Package ‘vegdata’

May 13, 2020

Version 0.9.8
Encoding UTF-8
Title Access Vegetation Databases and Treat Taxonomy
Author Florian Jansen <florian.jansen@uni-rostock.de>
Maintainer Florian Jansen <florian.jansen@uni-rostock.de>
Depends R (>= 2.0.0), foreign
Imports utils, xml2, plyr
Suggests vegan, labdsv, akima, googleVis, indicspecies, uuid, knitr,
 stringr, testthat
LazyData Yes
VignetteBuilder knitr
Description Handling of vegetation data from different sources (Turboveg
 <http://www.synbiosys.alterra.nl/turboveg/>; the German national
 repository <http://www.vegetweb.de> and others. Taxonomic
 harmonization (given appropriate taxonomic lists, e.g. the
 German taxonomic standard list "GermanSL", <http://germansl.infinitenature.org>).
License GPL (>= 2)
URL http://germansl.infinitenature.org
NeedsCompilation no
Repository CRAN
Date/Publication 2020-05-13 12:40:02 UTC

R topics documented:

vegdata-package ... 2
elbaue ... 3
isc ... 4
lc ... 5
monotypic .. 7
syntab .. 7
Description

This package provides a set of functions to load data from vegetation databases (at present Turboveg and vegetweb.de). Taxa can be (semi-)automatically be checked and adapted depending the scientific question. For this a hierachical taxonomic reference list is needed.

Details

Package: vegdata
Type: Package
License: GPL version 2 or newer
LazyLoad: yes

Use `tv.veg` to prepare data directly for further analyses. Set option `taxval` to TRUE, if your database is referenced with GermanSL or equivalent taxonomic reference list and you want to realize taxonomic checks and adaptations. For more details see `vignette('vegdata')`.

Author(s)

Florian Jansen
Maintainer: Florian Jansen <florian.jansen@uni-rostock.de>

References

Description

The elbaue data frame has 33 sites (rows) and 53 species (columns).

Details

Data frame elbaue.env contains the following variables:

- **RELEVE_NR**: a unique number
- **DATE**: a fictitious date of the plot survey
- **SURF_AREA**: the plot area
- **FLOOD**: logical, inundated floodplain ("Altaue"); (1=recently inundated, 0= no inundation)
- **OLD**: logical; former floodplain (Altaue; Durch Deiche von der rezenten Aue getrennter Auenbereich); 1= old floodplain
- **BORDER**: border of floodplain (Auenrand; Grenze der Aue zu anderen Naturraeumen, haeufig vermoort); 1= Auengrenzbereich
- **INTENS**: intensity of land use; 1= sporadic use, 2= yearly with low intensity, 3= yearly
- **MGL**: mean groundwater level in cm (ueber zwei Jahre aus Tageswerten gemittelte Wasserstand)
- **SDGL**: standard deviation of groundwater level (Standardabweichung der Wassergang-Zeitreihe [cm], Mass fuer die Groesse der ueber zwei Jahre gemittelten Wasserstaenden)
- **InUnD**: duration of inundation period (Ueberflutungsdauer Log[Tage/Jahr]; Logarithmus der ueber zwei Jahre gemittelten Ueberflutungsdauer)
- **InUnD_50**: duration of inundation period above 50cm (Dauer von Wasserstaenden hoherer 50cm ueber Flur Log[Tage/Jahr]; Logarithmus der ueber zwei Jahre gemittelten Werte)

References

Examples

```
# Not run:
elbaue <- tv.veg('elbaue')
elbaue.env <- tv.site('elbaue')
```

End(Not run)
isc

Indicate site conditions with community weighted mean values of traits or with mode of gradient classes (sum of species amplitudes).

Description

Calculates community weighted mean trait values, like mean Ellenberg indicator values. Alternatively (method = 'mode') environmental conditions can be calculated according to the concept of sums of amplitudes of species along ecological gradients.

Usage

isc(veg, refl, trait.db = 'ecodbase.dbf', ivname, keyname = 'LETTERCODE', method = c('mean', 'mode'), weight, db, ...)
showindiplot(veg, trait.db, plotid, weight, keyname = 'LETTERCODE')

Arguments

veg Vegetation matrix with plots in rows and species in columns
refl Name of Turboveg taxonomic reference list
trait.db data frame with species trait values
ivname Name of the trait in trait.db to be used
keyname Name of the column in trait dataframe to join with colnames of veg table
method mean (weighted value of single traits, or mode (maximum) of trait classes)
weight additional weight, e.g. niche breath of species
db name of Turboveg database
plotid number or id of the plot to show
... additional arguments

Details

Zero trait values will be handled as NA values.

Value

Vector with the ecological classification of sites. Either mean trait values or mode of gradient classes.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>
Examples

```r
## Not run:
db <- 'elbaue'
veg <- tv.veg(db, cover.transform='sqrt', check.critical = FALSE)
site <- tv.site(db, verbose = FALSE)
# Exclude plots with very high water level fluctuation
veg <- veg[site$SDGL < 60,]
veg <- veg[,colSums(veg) > 0]
site <- site[site$SDGL < 60,]
# Load species trait value database
traits <- tv.traits(db)

# Mean indicator values of Ellenberg F values
mEIV_F <- isc(veg, trait.db = traits, ivname = 'OEK_F', method = 'mean')
plot(site$MGL, mEIV_F, xlab = 'Mean groundwater level')

# Mode (most frequent level) of Ellenberg F values
library(reshape)
traitmat <- cast(traits, LETTERCODE ~ OEK_F)
traitmat <- traitmat[-14]
ilevel <- isc(veg, trait.db = traitmat, ivname = as.character(1:11), method = 'mode')
boxplot(site$MGL ~ ordered(ilevel, levels = levels(ilevel)[c(2,4,3,5,6:10,1)]))
```

End(Not run)

lc

Templates for pseudo-species according to Turboveg layer informations.

Description

Differentiates species according to layer (tree, shrub, juvenile etc.) or other species-plot informations from Turboveg. The data.frames lc.0 and lc.1 are templates for layer aggregation/differentiation.

Details

Column layer point to the Turboveg layer specification (see Turboveg Help) and column comb defines the aggregation.

lc.0 = Use every layer differentiation from 0 to 9 in Turboveg database as pseudo-species.

<table>
<thead>
<tr>
<th>layer</th>
<th>comb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
lc.1 = Default layer combination in tv.veg. Differentiates tree and shrub layers, all other layers are combined.

<table>
<thead>
<tr>
<th>layer</th>
<th>comb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Tree</td>
</tr>
<tr>
<td>2</td>
<td>Tree</td>
</tr>
<tr>
<td>3</td>
<td>Tree</td>
</tr>
<tr>
<td>4</td>
<td>Shrub</td>
</tr>
<tr>
<td>5</td>
<td>Shrub</td>
</tr>
<tr>
<td>6</td>
<td>Shrub</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

lc.all = Do not use any layer differentiation.

<table>
<thead>
<tr>
<th>layer</th>
<th>comb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

tv.veg
monotypic

Creates a list of (regional) monotypic taxa from the given taxonomic checklist

Description

More or less internal function to check the reference lists and to create lists of monotypic taxa.

Usage

monotypic(refl, nr.member = 1, reflist.type = c('Turboveg', 'EDIT'), write = FALSE, filename, tv_home, ...)

Arguments

refl The name of the taxonomic reference list.
nr.member Number of members in the next taxonomic level to be checked.
reflist.type Type or origin of the taxonomic list: Turboveg 2.0 format or from the European Distributed Institut of Taxonomy.
write Should the list of monotypic species be written into a CSV file for further use.
filename Name of the file in case of write=TRUE
tv_home Turboveg installation path, see tv.home
... additional arguments

Value

Dataframe of monotypic taxa.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

syntab

Syntaxonomic frequency tables

Description

Calculate and display relative or absolute frequency tables with or without use of function multipatt from package indicspecies

Usage

syntab(veg, clust, type = c('rel','abs','mean.cover'), mupa, dec=0, refl, ...)
S3 method for class 'syntab'
print(x, zero.print = ".", trait, limit = 1, minstat = 0, alpha = 0.05, ...)
Arguments

veg
Vegetation dataframe

clust
Vector with cluster information with length equal to number of rows of veg

type
Relative or absolute frequency, mean species response values or strength of association.

mupa
Either logical for (not) using multipatt from package indispecies to detect significance of cluster association strength or supply output from previous use of multipatt.

x
Object from function syntab

zero.print
Replacement for zero values.

trait
Optional vector of trait values to be plotted behind the species.

limit
Minimum value to display.

minstat
Minimal indicator value

alpha
Significance threshold.

dec
Number of decimals in result.

refl
Name of Turboveg taxonomic reference list to use for fullnames.

...
additional arguments

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

Package indicspecies with function multipatt for indicator species analysis along multiple cluster combinations

Examples

Not run:
elbaue <- tv.veg('elbaue')
elbaue.env <- tv.site('elbaue')
clust <- vector('integer', nrow(elbaue.env))
clust[elbaue.env$MGL < -50 & elbaue.env$SDGL < 50] <- 1
clust[elbaue.env$MGL < -50 & elbaue.env$SDGL >= 50] <- 2
clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL >= 50] <- 3
clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL < 50] <- 4
levels(clust) <- c('dry.ld','dry.hd', 'wet.hd','wet.ld')
traits <- tv.traits()
m <- match(rownames(st$syntab), traits$LETTERCODE, nomatch = 0)
trait <- traits[m, c("OEK_F","OEK_N")]
rownames(trait) <- traits$LETTERCODE[m]
st <- syntab(elbaue, clust, mupa=TRUE)
print(st, limit=30, trait=trait)
Manipulation of the syntaxonomic table
sttable <- st$syntab
tax

Query of Turboveg 2 taxonomic reference lists including (if available)
concept synonomy and taxonomic hierarchy.

Description

Input is either species number (integer), shortletter (7 characters) or full (exact!) species name.

Usage

Default S3 method:
tax(x, refl, detailed = FALSE, syn = TRUE, concept = NULL, strict = FALSE,
simplify = FALSE, quiet = FALSE, reflist.type = 'Turboveg', ...)
child(x, refl = tv.refl(), gen = 4, quiet = FALSE, syn = FALSE, ...)
parent(x, refl = tv.refl(), rank, quiet = FALSE, ...)
syn(x, refl = tv.refl(), quiet = FALSE, ...)
taxname.abbr(x, hybrid = c('remove', 'retain'),
species = FALSE, cf = FALSE, ...)
taxname.simplify(x, genus=TRUE, epithet=TRUE, hybrid = c("remove", "retain"),
rank = c("remove", "retain"), concept.status = c("remove", "retain"), ...)
parse.taxa(x, epis)
taxname.removeAuthors(x)

Arguments

x Species number, lettercode or species name(s)
refl Taxonomic reference list
detailed In old Turboveg versions detailed taxonomic information could only be given in
an extra file which was called tax.dbf in GermanSL. Compatibility mode.
syn Return also synonym names
concept Name of the file with an alternative taxon view stored in the reference list directory, see details.
strict Exact match or partial matching with grep
simplify Will simplify species names for matching.
gen Number of child generations to return
quiet Hide screen messages
relist.type Type of taxonomic reference list to use. Until now only Turboveg lists are sup-
ported in the official package.
rank Taxonomical level of taxa to find
hybrid remove hybrid markers for comparisons
species use spec., sp., or species for genus level taxa
cf remove 'in doubt' marker
genus simplify genus name part
epithet simplify epithet(s)
concept.status remove s. str. s. l.
epis vector of rank marker strings, if missing: 'subsp.', 'var.', 'v.'
... additional attributes

Details

concept: GermanSL is a list with a single taxon view according to the standard lists of the different taxon groups (e.g. Wisskirchen and Haeupler for higher plants, see). Nevertheless a huge number of synonyms is included which allows in many cases the transformation into different concepts. For illustration the concept of *Armeria maritima* from Korneck 1996 is included, which accepts e.g. *Armeria maritima* ssp. *bottendorfensis*.

taxname.simplify: Before string comparison with reference list names it will eliminate diacritic marks, double consonants, "th", "y" versus "i(i)" and other frequent differences in writing style. If genus = TRUE (non stable) endings of genus names will be ignored, epithet = TRUE will eliminate endings for the epithet part.

taxname.abbr: standardisation of rank names
parse.taxa: parse genus and epitheta from name strings.
taxname.removeAuthors Remove name authors from full scientific name strings.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

References

See Also

package vegdata

Examples

taxname.abbr("Achillea millefolium s. millefolium")
taxname.simplify("Vicia sylvatica") == taxname.simplify("Vicia silvaticum")

Not run:
GermanSL in Turboveg installation path needed
taxval

Handling of taxonomy in vegetation data.

Description

Performs taxonomic valuation of species names according to synonymy, taxonomic level, unambiguous biotic content etc. Necessary prerequisite is information about taxonomic status (synonymy) and hierarchy (next higher aggregate). Until now only applicable for reference list 'GermanSL' (>= version 1.1, see References Section), which is valid in Germany and adjacent countries.

Usage

taxval(obs, refl, db, ag = c('conflict', 'adapt', 'preserve'), rank, mono = c('species', 'higher', 'lower', 'preserve'), monolist = "monotypic-D", maxtaxlevel = 'AGG', taxlevels, check.critical = TRUE, interactive = FALSE, ...) comb.species(x, sel, newname, refl)

Arguments

obs data.frame of observations in TURBOVEG format, for example loaded with tv.obs
refl Name of taxonomic reference list
db a name of a Turboveg database directory containing tvabund.dbf, tvhabita.dbf and twin.set
ag Treatment of children and parents within the dataset, see details
rank If ag='adapt', rank specifies the taxonomic rank to which taxa should be coarsened to. All higher taxa in this taxonomic tree will be deleted, see maxtaxlevel.
mono Should monotypic taxa be combined at subspecies = 'lower' or species level = 'higher'
monolist Name of monotypic species list, must be in dBase format and in the same directory as the reference list, e.g. "monotypic-D" for the area of germany.
maxtaxlevel Maximum taxonomic levels to be used. See details.
taxlevels dataframe of ordered taxonomic rank levels
check.critical Check for critical names in your dataset and give warnings.

interactive Do you want to adapt the list of changes.

x Dataframe of class 'veg'. See tv.veg

sel Vector of species (column names) to be combined.

newname Name of the combined taxon.

... Other parameters passed to functions.

Details

Working with vegetation datasets, especially from different sources needs taxonomic valuation. The function tries to automate this process. Therefore the German taxonomic reference list (GermanSL, http://germansl.infinitenature.org) contains additional taxon attributes (tax.dbf) and monotypic taxa of Germany (monotypic.dbf). Without an appropriate species list (see tax) the function will not work.

Possible values for adapting the taxonomic hierarchy within the dataset (child/parent taxa) are:

- preserve: Leave everything untouched.
- conflict: Dissolve only in case of conflicts, e.g. if a subspecies occurs also at the species level within the same dataset. In this case the subspecies will be aggregated to the higher level.
- adapt: Dissolve all nested taxa to e.g. species level for option ag. For this option also option rank, specifying the rank to which the taxa shall be adapted, must be given.

Monotypic taxa, e.g. a species which occur only with 1 subspecies in the survey area. They have to be combined, since otherwise two different (valid) taxa would denominate the same entity. If lower the higher taxon (e.g. species rank) is replaced by the lower level (subspecies rank). If neither lower nor higher monotypic species are preserved. Since the list of monotypic species strongly depends on the considered area you have to choose, which area is covered by your database and create an appropriate list of monotypic taxa. Within the package "monotypic-D.csv" is provided as a compilation of monotypic species within the GermanSL list (see tv.mono).

Option maxtaxlevel determines the maximum taxonomic level within the given names, which should be used. All higher taxon observations are deleted. If you have a single field observation determined as Asteraceae spec. all your observations of taxa from that family will be aggregated to the family level, if you choose ag=conflict.

Interactive If you want to manually adapt the taxonomic harmonization interactive=TRUE will create a table with all original names and NewTaxonID's according to the chosen rules. The table will be saved as taxvalDecisionTable.csv in your actual working directory. You can manipulate the column NewTaxonID. If you run taxval again (e.g. through function tv.veg) and a file with this name exist in your working directory, it will be used.

Value

Functions return the input dataframe of observations with harmonised taxon numbers.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>
References

See Also
tv.veg, tv.obs

Examples

```r
## Not run:
# Turboveg installation needed
obs <- taxval(db='taxatest')
## For explanations see vignette('vegdata').

veg <- tv.veg('taxatest')
veg <- comb.species(veg, c('ARMEM-E','ARMEM-H'))
## End(Not run)
```

tv.biblio

Check bibliographic references from Turboveg codes

Description

Check bibliographic references from Turboveg codes

Usage

tv.biblio(x='all', db, dict = tv.dict(db), quiet=FALSE, tv_home, ...)

Arguments

- `x` Turboveg reference code(s), e.g. "000001"
- `db` Database name. Needed to select appropriate TV Dictionary folder.
- `quiet` If you want to print the reference to the screen.
- `tv_home` Turbowin installation path. If not specified function `tv.home` tries to discover.
- `dict` Name of Turboveg Dictionary (term lists for header data) if not the default one.
- `...` additional arguments

Value

Dataframe of (selected) bibliographic references (when assigned to an object).
Author(s)
Florian Jansen <florian.jansen@uni-rostock.de>

See Also
tv.site

tv.compRefl Compare different taxonomical reference lists.

Description
The function checks for different taxon numbers and, or taxon names in two TURBOVEG reference lists.

Usage
tv.compRefl(refl1, refl2, tv_home, check.nr=FALSE, simplify = TRUE, verbose=FALSE, Sink=TRUE, new = FALSE, file="compRefl.txt", ...)

Arguments
refl1 First reference list to compare.
refl2 Second reference list to compare.
tv_home TURBOVEG installation path. If not specified, guessed by code.
tv_home
check.nr Check equality of species numbers.
simplify normalize taxon names with function taxname.simplify
verbose Print species names on screen.
Sink Write text file with differences.
new Write new combined TURBOVEG reference list.
file Name of the sink file.
... Additional arguments.

Author(s)
Florian Jansen <florian.jansen@uni-rostock.de>

References

See Also
tax
Description

Translate cover code into percentage cover values for Turboveg database observations.

Usage

tv.coverperc(db, obs, RelScale, tv_home, tvscale, quiet = FALSE, ...)

Arguments

db the name of the Turboveg database
obs dataframe of observations, containing Cover Codes, coded in tvscale.dbf of Turboveg installation
RelScale dataframe of CoverScale codes per releve, if empty it is read from the database
Tv_home Path to Turboveg installation
tvscale Cover scale
quiet Suppress messages
... Further options

Value

obs data.frame of observations with additional column COVER_PERC

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

Examples

For examples see in vignette('vegdata').
`tv.metadata`
Show metainfo of vegetation database or ecodbase

Description

Showing "metadata.txt" when specified and saved in Turboveg database directory. When `db = 'eco'` and `refl` specified, metainfo of species attribute table is displayed.

Usage

```r
tv.metadata(db, refl, tv_home, filename = 'metadata.txt', ...)
```

Arguments

- `db` Turboveg database name
- `refl` Turboveg taxonomic reference list, declaration only necessary for ecodbase info
- `tv_home` Turboveg installation path
- `filename` Name of metainfo file residing in database directory
- `...` additional arguments

Details

Since Turboveg provides no formalised method to store information about database fields, I suggest to save a simple text file, named for example "metadata.txt" into the directory of your Turboveg database.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

`tv.obs`
Dataframe of plot-species observations directly from Turboveg

Description

Dataframe of plot-species observations directly from Turboveg.

Usage

```r
tv.obs(db, tv_home, ...)
```
Arguments

db Name of your Turboveg database. This is the directory name containing tv-abund.dbf, tvhabita.dbf and tvwin.set. Please include pathnames below but not above Turbowin/Data.

tv_home Turbowin installation path. If not specified function tv.home tries to discover.

... additional arguments

Value

Data.frame of species occurrences in Turboveg format, that is every occurrence is a row with relevé number, species number, layer, cover code and optional additional species-plot information.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

tv.veg

Examples

Not run:
Turboveg installation needed
obs <- tv.obs('taxatest')
head(obs)

End(Not run)

tv.readXML Read Turboveg XML

Description

Reads Turboveg XML formatted files species-plot observations and site information to Turboveg database.

Usage

tv.readXML(file)

Arguments

file Path name of the Turboveg XML file

Value

S3 list with elements tvwin, tvadmin, site, and obs.
tv.site

Load site data from Turboveg Database

Description

Loading Turboveg header data and do basic data evaluation. Empty columns are eliminated and warnings about possibly wrong '0' values are performed.

Usage

```r
tv.site(db, tv_home, drop=TRUE, common.only = FALSE, verbose = TRUE, replace.names, ...)
```

Arguments

- **db**: Name of your Turboveg database(s). Directory name containing tvabund.dbf, tvhabita.dbf and tvwin.set.
- **tv_home**: Turbowin installation path. Optional, if Turbowin is either on "C:/turbowin" or "C:/Programme/Turbowin".
- **drop**: Drop variables without values.
- **common.only**: Import only header data with the same name in all databases.
- **verbose**: Print warnings and hints.
- **replace.names**: replace variable names. Useful if using multiple source databases. Data frame with names to be replaced in first and replacing names in second column.
- **...**: Additional options like dec for type.convert

Details

Please specify pathnames below but not above Turbowin/Data. Can be a single database or a character vector of multiple databases. In the latter case you have to assure, that all databases use the same taxonomic reference list.

You can use the example in the final output line to make a summary statistic for attributes with potentially misleading '0' values. Just delete the \ at beginning and end.

Value

data.frame of site variables.
Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

tv.traits

Load species traits from Turboveg reference list

Description

Loading Turboveg ecodbase or any other specified dBase file in this directory and do basic data evaluation. Empty columns are eliminated.

Usage

tv.traits(db, trait.db = 'ecodbase.dbf', refl, ...)

Arguments

db Path name to the Turboveg database directory
trait.db Name of species trait dBase file, default is 'ecodbase'
refl Name of the taxonomic reference list, if veg is not loaded with tv.veg
...
additional arguments for tv.traits

Details

You can use the final output line to make a summary statistic for attributes with potentially misleading '0' values. Just delete the \" at beginning and end.

Value

data.frame of ecological traits, see metainfo(refl,eco=TRUE).

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

isc
tv.veg
Tabulates vegetation tables from Turboveg database

Description

Tabulates vegetation tables from Turboveg resp. VegetWeb database, including taxonomic emendation and layer combination. Using various default parameters for the included functions. It is a wrapper for tv.obs, taxval, tv.coverperc.

Usage

```r
tv.veg(db, taxval=TRUE, tv_home, convcode=TRUE, lc = c("layer","mean","max","sum","first"), pseudo, values='COVER_PERC', spcnames=c('short','long','numbers'), dec = 0, cover.transform = c('no', 'pa', 'sqrt'), obs, site, refl, RelScale, ...)
```

Arguments

- `db` Name of your Turboveg database. Directory name containing tvabund.dbf, tvhabita.dbf and tvwin.set. Please specify pathnames below (if you sorted your databases in subfolders) but not above Turbowin/Data.
- `tv_home` Turbowin installation path.
- `taxval` Should taxonomic valuation (see `taxval`) be performed?
- `convcode` Should cover code be converted to percentage values?
- `lc` Layer combination type. Possible values: layer (default), sum, mean or max, see details
- `pseudo` List used for layer combinations, see details
- `values` Name of the variable which should be used for the vegetations matrix.
- `spcnames` Should species numbers be replaced by shortletters or real names?
- `dec` Number of decimals for cover values in the resulting vegetation matrix.
- `cover.transform` If you want to transform the abundance values within your samples you can choose 'pa' for presence-absence or 'sqrt' for the dec rounded square root.
- `obs` Observations, optional
- `site` plot header data, see `tv.site`
- `refl` Taxonomic reference list, optional
- `RelScale` Vector with Cover Scale code per Releve.
- `...` additional arguments for included functions
Details

Layer means, the different layers are combined assuming there independence (a species occurring in two layers with a cover of 50% will result in an overall cover of 75%). sum will sum up cover values of all layers.

With option pseudo you can decide, which layers should be combined. Give a list with a combination data.frame (see lc and second the name of the column for combination. The default is pseudo = list(lc.1,c('LAYER')), where lc.1 is a data.frame data(lc.1), which will combine all tree layers, all shrub layers and all layers below shrubs. An alternative would be data(lc.all), combining all layers. With option pseudo=NULL there will be no layer aggregation.

Value

Function returns an object of class matrix with (combined) cover values.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

taxval, tv.coverperc, tv.mono, tv.obs, tv.site

Examples

Not run:
vignette("vegdata")
If you have Turboveg installed on your computer try for a beginning
tv.veg('databasename', tax=FALSE).
args(tv.veg)
help('taxval')

veg <- tv.veg('taxatest')
names(veg)
tv.veg('taxatest', uncertain=list('DET_CERT', data.frame(0:2,c('pres','agg','agg'))),
pseudo=list(lc.0,'LAYER'), genus = 'delete')

End(Not run)
Usage

```r
tv.write(x, site, name, tvadmin, remarks, dict = "", cover = c("code", "perc"),
drop = FALSE, obl = TRUE, overwrite = FALSE, ...)
```

Arguments

- **x**: Either observations data.frame with RELEVE_NR, TaxonUsageID and COVER_CODE columns or vegetation matrix of class "veg".
- **site**: Header data for plots.
- **name**: Name of the new database.
- **tvadmin**: Dataframe with plot UUID’s and Turboveg columns from TvAdmin.dbf. A new file with new unique identifiers will be created if omitted.
- **remarks**: Remarks in Turboveg format if the comments for individual plots exceed 254 characters. See remarks.dbf in Turboveg databases. An empty file will be created if omitted.
- **dict**: Turboveg dictionary name
- **cover**: Use of covercodes or (mean) cover percentages, see Details.
- **drop**: Drop columns which are empty or contain only NA values.
- **obl**: Add obligatory fields defined in the TV dictionary but not present in the site data table.
- **overwrite**: Logical. Should an existing database be overwritten.
- **...**: Additional arguments.

Details

By default Covercode is written to Turboveg. This is only meaningful, if correct CoverScales are given in the site dataframe. Unique plot ID’s are stored in TvAdmin.dbf. If you want to preserve already given UUID’s you have to prepare an adequate data.frame. Look into existing TvAdmin.dbf files for necessary columns.

Value

Five files will be created in tv_home/Data/<name> directory. tvabund.dbf with occurrence information in long format, tvhabita.dbf with plot information, remarks.dbf with comments longer then 255 characters, TvAdmin.dbf with plot UUID’s and tvwin.dbf with information about taxonomic reference list, and dictionary used.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

- `tv.veg`
Index

*Topic datasets
 lc, 5
*Topic manip
 taxval, 11
tv.coverperc, 15
tv.veg, 20
*Topic misc
 isc, 4
tax, 9
taxval, 11
tv.biblio, 13
tv.coverperc, 15
tv.obs, 16
tv.readXML, 17
tv.site, 18
tv.traits, 19
tv.veg, 20
tv.write, 21
*Topic package
 vegdata-package, 2
*Topic utilities
 tv.compRef1, 14

child (tax), 9
childs (tax), 9
comb.species (taxval), 11

elbaue, 3
freqtab (syntab), 7
grep, 9
isc, 4, 19
lc, 5, 21

meanTraits (tv.traits), 19
monotypic, 7
multipatt, 8

parent (tax), 9
parents (tax), 9
parse.taxa (tax), 9
print.syntab (syntab), 7

showindiplot (isc), 4
syn (tax), 9
syntab, 7
tax, 9, 12, 14
taxlevels (lc), 5
taxname.abbr (tax), 9
taxname.removeAuthors (tax), 9
taxname.simplify (tax), 9
taxval, 2, 11, 20, 21
tv.biblio, 13
tv.compRef1, 14
tv.coverperc, 15, 21
tv.db (tv.veg), 20
tv.eco (tv.traits), 19
tv.home, 7, 13, 17
tv.metadata, 16
tv.mono, 12, 21
tv.mono (monotypic), 7
tv.obs, 11, 13, 16, 21
tv.readXML, 17
tv.site, 14, 18, 18, 20, 21
tv.taxval (taxval), 11
tv.traits, 19
tv.veg, 2, 6, 12, 13, 17, 18, 20, 22
tv.write, 21

vegdata (vegdata-package), 2
vegdata-package, 2