, main, pch = 21:24, col.points = 1:4,

col.lines = 2:4, 1ty = 1:3, position = "bottomright”, ...)
Arguments
comm Community matrix, consisting of counts.
groups A vector identifying the two habitats. Must have exactly two unique values or

levels. Habitat IDs in the grouping vector must match corresponding rows in the
community matrix comm.

coverage.limit Integer, the sample coverage based correction is applied to rare species with
counts below this limit. Sample coverage is calculated separately for the two
habitats. Sample relative abundances are used for species with higher than or
equal to coverage.limit total counts per habitat.

specialization Numeric, specialization threshold value between 0 and 1. The value of 2/3 rep-
resents ‘supermajority’ rule, while a value of 1/2 represents a ‘simple majority’
rule to assign shared species as habitat specialists.

npoints Integer, number of points used to determine the boundary lines in the plots.

alpha Numeric, nominal significance level for individual tests. The default value re-
duces the conventional limit of 0.05 to account for overdispersion and multiple
testing for several species simultaneously. However, the is no firm reason for
exactly this limit.

X, object Fitted model object of class "clamtest”.

xlab, ylab Labels for the plot axes.
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main Main title of the plot.
pch, col.points
Symbols and colors used in plotting species groups.
1ty, col.lines Line types and colors for boundary lines in plot to separate species groups.
position Position of figure legend, see 1legend for specification details. Legend not shown
if position = NULL.

Additional arguments passed to methods.

Details

The method uses a multinomial model based on estimated species relative abundance in two habitats
(A, B). It minimizes bias due to differences in sampling intensities between two habitat types as
well as bias due to insufficient sampling within each habitat. The method permits a robust statistical
classification of habitat specialists and generalists, without excluding rare species a priori (Chazdon
et al. 2011). Based on a user-defined specialization threshold, the model classifies species into
one of four groups: (1) generalists; (2) habitat A specialists; (3) habitat B specialists; and (4) too
rare to classify with confidence.

Value

A data frame (with class attribute "clamtest”), with columns:

* Species: species name (column names from comm),
e Total_xAx: total count in habitat A,
e Total_xBx: total count in habitat B,

* Classes: species classification, a factor with levels Generalist, Specialist_xA*, Specialist_#B*,
and Too_rare.

*Ax and *B= are placeholders for habitat names/labels found in the data.

The summary method returns descriptive statistics of the results. The plot method returns values in-
visibly and produces a bivariate scatterplot of species total abundances in the two habitats. Symbols
and boundary lines are shown for species groups.

Note

The code was tested against standalone CLAM software provided on the website of Anne Chao
(which were then at http://chao.stat.nthu.edu.tw/wordpress); minor inconsistencies were found, es-
pecially for finding the threshold for ’too rare’ species. These inconsistencies are probably due to
numerical differences between the two implementation. The current R implementation uses root
finding for iso-lines instead of iterative search.

The original method (Chazdon et al. 2011) has two major problems:

1. It assumes that the error distribution is multinomial. This is a justified choice if individuals
are freely distributed, and there is no over-dispersion or clustering of individuals. In most
ecological data, the variance is much higher than multinomial assumption, and therefore test
statistic are too optimistic.
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2. The original authors suggest that multiple testing adjustment for multiple testing should be
based on the number of points (npoints) used to draw the critical lines on the plot, whereas
the adjustment should be based on the number of tests (i.e., tested species). The function uses
the same numerical values as the original paper, but there is no automatic connection between
npoints and alpha arguments, but you must work out the adjustment yourself.

Author(s)

Peter Solymos <solymos@ualberta.ca>

References

Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S.-Y., Norden, N., Letcher, S. G., Clark, D. B.,
Finegan, B. and Arroyo J. P.(2011). A novel statistical method for classifying habitat generalists
and specialists. Ecology 92, 1332—-1343.

Examples

data(mite)

data(mite.env)

sol <- with(mite.env, clamtest(mite, Shrub=="None", alpha=0.005))
summary (sol)

head(sol)

plot(sol)

commsim Create an Object for Null Model Algorithms

Description

The commsim function can be used to feed Null Model algorithms into nullmodel analysis. The
make.commsim function returns various predefined algorithm types (see Details). These functions
represent low level interface for community null model infrastructure in vegan with the intent of
extensibility, and less emphasis on direct use by users.

Usage

commsim(method, fun, binary, isSeq, mode)
make.commsim(method)
## S3 method for class 'commsim'

print(x, ...)
Arguments
method Character, name of the algorithm.
fun A function. For possible formal arguments of this function see Details.

binary Logical, if the algorithm applies to presence-absence or count matrices.
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isSeq Logical, if the algorithm is sequential (needs burnin and thinning) or not.
mode Character, storage mode of the community matrix, either "integer"” or "double”.

X An object of class commsim.

Additional arguments.

Details

The function fun must return an array of dim(nr,nc,n), and must take some of the following
arguments:

* Xx: input matrix,

* n: number of permuted matrices in output,

e nr: number of rows,

¢ nc: number of columns,

* rs: vector of row sums,

¢ cs: vector of column sums,

* rf: vector of row frequencies (non-zero cells),

 cf: vector of column frequencies (non-zero cells),

¢ s: total sum of x,

e fill: matrix fill (non-zero cells),

* thin: thinning value for sequential algorithms,

e ...:additional arguments.
You can define your own null model, but several null model algorithm are pre-defined and can be
called by their name. The predefined algorithms are described in detail in the following chapters.
The binary null models produce matrices of zeros (absences) and ones (presences) also when input
matrix is quantitative. There are two types of quantitative data: Counts are integers with a natural
unit so that individuals can be shuffled, but abundances can have real (floating point) values and do
not have a natural subunit for shuffling. All quantitative models can handle counts, but only some
are able to handle real values. Some of the null models are sequential so that the next matrix is
derived from the current one. This makes models dependent from previous models, and usually

you must thin these matrices and study the sequences for stability: see oecosimu for details and
instructions.

See Examples for structural constraints imposed by each algorithm and defining your own null
model.

Value

An object of class commsim with elements corresponding to the arguments (method, binary, isSeq,
mode, fun).

If the input of make.comsimm is a commsim object, it is returned without further evaluation. If this
is not the case, the character method argument is matched against predefined algorithm names. An
error message is issued if none such is found. If the method argument is missing, the function
returns names of all currently available null model algorithms as a character vector.
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Binary null models

All binary null models preserve fill: number of presences or conversely the number of absences.
The classic models may also preserve column (species) frequencies (c@) or row frequencies or
species richness of each site (ro) and take into account commonness and rarity of species (r1,
r2). Algorithms swap, tswap, curveball, quasiswap and backtracking preserve both row and
column frequencies. Three first ones are sequential but the two latter are non-sequential and produce
independent matrices. Basic algorithms are reviewed by Wright et al. (1998).

* "r@@": non-sequential algorithm for binary matrices that only preserves the number of pres-
ences (fill).

* "r@","ro_old": non-sequential algorithm for binary matrices that preserves the site (row)
frequencies. Methods "r@"” and "r@_old"” implement the same method, but use different
random number sequences; use "r@_old" if you want to reproduce results in vegan 2.0-0 or
older using commsimulator (now deprecated).

* "r1": non-sequential algorithm for binary matrices that preserves the site (row) frequencies,
but uses column marginal frequencies as probabilities of selecting species.

* "r2": non-sequential algorithm for binary matrices that preserves the site (row) frequencies,
and uses squared column marginal frequencies as as probabilities of selecting species.

* "c@": non-sequential algorithm for binary matrices that preserves species frequencies (Jons-
son 2001).

* "swap": sequential algorithm for binary matrices that changes the matrix structure, but does
not influence marginal sums (Gotelli & Entsminger 2003). This inspects 2 x 2 submatrices so
long that a swap can be done.

* "tswap”: sequential algorithm for binary matrices. Same as the "swap” algorithm, but it tries
a fixed number of times and performs zero to many swaps at one step (according to the thin
argument in the call). This approach was suggested by Miklds & Podani (2004) because they
found that ordinary swap may lead to biased sequences, since some columns or rows are more
easily swapped.

e "curveball”: sequential method for binary matrices that implements the ‘Curveball’ algo-
rithm of Strona et al. (2014). The algorithm selects two random rows and finds the set of
unique species that occur only in one of these rows. The algorithm distributes the set of unique
species to rows preserving the original row frequencies. Zero to several species are swapped in
one step, and usually the matrix is perturbed more strongly than in other sequential methods.

* "quasiswap”: non-sequential algorithm for binary matrices that implements a method where
matrix is first filled honouring row and column totals, but with integers that may be larger than
one. Then the method inspects random 2 X 2 matrices and performs a quasiswap on them.
In addition to ordinary swaps, quasiswap can reduce numbers above one to ones preserving
marginal totals (Miklés & Podani 2004). The method is non-sequential, but it accepts thin
argument: the convergence is checked at every thin steps. This allows performing several
ordinary swaps in addition to fill changing swaps which helps in reducing or removing the
bias.

* "greedygswap”: A greedy variant of quasiswap. In greedy step, one element of the 2 x 2
matrix is taken from > 1 elements. The greedy steps are biased, but the method can be
thinned, and only the first of thin steps is greedy. Even modest thinning (say thin = 20)
removes or reduces the bias, and thin = 100 (1% greedy steps) looks completely safe and still
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speeds up simulation. The code is experimental and it is provided here for further scrutiny,
and should be tested for bias before use.

* "backtracking”: non-sequential algorithm for binary matrices that implements a filling
method with constraints both for row and column frequencies (Gotelli & Entsminger 2001).
The matrix is first filled randomly, but typically row and column sums are reached before all
incidences are filled in. After this begins "backtracking", where some of the incidences are
removed, and filling is started again, and this backtracking is done so many times that all inci-
dences will be filled into matrix. The results may be biased and should be inspected carefully
before use.

Quantitative Models for Counts with Fixed Marginal Sums

These models shuffle individuals of counts and keep marginal sums fixed, but marginal frequencies
are not preserved. Algorithm r2dtable uses standard R function r2dtable also used for simulated
P-values in chisq. test. Algorithm quasiswap_count uses the same, but preserves the original
fill. Typically this means increasing numbers of zero cells and the result is zero-inflated with respect
to r2dtable.

* "r2dtable”: non-sequential algorithm for count matrices. This algorithm keeps matrix sum
and row/column sums constant. Based on r2dtable.

* "quasiswap_count”: non-sequential algorithm for count matrices. This algorithm is similar
as Carsten Dormann’s swap.web function in the package bipartite. First, a random matrix
is generated by the r2dtable function preserving row and column sums. Then the original
matrix fill is reconstructed by sequential steps to increase or decrease matrix fill in the random
matrix. These steps are based on swapping 2 X 2 submatrices (see "swap_count” algorithm
for details) to maintain row and column totals.

Quantitative Swap Models

Quantitative swap models are similar to binary swap, but they swap the largest permissible value.
The models in this section all maintain the fill and perform a quantitative swap only if this can
be done without changing the fill. Single step of swap often changes the matrix very little. In
particular, if cell counts are variable, high values change very slowly. Checking the chain stability
and independence is even more crucial than in binary swap, and very strong thinning is often
needed. These models should never be used without inspecting their properties for the current data.
These null models can also be defined using permatswap function.

* "swap_count”: sequential algorithm for count matrices. This algorithm find 2 X 2 submatrices
that can be swapped leaving column and row totals and fill unchanged. The algorithm finds
the largest value in the submatrix that can be swapped (d). Swap means that the values in
diagonal or antidiagonal positions are decreased by d, while remaining cells are increased by
d. A swap is made only if fill does not change.

* "abuswap_r": sequential algorithm for count or nonnegative real valued matrices with fixed
row frequencies (see also permatswap). The algorithm is similar to swap_count, but uses dif-
ferent swap value for each row of the 2 x 2 submatrix. Each step changes the the corresponding
column sums, but honours matrix fill, row sums, and row/column frequencies (Hardy 2008;
randomization scheme 2x).
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* "abuswap_c": sequential algorithm for count or nonnegative real valued matrices with fixed
column frequencies (see also permatswap). The algorithm is similar as the previous one, but
operates on columns. Each step changes the the corresponding row sums, but honours matrix
fill, column sums, and row/column frequencies (Hardy 2008; randomization scheme 3x).

Quantitative Swap and Shuffle Models

Quantitative Swap and Shuffle methods (swsh methods) preserve fill and column and row frequen-
cies, and also either row or column sums. The methods first perform a binary quasiswap and then
shuffle original quantitative data to non-zero cells. The samp methods shuffle original non-zero
cell values and can be used also with non-integer data. The both methods redistribute individuals
randomly among non-zero cells and can only be used with integer data. The shuffling is either free
over the whole matrix, or within rows (r methods) or within columns (¢ methods). Shuffling within
a row preserves row sums, and shuffling within a column preserves column sums. These models
can also be defined with permatswap.

* "swsh_samp"”: non-sequential algorithm for quantitative data (either integer counts or non-
integer values). Original non-zero values values are shuffled.

* "swsh_both": non-sequential algorithm for count data. Individuals are shuffled freely over
non-zero cells.

* "swsh_samp_r": non-sequential algorithm for quantitative data. Non-zero values (samples)
are shuffled separately for each row.

* "swsh_samp_c": non-sequential algorithm for quantitative data. Non-zero values (samples)
are shuffled separately for each column.

* "swsh_both_r": non-sequential algorithm for count matrices. Individuals are shuffled freely
for non-zero values within each row.

* "swsh_both_c": non-sequential algorithm for count matrices. Individuals are shuffled freely
for non-zero values with each column.

Quantitative Shuffle Methods

Quantitative shuffle methods are generalizations of binary models r@9, r@ and c@. The _ind meth-
ods shuffle individuals so that the grand sum, row sum or column sums are preserved. These
methods are similar as r2dtable but with still slacker constraints on marginal sums. The _samp
and _both methods first apply the corresponding binary model with similar restriction on marginal
frequencies and then distribute quantitative values over non-zero cells. The _samp models shuffle
original cell values and can therefore handle also non-count real values. The _both models shuffle
individuals among non-zero values. The shuffling is over the whole matrix in r@@_, and within row
in r@_ and within column in c@_ in all cases.

* "r@o_ind": non-sequential algorithm for count matrices. This algorithm preserves grand sum
and individuals are shuffled among cells of the matrix.

* "r@_ind": non-sequential algorithm for count matrices. This algorithm preserves row sums
and individuals are shuffled among cells of each row of the matrix.

e "c@_ind": non-sequential algorithm for count matrices. This algorithm preserves column
sums and individuals are shuffled among cells of each column of the matrix.



62 commsim

* "r@@_samp": non-sequential algorithm for count or nonnegative real valued (mode = "double”)
matrices. This algorithm preserves grand sum and cells of the matrix are shuffled.

* "r@_samp": non-sequential algorithm for count or nonnegative real valued (mode = "double")
matrices. This algorithm preserves row sums and cells within each row are shuffled.

* "c@_samp": non-sequential algorithm for count or nonnegative real valued (mode = "double")
matrices. This algorithm preserves column sums constant and cells within each column are
shuffled.

* "r@@_both": non-sequential algorithm for count matrices. This algorithm preserves grand
sum and cells and individuals among cells of the matrix are shuffled.

* "r@_both": non-sequential algorithm for count matrices. This algorithm preserves grand sum
and cells and individuals among cells of each row are shuffled.

e "c@_both": non-sequential algorithm for count matrices. This algorithm preserves grand sum
and cells and individuals among cells of each column are shuffled.

Author(s)

Jari Oksanen and Peter Solymos
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See Also

See permatfull, permatswap for alternative specification of quantitative null models. Function
oecosimu gives a higher-level interface for applying null models in hypothesis testing and analysis
of models. Function nullmodel and simulate.nullmodel are used to generate arrays of simulated
null model matrices.
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Examples

## write the roo algorithm
f <- function(x, n, ...)
array(replicate(n, sample(x)), c(dim(x), n))
(cs <~ commsim("r@@", fun=f, binary=TRUE,
isSeq=FALSE, mode="integer"))

## retrieving the sequential swap algorithm
(cs <- make.commsim("swap"))

## feeding a commsim object as argument
make.commsim(cs)

## making the missing c1 model using r1 as a template
## non-sequential algorithm for binary matrices
##  that preserves the species (column) frequencies,
##  but uses row marginal frequencies
## as probabilities of selecting sites
f <- function (x, n, nr, nc, rs, cs, ...) {

out <- array(eL, c(nr, nc, n))

J <- seq_len(nc)

storage.mode(rs) <- "double”

for (k in seqg_len(n))

for (j in J)
out[sample.int(nr, cs[j], prob = rs), j, k]l <- 1L

out
3
cs <- make.commsim("r1")
cs$method <- "c1”
cs$fun <- f

## structural constraints
diagfun <- function(x, y) {

c(sum = sum(y) == sum(x),
fill = sum(y > @) == sum(x > @),
rowSums = all(rowSums(y) == rowSums(x)),
colSums = all(colSums(y) == colSums(x)),
rowFreq = all(rowSums(y > @) == rowSums(x > 0)),

colFreq = all(colSums(y > @) == colSums(x > 0)))
3
evalfun <- function(meth, x, n) {
m <- nullmodel(x, meth)
y <- simulate(m, nsim=n)
out <- rowMeans(sapply(1:dim(y)[3],
function(i) diagfun(attr(y, "data"), y[,,i1)))
z <- as.numeric(c(attr(y, "binary"”), attr(y, "isSeq"),
attr(y, "mode") == "double"))
names(z) <- c("binary”, "isSeq", "double")
c(z, out)
}
X <- matrix(rbinom(10%12, 1, @.5)*rpois(10x12, 3), 12, 10)
algos <- make.commsim()
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contribdiv

a <- t(sapply(algos, evalfun, x=x, n=10))
print(as.table(ifelse(a==1,1,0)), zero.print = ".")

contribdiv

Contribution Diversity Approach

Description

The contribution diversity approach is based in the differentiation of within-unit and among-unit
diversity by using additive diversity partitioning and unit distinctiveness.

Usage
contribdiv(comm, index = c("richness"”, "simpson"”),
relative = FALSE, scaled = TRUE, drop.zero = FALSE)
## S3 method for class 'contribdiv'
plot(x, sub, xlab, ylab, ylim, col, ...)
Arguments
comm The community data matrix with samples as rows and species as column.
index Character, the diversity index to be calculated.
relative Logical, if TRUE then contribution diversity values are expressed as their signed
deviation from their mean. See details.
scaled Logical, if TRUE then relative contribution diversity values are scaled by the sum
of gamma values (if index = "richness”) or by sum of gamma values times
the number of rows in comm (if index = "simpson"). See details.
drop.zero Logical, should empty rows dropped from the result? If empty rows are not
dropped, their corresponding results will be NAs.
X An object of class "contribdiv”.

sub, xlab, ylab,

Details

ylim, col
Graphical arguments passed to plot.

Other arguments passed to plot.

This approach was proposed by Lu et al. (2007). Additive diversity partitioning (see adipart for
more references) deals with the relation of mean alpha and the total (gamma) diversity. Although
alpha diversity values often vary considerably. Thus, contributions of the sites to the total diversity
are uneven. This site specific contribution is measured by contribution diversity components. A
unit that has e.g. many unique species will contribute more to the higher level (gamma) diversity
than another unit with the same number of species, but all of which common.

Distinctiveness of species j can be defined as the number of sites where it occurs (n;), or the sum
of its relative frequencies (p;). Relative frequencies are computed sitewise and sum ;p;js at site %

sum up to 1.
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The contribution of site ¢ to the total diversity is given by alpha; = sum;(1/n;j) when dealing
with richness and alpha; = sum(p;; * (1 — p;;)) for the Simpson index.

The unit distinctiveness of site ¢ is the average of the species distinctiveness, averaging only those
species which occur at site 7. For species richness: alpha; = mean(n;) (in the paper, the second
equation contains a typo, n is without index). For the Simpson index: alpha; = mean(n;).

The Lu et al. (2007) gives an in-depth description of the different indices.

Value

An object of class "contribdiv” inheriting from data frame.

Returned values are alpha, beta and gamma components for each sites (rows) of the community
matrix. The "diff.coef" attribute gives the differentiation coefficient (see Examples).

Author(s)

Péter S6lymos, <solymos@ualberta.ca>

References

Lu, H. P., Wagner, H. H. and Chen, X. Y. 2007. A contribution diversity approach to evaluate
species diversity. Basic and Applied Ecology, 8, 1-12.

See Also

adipart, diversity

Examples

## Artificial example given in

## Table 2 in Lu et al. 2007

x <= matrix(c(

1/3,1/3,1/3,0,0,0,

0,0,1/3,1/3,1/3,0,

0,0,0,1/3,1/3,1/3),

3, 6, byrow = TRUE,

dimnames = 1list(LETTERS[1:3],letters[1:61))

X

## Compare results with Table 2

contribdiv(x, "richness")

contribdiv(x, "simpson")

## Relative contribution (C values), compare with Table 2

(cd1l <= contribdiv(x, "richness", relative = TRUE, scaled = FALSE))
(cd2 <- contribdiv(x, "simpson”, relative = TRUE, scaled = FALSE))
## Differentiation coefficients

attr(cdl, "diff.coef") # D_ST

attr(cd2, "diff.coef") # D_DT

## BCI data set

data(BCI)

opar <- par(mfrow=c(2,2))

plot(contribdiv(BCI, "richness”), main = "Absolute")
plot(contribdiv(BCI, "richness”, relative = TRUE), main = "Relative"”)
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plot(contribdiv(BCI, "simpson”))
plot(contribdiv(BCI, "simpson”, relative = TRUE))
par (opar)

decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.

Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0,
before=NULL, after=NULL)

## S3 method for class 'decorana'

plot(x, choices=c(1,2), origin=TRUE,
display=c("both”,"sites"”,"species”, "none"),
cex = 0.8, cols = c(1,2), type, xlim, ylim, ...)

## S3 method for class 'decorana'
text(x, display = c("sites"”, "species"”), labels,
choices = 1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana'
points(x, display = c("sites"”, "species"),
choices=1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana'
summary (object, digits=3, origin=TRUE,

n on n on

display=c("both”, "species"”,"sites"”,"none"), ...)

## S3 method for class 'summary.decorana'
print(x, head = NA, tail = head, ...)

downweight(veg, fraction = 5)

## S3 method for class 'decorana'

n on

scores(x, display=c("sites","species"), choices=1:4,
origin=TRUE, ...)
Arguments

veg Community data, a matrix-like object.

iweigh Downweighting of rare species (0: no).
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iresc Number of rescaling cycles (0: no rescaling).

ira Type of analysis (0: detrended, 1: basic reciprocal averaging).

mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill’s piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation — these must corre-
spond to values in before.

x, object A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.

cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match to "text", "points” or "none”.

labels Optional text to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

xlim, ylim the x and y limits (min,max) of the plot.

digits Number of digits in summary output.

head, tail Number of rows printed from the head and tail of species and site scores. Default

NA prints all.
fraction Abundance fraction where downweighting begins.

Other arguments for plot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed better able to cope with non-linear species responses than principal compo-
nents analysis. However, even correspondence analysis can produce an arc-shaped configuration of
a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed
‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthog-
onalization successive axes are made non-correlated, but detrending should remove all systematic
dependence between axes. Detrending is performed using a five-segment smoothing window with
weights (1,2,3,2,1) on mk segments — which indeed is more robust than the suggested alternative
of detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescal-
ing the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so
that the average width of Gaussian species responses is supposed to be one over whole axis. Other
innovations were the piecewise linear transformation of species abundances and downweighting of
rare species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending actually works by twisting the ordination space, so that the results look
non-curved in two-dimensional projections (‘lolly paper effect’). As a result, the points usually
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have an easily recognized triangular or diamond shaped pattern, obviously an artefact of detrend-
ing. Rescaling works differently than commonly presented, too. decorana does not use, or even
evaluate, the widths of species responses. Instead, it tries to equalize the weighted variance of
species scores on axis segments (parameter mk has only a small effect, since decorana finds the
segment number from the current estimate of axis length). This equalizes response widths only
for the idealized species packing model, where all species initially have unit width responses and
equally spaced modes.

The summary method prints the ordination scores, possible prior weights used in downweighting,
and the marginal totals after applying these weights. The plot method plots species and site scores.
Classical decorana scaled the axes so that smallest site score was 0 (and smallest species score was
negative), but summary, plot and scores use the true origin, unless origin = FALSE.

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis.
These ‘decorana values’ are the values that the legacy code of decorana returns as eigenvalues.
They are estimated internally during iteration, and it seems that detrending interferes the estimation
so that these values are generally too low and have unclear interpretation. Moreover, ‘decorana
values’ are estimated before rescaling which will change the eigenvalues. The proper eigenvalues
are estimated after extraction of the axes and they are the ratio of biased weighted variances of site
and species scores even in detrended and rescaled solutions. The ‘decorana values’ are provided
only for the compatibility with legacy software, and they should not be used.

Value

decorana returns an object of class "decorana”, which has print, summary and plot methods.

Note

decorana uses the central numerical engine of the original Fortran code (which is in the public
domain), or about 1/3 of the original program. I have tried to implement the original behaviour,
although a great part of preparatory steps were written in R language, and may differ somewhat
from the original code. However, well-known bugs are corrected and strict criteria used (Oksanen
& Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana, since there are more powerful and extensive alternatives in R, but these options are
included for compliance with the original software. If a different fraction of abundance is needed
in downweighting, function downweight must be applied before decorana. Function downweight
indeed can be applied prior to correspondence analysis, and so it can be used together with cca, too.

The function finds only four axes: this is not easily changed.

Author(s)

Mark O. Hill wrote the original Fortran code, the R port was by Jari Oksanen.

References

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination
technique. Vegeratio 42, 47-58.

Oksanen, J. and Minchin, PR. (1997). Instability of ordination results under changes in input data
order: explanations and remedies. Journal of Vegetation Science 8, 447-454.
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See Also

For unconstrained ordination, non-metric multidimensional scaling in monoMDS may be more robust
(see also metaMDS). Constrained (or ‘canonical’) correspondence analysis can be made with cca.
Orthogonal correspondence analysis can be made with corresp, or with decorana or cca, but the
scaling of results vary (and the one in decorana corresponds to scaling = "sites” and hill =
TRUE in cca.). See predict.decorana for adding new points to an ordination.

Examples
data(varespec)
vare.dca <- decorana(varespec)
vare.dca

summary(vare.dca)
plot(vare.dca)

### the detrending rationale:

gaussresp <- function(x,u) exp(-(x-u)*2/2)

x <- seq(0,6,length=15) ## The gradient

u <- seq(-2,8,len=23) ## The optima

pack <- outer(x,u,gaussresp)

matplot(x, pack, type="1", main="Species packing")

opar <- par(mfrow=c(2,2))

plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")

### Let's add some noise:

noisy <- (0.5 + runif(length(pack)))*pack

par(mfrow=c(2,1))

matplot(x, pack, type="1", main="Ideal model”)

matplot(x, noisy, type="1", main="Noisy model”)
par(mfrow=c(2,2))

plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par(opar)

decostand Standardization Methods for Community Ecology

Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.
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Usage
decostand(x, method, MARGIN, range.global, logbase = 2, na.rm=FALSE, ...)
wisconsin(x)
Arguments
X Community data, a matrix-like object.
method Standardization method. See Details for available options.
MARGIN Margin, if default is not acceptable. 1 = rows, and 2 = columns of x.

range.global Matrix from which the range is found in method = "range”. This allows using

same ranges across subsets of data. The dimensions of MARGIN must match with

X.
logbase The logarithm base used in method = "1log".
na.rm Ignore missing values in row or column standardizations.

Details

Other arguments to the function (ignored).

The function offers following standardization methods for community data:

total: divide by margin total (default MARGIN = 1).
max: divide by margin maximum (default MARGIN = 2).

frequency: divide by margin total and multiply by the number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; default MARGIN = 2).

normalize: make margin sum of squares equal to one (default MARGIN = 1).

range: standardize values into range O ... 1 (default MARGIN = 2). If all values are constant,
they will be transformed to 0.

rank, rrank: rank replaces abundance values by their increasing ranks leaving zeros un-
changed, and rrank is similar but uses relative ranks with maximum 1 (default MARGIN = 1).
Average ranks are used for tied values.

standardize: scale x to zero mean and unit variance (default MARGIN = 2).
pa: scale x to presence/absence scale (0/1).

chi.square: divide by row sums and square root of column sums, and adjust for square
root of matrix total (Legendre & Gallagher 2001). When used with the Euclidean distance,
the distances should be similar to the Chi-square distance used in correspondence analysis.
However, the results from cmdscale would still differ, since CA is a weighted ordination
method (default MARGIN = 1).

hellinger: square root of method = "total” (Legendre & Gallagher 2001).

log: logarithmic transformation as suggested by Anderson et al. (2006): log,(z) + 1 for
x > 0, where b is the base of the logarithm; zeros are left as zeros. Higher bases give less
weight to quantities and more to presences, and logbase = Inf gives the presence/absence
scaling. Please note this is nor log(x + 1). Anderson et al. (2006) suggested this for their
(strongly) modified Gower distance (implemented as method = "altGower" in vegdist), but
the standardization can be used independently of distance indices.
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Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default margin. MARGIN=1 means rows (sites in a normal data set) and MARGIN=2
means columns (species in a normal data set).

Command wisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=2) are first standardized by maxima (max) and then sites (MARGIN=1) by site totals (tot).

Most standardization methods will give nonsense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with method
= "range"), many standardization will change these into NaN.

Value

Returns the standardized data frame, and adds an attribute "decostand” giving the name of applied
standardization "method”.

Note

Common transformations can be made with standard R functions.

Author(s)

Jari Oksanen, Etienne Laliberté (method = "log").

References

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683—693.

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129, 271-280.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal component analysis,
correspondence analysis and multidimensional scaling. Vegetatio 52, 181-189.

Examples

data(varespec)

sptrans <- decostand(varespec, "max")
apply(sptrans, 2, max)

sptrans <- wisconsin(varespec)

## Chi-square: PCA similar but not identical to CA.

## Use wcmdscale for weighted analysis and identical results.
sptrans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sptrans), cca(varespec)))
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designdist

designdist

Design your own Dissimilarities

Description

Function designdist lets you define your own dissimilarities using terms for shared and total
quantities, number of rows and number of columns. The shared and total quantities can be binary,
quadratic or minimum terms. In binary terms, the shared component is number of shared species,
and totals are numbers of species on sites. The quadratic terms are cross-products and sums of
squares, and minimum terms are sums of parallel minima and row totals. Function chaodist lets
you define your own dissimilarities using terms that are supposed to take into account the “unseen
species” (see Chao et al., 2005 and Details in vegdist).

Usage

designdist(x, method = "(A+B-2%J)/(A+B)",

terms = c("binary"”, "quadratic”, "minimum"),
abcd = FALSE, alphagamma = FALSE, name)

chaodist(x, method = "1 - 2xUxV/(U+V)", name)

Arguments

X

method

terms

abcd

alphagamma

name

Input data.

Equation for your dissimilarities. This can use terms J for shared quantity, A and
B for totals, N for the number of rows (sites) and P for the number of columns
(species) or in chaodist it can use terms U and V. The equation can also contain
any R functions that accepts vector arguments and returns vectors of the same
length.

How shared and total components are found. For vectors x and y the "quadratic”
terms are J = sum(x*y), A = sum(x*2), B = sum(y*2), and "minimum” terms are
J = sum(pmin(x,y)), A=sum(x) and B = sum(y), and "binary” terms are ei-
ther of these after transforming data into binary form (shared number of species,
and number of species for each row).

Use 2x2 contingency table notation for binary data: a is the number of shared
species, b and c are the numbers of species occurring only one of the sites but
not in both, and d is the number of species that occur on neither of the sites.

Use beta diversity notation with terms alpha for average alpha diversity for
compared sites, gamma for diversity in pooled sites, and delta for the absolute
value of difference of average alpha and alpha diversities of compared sites.
Terms A and B refer to alpha diversities of compared sites.

The name you want to use for your index. The default is to combine the method
equation and terms argument.
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Details

Most popular dissimilarity measures in ecology can be expressed with the help of terms J, A and B,
and some also involve matrix dimensions N and P. Some examples you can define in designdist

are:
A+B-2*J "quadratic” squared Euclidean
A+B-2%xJ "minimum"” Manhattan
(A+B-2xJ)/ (A+B) "minimum” Bray-Curtis
(A+B-2%J)/ (A+B) "binary” Sgrensen
(A+B-2%J)/(A+B-J) "binary” Jaccard
(A+B-2%J)/(A+B-J) "minimum"” Ruzicka
(A+B-2%J)/(A+B-J) "quadratic” (dis)similarity ratio

1-J/sqrt(A*B) "binary” Ochiai
1-J/sqrt(A*B) "quadratic” cosine complement
1-phyper(J-1, A, P-A, B)  "binary" Raup-Crick (but see raupcrick)

The function designdist can implement most dissimilarity indices in vegdist or elsewhere, and
it can also be used to implement many other indices, amongst them, most of those described in
Legendre & Legendre (2012). It can also be used to implement all indices of beta diversity described
in Koleff et al. (2003), but there also is a specific function betadiver for the purpose.

If you want to implement binary dissimilarities based on the 2x2 contingency table notation, you
can set abcd = TRUE. In this notation a=7J, b = A-J, ¢ =B-J, d = P-A-B+J. This notation is often
used instead of the more more tangible default notation for reasons that are opaque to me.

With alphagamma = TRUE it is possible to use beta diversity notation with terms alpha for average
alpha diversity and gamma for gamma diversity in two compared sites. The terms are calculated
as alpha = (A+B)/2, gamma = A+B-J and delta = abs(A-B)/2. Terms A and B are also available
and give the alpha diversities of the individual compared sites. The beta diversity terms may make
sense only for binary terms (so that diversities are expressed in numbers of species), but they are
calculated for quadratic and minimum terms as well (with a warning).

Function chaodist is similar to designgist, but uses terms U and V of Chao et al. (2005). These
terms are supposed to take into account the effects of unseen species. Both U and V are scaled
to range 0...1. They take the place of A and B and the product UV is used in the place of J of
designdist. Function chaodist can implement any commonly used Chao et al. (2005) style
dissimilarity:

1 - 2xUxV/ (U+V)
1 - UxV/ (U+V-UxV)
1 - sqrt(U*V)

Sgrensen type
Jaccard type
Ochiai type

(pmin(U,V) - UxV)/pmin(U,V)  Simpson type

Function vegdist implements Jaccard-type Chao distance, and its documentation contains more
complete discussion on the calculation of the terms.

Value

designdist returns an object of class dist.
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Note

designdist

designdist does not use compiled code, but it is based on vectorized R code. The designdist
function can be much faster than vegdist, although the latter uses compiled code. However,
designdist cannot skip missing values and uses much more memory during calculations.

The use of sum terms can be numerically unstable. In particularly, when these terms are large, the
precision may be lost. The risk is large when the number of columns is high, and particularly large
with quadratic terms. For precise calculations it is better to use functions like dist and vegdist
which are more robust against numerical problems.

Author(s)

Jari Oksanen

References

Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005) A new statistical approach for as-
sessing similarity of species composition with incidence and abundance data. Ecology Letters 8,
148-159.

Koleff, P, Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence—absence data.
J. Animal Ecol. 72, 367-382.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier

See Also

vegdist, betadiver, dist, raupcrick.

Examples

data(BCI)

#it
do
d1
d2
d3
#i#
#it
#it
#it
#it

Four ways of calculating the same Sgrensen dissimilarity

<- vegdist(BCI, "bray", binary = TRUE)

<- designdist(BCI, "(A+B-2xJ)/(A+B)")

<- designdist(BCI, "(b+c)/(2*atb+c)", abcd = TRUE)

<- designdist(BCI, "gamma/alpha - 1", alphagamma = TRUE)
Arrhenius dissimilarity: the value of z in the species-area model
S = c*A*z when combining two sites of equal areas, where S is the

number of species, A is the area, and c and z are model parameters.

The A below is not the area (which cancels out), but number of
species in one of the sites, as defined in designdist().

dis <- designdist(BCI, "(log(A+B-J)-log(A+B)+log(2))/log(2)")

#i#

This can be used in clustering or ordination...

ordiplot(cmdscale(dis))

##H oL

or in analysing beta diversity (without gradients)

summary (dis)
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deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination

Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysis cca or redundancy analysis rda. These functions are rarely needed directly,
but they are called by step in automatic model building. Actually, cca and rda do not have AIC
and these functions are certainly wrong.

Usage

## S3 method for class 'cca'
deviance(object, ...)

## S3 method for class 'cca'

extractAIC(fit, scale = 0, k =2, ...)
Arguments
object the result of a constrained ordination (cca or rda).
fit fitted model from constrained ordination.
scale optional numeric specifying the scale parameter of the model, see scale in
step.
k numeric specifying the "weight" of the equivalent degrees of freedom (=:edf)

part in the AIC formula.

further arguments.

Details

The functions find statistics that resemble deviance and AIC in constrained ordination. Actually,
constrained ordination methods do not have a log-Likelihood, which means that they cannot have
AIC and deviance. Therefore you should not use these functions, and if you use them, you should
not trust them. If you use these functions, it remains as your responsibility to check the adequacy
of the result.

The deviance of cca is equal to the Chi-square of the residual data matrix after fitting the constraints.
The deviance of rda is defined as the residual sum of squares. The deviance function of rda is also
used for capscale. Function extractAIC mimics extractAIC.1m in translating deviance to AIC.

There is little need to call these functions directly. However, they are called implicitly in step
function used in automatic selection of constraining variables. You should check the resulting
model with some other criteria, because the statistics used here are unfounded. In particular, the
penalty k is not properly defined, and the default k = 2 is not justified theoretically. If you have only
continuous covariates, the step function will base the model building on magnitude of eigenvalues,
and the value of k only influences the stopping point (but the variables with the highest eigenvalues
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are not necessarily the most significant in permutation tests in anova. cca). If you also have multi-
class factors, the value of k will have a capricious effect in model building. The step function
will pass arguments to add1.cca and drop1.cca, and setting test = "permutation” will provide
permutation tests of each deletion and addition which can help in judging the validity of the model
building.

Value

The deviance functions return “deviance”, and extractAIC returns effective degrees of freedom
and “AIC”.

Note

These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in using step are very valid.

Author(s)

Jari Oksanen

References

Godinez-Dominguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organization. Marine Ecology Progress Series 253, 17-24.

See Also

cca, rda, anova.cca, step, extractAIC, add1.cca, drop1.cca.

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)

data(dune.env)

chisq.test(dune)

deviance(cca(dune))
# Stepwise selection (forward from an empty model "dune ~ 1")
ord <- cca(dune ~ ., dune.env)

step(cca(dune ~ 1, dune.env), scope = formula(ord))

dispindmorisita Morisita index of intraspecific aggregation

Description

Calculates the Morisita index of dispersion, standardized index values, and the so called clumped-
ness and uniform indices.
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Usage

dispindmorisita(x, unique.rm = FALSE, crit = 0.05, na.rm = FALSE)

Arguments
X community data matrix, with sites (samples) as rows and species as columns.
unique.rm logical, if TRUE, unique species (occurring in only one sample) are removed from
the result.
crit two-sided p-value used to calculate critical Chi-squared values.
na.rm logical. Should missing values (including NaN) be omitted from the calculations?
Details

The Morisita index of dispersion is defined as (Morisita 1959, 1962):
Imor =n* (sum(xi”*2) -sum(xi)) / (sum(xi)*2 -sum(xi))

where z7 is the count of individuals in sample ¢, and n is the number of samples (¢ = 1,2,...,n).
Imor has values from O to n. In uniform (hyperdispersed) patterns its value falls between 0 and 1,
in clumped patterns it falls between 1 and n. For increasing sample sizes (i.e. joining neighbouring
quadrats), I'mor goes to n as the quadrat size approaches clump size. For random patterns, Imor =
1 and counts in the samples follow Poisson frequency distribution.

The deviation from random expectation (null hypothesis) can be tested using critical values of the
Chi-squared distribution with n — 1 degrees of freedom. Confidence intervals around 1 can be
calculated by the clumped M clu and uniform Mwuni indices (Hairston et al. 1971, Krebs 1999)
(Chi2Lower and Chi2Upper refers to e.g. 0.025 and 0.975 quantile values of the Chi-squared dis-
tribution with n — 1 degrees of freedom, respectively, for crit = @.05):

Mclu = (Chi2Lower -n + sum(xi)) / (sum(xi) -1)
Muni = (Chi2Upper -n + sum(xi)) / (sum(xi) -1)

Smith-Gill (1975) proposed scaling of Morisita index from [0, n] interval into [-1, 1], and setting
up -0.5 and 0.5 values as confidence limits around random distribution with rescaled value 0. To
rescale the Morisita index, one of the following four equations apply to calculate the standardized
index I'mst:

(@) Imor >=Mclu>1: Imst=0.5+0.5 (Imor -Mclu) / (n -Mclu),
(b)Mclu>Imor >=1: Imst=0.5 (Imor -1) / (Mclu-1),

(¢) 1> Imor >Muni: Imst =-0.5 (Imor -1) / (Muni -1),

(d) 1 >Muni > Imor: Imst=-0.5+@.5 (Imor -Muni) / Muni.

Value

Returns a data frame with as many rows as the number of columns in the input data, and with four
columns. Columns are: imor the unstandardized Morisita index, mclu the clumpedness index, muni
the uniform index, imst the standardized Morisita index, pchisq the Chi-squared based probability
for the null hypothesis of random expectation.
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Note

A common error found in several papers is that when standardizing as in the case (b), the de-
nominator is given as Muni -1. This results in a hiatus in the [0, 0.5] interval of the standardized
index. The root of this typo is the book of Krebs (1999), see the Errata for the book (Page 217,
https://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf).

Author(s)

Péter S6lymos, <solymos@ualberta.ca>

References

Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional
patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E 2,215-235.

Morisita, M. 1962. Id-index, a measure of dispersion of individuals. Res. Popul. Ecol. 4, 1-7.

Smith-Gill, S. J. 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard
frog, Rana pipiens. 11. Wild type and mutant cell specific patterns. J. Morphol. 146, 35-54.

Hairston, N. G., Hill, R. and Ritte, U. 1971. The interpretation of aggregation patterns. In: Patil,
G. P, Pileou, E. C. and Waters, W. E. eds. Statistical Ecology 1: Spatial Patterns and Statistical
Distributions. Penn. State Univ. Press, University Park.

Krebs, C. J. 1999. Ecological Methodology. 2nd ed. Benjamin Cummings Publishers.

Examples

data(dune)

x <- dispindmorisita(dune)

X

y <- dispindmorisita(dune, unique.rm = TRUE)
y

dim(x) ## with unique species

dim(y) ## unique species removed

dispweight Dispersion-based weighting of species counts

Description

Transform abundance data downweighting species that are overdispersed to the Poisson error.

Usage

dispweight(comm, groups, nsimul = 999, nullmodel = "c@_ind",
plimit = 0.05)

gdispweight(formula, data, plimit = 0.05)

## S3 method for class 'dispweight'

summary (object, ...)


https://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf
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Arguments

comm Community data matrix.

groups Factor describing the group structure. If missing, all sites are regarded as be-
longing to one group. NA values are not allowed.

nsimul Number of simulations.

nullmodel The nullmodel used in commsim within groups. The default follows Clarke et
al. (2006).

plimit Downweight species if their p-value is at or below this limit.

formula, data  Formula where the left-hand side is the community data frame and right-hand
side gives the explanatory variables. The explanatory variables are found in the
data frame given in data or in the parent frame.

object Result object from dispweight or gdispweight.

Other parameters passed to functions.

Details

The dispersion index (D) is calculated as ratio between variance and expected value for each
species. If the species abundances follow Poisson distribution, expected dispersion is E(D) = 1,
and if D > 1, the species is overdispersed. The inverse 1/D can be used to downweight species
abundances. Species are only downweighted when overdispersion is judged to be statistically sig-
nificant (Clarke et al. 2006).

Function dispweight implements the original procedure of Clarke et al. (2006). Only one factor
can be used to group the sites and to find the species means. The significance of overdispersion
is assessed freely distributing individuals of each species within factor levels. This is achieved by
using nullmodel "c@_ind"” (which accords to Clarke et al. 2006), but other nullmodels can be
used, though they may not be meaningful (see commsim for alternatives). If a species is absent in
some factor level, the whole level is ignored in calculation of overdispersion, and the number of
degrees of freedom can vary among species. The reduced number of degrees of freedom is used as
a divisor for overdispersion D, and such species have higher dispersion and hence lower weights in
transformation.

Function gdispweight is a generalized parametric version of dispweight. The function is based
on glm with quasipoisson error family. Any glm model can be used, including several factors
or continuous covariates. Function gdispweight uses the same test statistic as dispweight (Pear-
son Chi-square), but it does not ignore factor levels where species is absent, and the number of
degrees of freedom is equal for all species. Therefore transformation weights can be higher than
in dispweight. The gdispweight function evaluates the significance of overdispersion parametri-
cally from Chi-square distribution (pchisg).

Functions dispweight and gdispweight transform data, but they add information on overdisper-
sion and weights as attributes of the result. The summary can be used to extract and print that
information.

Value

Function returns transformed data with the following new attributes:

D Dispersion statistic.
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df Degrees of freedom for each species.

p p-value of the Dispersion statistic D.

weights weights applied to community data.

nsimul Number of simulations used to assess the p-value, or NA when simulations were

not performed.

nullmodel The name of commsim null model, or NA when simulations were not performed.

Author(s)

Eduard Szocs <eduardszoesc@gmail.com> wrote the original dispweight, Jari Oksanen signifi-
cantly modified the code, provided support functions and developed gdispweight.

References

Clarke, K. R., M. G. Chapman, P. J. Somerfield, and H. R. Needham. 2006. Dispersion-based
weighting of species counts in assemblage analyses. Marine Ecology Progress Series, 320, 11-27.

Examples

data(mite, mite.env)

## dispweight and its summary

mite.dw <- with(mite.env, dispweight(mite, Shrub, nsimul = 99))
summary(mite.dw)

## generalized dispersion weighting

mite.dw <- gdispweight(mite ~ Shrub + WatrCont, data = mite.env)
rda(mite.dw ~ Shrub + WatrCont, data = mite.env)

distconnected Connectedness of Dissimilarities

Description

Function distconnected finds groups that are connected disregarding dissimilarities that are at or
above a threshold or NA. The function can be used to find groups that can be ordinated together
or transformed by stepacross. Function no.shared returns a logical dissimilarity object, where
TRUE means that sites have no species in common. This is a minimal structure for distconnected
or can be used to set missing values to dissimilarities.

Usage

distconnected(dis, toolong = 1, trace = TRUE)

no.shared(x)
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Arguments
dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist are
some functions producing suitable dissimilarity data.
toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that dis-
similarities close to the limit will be made NA, too. If toolong = @ (or negative),
no dissimilarity is regarded as too long.
trace Summarize results of distconnected
X Community data.
Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities be
transformed with stepacross, because there is no path between all points, and result will contain
NAs. Function distconnected will find such subsets in dissimilarity matrices. The function will
return a grouping vector that can be used for sub-setting the data. If data are connected, the result
vector will be all 1s. The connectedness between two points can be defined either by a threshold
toolong or using input dissimilarities with NAs.

Function no.shared returns a dist structure having value TRUE when two sites have nothing in
common, and value FALSE when they have at least one shared species. This is a minimal structure
that can be analysed with distconnected. The function can be used to select dissimilarities with
no shared species in indices which do not have a fixed upper limit.

Function distconnected uses depth-first search (Sedgewick 1990).

Value

Function distconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will be all 1. Function no.shared returns an object of
class dist.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, stepacross for a case where you may need distconnected,
and for connecting points spantree.
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Examples

## There are no disconnected data in vegan, and the following uses an
## extremely low threshold limit for connectedness. This is for

## illustration only, and not a recommended practice.

data(dune)

dis <- vegdist(dune)

gr <- distconnected(dis, toolong=0.4)

# Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")

is.na(dis) <- no.shared(dune)

diversity Ecological Diversity Indices

Description

Shannon, Simpson, and Fisher diversity indices and species richness.

Usage

diversity(x, index = "shannon”, MARGIN = 1, base = exp(1))
fisher.alpha(x, MARGIN =1, ...)
1

specnumber(x, groups, MARGIN = 1)
Arguments
X Community data, a matrix-like object or a vector.
index Diversity index, one of "shannon”, "simpson” or "invsimpson”.
MARGIN Margin for which the index is computed.
base The logarithm base used in shannon.
groups A grouping factor: if given, finds the total number of species in each group.
Parameters passed to the function.
Details
Shannon or Shannon-Weaver (or Shannon—Wiener) index is defined as H' = — Zi p;i logy, pi,

where p; is the proportional abundance of species ¢ and b is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for base b = 2 (which makes sense, but no real
difference).

Both variants of Simpson’s index are based on D = Y p?. Choice simpson returns 1 — D and
invsimpson returns 1/D.

fisher.alpha estimates the o parameter of Fisher’s logarithmic series (see fisherfit). The esti-
mation is possible only for genuine counts of individuals.

Function specnumber finds the number of species. With MARGIN = 2, it finds frequencies of species.
If groups is given, finds the total number of species in each group (see example on finding one kind
of beta diversity with this option).
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Better stories can be told about Simpson’s index than about Shannon’s index, and still grander
narratives about rarefaction (Hurlbert 1971). However, these indices are all very closely related
(Hill 1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, the exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher’s « is very similar to inverse Simpson.

Value

A vector of diversity indices or numbers of species.

Author(s)
Jari Oksanen and Bob O’Hara (fisher.alpha).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12, 42-58.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecology 52, 577-586.

See Also

These functions calculate only some basic indices, but many others can be derived with them (see
Examples). Facilities related to diversity are discussed in a vegan vignette that can be read with
browseVignettes(”vegan"). Functions renyi and tsallis estimate a series of generalized diver-
sity indices. Function rarefy finds estimated number of species for given sample size. Beta diver-
sity can be estimated with betadiver. Diversities can be partitioned with adipart and multipart.

Examples

data(BCI)

H <- diversity(BCI)

simp <- diversity(BCI, "simpson")

invsimp <- diversity(BCI, "inv"

## Unbiased Simpson (Hurlbert 1971, eq. 5) with rarefy:

unbias.simp <- rarefy(BCI, 2) - 1

## Fisher alpha

alpha <- fisher.alpha(BCI)

## Plot all

pairs(cbind(H, simp, invsimp, unbias.simp, alpha), pch="+", col="blue")
## Species richness (S) and Pielou's evenness (J):

S <- specnumber (BCI) ## rowSums(BCI > @) does the same...

J <- H/log(S)

## beta diversity defined as gamma/alpha - 1:

data(dune)

data(dune.env)

alpha <- with(dune.env, tapply(specnumber(dune), Management, mean))
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gamma <- with(dune.env, specnumber(dune, Management))
gamma/alpha - 1

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation data, dune, has cover class values of 30 species on 20 sites. The
corresponding environmental data frame dune. env has following entries:

Usage

data(dune)
data(dune.env)

Format

dune is a data frame of observations of 30 species at 20 sites. The species names are abbreviated to
4+4 letters (see make. cepnames). The following names are changed from the original source (Jong-
man et al. 1987): Leontodon autumnalis to Scorzoneroides, and Potentilla palustris to Comarum.

dune.env is a data frame of 20 observations on the following 5 variables:

A1l: anumeric vector of thickness of soil Al horizon.
Moisture: an ordered factor with levels: 1 <2 <4 <5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature Con-
servation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 <1 <2< 3<4.

Source

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.FR. (1987). Data Analysis in Community
and Landscape Ecology. Pudoc, Wageningen.

Examples

data(dune)
data(dune.env)
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dune. taxon Taxonomic Classification and Phylogeny of Dune Meadow Species

Description

Classification table of the species in the dune data set.

Usage

data(dune. taxon)
data(dune.phylodis)

Format

dune. taxon is data frame with 30 species (rows) classified into five taxonomic levels (columns).
dune.phylodisisadist object of estimated coalescence ages extracted from doi: 10.5061/dryad.63q27
(Zanne et al. 2014) using tools in packages ape and phylobase.

Details

The families and orders are based on APG IV (2016) in vascular plants and on Hill et al. (2006) in
mosses. The higher levels (superorder and subclass) are based on Chase & Reveal (2009). Chase
& Reveal (2009) treat Angiosperms and mosses as subclasses of class Equisetopsida (land plants),
but brylogists have traditionally used much more inflated levels which are adjusted here to match
Angiosperm classification.

References

APG IV [Angiosperm Phylogeny Group] (2016) An update of the Angiosperm Phylogeny Group
classification for the orders and families of flowering plants: APG IV. Bot. J. Linnean Soc. 181:
1-20.

Chase, M.W. & Reveal, J. L. (2009) A phylogenetic classification of the land plants to accompany
APG IIL. Bot. J. Linnean Soc. 161: 122—127.

Hill, M.O et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. J.
Bryology 28: 198-267.

Zanne A.E., Tank D.C., Cornwell, W.K., Eastman J.M., Smith, S.A., FitzJohn, R.G., McGlinn,
DJ., O’Meara, B.C., Moles, A.T., Reich, P.B., Royer, D.L., Soltis, D.E., Stevens, P.F., Westoby,
M., Wright, L.J., Aarssen, L., Bertin, R.I., Calaminus, A., Govaerts, R., Hemmings, F., Leishman,
M.R,, Oleksyn, J., Soltis, P.S., Swenson, N.G., Warman, L. & Beaulieu, J.M. (2014) Three keys to
the radiation of angiosperms into freezing environments. Nature 506: 89-92.

See Also

Functions taxondive, treedive, and treedist use these data sets.


https://doi.org/10.5061/dryad.63q27
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Examples

data(dune. taxon)
data(dune.phylodis)

eigenvals Extract Eigenvalues from an Ordination Object

Description

Function extracts eigenvalues from an object that has them. Many multivariate methods return such

objects.
Usage
eigenvals(x, ...)
## S3 method for class 'cca'
eigenvals(x, model = c("all”, "unconstrained”, "constrained"”),
constrained = NULL, ...)
## S3 method for class 'eigenvals'
summary (object, ...)
Arguments
X An object from which to extract eigenvalues.
object An eigenvals result object.
model Which eigenvalues to return for objects that inherit from class "cca” only.
constrained Return only constrained eigenvalues. Deprecated as of vegan 2.5-0. Use model
instead.
Other arguments to the functions (usually ignored)
Details

This is a generic function that has methods for cca, wemdscale, pcnm, prcomp, princomp, dudi
(of aded), and pca and pco (of labdsv) result objects. The default method also extracts eigen-
values if the result looks like being from eigen or svd. Functions prcomp and princomp contain
square roots of eigenvalues that all called standard deviations, but eigenvals function returns their
squares. Function svd contains singular values, but function eigenvals returns their squares. For
constrained ordination methods cca, rda and capscale the function returns the both constrained
and unconstrained eigenvalues concatenated in one vector, but the partial component will be ig-
nored. However, with argument constrained = TRUE only constrained eigenvalues are returned.

The summary of eigenvals result returns eigenvalues, proportion explained and cumulative propor-
tion explained. The result object can have some negative eigenvalues (wcmdscale, capscale, pcnm)
which correspond to imaginary axes of Euclidean mapping of non-Euclidean distances (Gower
1985). In these cases, the sum of absolute values of eigenvalues is used in calculating the propor-
tions explained, and real axes (corresponding to positive eigenvalues) will only explain a part of
total variation (Mardia et al. 1979, Gower 1985).
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Value

An object of class "eigenvals”, which is a vector of eigenvalues.

The summary method returns an object of class "summary.eigenvals”, which is a matrix.

Author(s)

Jari Oksanen.

References
Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81-97.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

See Also

eigen, svd, prcomp, princomp, cca, rda, capscale, wcmdscale, cca.object.

Examples

data(varespec)

data(varechem)

mod <- cca(varespec ~ Al + P + K, varechem)
ev <- eigenvals(mod)

ev

summary (ev)

## choose which eignevalues to return

eigenvals(mod, model = "unconstrained")
envfit Fits an Environmental Vector or Factor onto an Ordination
Description

The function fits environmental vectors or factors onto an ordination. The projections of points
onto vectors have maximum correlation with corresponding environmental variables, and the factors
show the averages of factor levels.

Usage

## Default S3 method:

envfit(ord, env, permutations = 999, strata = NULL,
choices=c(1,2), display = "sites”, w = weights(ord, display),
na.rm = FALSE, ...)

## S3 method for class 'formula'
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envfit(formula,

envfit

data, ...)

## S3 method for class 'envfit'

plot(x, choices

= c(1,2), labels, arrow.mul, at = c(0,0),

axis = FALSE, p.max = NULL, col = "blue"”, bg, add = TRUE, ...)

## S3 method for class 'envfit'

scores(x, display, choices, ...)

vectorfit(X, P, permutations = @, strata = NULL, w, ...)

factorfit(X, P, permutations = @, strata = NULL, w, ...)

Arguments

ord An ordination object or other structure from which the ordination scores can
be extracted (including a data frame or matrix of scores).

env Data frame, matrix or vector of environmental variables. The variables can be
of mixed type (factors, continuous variables) in data frames.

X Matrix or data frame of ordination scores.
Data frame, matrix or vector of environmental variable(s). These must be con-
tinuous for vectorfit and factors or characters for factorfit.

permutations a list of control values for the permutations as returned by the function how, or

formula, data

na.rm

choices
labels

arrow.mul

at

axis

p.max

col

bg

the number of permutations required, or a permutation matrix where each row
gives the permuted indices. Set permutations = @ to skip permutations.

Model formula and data.

Remove points with missing values in ordination scores or environmental vari-
ables. The operation is casewise: the whole row of data is removed if there is a
missing value and na.rm = TRUE.

A result object from envfit. For ordiArrowMul and ordiArrowTextXY this
must be a two-column matrix (or matrix-like object) containing the coordinates
of arrow heads on the two plot axes, and other methods extract such a structure
from the envfit results.

Axes to plotted.

Change plotting labels. The argument should be a list with elements vectors
and factors which give the new plotting labels. If either of these elements is
omitted, the default labels will be used. If there is only one type of elements
(only vectors or only factors), the labels can be given as vector. The default
labels can be displayed with labels command.

Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given and add = TRUE.

The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specify arrrow.mul.

Plot axis showing the scaling of fitted arrows.

Maximum estimated P value for displayed variables. You must calculate P
values with setting permutations to use this option.

Colour in plotting.

Background colour for labels. If bg is set, the labels are displayed with ordilabel
instead of text. See Examples for using semitransparent background.
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add Results added to an existing ordination plot.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("1c") in constrained ordination (cca, rda, capscale). In scores function they
are either "vectors” or "factors” (with synonyms "bp” or "cn”, resp.).

w Weights used in fitting (concerns mainly cca and decorana results which have
nonconstant weights).

Parameters passed to scores.

Details

Function envfit finds vectors or factor averages of environmental variables. Function plot.envfit
adds these in an ordination diagram. If X is a data. frame, envfit uses factorfit for factor vari-
ables and vectorfit for other variables. If X is a matrix or a vector, envfit uses only vectorfit.
Alternatively, the model can be defined a simplified model formula, where the left hand side must
be an ordination result object or a matrix of ordination scores, and right hand side lists the envi-
ronmental variables. The formula interface can be used for easier selection and/or transformation
of environmental variables. Only the main effects will be analysed even if interaction terms were
defined in the formula.

The ordination results are extracted with scores and all extra arguments are passed to the scores.
The fitted models only apply to the results defined when extracting the scores when using envfit.
For instance, scaling in constrained ordination (see scores.rda, scores.cca) must be set in the
same way in envfit and in the plot or the ordination results (see Examples).

The printed output of continuous variables (vectors) gives the direction cosines which are the co-
ordinates of the heads of unit length vectors. In plot these are scaled by their correlation (square
root of the column r2) so that “weak” predictors have shorter arrows than “strong” predictors.
You can see the scaled relative lengths using command scores. The plotted (and scaled) arrows
are further adjusted to the current graph using a constant multiplier: this will keep the relative
r2-scaled lengths of the arrows but tries to fill the current plot. You can see the multiplier using
ordiArrowMul (result_of_envfit), and set it with the argument arrow.mul.

Functions vectorfit and factorfit can be called directly. Function vectorfit finds directions
in the ordination space towards which the environmental vectors change most rapidly and to which
they have maximal correlations with the ordination configuration. Function factorfit finds aver-
ages of ordination scores for factor levels. Function factorfit treats ordered and unordered factors
similarly.

If permutations > 0, the significance of fitted vectors or factors is assessed using permutation of
environmental variables. The goodness of fit statistic is squared correlation coefficient (r?). For
factors this is defined as 72 = 1 — ss,, /sst, where ss,, and ss; are within-group and total sums of
squares. See permutations for additional details on permutation tests in Vegan.

User can supply a vector of prior weights w. If the ordination object has weights, these will be
used. In practise this means that the row totals are used as weights with cca or decorana results.
If you do not like this, but want to give equal weights to all sites, you should set w=NULL. The
fitted vectors are similar to biplot arrows in constrained ordination only when fitted to LC scores
(display = "1c") and you set scaling = "species” (see scores.cca). The weighted fitting gives
similar results to biplot arrows and class centroids in cca.
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The lengths of arrows for fitted vectors are automatically adjusted for the physical size of the plot,
and the arrow lengths cannot be compared across plots. For similar scaling of arrows, you must ex-
plicitly set the arrow.mul argument in the plot command; see ordiArrowMul and ordiArrowTextXY.

The results can be accessed with scores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables.
Value

Functions vectorfit and factorfit return lists of classes vectorfit and factorfit which have
a print method. The result object have the following items:

arrows Arrow endpoints from vectorfit. The arrows are scaled to unit length.
centroids Class centroids from factorfit.
r Goodness of fit statistic: Squared correlation coefficient

permutations  Number of permutations.
control A list of control values for the permutations as returned by the function how.

pvals Empirical P-values for each variable.

Function envfit returns a list of class envfit with results of vectorfit and envfit as items.

Function plot.envfit scales the vectors by correlation.

Note

Fitted vectors have become the method of choice in displaying environmental variables in ordi-
nation. Indeed, they are the optimal way of presenting environmental variables in Constrained
Correspondence Analysis cca, since there they are the linear constraints. In unconstrained ordi-
nation the relation between external variables and ordination configuration may be less linear, and
therefore other methods than arrows may be more useful. The simplest is to adjust the plotting
symbol sizes (cex, symbols) by environmental variables. Fancier methods involve smoothing and
regression methods that abound in R, and ordisurf provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may be ordisurf.

Examples

data(varespec, varechem)

library(MASS)

ord <- metaMDS(varespec)

(fit <- envfit(ord, varechem, perm = 999))
scores(fit, "vectors")

plot(ord)

plot(fit)
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plot(fit, p.max = 0.05, col = "red")

## Adding fitted arrows to CCA. We use "lc" scores, and hope

## that arrows are scaled similarly in cca and envfit plots

ord <- cca(varespec ~ Al + P + K, varechem)

plot(ord, type="p")

fit <- envfit(ord, varechem, perm = 999, display = "lc")

plot(fit, p.max = 0.05, col = "red")

## 'scaling' must be set similarly in envfit and in ordination plot
plot(ord, type = "p", scaling = "sites")

fit <- envfit(ord, varechem, perm = @, display = "1lc”, scaling = "sites")
plot(fit, col = "red")

## Class variables, formula interface, and displaying the

## inter-class variability with ordispider, and semitransparent

## white background for labels (semitransparent colours are not

## supported by all graphics devices)

data(dune)

data(dune.env)

ord <- cca(dune)

fit <- envfit(ord ~ Moisture + A1, dune.env, perm = 0)

plot(ord, type = "n")

with(dune.env, ordispider(ord, Moisture, col="skyblue"))

with(dune.env, points(ord, display = "sites”, col = as.numeric(Moisture),

pch=16))

plot(fit, cex=1.2, axis=TRUE, bg = rgb(1, 1, 1, 0.5))

## Use shorter labels for factor centroids

labels(fit)

plot(ord)

plot(fit, labels=list(factors = paste("M", c(1,2,4,5), sep = "")),
bg = rgb(1,1,0,0.5))

eventstar Scale Parameter at the Minimum of the Tsallis Evenness Profile

Description

The function eventstar finds the minimum (¢*) of the evenness profile based on the Tsallis en-
tropy. This scale factor of the entropy represents a specific weighting of species relative frequencies
that leads to minimum evenness of the community (Mendes et al. 2008).

Usage

eventstar(x, gmax = 5)

Arguments
X A community matrix or a numeric vector.
gmax Maximum scale parameter of the Tsallis entropy to be used in finding the mini-

mum of Tsallis based evenness in the range c (@, gmax).
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Details

The function eventstar finds a characteristic value of the scale parameter g of the Tsallis entropy
corresponding to minimum of the evenness (equitability) profile based on Tsallis entropy. This
value was proposed by Mendes et al. (2008) as ¢*.

The ¢* index represents the scale parameter of the one parameter Tsallis diversity family that leads
to the greatest deviation from the maximum equitability given the relative abundance vector of a
community.

The value of ¢* is found by identifying the minimum of the evenness profile over scaling factor
q by one-dimensional minimization. Because evenness profile is known to be a convex function,
it is guaranteed that underlying optimize function will find a unique solution if it is in the range
c(0@,gmax).

The scale parameter value ¢* is used to find corresponding values of diversity (H4+), evenness
(H,~ (max)), and numbers equivalent (D,+). For calculation details, see tsallis and Examples
below.

Mendes et al. (2008) advocated the use of ¢* and corresponding diversity, evenness, and Hill num-
bers, because it is a unique value representing the diversity profile, and is is positively associated
with rare species in the community, thus it is a potentially useful indicator of certain relative abun-
dance distributions of the communities.

Value

A data frame with columns:
* gstar scale parameter value ¢* corresponding to minimum value of Tsallis based evenness
profile.
* Estar Value of evenness based on normalized Tsallis entropy at ¢*.
* Hstar Value of Tsallis entropy at g*.
* Dstar Value of Tsallis entropy at ¢* converted to numbers equivalents (also called as Hill

numbers, effective number of species, ‘true’ diversity; cf. Jost 2007).

See tsallis for calculation details.

Note

Values for ¢* found by Mendes et al. (2008) ranged from 0.56 and 1.12 presenting low variability,
so an interval between 0 and 5 should safely encompass the possibly expected ¢* values in practice,
but profiling the evenness and changing the value of the gmax argument is advised if output values
near the range limits are found.

Author(s)

Eduardo Ribeiro Cunha <edurcunha@gmail. com>and Heloisa Beatriz Antoniazi Evangelista <helobeatriz@gmail.com>,
with technical input of Péter S6lymos.
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References

Mendes, R.S., Evangelista, L.R., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (2008) A unified
index to measure ecological diversity and species rarity. Ecography 31, 450-456.

Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427-2439.

Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479-487.

See Also

Tsallis entropy: tsallis

Examples

data(BCI)

(x <- eventstar(BCI[1:5,1))

## profiling

y <- as.numeric(BCI[10,])

(z <- eventstar(y))

q <- seq(@, 2, 0.05)

Eprof <- tsallis(y, scales=q, norm=TRUE)

Hprof <- tsallis(y, scales=q)

Dprof <- tsallis(y, scales=q, hill=TRUE)

opar <- par(mfrow=c(3,1))

plot(q, Eprof, type="1", main="Evenness")

abline(v=z$qgstar, h=tsallis(y, scales=z$gstar, norm=TRUE), col=2)
plot(qg, Hprof, type="1", main="Diversity")

abline(v=z$qstar, h=tsallis(y, scales=z$gstar), col=2)

plot(qg, Dprof, type="1", main="Effective number of species")
abline(v=z$qgstar, h=tsallis(y, scales=z$qgstar, hill=TRUE), col=2)

par(opar)
fisherfit Fit Fisher’s Logseries and Preston’s Lognormal Model to Abundance
Data
Description

Function fisherfit fits Fisher’s logseries to abundance data. Function prestonfit groups species

frequencies into doubling octave classes and fits Preston’s lognormal model, and function prestondistr

fits the truncated lognormal model without pooling the data into octaves.

Usage
fisherfit(x, ...)
prestonfit(x, tiesplit = TRUE, ...)
prestondistr(x, truncate = -1, ...)

## S3 method for class 'prestonfit'
plot(x, xlab = "Frequency”, ylab = "Species”, bar.col = "skyblue",
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line.col = "red”, 1lwd = 2, ...)
## S3 method for class 'prestonfit'
lines(x, line.col = "red”, 1lwd = 2, ...)
veiledspec(x, ...)
as.fisher(x, ...)

## S3 method for class 'fisher'
plot(x, xlab = "Frequency”, ylab = "Species”, bar.col = "skyblue"”,

kind = c("bar”, "hiplot”, "points", "lines"), add = FALSE, ...)

as.preston(x, tiesplit = TRUE, ...)

## S3 method for class 'preston'

plot(x, xlab = "Frequency”, ylab = "Species”, bar.col = "skyblue", ...)

## S3 method for class 'preston'

lines(x, xadjust = 0.5, ...)

Arguments

X Community data vector for fitting functions or their result object for plot func-
tions.

tiesplit Split frequencies 1, 2, 4, 8 etc between adjacent octaves.

truncate Truncation point for log-Normal model, in log2 units. Default value —1 cor-
responds to the left border of zero Octave. The choice strongly influences the
fitting results.

xlab, ylab Labels for x and y axes.

bar.col Colour of data bars.

line.col Colour of fitted line.

lwd Width of fitted line.

kind Kind of plot to drawn: "bar" is similar bar plot asin plot.fisherfit, "hiplot”
draws vertical lines as with plot(...,type="h"), and "points” and "lines"”
are obvious.

add Add to an existing plot.

xadjust Adjustment of horizontal positions in octaves.
Other parameters passed to functions. Ignored in prestonfit and tiesplit
passed to as.preston in prestondistr.

Details

In Fisher’s logarithmic series the expected number of species f with n observed individuals is
fn = az™/n (Fisher et al. 1943). The estimation is possible only for genuine counts of individuals.
The parameter « is used as a diversity index, and « and its standard error can be estimated with a
separate function fisher.alpha. The parameter x is taken as a nuisance parameter which is not
estimated separately but taken to be n/(n + «). Helper function as. fisher transforms abundance
data into Fisher frequency table.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3-4, 5-8, 9-16 etc. occurrences. It seems that Preston
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regarded frequencies 1, 2, 4, etc.. as “tied” between octaves (Williamson & Gaston 2005). This
means that only half of the species with frequency 1 are shown in the lowest octave, and the rest
are transferred to the second octave. Half of the species from the second octave are transferred to
the higher one as well, but this is usually not as large a number of species. This practise makes data
look more lognormal by reducing the usually high lowest octaves. This can be achieved by setting
argument tiesplit = TRUE. With tiesplit = FALSE the frequencies are not split, but all ones are
in the lowest octave, all twos in the second, etc. Williamson & Gaston (2005) discuss alternative
definitions in detail, and they should be consulted for a critical review of log-Normal model.

Any logseries data will look like lognormal when plotted in Preston’s way. The expected frequency
f at abundance octave o is defined by f, = So exp(—(logy(0) — 1)2/2/0?), where ju is the location
of the mode and ¢ the width, both in log, scale, and Sy is the expected number of species at mode.
The lognormal model is usually truncated on the left so that some rare species are not observed.
Function prestonfit fits the truncated lognormal model as a second degree log-polynomial to the
octave pooled data using Poisson (when tiesplit = FALSE) or quasi-Poisson (when tiesplit =
TRUE) error. Function prestondistr fits left-truncated Normal distribution to log, transformed
non-pooled observations with direct maximization of log-likelihood. Function prestondistr is
modelled after function fitdistr which can be used for alternative distribution models.

The functions have common print, plot and 1ines methods. The 1ines function adds the fitted
curve to the octave range with line segments showing the location of the mode and the width (sd)
of the response. Function as.preston transforms abundance data to octaves. Argument tiesplit
will not influence the fit in prestondistr, but it will influence the barplot of the octaves.

The total extrapolated richness from a fitted Preston model can be found with function veiledspec.
The function accepts results both from prestonfit and from prestondistr. If veiledspec is
called with a species count vector, it will internally use prestonfit. Function specpool provides
alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal model
seems to be truncated at both ends, and this may be the main reason why its result differ from
lognormal models fitted in Rank—Abundance diagrams with functions rad. lognormal.

Value

The function prestonfit returns an object with fitted coefficients, and with observed (freq)
and fitted (fitted) frequencies, and a string describing the fitting method. Function prestondistr
omits the entry fitted. The function fisherfit returns the result of nlm, where item estimate
is a. The result object is amended with the nuisance parameter and item fisher for the observed
data from as.fisher

Author(s)
Bob O’Hara and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12: 42-58.

Preston, EW. (1948) The commonness and rarity of species. Ecology 29, 254-283.

Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hy-
pothesis for the species—abundance distribution. Journal of Animal Ecology 74, 409—-422.
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See Also

diversity, fisher.alpha, radfit, specpool. Function fitdistr of MASS package was used
as the model for prestondistr. Function density can be used for smoothed non-parametric
estimation of responses, and qgplot is an alternative, traditional and more effective way of studying
concordance of observed abundances to any distribution model.

Examples

data(BCI)

mod <- fisherfit(BCI[5,1])

mod

# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))

mod.1l <- prestondistr(colSums(BCI))
mod.oct

mod. 11

plot(mod.oct)

lines(mod.11l, line.col="blue3") # Different
## Smoothed density

den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct
## Extrapolated richness
veiledspec(mod.oct)

veiledspec(mod.11)

goodness.cca Diagnostic Tools for [ Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functions goodness and inertcomp can be used to assess the goodness of fit for individual sites
or species. Function vif.cca and alias.cca can be used to analyse linear dependencies among
constraints and conditions. In addition, there are some other diagnostic tools (see ’Details’).

Usage
## S3 method for class 'cca'
goodness(object, choices, display = c("species”, "sites"),
model = c(”"CCA", "CA"), summarize = FALSE, addprevious = FALSE, ...)
inertcomp(object, display = c("species”, "sites"),
unity = FALSE, proportional = FALSE)
spenvcor (object)
intersetcor(object)

vif.cca(object)
## S3 method for class 'cca'
alias(object, names.only = FALSE, ...)
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Arguments

object A result object from cca, rda, dbrda or capscale.

display Display "species” or "sites”. Species are not available in dbrda and capscale.

choices Axes shown. Default is to show all axes of the "model”.

model Show constrained ("CCA") or unconstrained ("CA") results.

summarize Show only the accumulated total.

addprevious Add the variation explained by previous components when statistic="explained".
For model = "CCA" add conditioned (partialled out) variation, and for model =
"CA" add both conditioned and constrained variation. This will give cumulative
explanation. The argument has no effect when statistic="distance"”, but
this will always show the residual distance after current axis and all previous
components.

unity Scale inertia components to unit sum (sum of all items is 1).

proportional Give the inertia components as proportional for the corresponding total of the
item (sum of each row is 1). This option takes precedence over unity.

names.only Return only names of aliased variable(s) instead of defining equations.

Other parameters to the functions.

Details

Function goodness gives cumulative proportion of inertia accounted by species up to chosen axes.
The proportions can be assessed either by species or by sites depending on the argument display,
but species are not available in distance-based dbrda. The function is not implemented for capscale.

Function inertcomp decomposes the inertia into partial, constrained and unconstrained compo-
nents for each site or species. Legendre & De Caceres (2012) called these inertia components as
local contributions to beta-diversity (LCBD) and species contributions to beta-diversity (SCBD),
and they give these as relative contributions summing up to unity (argument unity = TRUE). For
this interpretation, appropriate dissimilarity measures should be used in dbrda or appropriate stan-
dardization in rda (Legendre & De Caceres 2012). The function is not implemented for capscale.

Function spenvcor finds the so-called “species — environment correlation” or (weighted) correla-
tion of weighted average scores and linear combination scores. This is a bad measure of goodness
of ordination, because it is sensitive to extreme scores (like correlations are), and very sensitive to
overfitting or using too many constraints. Better models often have poorer correlations. Function
ordispider can show the same graphically.

Function intersetcor finds the so-called “interset correlation” or (weighted) correlation of weighted
averages scores and constraints. The defined contrasts are used for factor variables. This is a bad
measure since it is a correlation. Further, it focuses on correlations between single contrasts and sin-
gle axes instead of looking at the multivariate relationship. Fitted vectors (envfit) provide a better
alternative. Biplot scores (see scores. cca) are a multivariate alternative for (weighted) correlation
between linear combination scores and constraints.

Function vif.cca gives the variance inflation factors for each constraint or contrast in factor con-
straints. In partial ordination, conditioning variables are analysed together with constraints. Vari-
ance inflation is a diagnostic tool to identify useless constraints. A common rule is that values over
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10 indicate redundant constraints. If later constraints are complete linear combinations of condi-
tions or previous constraints, they will be completely removed from the estimation, and no biplot
scores or centroids are calculated for these aliased constraints. A note will be printed with default
output if there are aliased constraints. Function alias will give the linear coefficients defining the
aliased constraints, or only their names with argument names.only = TRUE.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to use goodness statistics to remove species from ordination plots, but this
may not be a good idea, as the total inertia is not a meaningful concept in cca, in particular for rare
species.

Author(s)

Jari Oksanen. The vif.cca relies heavily on the code by W. N. Venables. alias.ccais a simplified
version of alias. 1m.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factors. R News 3(1), 13—15.

Legendre, P. & De Caceres, M. (2012). Beta diversity as the variance of community data: dissimi-
larity coefficients and partitioning. Ecology Letters 16, 951-963. doi: 10.1111/ele.12141

See Also

cca, rda, dbrda, capscale.

Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ Al + Management + Condition(Moisture), data=dune.env)
goodness(mod, addprevious = TRUE)
goodness(mod, addprevious = TRUE, summ = TRUE)
# Inertia components

inertcomp(mod, prop = TRUE)

inertcomp(mod)

# vif.cca

vif.cca(mod)

# Aliased constraints

mod <- cca(dune ~ ., dune.env)

mod

vif.cca(mod)

alias(mod)


https://doi.org/10.1111/ele.12141
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with(dune.env, table(Management, Manure))
# The standard correlations (not recommended)

spenvcor (mod)
intersetcor(mod)
goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling
Description

Function goodness . metaMDS find goodness of fit measure for points in nonmetric multidimensional
scaling, and function stressplot makes a Shepard diagram.

Usage

## S3 method for class 'metaMDS'

goodness(object, dis, ...)

## Default S3 method:

stressplot(object, dis, pch, p.col = "blue”, 1l.col = "red",

wd = 2, ...)
Arguments
object A result object from metaMDS, monoMDS or isoMDS.
dis Dissimilarities. This should not be used with metaMDS or monoMDS, but must be

used with isoMDS.

pch Plotting character for points. Default is dependent on the number of points.
p.col, 1.col Point and line colours.
lwd Line width. For monoMDS the default is 1wd = 1 if more than two lines are drawn,

and 1lwd = 2 otherwise.

Other parameters to functions, e.g. graphical parameters.

Details

Function goodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit. The
absolute values of the goodness statistic depend on the definition of the stress: isoMDS expresses
stress in percents, and therefore its goodness values are 100 times higher than those of monoMDS
which expresses the stress as a proportion.

Function stressplot draws a Shepard diagram which is a plot of ordination distances and mono-
tone or linear fit line against original dissimilarities. In addition, it displays two correlation-like
statistics on the goodness of fit in the graph. The nonmetric fit is based on stress S and defined
as R? = 1 — S2. The “linear fit” is the squared correlation between fitted values and ordination
distances. For monoMDS, the “linear fit” and R? from “stress type 2" are equal.
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Both functions can be used with metaMDS, monoMDS and isoMDS. The original dissimilarities should
not be given for monoMDS or metaMDS results (the latter tries to reconstruct the dissimilarities using
metaMDSredist if isoMDS was used as its engine). With isoMDS the dissimilarities must be given.
In either case, the functions inspect that dissimilarities are consistent with current ordination, and
refuse to analyse inconsistent dissimilarities. Function goodness.metaMDS is generic in vegan, but
you must spell its name completely with isoMDS which has no class.

Value

Function goodness returns a vector of values. Function stressplot returns invisibly an object
with items for original dissimilarities, ordination distances and fitted values.

Author(s)

Jari Oksanen.

See Also

metaMDS, monoMDS, isoMDS, Shepard. Similar diagrams for eigenvector ordinations can be drawn
with stressplot.wcmdscale, stressplot.cca, stressplot.rda and stressplot.capscale.

Examples

data(varespec)

mod <- metaMDS(varespec)

stressplot(mod)

gof <- goodness(mod)

gof

plot(mod, display = "sites”, type = "n")

points(mod, display = "sites"”, cex = 2*gof/mean(gof))

humpfit No-interaction Model for Hump-backed Species Richness vs. Biomass

Description

Function humpfit fits a no-interaction model for species richness vs. biomass data (Oksanen 1996).
This is a null model that produces a hump-backed response as an artifact of plant size and density.

This function is .Deprecated: It was very rarely used, and it was problematic to fit robustly. The
function was transferred to the natto package and is still available from https://github.com/
jarioksa/natto/.


https://github.com/jarioksa/natto/
https://github.com/jarioksa/natto/

humpfit

Usage
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humpfit(mass, spno, family = poisson, start)
## S3 method for class 'humpfit'

summary (object,

.0

## S3 method for class 'humpfit'

predict(object, newdata = NULL, ...)

## S3 method for class 'humpfit'

plot(x, xlab = "Biomass"”, ylab = "Species Richness”, lwd = 2,
l.col = "blue”, p.col =1, type = "b", ...)

## S3 method for class 'humpfit'

points(x,

## S3 method for class 'humpfit'

lines(x, segments=101, ...)

## S3 method for class 'humpfit'

profile(fitted, parm = 1:3, alpha = 0.01, maxsteps = 20, del = zmax/5, ...)
Arguments

mass Biomass.

spno Species richness.

start Vector of starting values for all three parameters.

family Family of error distribution. Any family can be used, but the link function is

always Fisher’s diversity model, and other 1ink functions are silently ignored.

X, object, fitted

newdata
xlab,ylab
lwd

l.col, p.col
type
segments
parm

Result object of humpfit

Values of mass used in predict. The original data values are used if missing.
Axis labels in plot

Line width

Line and point colour in plot

Type of plot: "p" for observed points, "1" for fitted lines, "b" for both, and
"n" for only setting axes.

Number of segments used for fitted lines.

Profiled parameters.

alpha, maxsteps, del

Details

Parameters for profiling range and density.

Other parameters to functions.

The no-interaction model assumes that the humped species richness pattern along biomass gradient
is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that
plants have a fixed size, and biomass increases with increasing number of plants. When the sites
becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass
is reached by increasing the plant size, and then the number of plants and species richness will
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decrease. At biomasses below the hump, plant number and biomass are linearly related, and above
the hump, plant number is proportional to inverse squared biomass. The number of plants is related
to the number of species by the relationship (1ink function) from Fisher’s log-series (Fisher et al.
1943).

The parameters of the model are:

1. hump: the location of the hump on the biomass gradient.
2. scale: an arbitrary multiplier to translate the biomass into virtual number of plants.

3. alpha: Fisher’s « to translate the virtual number of plants into number of species.

The parameters scale and alpha are intermingled and this function should not be used for esti-
mating Fisher’s a.. Probably the only meaningful and interesting parameter is the location of the
hump.

Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-
Poisson families, and function profile should be used to inspect the fitted models. If you have
loaded package MASS, you can use functions plot.profile, pairs.profile for graphical in-
spection of the profiles, and confint.profile.glm for the profile based confidence intervals.

The original model intended to show that there is no need to speculate about “competition” and
“stress” (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed
plot size for varying plant sizes and densities.

Value

The function returns an object of class "humpfit"” inheriting from class "glm"”. The result object
has specific summary, predict, plot, points and lines methods. In addition, it can be accessed
by the following methods for glm objects: AIC, extractAIC, deviance, coef, residuals.glm
(except type = "partial”), fitted, and perhaps some others. In addition, function ellipse.glm
(package ellipse) can be used to draw approximate confidence ellipses for pairs of parameters, if
the normal assumptions look appropriate.

Note

The function is a replacement for the original GLIM4 function at the archive of Journal of Ecol-
ogy. There the function was represented as a mixed glm with one non-linear parameter (hump) and
a special one-parameter link function from Fisher’s log-series. The current function directly ap-
plies non-linear maximum likelihood fitting using function nlm. Some expected problems with the
current approach are:

* The function is discontinuous at hump and may be difficult to optimize in some cases (the lines
will always join, but the derivative jumps).

 The function does not try very hard to find sensible starting values and can fail. The user may
supply starting values in argument start if fitting fails.

* The estimation is unconstrained, but both scale and alpha should always be positive. Perhaps
they should be fitted as logarithmic. Fitting Gamma family models might become easier, too.

Author(s)

Jari Oksanen
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References

Al-Mufti, M.M., Sykes, C.L, Furness, S.B., Grime, J.P & Band, S.R. (1977) A quantitative analysis
of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65,759-791.
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See Also

fisherfit, profile.glm, confint.glm.

Examples

##
## Data approximated from Al-Mufti et al. (1977)
#H#

mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)

sol <- humpfit(mass, spno)

summary(sol) # Almost infinite alpha...

plot(sol)

# confint is in MASS, and impicitly calls profile.humpfit.

# Parameter 3 (alpha) is too extreme for profile and confint, and we
# must use only "hump” and "scale”.

library(MASS)

plot(profile(sol, parm=1:2))

confint(sol, parm=c(1,2))

indpower Indicator Power of Species

Description
Indicator power calculation of Halme et al. (2009) or the congruence between indicator and target
species.

Usage

indpower(x, type = 0)

Arguments

X Community data frame or matrix.

type The type of statistic to be returned. See Details for explanation.
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Details

Halme et al. (2009) described an index of indicator power defined as I Py = va X b, where a =
S/Opandb =1— (O — S)/(N — Oy). N is the number of sites, S is the number of shared
occurrences of the indicator () and the target (T') species. O; and Op are number of occurrences
of the indicator and target species. The type argument in the function call enables to choose which
statistic to return. type = 0 returns [P, type =1 returns a, type = 2 returns b. Total indicator
power (TIP) of an indicator species is the column mean (without its own value, see examples).
Halme et al. (2009) explain how to calculate confidence intervals for these statistics, see Examples.

Value

A matrix with indicator species as rows and target species as columns (this is indicated by the first
letters of the row/column names).

Author(s)

Peter Solymos

References

Halme, P., Monkkonen, M., Kotiaho, J. S, Ylisirnio, A-L. 2009. Quantifying the indicator power of
an indicator species. Conservation Biology 23: 1008-1016.

See Also

indval (package labdsv) for the indicator species analysis of Dufréne & Legendre. Function beals
estimates individual cell probabilities of species occurrences.

Examples

data(dune)

## IP values

ip <- indpower (dune)

## and TIP values

diag(ip) <- NA

(TIP <- rowMeans(ip, na.rm=TRUE))

## p value calculation for a species
## from Halme et al. 2009

## i is ID for the species

i<-1

fun <- function(x, i) indpower(x)[i,-i]
## 'c@' randomizes species occurrences
os <- oecosimu(dune, fun, "c@", i=i, nsimul=99)
## get z values from oecosimu output

z <- os$oecosimu$z

## p-value

(p <= sum(z) / sqrt(length(z)))

## 'heterogeneity' measure

(chi2 <- sum((z - mean(z))*2))
pchisq(chi2, df=length(z)-1)
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## Halme et al.'s suggested output
out <- c(TIP=TIP[il],
significance=p,
heterogeneity=chi2,
minIP=min(fun(dune, i=i)),
varIP=sd(fun(dune, i=i)*2))
out

influence.cca Linear Model Diagnostics for Constrained Ordination

Description

This set of function extracts influence statistics and some other linear model statistics directly from
a constrained ordination result object from cca, rda, capscale or dbrda. The constraints are
linear model functions and these support functions return identical results as the corresponding
linear models (1m), and you can use their documentation. The main functions for normal usage
are leverage values (hatvalues), standardized residuals (rstandard), studentized or leave-one-
out residuals (rstudent), and Cook’s distance (cooks.distance). In addition, vcov returns the
variance-covariance matrix of coefficients, and its diagonal values the variances of coefficients.
Other functions are mainly support functions for these, but they can be used directly.

Usage

## S3 method for class 'cca'

hatvalues(model, ...)

## S3 method for class 'cca'

rstandard(model, type = c("response”, "canoco"), ...)

## S3 method for class 'cca'

rstudent(model, type = c("response”, "canoco"), ...)

## S3 method for class 'cca'

cooks.distance(model, type = c("response”, "canoco"), ...)

## S3 method for class 'cca
sigma(object, type = c("response”, "canoco"), ...)
## S3 method for class 'cca'

vcov(object, type = "canoco”, ...)

## S3 method for class 'cca'

SSD(object, type = "canoco”, ...)

## S3 method for class 'cca'
ar(x, ...)

## S3 method for class 'cca'
df.residual(object, ...)
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Arguments

model, object, x
A constrained ordination result object.

type Type of statistics used for extracting raw residuals and residual standard devia-
tion (sigma). Either "response” for species data or difference of WA and LC
scores for "canoco”.

Other arguments to functions (ignored).

Details

The vegan algorithm for constrained ordination uses linear model (or weighted linear model in cca)
to find the fitted values of dependent community data, and constrained ordination is based on this
fitted response (Legendre & Legendre 2012). The hatvalues give the leverage values of these con-
straints, and the leverage is independent on the response data. Other influence statistics (rstandard,
rstudent, cooks.distance) are based on leverage, and on the raw residuals and residual standard
deviation (sigma). With type = "response” the raw residuals are given by the unconstrained com-
ponent of the constrained ordination, and influence statistics are a matrix with dimensions no. of
observations times no. of species. For cca the statistics are the same as obtained from the 1m model
using Chi-square standardized species data (see decostand) as dependent variable, and row sums
of community data as weights, and for rda the Im model uses non-modified community data and no
weights.

The algorithm in the CANOCO software constraints the results during iteration by performing a
linear regression of weighted averages (WA) scores on constraints and taking the fitted values of
this regression as linear combination (LC) scores (ter Braak 1984). The WA scores are directly
found from species scores, but LC scores are linear combinations of constraints in the regression.
With type = "canoco” the raw residuals are the differences of WA and LC scores, and the residual
standard deviation (sigma) is taken to be the axis sum of squared WA scores minus one. These
quantities have no relationship to residual component of ordination, but they rather are method-
ological artefacts of an algorithm that is not used in vegan. The result is a matrix with dimensions
no. of observations times no. of constrained axes.

Function vcov returns the matrix of variances and covariances of regression coefficients. The diag-
onal values of this matrix are the variances, and their square roots give the standard errors of regres-
sion coefficients. The function is based on SSD that extracts the sum of squares and crossproducts
of residuals. The residuals are defined similarly as in influence measures and with each type they
have similar properties and limitations, and define the dimensions of the result matrix.

Note

Function as.mlm casts an ordination object to a multiple linear model of class "mlm” (see 1m), and
similar statistics can be derived from that modified object as with this set of functions. However,
there are some problems in the R implementation of the further analysis of multiple linear model
objects. When the results differ, the current set of functions is more probable to be correct. The use
of as.mlm objects should be avoided.

Author(s)

Jari Oksanen
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References

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English ed. Elsevier.

ter Braak, C.J.F. (1984-): CANOCO - a FORTRAN program for canonical community ordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis. TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

See Also

Corresponding 1m methods and as.mlm.cca. Function ordiresids provides lattice graphics for
residuals.

Examples

data(varespec, varechem)

mod <- cca(varespec ~ Al + P + K, varechem)

## leverage

hatvalues(mod)

plot(hatvalues(mod), type = "h")

## ordination plot with leverages: points with high leverage have
## similar LC and WA scores

plot(mod, type = "n")

ordispider(mod) # segment from LC to WA scores

points(mod, dis="si", cex=5%hatvalues(mod), pch=21, bg=2) # WA scores
text(mod, dis="bp", col=4)

## deviation and influence
head(rstandard(mod))
head(cooks.distance(mod))

## Influence measures from 1lm

y <- decostand(varespec, "chi.square") # needed in cca

y1 <- with(y, Cladstel) # take one species for 1lm

Imod1 <- 1Im(yl ~ Al + P + K, varechem, weights = rowSums(varespec))
## numerically identical within 2e-15

range (cooks.distance(lmod1) - cooks.distance(mod)[, "Cladstel”])

## t-values of regression coefficients based on type = "canoco”
## residuals

coef (mod)

coef (mod)/sqrt(diag(vcov(mod, type = "canoco")))

isomap Isometric Feature Mapping Ordination

Description

The function performs isometric feature mapping which consists of three simple steps: (1) retain
only some of the shortest dissimilarities among objects, (2) estimate all dissimilarities as shortest
path distances, and (3) perform metric scaling (Tenenbaum et al. 2000).
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Usage

isomap(dist, ndim=10, ...)

isomapdist(dist, epsilon, k, path = "shortest”, fragmentedOK =FALSE, ...)

## S3 method for class 'isomap'

summary(object, axes = 4, ...)

## S3 method for class 'isomap'

plot(x, net = TRUE, n.col = "gray”, type = "points”, ...)
Arguments

dist Dissimilarities.

ndim Number of axes in metric scaling (argument k in cmdscale).

epsilon Shortest dissimilarity retained.

k Number of shortest dissimilarities retained for a point. If both epsilon and k
are given, epsilon will be used.

path Method used in stepacross to estimate the shortest path, with alternatives
"shortest” and "extended”.

fragmentedOK  What to do if dissimilarity matrix is fragmented. If TRUE, analyse the largest
connected group, otherwise stop with error.

X, object An isomap result object.

axes Number of axes displayed.

net Draw the net of retained dissimilarities.

n.col Colour of drawn net segments. This can also be a vector that is recycled for
points, and the colour of the net segment is a mixture of joined points.

type Plot observations either as "points”, "text"” or use "none” to plot no obser-
vations. The "text" will use ordilabel if net = TRUE and ordiplot if net =
FALSE, and pass extra arguments to these functions.
Other parameters passed to functions.

Details

The function isomap first calls function isomapdist for dissimilarity transformation, and then per-
forms metric scaling for the result. All arguments to isomap are passed to isomapdist. The func-
tions are separate so that the isompadist transformation could be easily used with other functions
than simple linear mapping of cmdscale.

Function isomapdist retains either dissimilarities equal or shorter to epsilon, or if epsilon is
not given, at least k shortest dissimilarities for a point. Then a complete dissimilarity matrix is
reconstructed using stepacross using either flexible shortest paths or extended dissimilarities (for
details, see stepacross).

De’ath (1999) actually published essentially the same method before Tenenbaum et al. (2000), and
De’ath’s function is available in function xdiss in non-CRAN package mvpart. The differences
are that isomap introduced the k criterion, whereas De’ath only used epsilon criterion. In practice,
De’ath also retains higher proportion of dissimilarities than typical isomap.

The plot function uses internally ordiplot, except that it adds text over net using ordilabel. The
plot function passes extra arguments to these functions. In addition, vegan3d package has function
rgl.isomap to make dynamic 3D plots that can be rotated on the screen.
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Value

Function isomapdist returns a dissimilarity object similar to dist. Function isomap returns an
object of class isomap with plot and summary methods. The plot function returns invisibly an
object of class ordiplot. Function scores can extract the ordination scores.

Note

Tenenbaum et al. (2000) justify isomap as a tool of unfolding a manifold (e.g. a ’Swiss Roll’).
Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a
manifold are shorter than across the folds. If data do not have such a manifold structure, the results
are very sensitive to parameter values.

Author(s)

Jari Oksanen

References

De’ath, G. (1999) Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecology 144, 191-199

Tenenbaum, J.B., de Silva, V. & Langford, J.C. (2000) A global network framework for nonlinear
dimensionality reduction. Science 290, 2319-2323.

See Also

The underlying functions that do the proper work are stepacross, distconnected and cmdscale.
Function metaMDS may trigger stepacross transformation, but usually only for longest dissimi-
larities. The plot method of vegan minimum spanning tree function (spantree) has even more
extreme way of isomapping things.

Examples

## The following examples also overlay minimum spanning tree to
## the graphics in red.

op <- par(mar=c(4,4,1,1)+0.2, mfrow=c(2,2))

data(BCI)

dis <- vegdist(BCI)

tr <- spantree(dis)

pl <- ordiplot(cmdscale(dis), main="cmdscale")

lines(tr, pl, col="red")

ord <- isomap(dis, k=3)

ord

pl <- plot(ord, main="isomap k=3")

lines(tr, pl, col="red")

pl <- plot(isomap(dis, k=5), main="isomap k=5")

lines(tr, pl, col="red")

pl <- plot(isomap(dis, epsilon=0.45), main="isomap epsilon=0.45")
lines(tr, pl, col="red")

par(op)

## colour points and web by the dominant species
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dom <- apply(BCI, 1, which.max)

## need nine colours, but default palette has only eight
op <- palette(c(palette("default”), "sienna"))

plot(ord, pch = 16, col = dom, n.col = dom)

palette(op)

kendall.global Kendall coefficient of concordance

Description

Function kendall. global computes and tests the coefficient of concordance among several judges
(variables, species) through a permutation test.

Function kendall. post carries out a posteriori tests of the contributions of individual judges (vari-
ables, species) to the overall concordance of their group through permutation tests.

If several groups of judges are identified in the data table, coefficients of concordance (kendall. global)
or a posteriori tests (kendall.post) will be computed for each group separately. Use in ecology:
to identify significant species associations.

Usage

kendall.global(Y, group, nperm = 999, mult = "holm")
kendall.post(Y, group, nperm = 999, mult = "holm")

Arguments
Y Data file (data frame or matrix) containing quantitative or semiquantitative data.
Rows are objects and columns are judges (variables). In community ecology,
that table is often a site-by-species table.
group A vector defining how judges should be divided into groups. See example below.
If groups are not explicitly defined, all judges in the data file will be considered
as forming a single group.
nperm Number of permutations to be performed. Default is 999.
mult Correct P-values for multiple testing using the alternatives described in p. adjust
and in addition "sidak" (see Details). The Bonferroni correction is overly con-
servative; it is not recommended. It is included to allow comparisons with the
other methods.
Details

Y must contain quantitative data. They will be transformed to ranks within each column before
computation of the coefficient of concordance.

The search for species associations described in Legendre (2005) proceeds in 3 steps:
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(1) Correlation analysis of the species. A possible method is to compute Ward’s agglomera-
tive clustering of a matrix of correlations among the species. In detail: (1.1) compute a Pear-
son or Spearman correlation matrix (correl.matrix) among the species; (1.2) turn it into a dis-
tance matrix: mat.D = as.dist(1-correl.matrix); (1.3) carry out Ward’s hierarchical clustering
of that matrix using hclust: clust.ward = hclust(mat.D, "ward"); (1.4) plot the dendrogram:
plot(clust.ward,hang=-1); (1.5) cut the dendrogram in two groups, retrieve the vector of species
membership: group.2 = cutree(clust.ward,k=2). (1.6) After steps 2 and 3 below, you may have
to come back and try divisions of the species into k = 3,4, 5, ... groups.

(2) Compute global tests of significance of the 2 (or more) groups using the function kendall.global
and the vector defining the groups. Groups that are not globally significant must be refined or aban-
doned.

(3) Compute a posteriori tests of the contribution of individual species to the concordance of their
group using the function kendall.post and the vector defining the groups. If some species have
negative values for "Spearman.mean", this means that these species clearly do not belong to the
group, hence that group is too inclusive. Go back to (1.5) and cut the dendrogram more finely. The
left and right groups can be cut separately, independently of the levels along the dendrogram; write
your own vector of group membership if cutree does not produce the desired groups.

The corrections used for multiple testing are applied to the list of P-values (P); they take into ac-
count the number of tests (k) carried out simultaneously (number of groups in kendall.global, or
number of species in kendall.post). The corrections are performed using function p.adjust; see
that function for the description of the correction methods. In addition, there is Siddk correction
which defined as P, = 1 — (1 — P)*.

Value

A table containing the following information in rows. The columns correspond to the groups of
"judges" defined in vector "group". When function Kendall.post is used, there are as many tables
as the number of predefined groups.

W Kendall’s coefficient of concordance, W.
F F statistic. F = W*(m-1)/(1-W) where m is the number of judges.
Prob.F Probability associated with the F statistic, computed from the F distribution with

nul = n-1-(2/m) and nu2 = nul*(m-1); n is the number of objects.

Corrected prob.F
Probabilities associated with F, corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Chi2 Friedman’s chi-square statistic (Friedman 1937) used in the permutation test of
W.
Prob.perm Permutational probabilities, uncorrected.

Corrected prob.perm
Permutational probabilities corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Spearman.mean  Mean of the Spearman correlations between the judge under test and all the other
judges in the same group.

W.per.species Contribution of the judge under test to the overall concordance statistic for that
group.
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Author(s)

F. Guillaume Blanchet, University of Alberta, and Pierre Legendre, Université de Montréal

References

Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association 32: 675-701.

Kendall, M. G. and B. Babington Smith. 1939. The problem of m rankings. Annals of Mathematical
Statistics 10: 275-287.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Legendre, P. 2009. Coefficient of concordance. In: Encyclopedia of Research Design. SAGE
Publications (in press).

Siegel, S. and N. J. Castellan, Jr. 1988. Nonparametric statistics for the behavioral sciences. 2nd
edition. McGraw-Hill, New York.

See Also

cor, friedman. test, hclust, cutree, kmeans, cascadekKM, indval

Examples

data(mite)
mite.hel <- decostand(mite, "hel")

# Reproduce the results shown in Table 2 of Legendre (2005), a single group
mite.small <- mite.hel[c(4,9,14,22,31,34,45,53,61,69),c(13:15,23)]
kendall.global(mite.small, nperm=49)

kendall.post(mite.small, mult="holm"”, nperm=49)

# Reproduce the results shown in Tables 3 and 4 of Legendre (2005), 2 groups
group <-c(1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,2,2,2,2,2)
kendall.global(mite.hel, group=group, nperm=49)

kendall.post(mite.hel, group=group, mult="holm”, nperm=49)

# NOTE: 'nperm' argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.

linestack Plots One-dimensional Diagrams without Overwriting Labels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are always
labelled, but the labels are moved vertically to avoid overwriting.
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Usage
linestack(x, labels, cex = 0.8, side = "right”, hoff = 2, air = 1.1,
at = 0, add = FALSE, axis = FALSE, ...)
Arguments
X Numeric vector to be plotted.
labels Labels used instead of default (names of x). May be expressions to be drawn
with plotmath.
cex Size of the labels.
side Put labels to the "right” or "left” of the axis.
hoff Distance from the vertical axis to the label in units of the width of letter “m”.
air Multiplier to string height to leave empty space between labels.
at Position of plot in horizontal axis.
add Add to an existing plot.
axis Add axis to the plot.
Other graphical parameters to labels.
Value

The function returns invisibly the shifted positions of labels in user coordinates.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g., plot, stripchart or rug.

Author(s)

Jari Oksanen with modifications by Gavin L. Simpson

Examples

## First DCA axis

data(dune)

ord <- decorana(dune)

linestack(scores(ord, choices=1, display="sp"))

linestack(scores(ord, choices=1, display="si"), side="left", add=TRUE)
title(main="DCA axis 1")

## Expressions as labels

N <- 10 # Number of sites

df <- data.frame(Ca = rlnorm(N, 2), NO3
S04 = rlnorm(N, 10), K

ord <- rda(df, scale = TRUE)

### vector of expressions for labels

labs <- expression(Ca*{2+phantom()},

rlnorm(N, 4),
rlnorm(N, 3))
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NO[3]*{-phantom()},
SO0[4]1*{2-phantom() 3},

K*{+phantom()})
scl <- "sites”
linestack(scores(ord, choices = 1, display = "species”, scaling = scl),
labels = labs, air = 2)
linestack(scores(ord, choices = 1, display = "site"”, scaling = scl),

side = "left", add = TRUE)
title(main = "PCA axis 1")

make.cepnames Abbreviates a Botanical or Zoological Latin Name into an Eight-
character Name

Description

A standard CEP name has four first letters of the generic name and four first letters of the specific
epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the current func-
tion. If the name has only one component, it is abbreviated to eight characters (see abbreviate).
The returned names are made unique with function make.unique which adds numbers to the end
of CEP names if needed.

Usage

make.cepnames(names, seconditem = FALSE)

Arguments
names The names to be formatted into CEP names.
seconditem Take always the second item of the original name to the abbreviated name in-
stead of the last original item (default).
Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first let-
ters of the specific or subspecific epithet. The current function first makes valid R names using
make.names, and then splits these into elements. The CEP name is made by taking the four first
letters of the first element, and four first letters of the last (default) or the second element (with
seconditem = TRUE). If there was only one name element, it is abbreviated to eight letters. Fi-
nally, the names are made unique which may add numbers to duplicated names.

The CEP names were originally used, because old FORTRAN IV did not have CHARACTER data type,
but text had to be stored in numerical variables, which in popular computers could hold four charac-
ters. In modern times, there is no reason for this limitation, but ecologists are used to these names,
and they may be practical to avoid congestion in ordination plots.

Value

Function returns CEP names.
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Note

The function is simpleminded and rigid. You must write a better one if you need.

Author(s)

Jari Oksanen

See Also

make.names, strsplit, substring, paste, abbreviate.

Examples

make.cepnames(c("Aa maderoi”, "Poa sp.”, "Cladina rangiferina”,
"Cladonia cornuta”, "Cladonia cornuta var. groenlandica”,
"Cladonia rangiformis”, "Bryoerythrophyllum"”))

data(BCI)

colnames(BCI) <- make.cepnames(colnames(BCI))

mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Function mantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and function mantel.partial finds the partial Mantel statistic as the partial matrix correlation
between three dissimilarity matrices. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix.

Usage

mantel(xdis, ydis, method="pearson”, permutations=999, strata = NULL,
na.rm = FALSE, parallel = getOption("mc.cores"))

mantel.partial(xdis, ydis, zdis, method = "pearson”, permutations = 999,
strata = NULL, na.rm = FALSE, parallel = getOption("mc.cores"))

Arguments

xdis, ydis, zdis
Dissimilarity matrices or a dist objects.

non

method Correlation method, as accepted by cor: "pearson”, "spearman” or "kendall”.

permutations  alist of control values for the permutations as returned by the function how, or
the number of permutations required, or a permutation matrix where each row
gives the permuted indices.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.
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na.rm Remove missing values in calculation of Mantel correlation. Use this option
with care: Permutation tests can be biased, in particular if two matrices had
missing values in matching positions.

parallel Number of parallel processes or a predefined socket cluster. With parallel =
1 uses ordinary, non-parallel processing. The parallel processing is done with
parallel package.
Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there are N(N — 1)/2 entries for just N observations. Mantel developed asymptotic test,
but here we use permutations of N rows and columns of dissimilarity matrix. See permutations
for additional details on permutation tests in Vegan.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix
is permuted so that the correlation structure between second and first matrices is kept constant.
Although mantel.partial silently accepts other methods than "pearson”, partial correlations will
probably be wrong with other methods.

The function uses cor, which should accept alternatives pearson for product moment correlations
and spearman or kendall for rank correlations.

Value

The function returns a list of class mantel with following components:

Call Function call.

method Correlation method used, as returned by cor. test.

statistic The Mantel statistic.

signif Empirical significance level from permutations.

perm A vector of permuted values. The distribution of permuted values can be in-

spected with permustats function.
permutations  Number of permutations.

control A list of control values for the permutations as returned by the function how.

Note

Legendre & Legendre (2012, Box 10.4) warn against using partial Mantel correlations.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and
Legendre.

Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English Edition. Elsevier.
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See Also

cor for correlation coefficients, protest (Procrustes test) for an alternative with ordination di-
agrams, anosim and mrpp for comparing dissimilarities against classification. For dissimilarity
matrices, see vegdist or dist. See bioenv for selecting environmental variables.

Examples

## Is vegetation related to environment?
data(varespec)

data(varechem)

veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)

mantel(veg.dist, env.dist, method="spear")

mantel.correlog Mantel Correlogram

Description

Function mantel. correlog computes a multivariate Mantel correlogram. Proposed by Sokal (1986)
and Oden and Sokal (1986), the method is also described in Legendre and Legendre (2012, pp. 819-
821).

Usage

mantel.correlog(D.eco, D.geo=NULL, XY=NULL, n.class=0, break.pts=NULL,
cutoff=TRUE, r.type="pearson”, nperm=999, mult="holm", progressive=TRUE)
## S3 method for class 'mantel.correlog'

plot(x, alpha=0.05, ...)
Arguments
D.eco An ecological distance matrix, with class either dist or matrix.
D.geo A geographic distance matrix, with class either dist or matrix. Provide either

D.geo or XY. Default: D.geo=NULL.
XY A file of Cartesian geographic coordinates of the points. Default: XY=NULL.

n.class Number of classes. If n.class=0, the Sturges equation will be used unless break
points are provided.

break.pts Vector containing the break points of the distance distribution. Provide (n.class+1)
breakpoints, that is, a list with a beginning and an ending point. Default: break.pts=NULL.

cutoff For the second half of the distance classes, cutoff = TRUE limits the correl-
ogram to the distance classes that include all points. If cutoff = FALSE, the
correlogram includes all distance classes.



r.type

nperm

mult

progressive

alpha

Details
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Type of correlation in calculation of the Mantel statistic. Default: r. type="pearson”.

Other choices are r.type="spearman” and r. type="kendall", as in functions
cor and mantel.

Number of permutations for the tests of significance. Default: nperm=999. For
large data files, permutation tests are rather slow.

Correct P-values for multiple testing. The correction methods are "holm"” (de-
fault), "hochberg”, "sidak"”, and other methods available in the p.adjust
function: "bonferroni” (best known, but not recommended because it is overly
conservative), "hommel”, "BH", "BY", "fdr", and "none".

Default: progressive=TRUE for progressive correction of multiple-testing, as
described in Legendre and Legendre (1998, p. 721). Test of the first distance
class: no correction; second distance class: correct for 2 simultaneous tests;
distance class k: correct for k simultaneous tests. progressive=FALSE: correct
all tests for n.class simultaneous tests.

Output of mantel.correlog.

Significance level for the points drawn with black symbols in the correlogram.
Default: alpha=0.05.

Other parameters passed from other functions.

A correlogram is a graph in which spatial correlation values are plotted, on the ordinate, as a func-
tion of the geographic distance classes among the study sites along the abscissa. In a Mantel correl-
ogram, a Mantel correlation (Mantel 1967) is computed between a multivariate (e.g. multi-species)
distance matrix of the user’s choice and a design matrix representing each of the geographic dis-
tance classes in turn. The Mantel statistic is tested through a permutational Mantel test performed

by vegan’s mantel function.

When a correction for multiple testing is applied, more permutations are necessary than in the no-
correction case, to obtain significant p-values in the higher correlogram classes.

The print.mantel. correlog function prints out the correlogram. See examples.

Value

mantel.res

n.class
break.pts
mult

progressive

n.tests

call

A table with the distance classes as rows and the class indices, number of dis-
tances per class, Mantel statistics (computed using Pearson’s r, Spearman’s r, or
Kendall’s tau), and p-values as columns. A positive Mantel statistic indicates
positive spatial correlation. An additional column with p-values corrected for
multiple testing is added unless mult="none".

The n umber of distance classes.
The break points provided by the user or computed by the program.
The name of the correction for multiple testing. No correction: mult="none".

A logical (TRUE, FALSE) value indicating whether or not a progressive correction
for multiple testing was requested.

The number of distance classes for which Mantel tests have been computed and
tested for significance.

The function call.
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Examples

# Mite data available in "vegan”
data(mite)

data(mite.xy)

mite.hel <- decostand(mite, "hellinger")

# Detrend the species data by regression on the site coordinates
mite.hel.resid <- resid(lm(as.matrix(mite.hel) ~ ., data=mite.xy))

# Compute the detrended species distance matrix
mite.hel.D <- dist(mite.hel.resid)

# Compute Mantel correlogram with cutoff, Pearson statistic
mite.correlog <- mantel.correlog(mite.hel.D, XY=mite.xy, nperm=49)
summary(mite.correlog)

mite.correlog

# or: print(mite.correlog)

# or: print.mantel.correlog(mite.correlog)

plot(mite.correlog)

# Compute Mantel correlogram without cutoff, Spearman statistic

mite.correlog2 <- mantel.correlog(mite.hel.D, XY=mite.xy, cutoff=FALSE,
r.type="spearman”, nperm=49)

summary(mite.correlog?)

mite.correlog2

plot(mite.correlog?)

# NOTE: 'nperm' argument usually needs to be larger than 49.
# It was set to this low value for demonstration purposes.
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MDSrotate Rotate First MDS Dimension Parallel to an External Variable

Description

Function rotates a multidimensional scaling result so that its first dimension is parallel to an external
(environmental variable). The function can handle the results from metaMDS or monoMDS functions.

Usage
MDSrotate(object, vec, na.rm = FALSE, ...)
Arguments
object A result object from metaMDS or monoMDS.
vec An environmental variable or a matrix of such variables. The number of vari-
ables must be lower than the number of dimensions, and the solution is rotated
to these variables in the order they appear in the matrix. Alternatively vec can
be a factor, and the solution is rotated to optimal separation of factor levels using
lda.
na.rm Remove missing values from the continuous variable vec.
Other arguments (ignored).
Details

The orientation and rotation are undefined in multidimensional scaling. Functions metaMDS and
metaMDS can rotate their solutions to principal components so that the dispersion of the points is
highest on the first dimension. Sometimes a different rotation is more intuitive, and MDSrotate
allows rotation of the result so that the first axis is parallel to a given external variable or two first
variables are completely in a two-dimensional plane etc. If several external variables are supplied,
they are applied in the order they are in the matrix. First axis is rotated to the first supplied variable,
and the second axis to the second variable. Because variables are usually correlated, the second
variable is not usually aligned with the second axis, but it is uncorrelated to later dimensions. There
must be at least one free dimension: the number of external variables must be lower than the number
of dimensions, and all used environmental variables are uncorrelated with that free dimension.

Alternatively the method can rotate to discriminate the levels of a factor using linear discriminant
analysis (1da). This is hardly meaningful for two-dimensional solutions, since all rotations in two
dimensions have the same separation of cluster levels. However, the function can be useful in find-
ing a two-dimensional projection of clusters from more than two dimensions. The last dimension
will always show the residual variation, and for k£ dimensions, only k — 1 discrimination vectors are
used.

Value

Function returns the original ordination result, but with rotated scores (both site and species if
available), and the pc attribute of scores set to FALSE.



metaMDS 121

Note

Rotation to a factor variable is an experimental feature and may be removed. The discriminant
analysis weights dimensions by their discriminating power, but MDSrotate performs a rigid rota-
tion. Therefore the solution may not be optimal.

Author(s)

Jari Oksanen

See Also

metaMDS, monoMDS.

Examples

data(varespec)

data(varechem)

mod <- monoMDS(vegdist(varespec))

mod <- with(varechem, MDSrotate(mod, pH))

plot(mod)

ef <- envfit(mod ~ pH, varechem, permutations = 0)
plot(ef)

ordisurf(mod ~ pH, varechem, knots = 1, add = TRUE)

metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

Description

Function metaMDS performs Nonmetric Multidimensional Scaling (NMDS), and tries to find a stable
solution using several random starts. In addition, it standardizes the scaling in the result, so that the
configurations are easier to interpret, and adds species scores to the site ordination. The metaMDS
function does not provide actual NMDS, but it calls another function for the purpose. Currently
monoMDS is the default choice, and it is also possible to call the isoMDS (MASS package).

Usage

metaMDS(comm, distance = "bray”, k = 2, try = 20, trymax = 20,
engine = c("monoMDS", "isoMDS"), autotransform =TRUE,
noshare = (engine == "isoMDS"), wascores = TRUE, expand = TRUE,
trace = 1, plot = FALSE, previous.best, ...)

## S3 method for class 'metaMDS'

plot(x, display = c("sites", "species"), choices = c(1, 2),
type = "p"”, shrink = FALSE, ...)

## S3 method for class 'metaMDS'

points(x, display = c("sites"”, "species"),

choices = ¢(1,2), shrink = FALSE, select, ...)
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## S3 method for class 'metaMDS'

text(x, display = c("sites"”, "species"”), labels,
choices = c(1,2), shrink = FALSE, select, ...)

## S3 method for class 'metaMDS'

scores(x, display = c("sites”, "species”), shrink = FALSE,
choices, ...)

metaMDSdist(comm, distance = "bray"”, autotransform = TRUE,
noshare = TRUE, trace = 1, commname, zerodist = "ignore",
distfun = vegdist, ...)

metaMDSiter(dist, k = 2, try = 20, trymax = 20, trace = 1, plot = FALSE,
previous.best, engine = "monoMDS", maxit = 200,
parallel = getOption("mc.cores"), ...)

initMDS(x, k=2)

postMDS(X, dist, pc=TRUE, center=TRUE, halfchange, threshold=0.8,

nthreshold=10, plot=FALSE, ...)
metaMDSredist (object, ...)
Arguments
comm Community data. Alternatively, dissimilarities either as a dist structure or as a

distance
k

try, trymax

engine

autotransform

noshare

wascores
expand
trace

plot

symmetric square matrix. In the latter case all other stages are skipped except
random starts and centring and pc rotation of axes.

Dissimilarity index used in vegdist.

Number of dimensions. NB., the number of points n should be n > 2k + 1, and
preferably higher in global non-metric MDS, and still higher in local NMDS.

Minimum and maximum numbers of random starts in search of stable solution.
After try has been reached, the iteration will stop when two convergent solu-
tions were found or trymax was reached.

The function used for MDS. The default is to use the monoMDS function in vegan,
but for backward compatibility it is also possible to use isoMDS of MASS.

Use simple heuristics for possible data transformation of typical community
data (see below). If you do not have community data, you should probably
set autotransform = FALSE.

Triggering of calculation step-across or extended dissimilarities with function
stepacross. The argument can be logical or a numerical value greater than
zero and less than one. If TRUE, extended dissimilarities are used always when
there are no shared species between some sites, if FALSE, they are never used.
If noshare is a numerical value, stepacross is used when the proportion of
site pairs with no shared species exceeds noshare. The number of pairs with no
shared species is found with no. shared function, and noshare has no effect if
input data were dissimilarities instead of community data.

Calculate species scores using function wascores.
Expand weighted averages of species in wascores.
Trace the function; trace = 2 or higher will be more voluminous.

Graphical tracing: plot interim results. You may want to set par (ask = TRUE)
with this option.
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previous.best

X
choices
type
display
shrink
labels

select

X
commname

zerodist

distfun

maxit

parallel

dist
pc
center

halfchange

threshold
nthreshold
object

Details
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Start searches from a previous solution.

metaMDS result (or a dissimilarity structure for initMDS).
Axes shown.

Plot type: "p" for points, "t" for text, and "n" for axes only.
Display "sites” or "species”.

Shrink back species scores if they were expanded originally.
Optional test to be used instead of row names.

Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

Configuration from multidimensional scaling.
The name of comm: should not be given if the function is called directly.

Handling of zero dissimilarities: either "fail” or "add" a small positive value,
or "ignore”. monoMDS accepts zero dissimilarities and the default is zerodist
= "ignore", but with isoMDS you may need to set zerodist = "add".

Dissimilarity function. Any function returning a dist object and accepting argu-
ment method can be used (but some extra arguments may cause name conflicts).

Maximum number of iterations in the single NMDS run; passed to the engine
function monoMDS or isoMDS.

Number of parallel processes or a predefined socket cluster. If you use pre-

defined socket clusters (say, clus), you mustissue clusterEvalQ(clus,library(vegan))

to make available internal vegan functions. With parallel =1 uses ordinary,
non-parallel processing. The parallel processing is done with parallel package.

Dissimilarity matrix used in multidimensional scaling.
Rotate to principal components.
Centre the configuration.

Scale axes to half-change units. This default