Package ‘vegdata’

January 10, 2022

Version 0.9.10
Encoding UTF-8
Title Access Vegetation Databases and Treat Taxonomy
Author Florian Jansen <florian.jansen@uni-rostock.de>
Maintainer Florian Jansen <florian.jansen@uni-rostock.de>
Depends R (>= 3.5.0), foreign
Imports curl (>= 2.4), RCurl, DBI (>= 0.6-1), RSQLite (>= 1.1.2),
dplyr (>= 0.7.0), rlang, readr (>= 1.1.1), dbplyr (>= 1.0.0),
magrittr (>= 1.5), hoardr (>= 0.1.0), utils, xml2 (>= 1.3.0),
httr, plyr, tibble
Suggests vegan, labdsv, akima, googleVis, indicspecies, uuid, knitr,
stringr, testthat
LazyData Yes

VignetteBuilder knitr

Description Handling of vegetation data from different sources (Turboveg 2.0 <https://www.synbiosys.alterra.nl/turboveg/>; the German national repository <https://www.vegetweb.de> and others. Taxonomic harmonization (given appropriate taxonomic lists, e.g. the German taxonomic standard list `GermanSL', <https://germansl.infinitenature.org>).

License GPL (>= 2)

URL https://germansl.infinitenature.org

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-01-09 23:00:02 UTC
### R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vegdata-package</td>
<td>3</td>
</tr>
<tr>
<td>child</td>
<td>3</td>
</tr>
<tr>
<td>comb.species</td>
<td>4</td>
</tr>
<tr>
<td>cwm</td>
<td>5</td>
</tr>
<tr>
<td>db_download</td>
<td>6</td>
</tr>
<tr>
<td>db_path</td>
<td>7</td>
</tr>
<tr>
<td>elbaue</td>
<td>8</td>
</tr>
<tr>
<td>lc.0</td>
<td>8</td>
</tr>
<tr>
<td>lc.1</td>
<td>9</td>
</tr>
<tr>
<td>lc.all</td>
<td>9</td>
</tr>
<tr>
<td>parent</td>
<td>10</td>
</tr>
<tr>
<td>parse.taxa</td>
<td>11</td>
</tr>
<tr>
<td>recode.species</td>
<td>11</td>
</tr>
<tr>
<td>sql_collect</td>
<td>12</td>
</tr>
<tr>
<td>src_vegdata</td>
<td>12</td>
</tr>
<tr>
<td>syn</td>
<td>13</td>
</tr>
<tr>
<td>syntab</td>
<td>14</td>
</tr>
<tr>
<td>tax</td>
<td>15</td>
</tr>
<tr>
<td>taxlevels</td>
<td>16</td>
</tr>
<tr>
<td>taxname.abbr</td>
<td>17</td>
</tr>
<tr>
<td>taxname.removeAuthors</td>
<td>18</td>
</tr>
<tr>
<td>taxname.simpl</td>
<td>18</td>
</tr>
<tr>
<td>taxval</td>
<td>19</td>
</tr>
<tr>
<td>TCS.replace</td>
<td>21</td>
</tr>
<tr>
<td>tdb_cache</td>
<td>22</td>
</tr>
<tr>
<td>tv.bib</td>
<td>23</td>
</tr>
<tr>
<td>tv.coverperc</td>
<td>23</td>
</tr>
<tr>
<td>tv.db</td>
<td>24</td>
</tr>
<tr>
<td>tv.home</td>
<td>25</td>
</tr>
<tr>
<td>tv.metadata</td>
<td>25</td>
</tr>
<tr>
<td>tv.obs</td>
<td>26</td>
</tr>
<tr>
<td>tv.readXML</td>
<td>27</td>
</tr>
<tr>
<td>tv.refl</td>
<td>28</td>
</tr>
<tr>
<td>TV.replace</td>
<td>28</td>
</tr>
<tr>
<td>tv.site</td>
<td>29</td>
</tr>
<tr>
<td>tv.traits</td>
<td>30</td>
</tr>
<tr>
<td>tv.veg</td>
<td>30</td>
</tr>
<tr>
<td>tv.write</td>
<td>32</td>
</tr>
</tbody>
</table>

**Index** 34
Description

Functions to access data from vegetation databases and evaluate taxon names.

Introduction

This package provides a set of functions to load data from vegetation databases (at present Turboveg and vegetweb.de). Taxa can be (semi-)automatically be checked and adapted depending the scientific question. For this a hierachical taxonomic reference list is needed.

Taxonomic harmonization

Use `tv.veg` to prepare data directly for further analyses. Set option `blink{taxval}` to `TRUE`, if your database is referenced with GermanSL or equivalent taxonomic reference list and you want to realize taxonomic checks and adaptations. For more details see `vignette('vegdata')`.

Author(s)

Florian Jansen <florian.jansen@uni-Rostock.de>

References


child

Search taxonomic reference lists including concept synonomy and taxonomic hierarchy.

Description

Search all (accepted) children of a taxon down to gen generations

Usage

`child(x, refl, gen = 3, syn = FALSE, include.parent = FALSE, quiet = FALSE, ...)`
comb.species

Arguments

- **x**: Species number, lettercode or species name(s)
- **refl**: Taxonomic reference list
- **gen**: Number of child generations to return
- **syn**: Should synonyms be included in results
- **include.parent**: Should the parent taxon be included in results
- **quiet**: Hide screen messages
- **...**: additional parameters for function tax

Details

c**concept**: GermanSL is a list with a single taxon view according to the standard lists of the different taxon groups (e.g. Wisskirchen and Haeupler for higher plants, see). Nevertheless a huge number of synonyms is included which allows in many cases the transformation into different concepts. For illustration the concept of *Armeria maritima* from Korneck 1996 is included, which accepts e.g. *Armeria maritima ssp. bottendorfensis*. **parse.taxa**: parse genus and epitheta from name strings. **taxname.removeAuthors**: Remove name authors from full scientific name strings.

Author(s)

- Florian Jansen <florian.jansen@uni-rostock.de>

References


---

**comb.species**

**Combine species in vegetation matrix**

**Description**

Combine species in vegetation matrix

**Usage**

comb.species(x, sel, newname, refl)

**Arguments**

- **x**: (veg) vegetation matrix of class veg
- **sel**: (character) vector of species to combine
- **newname**: (character) name of the new taxon
- **refl**: (character) Name of taxonomic reference list
cwm

Indicate site conditions with community weighted mean values of traits or with mode of gradient classes (sum of species amplitudes).

Description

Calculates community weighted mean trait values, like mean Ellenberg indicator values. Alternatively (method = 'mode') environmental conditions can be calculated according to the concept of sums of amplitudes of species along ecological gradients.

Usage

cwm(veg, refl, trait.db = 'ecodbase.dbf', ivname, keyname = 'LETTERCODE',
method = c('mean', 'mode'), weight, db, ...)

Arguments

- veg: Vegetation matrix with plots in rows and species in columns
- refl: Name of Turboveg taxonomic reference list
- trait.db: data frame with species trait values
- ivname: Name of the trait in trait.db to be used
- keyname: Name of the column in trait dataframe to join with colnames of veg table
- method: mean (weighted value of single traits, or mode (maximum) of trait classes)
- weight: additional weight, e.g niche breath of species
- db: name of Turboveg database
- ...: additional arguments

Details

Trait values of 0 will be handled as NA values because Turboveg dBase can not handle NA values properly.

Value

Vector with the ecological classification of sites. Either mean trait values or mode of gradient classes.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>
Examples

```r
## Not run:
db <- 'elbaue'
veg <- tv.veg(db, cover.transform='sqrt', check.critical = FALSE)
site <- tv.site(db, verbose = FALSE)
# 'Exclude plots with very high water level fluctuation
veg <- veg[site$SDGL < 60,]
veg <- veg[,colSums(veg) > 0]
site <- site[site$SDGL < 60,]
# 'Load species trait value database
traits <- tv.traits(db)

# 'Mean indicator values of Ellenberg F values
mEIV_F <- isc(veg, trait.db = traits, ivname = 'OEK_F', method = 'mean')
plot(site$MGL, mEIV_F, xlab = 'Mean groundwater level')

# 'Mode (most frequent level) of Ellenberg F values
library(reshape)
traitmat <- cast(trait, LETTERCODE ~ OEK_F)
traitmat <- traitmat[,,-14]
ilevel <- isc(veg, trait.db = traitmat, ivname = as.character(1:11), method = 'mode')
boxplot(site$MGL ~ ordered(ilevel, levels = levels(ilevel)[c(2,4,3,5,6:10,1)]))
```

## End(Not run)

---

db_download

### Download taxonomic databases

**Description**

Download taxonomic databases

**Usage**

```r
db_download_eurosl(version = "latest", verbose = TRUE, overwrite = FALSE)

db_download_germansl(version = "latest", verbose = TRUE, overwrite = FALSE)
```

**Arguments**

- `version` (character) desired version number of the list
- `verbose` (logical) Print messages. Default: TRUE
- `overwrite` (logical) If TRUE force an update by overwriting previously downloaded data. Default: FALSE

**Details**

Downloads sql database, cleans up unneeded files, returns path to sql file
**db_path**

**Value**

(character) path to the downloaded SQL database

**See Also**

tdb_cache

**Examples**

```r
## Not run:
# EuroSL
# db_download_eurosl()
# src_eurosl()

# GermanSL
# db_download_germansl()
# db_download_germansl(overwrite=TRUE) # overwrite - download again
# src_germansl()

## End(Not run)
```

---

db_path  
database path

**Description**

database path

**Usage**

db_path(db)

**Arguments**

db  
(character) db name. one of: eurosl, germansl
This is an example vegetation dataset to be included in package vegdata

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

References

https://www.vegetweb.de

Layer combinations

datasets with layer codes and how they should be combined in vegetation analyses. lc.0: do not combine any layers

Usage

lc.0

Format

A data frame with rows and 2 variables:

**LAYER**  Layer code, i.e. 0:9 for Turboveg

**COMB**  Combinations. Same integer means, they will be combined
Layer combinations

Description

datasets with layer codes and how they should be combined in vegetation analyses.

Usage

1c.1

Format

A data frame with rows and 3 variables:

- **LAYER** Layer code, i.e. 0:9 for Turboveg
- **COMB** Combinations. Same integer means, they will be combined

Layer combinations

Description

combine all layers

Usage

1c.all

Format

A data frame with rows and 2 variables:

- **LAYER** Layer code, i.e. 0:9 for Turboveg
- **COMB** Combinations. Same integer means, they will be combined
**Description**

#' Parents of a taxon

**Usage**

parent(x, refl = tv.refl(), rank, quiet = FALSE, ...)

**Arguments**

- **x**: Species number, lettercode or species name(s)
- **refl**: Taxonomic reference list
- **rank**: taxonomic level of taxa to find
- **quiet**: Hide screen messages
- **...**: additional attributes for function `tax`

**Details**

`concept`: GermanSL is a list with a single taxon view according to the standard lists of the different taxon groups (e.g. Wisskirchen and Haeupler for higher plants, see). Nevertheless a huge number of synonyms is included which allows in many cases the transformation into different concepts. For illustration the concept of *Armeria maritima* from Korneck 1996 is included, which accepts e.g. *Armeria maritima ssp. bottendorfensis*. `parse.taxa`: parse genus and epitheta from name strings. `taxname.removeAuthors`: Remove name authors from full scientific name strings.

**Author(s)**

Florian Jansen <florian.jansen@uni-rostock.de>

**References**

parse.taxa  Parse taxon strings into genus part and epitheta

Description
Parse taxon strings into genus part and epitheta

Usage
parse.taxa(x, epis)

Arguments
x (character) taxon names
epis (character) vector of separators for epithets (like e.g. "subsp.")

recode.species  Recode species names, lettercodes or ID's

Description
Recode species names, lettercodes or ID's

Usage
recode.species(
  x,
  names = c("shortletters", "Numbers", "ScientificNames"),
  refl
)

Arguments
x vector of species
names one of 7digit shortletter codes, species id's or scientific species names
refl (character) name of taxon reference list
sql_collect  
*Query and get data back into a data.frame*

Description

Query and get data back into a data.frame

Usage

```r
sql_collect(src, query, ...)
```

Arguments

- `src` *(src)* An `src` object, result of calling `src_germansl()`, `src_eurosl()`
- `query` *(character)* A SQL query
- `...` further args passed on to `dplyr::tbl()`

Details

we run `dplyr::tbl()`, then `dplyr::collect()`

Examples

```r
## Not run:
src <- src_germansl()
sql_collect(src, "select * from GermanSL limit 5")
## or pipe the src to sql_collect
src %>% sql_collect("select * from GermanSL limit 5")
## End(Not run)
```

src_vegdata  
*src - dplyr src objects*

Description

src - dplyr src objects

Usage

```r
src_eurosl(path = db_path("eurosl"), ...)
src_germansl(path = db_path("germansl"), ...)
```
syn

Arguments

path  (character) path to SQLite database. by default we use the function db_path() to get the path
...

Further args passed on to DBI::dbConnect()

Value

an src object

Examples

## Not run:
# src_euros1()
# src_germans1()
## End(Not run)

---

syn  Search synonyms of a taxon

Description

Search synonyms of a taxon

Usage

syn(x, refl = tv.refl(), quiet = FALSE, ...)

Arguments

x  Species number, lettercode or species name(s)
ref1  Taxonomic reference list
quiet  Hide screen messages
...

additional attributes for function tax

Details

class: GermanSL is a list with a single taxon view according to the standard lists of the different taxon groups (e.g. Wisskirchen and Haeupler for higher plants, see). Nevertheless a huge number of synonyms is included which allows in many cases the transformation into different concepts. For illustration the concept of Armeria maritima from Korneck 1996 is included, which accepts e.g. Armeria maritima ssp. bottendorfensis. parse.taxa: parse genus and epitheta from name strings.
taxname.removeAuthors Remove name authors from full scientific name strings.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>
References


---

**syntab**

*Syntaxonomic frequency tables*

**Description**

Calculate and display relative or absolute frequency tables with or without use of function multipatt from package indicspecies

**Usage**

```r
syntab(veg, clust, type = c('rel','abs','mean.cover'), mupa, dec=0, refl, ...)
print.syntab(x, zero.print = ".", trait, limit = 1, minstat = 0, alpha = 0.05, ...)
```

**Arguments**

- `veg`: Vegetation dataframe
- `clust`: Vector with cluster information with length equal to number of rows of `veg`
- `type`: Relative or absolute frequency, mean species response values or strength of association.
- `mupa`: Either logical for (not) using multipatt from package indicspecies to detect significance of cluster association strength or supply output from previous use of multipatt.
- `dec`: Number of decimals in result.
- `refl`: Name of Turboveg taxonomic reference list to use for fullnames.
- `...`: additional arguments
- `x`: Object from function syntab
- `zero.print`: Replacement for zero values.
- `trait`: Optional vector of trait values to be plotted behind the species.
- `limit`: Minimum value to display.
- `minstat`: Minimal indicator value
- `alpha`: Significance threshold.

**Author(s)**

Florian Jansen <florian.jansen@uni-rostock.de>
tax

Search taxonomic reference lists including concept synonomy and taxonomic hierarchy.

Description

Input is either species number (integer), shortletter (7 characters) or full (exact!) species name.

Usage

tax(x, refl, detailed = TRUE, syn = TRUE, concept = NULL, strict = FALSE, simplify = FALSE, quiet = FALSE, ...)

Examples

---

# Not run:
elbaue <- tv.veg('elbaue')
elbaue.env <- tv.site('elbaue')
clust <- vector('integer', nrow(elbaue.env))
clust[elbaue.env$MGL < -50 & elbaue.env$SDGL < 50] <- 1
clust[elbaue.env$MGL < -50 & elbaue.env$SDGL >= 50] <- 2
clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL >= 50] <- 3
clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL < 50] <- 4
levels(clust) <- c('dry.ld', 'dry.hd', 'wet.hd', 'wet.ld')
traits <- tv.traits()
m <- match(rownames(st$syntab), traits$LETTERCODE, nomatch = 0)
trait <- traits[m, c('OEK_F', 'OEK_N')]
rownames(trait) <- traits$LETTERCODE[m]
st <- syntab(elbaue, clust, mupa=TRUE)
print(st, limit=30, trait=trait)
# Manipulation of the syntaxonomic table
sttable <- st$syntab
sttable <- sttable[sttable$p.value < 0.05 & !is.na(sttable$p.value),
!names(sttable) %in% c('stat')]
taxa <- tax(rownames(sttable))
rownames(sttable) <- taxa[match(rownames(sttable), taxa$LETTERCODE, nomatch = 0), 'TaxonName']
write.csv(sttable, 'sttable.csv')

## End(Not run)
---

See Also

Package indicspecies with function multipatt for indicator species analysis along multiple cluster combinations
Arguments

- **x**: Species number, lettercode or species name(s)
- **refl**: Taxonomic reference list
- **detailed**: In old Turboveg versions detailed taxonomic information could only be given in an extra file which was called tax.dbf in GermanSL. Compatibility mode.
- **syn**: Return also synonym names
- **concept**: Name of the file with an alternative taxon view stored in the reference list directory, see details.
- **strict**: Exact match or partial matching with `grep`
- **simplify**: Should taxname.simplify be applied to find species
- **quiet**: Hide screen messages
- **...**: additional attributes for taxname.abbr or taxname.simplify

Details

- **concept**: GermanSL is a list with a single taxon view according to the standard lists of the different taxon groups (e.g. Wisskirchen and Haeupler for higher plants, see). Nevertheless a huge number of synonyms is included which allows in many cases the transformation into different concepts. For illustration the concept of *Armeria maritima* from Korneck 1996 is included, which accepts e.g. *Armeria maritima* ssp. *bottendorfensis*. `parse.taxa`: parse genus and epithets from name strings.
- **taxname.removeAuthors**: Remove name authors from full scientific name strings.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

References

Format

A data frame with rows and 3 variables:

- **rank**  Layer code, i.e. 0:9 for Turboveg
- **level** Combinations. Same integer means, they will be combined
- **Euro.Med**  taxon level name in http://www.europlusmed.org/ database
- **description**  Explanation of level codes

---

| taxname.abbr | Standardisation of taxonomic names, especially taxon rank indicators and hybrid signs name taxname.abbr |

Description

Standardisation of taxonomic names, especially taxon rank indicators and hybrid signs name taxname.abbr

Usage

taxname.abbr(x, hybrid = TRUE, concept = FALSE, species = TRUE, cf = TRUE, ...)

Arguments

- **x**  (integer or character) Species number, lettercode or species name(s)
- **hybrid**  (logical) remove hybrid markers for comparisons
- **concept**  (logical) remove concept additions like "s. str.", "s. l.
- **species**  (logical) remove "spec.", "sp.", or "species" for genus level taxa
- **cf**  (logical) remove 'in doubt' marker
- ...  additional attributes

Author(s)

Florian Jansen florian.jansen@uni-rostock.de
taxname.removeAuthors  Remove name authors from taxon names

Description
Remove name authors from taxon names

Usage
taxname.removeAuthors(x)

Arguments
x  (character) vector of taxon names

---
taxname.simpl  Simplify name parts for better string matching

Description
Simplify name parts for better string matching

Usage
taxname.simplify(
  x,
  genus = TRUE,
  epithet = TRUE,
  hybrid = TRUE,
  concept = TRUE,
  rank = TRUE,
  tax.status = TRUE,
  ...
)

Arguments
x  (integer or character) Species number, lettercode or species name(s)
genus  (logical) simplify genus name part
epithet  (logical) simplify epithet(s)
hybrid  (logical) remove hybrid markers
concept  (logical) remove name parts which describe taxon concept size like "s. str.","s. l."
rank  (logical) remove rank specifications
tax.status  (logical) remove taxon status like 'nom. illeg.' or 'auct.'
...  additional attributes
Details

taxname.abbr will be applied beforehand automatically. The function simplifies name parts which are empirically unstable, i.e. sylvatica might also be written as silvatica, or majus s maius. Sex of latin genus or epithet name parts often change and are therefore deleted (us vs. a, ea vs. eos, etc.). taxname.simpl works well for plant names, but be careful with very long name lists or if combined with animal taxa which are sometimes very short and can be confused after applying taxname.simpl

Author(s)

Florian Jansen florian.jansen@uni-rostock.de

---

taxval Handling of taxonomy in vegetation data.

Description

Performs taxonomic valuation of species names according to synonymy, taxonomic level, unambiguous biotic content etc. Necessary prerequisite is information about taxonomic status (synonymy) and hierarchy (next higher aggregate). Until now only applicable for reference list 'GermanSL' (= version 1.1, see References Section), which is valid in Germany and adjacent countries.

Usage

taxval(obs, refl, db, ag = c('conflict', 'adapt', 'preserve'), rank,
mono = c('species', 'higher', 'lower', 'preserve'), monolist = "monotypic-D",
maxtaxlevel = 'AGG', check.critical = TRUE, interactive = FALSE, ...)

Arguments

obs data.frame of observations in TURBOVEG format, for example loaded with tv.obs
refl Name of taxonomic reference list
db a name of a Turboveg database directory containing tvabund.dbf, tvhabita.dbf and twin.set
ag Treatment of children and parents within the dataset, see details
rank If ag='adapt', rank specifies the taxonomic rank to which taxa should be coarsened to. All higher taxa in this taxonomic tree will be deleted, see maxtaxlevel.
mono Should monotypic taxa be combined at subspecies = ‘lower’ or species level = ‘higher’
monolist Name of monotypic species list, must be in dBase format and in the same directory as the reference list, e.g. "monotypic-D" for the area of Germany.
maxtaxlevel Maximum taxonomic levels to be used. See details.
check.critical Check for critical names in your dataset and give warnings.
interactive Do you want to adapt the list of changes.
... Other parameters passed to functions.
Details

Working with vegetation datasets, especially from different sources needs taxonomic valuation. The function tries to automate this process. Therefore the German taxonomic reference list (GermanSL, https://germansl.infinitenature.org) contains additional taxon attributes (tax.dbf) and monotypic taxa of Germany (monotypic.dbf). Without an appropriate species list (see tax) the function will not work.

The taxonomic reference list needs Taxonrank corresponding to values given in taxlevels Possible values for adapting the taxonomic hierarchy within the dataset (child/parent taxa) are: preserve: Leave everything untouched. conflict: Dissolve only in case of conflicts, e.g. if a subspecies occurs also at the species level within the same dataset. In this case the subspecies will be aggregated to the higher level. adapt: Dissolve all nested taxa to e.g. species level for option ag. For this option also option rank, specifying the rank to which the taxa shall be adapted, must be given.

Monotypic taxa, e.g. a species which occur only with 1 subspecies in the survey area. They have to be combined, since otherwise two different (valid) taxa would denominate the same entity. If lower the higher taxon (e.g. species rank) is replaced by the lower level (subspecies rank). If neither lower nor higher monotypic species are preserved. Since the list of monotypic species strongly depends on the considered area you have to choose, which area is covered by your database and create an appropriate list of monotypic taxa. Within the package "monotypic-D.csv" is provided as a compilation of monotypic species within the GermanSL list.

Option maxtaxlevel determines the maximum taxonomic level within the given names, which should be used. All higher taxon observations are deleted. If you have a single field observation determined as Asteraceae spec. all your observations of taxa from that family will be aggregated to the family level, if you choose ag=conflict.

Interactive If you want to manually adapt the taxonomic harmonization interactive=TRUE will create a table with all original names and NewTaxonID’s according to the chosen rules. The table will be saved as taxvalDecisionTable.csv in your actual working directory. You can manipulate the column NewTaxonID. If you run taxval again (e.g. through function tv.veg) and a file with this name exist in your working directory, it will be used.

Value

Functions return the input dataframe of observations with harmonised taxon numbers.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

References


See Also

tv.veg, tv.obs
Examples

```r
## Not run:
# Turboveg installation needed
obs <- taxval(db='taxatest')
# For explanations see vignette('vegdata').

veg <- tv.veg('taxatest')
veg <- comb.species(veg, c('ARMEM-E','ARMEM-H'))

## End(Not run)
```

---

**TCS.replace**

*Standardise taxon list field names to match the Taxonomic Concept Transfer Schema (TCS)*

---

**Description**

Applies Taxonomic Concept Transfer Schema (TCS) to the different name list conventions of different sources

**Usage**

```r
TCS.replace(x)
```

**Arguments**

- `x` (character) string of column names used in data.frames storing taxon lists

**Author(s)**

Florian Jansen florian.jansen@uni-rostock.de

**References**

**Description**

Manage cached vegdata files with **hoardr**

**Details**

`cache_delete` only accepts 1 file name, while `cache_delete_all` doesn’t accept any names, but deletes all files. For deleting many specific files, use `cache_delete` in a `lapply()` type call.

**Useful user functions**

- `tdb_cache$cache_path_get()` get cache path
- `tdb_cache$cache_path_set()` set cache path
- `tdb_cache$list()` returns a character vector of full path file names
- `tdb_cache$files()` returns file objects with metadata
- `tdb_cache$details()` returns files with details
- `tdb_cache$delete()` delete specific files
- `tdb_cache$delete_all()` delete all files, returns nothing

**Examples**

```r
## Not run:
tdb_cache

# list files in cache
tdb_cache$list()

# delete certain database files
# tdb_cache$delete("file path")
# tdb_cache$list()

# delete all files in cache
# tdb_cache$delete_all()
# tdb_cache$list()

## End(Not run)
```
**tv.bib**

*Check bibliographic references from Turboveg codes*

**Description**

Check bibliographic references from Turboveg codes

**Usage**

```
 tv.bib(x = "all", db, dict = tv.dict(db), quiet = FALSE, tv_home, ...)
```

**Arguments**

- `x` (character) Turboveg reference code(s), e.g. "000001"
- `db` (character) Database name. Needed to select appropriate TV Dictionary folder.
- `dict` (character) Name of Turboveg Dictionary (term lists for header data) if not the default one.
- `quiet` (logical) If you want to print the reference to the screen.
- `tv_home` (character) Turbowin installation path. If not specified function `tv.home()` tries to discover.
- `...` additional arguments

**Value**

Dataframe of (selected) bibliographic references (when assigned to an object).

**Author(s)**

Florian Jansen &lt;florian.jansen@uni-rostock.de&gt;

---

**tv.coverperc**

*Cover code translation*

**Description**

Translate cover code into percentage cover values for Turboveg database observations.

**Usage**

```
 tv.coverperc(db, obs, RelScale, tv_home, tvscale, quiet = FALSE, ...)
```
Arguments

- `db` (character) the name of the Turboveg database
- `obs` (dataframe) dataframe of observations, containing Cover Codes, coded in tvscale.dbf of Turboveg installation
- `RelScale` (dataframe) Dataframe of CoverScale codes per releve, if empty it is read from the database
- `tv_home` (character) Path to Turboveg installation
- `tvscale` (character) Cover scale
- `quiet` (logical) Suppress messages
- `...` Further options

Value

data.frame of observations with additional column `#` codeCOVER_PERC

Author(s)

- Florian Jansen <florian.jansen@uni-rostock.de>

Keywords Turboveg

**tv.db**

Read list of available Turboveg2 databases in given Turboveg directory

Usage

- `tv.db(path)`
- `tv.dict(db, tv_home)`

Arguments

- `path` (character) directory path inside Turboveg/data directory
- `db` (character) name of Turboveg database/directory
- `tv_home` (character) path of Turboveg installation

Value

List of databases below specified path

Author(s)

- Florian Jansen <florian.jansen@uni-rostock.de>
- Florian Jansen <florian.jansen@uni-rostock.de>
Where is your Turboveg 2 installation path?

Description
Reads and sets invisibly option('tv_home')

Usage
tv.home(check = FALSE)

Arguments
check (logical) reset even if option('tv_home') is already set

Value
Reads and sets invisibly option('tv_home')

Author(s)
Florian Jansen <florian.jansen@uni-rostock.de>

Show metainfo of vegetation database or ecodbase

Description
Showing "metadata.txt" when specified and saved in Turboveg database directory. When db = 'eco' and refl specified, metainfo of species attribute table is displayed.

Usage
tv.metadata(db, refl, tv_home, filename = 'metadata.txt', ...)

Arguments
db Turboveg database name
refl Turboveg taxonomic reference list, declaration only necessary for ecodbase info
tv_home Turboveg installation path
filename Name of metainfo file residing in database directory
... additional arguments
Details

Because Turboveg provides no formalised method to store information about database fields, I suggest to save a simple text file, named for example "metadata.txt" into the directory of your Turboveg database.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

tv.obs

Dataframe of plot-species observations directly from Turboveg

Description

Dataframe of plot-species observations directly from Turboveg.

Usage

tv.obs(db, tv_home, ...)

Arguments

db (character) Name of your Turboveg database. This is the directory name containing tvabund.dbf, tvhabita.dbf and tvwin.set. Please include pathnames below but not above Turbowin/Data.

tv_home (character) Turbowin installation path. If not specified function tv.home tries to discover.

... additional arguments

Value

Dataframe of species occurrences in Turboveg format, that is every occurrence is a row with releve number, species number, layer, cover code and optional additional species-plot information.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

tv.veg
tv.readXML

Reads a Turboveg XML file

Description

Reads Turboveg XML formatted files species-plot observations and site information into a list

Usage

tv.readXML(file)

Arguments

file  (character) Path name of the Turboveg XML file

Value

S3 list with elements tvwin, tvadmin, site, and obs

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

tv.veg, tv.site
**tv.refl**

*Taxon reference list to be used*

**Description**

Taxon reference list to be used

**Usage**

`tv.refl(refl, db, tv_home)`

**Arguments**

- `refl`: name of reference list
- `db`: Turboveg database name
- `tv_home`: Turboveg installation path

---

**TV.replace**

*Rename data.frame columns to match Turboveg 2 conventions*

**Description**

Rename data.frame columns to match Turboveg 2 conventions

**Usage**

`TV.replace(x)`

**Arguments**

- `x`: (character) string vector of column names
tv.site  

Load site data from Turboveg Database

Description
Loading Turboveg header data and do basic data evaluation. Empty columns are eliminated and warnings about possibly wrong '0' values are performed.

Usage

```r
tv.site(db, tv_home, drop=TRUE, common.only = FALSE, verbose = TRUE, replace.names, ...)
```

Arguments

- `db` (character) Name of your Turboveg database(s). Directory name containing tv-abund.dbf, tvhabita.dbf and tvwin.set.
- `tv_home` (character) Turbowin installation path. Optional, if Turbowin is either on "C:/Turbowin" or "C:/Programme/Turbowin".
- `drop` (logical) Drop variables without values.
- `common.only` (logical) Import only header data with the same name in all databases.
- `verbose` (logical) Print warnings and hints.
- `replace.names` (data.frame) Replace variable names. Useful if using multiple source databases. Data frame with names to be replaced in first and replacing names in second column.
- `...` Additional options like `dec` for `type.convert`

Details
Please specify pathnames below but not above Turbowin/Data. Can be a single database or a character vector of multiple databases. In the latter case you have to assure, that all databases use the same taxonomic reference list.

You can use the example in the final output line to make a summary statistic for attributes with potentially misleading '0' values. Just delete the " at beginning and end.

Value
data.frame of site variables.

Author(s)
Florian Jansen <florian.jansen@uni-rostock.de>
tv.traits

Load species traits from Turboveg reference list

Description
Loading Turboveg ecodbase or any other specified dBase file in this directory and do basic data evaluation. Empty columns are eliminated.

Usage
tv.traits(db, trait.db = 'ecodbase.dbf', refl, ...)

Arguments
- db: Path name to the Turboveg database directory
- trait.db: Name of species trait dBase file, default is 'ecodbase'
- refl: Name of the taxonomic reference list, if veg is not loaded with tv.veg
- ...: additional arguments for tv.traits

Details
You can use the final output line to make a summary statistic for attributes with potentially misleading '0' values.

Value
data.frame of ecological traits, see metainfo(refl,eco=TRUE)

Author(s)
Florian Jansen <florian.jansen@uni-rostock.de>

tv.veg

Tabulates vegetation tables from Turboveg database

Description
Tabulates vegetation tables from Turboveg resp. VegetWeb database, including taxonomic emendation and layer combination. Using various default parameters for the included functions. It is a wrapper for tv.obs, taxval, tv.coverperc and creating a vegetation matrix.

Usage
tv.veg(db, taxval=TRUE, tv_home, convcode=TRUE, lc = c("layer", "mean", "max", "sum", "first"), pseudo, values='COVER_PERC', spcnames=c('shortletters', 'ScientificNames', 'Numbers'), dec = 0, cover.transform = c('no', 'pa', 'sqrt'), obs, site, refl, RelScale, ...)
Arguments

db Name of your Turboveg database. Directory name containing tvabund.dbf, tvhabita.dbf and tvwin.set. Please specify pathnames below (if you sorted your databases in subfolders) but not above Turbowin/Data.
taxval Should taxonomic valuation (see taxval) be performed?
tv_home Turbowin installation path.
convcode Should cover code be converted to percentage values?
lc Layer combination type. Possible values: layer (default), sum, mean or max, see details
pseudo List used for layer combinations, see details
values Name of the variable which should be used for the vegetations matrix.
spcnames Should species numbers be replaced by shortletters or scientific species names? Layer information is appended with dot.
dec Number of decimals for cover values in the resulting vegetation matrix.
cover.transform If you want to transform the abundance values within your samples you can choose 'pa' for presence-absence or 'sqrt' for the dec rounded square root.
obs Observations, optional
site plot header data, see tv.site
refl Taxonomic reference list, optional
RelScale Vector with Cover Scale code per Releve.
... additional arguments for included functions

Details

layer means, the different layers are combined assuming there independence (a species occurring in two layers with a cover of 50%

Value

an object of class matrix with (combined) cover values.

Author(s)

Florian Jansen <florian.jansen@uni-rostock.de>

See Also

taxval, tv.coverperc, tv.obs, tv.site
tv.write

Write species-plot observations and site information to Turboveg database.

Description
Write species-plot observations and site information to Turboveg database.

Usage
tv.write(x, site, name, tvadmin, remarks, dict = "", cover = c("code", "perc"), drop = FALSE, obl = TRUE, overwrite = FALSE, ...)

Arguments

x (data.frame) Either observations data.frame with RELEVE_NR, TaxonUsageID and COVER_CODE (see tv.obs) columns or vegetation matrix of class "veg".
site (character) Header data for plots.
name (character) Name of the new database.
tvadmin (data.frame) Dataframe with plot UUID's and Turboveg columns from TvAdmin.dbf. A new file with new unique identifiers will be created if omitted.
remarks (data.frame) Remarks in Turboveg format if the comments for individual plots exceed 254 characters. See remarks.dbf in Turboveg databases. An empty file will be created if omitted.
dict (character) Turboveg dictionary name
cover (logical) Use of covercodes or (mean) cover percentages, see Details.
drop (logical) Drop columns which are empty or contain only NA values.
obl (logical) Add obligatory fields defined in the TV dictionary but not present in the site data table.
overwrite (logical) Should an existing database be overwritten.
... additional arguments

Examples
## Not run:
vignette("vegdata")
# ' tv.veg('databasesname', tax=FALSE).
args(tv.veg)
help('taxval')

veg <- tv.veg('taxatest')
names(veg)

## End(Not run)
Details

By default Covercode is written to Turboveg. This is only meaningful, if correct CoverScales are given in the site dataframe. Unique plot ID’s are stored in TvAdmin.dbf. If you want to preserve already given UUID’s you have to prepare an appropriate data.frame. Look for existing TvAdmin.dbf files for necessary columns.

Value

Five files will be created in "tv_home/Data/databasename" directory. tvabund.dbf with occurrence information n long format, tvhabita.dbf with plot information, remarks.dbf with comments longer then 255 characters, TvAdmin.dbf with plot UUID’s and tvwin.dbf with information about taxonomic reference list, and dictionary used.

Author(s)

Florian Jansen @email florian.jansen@uni-rostock.de

See Also

tv.veg
# Index

* Area
  - tv.site, 29
* Survey
  - tv.site, 29
* Turboveg
  - tv.bib, 23
  - tv.db, 24
  - tv.home, 25
  - tv.obs, 26
  - tv.readXML, 27
  - tv.site, 29
  - tv.write, 32
* #''
  - tv.site, 29
* datasets
  - lc.0, 8
  - lc.1, 9
  - lc.all, 9
  - taxlevels, 16
* data
  - elbaue, 8
* manip
  - tv.veg, 30
* misc
  - tv.veg, 30
* package
  - vegdata-package, 3

child, 3
comb.species, 4
cwm, 5
db_download, 6
db_download_eurosl (db_download), 6
db_download_germansl (db_download), 6
db_path, 7
db_path(), 13
DBI::dbConnect(), 13
dplyr::collect(), 12
dplyr::tbl(), 12
elbaue, 8
grep, 16
lapply(), 22
lc.0, 8
lc.1, 9
lc.all, 9
multipatt, 15
parent, 10
parse.taxa, 11
print.syntab (syntab), 14
recode.species, 11
sql_collect, 12
src_eurosl (src_vegdata), 12
src_eurosl(), 12
src_germansl (src_vegdata), 12
src_germansl(), 12
src_vegdata, 12
syn, 13
syntab, 14
tax, 15, 20
taxlevels, 16
taxname.abbr, 17
taxname.removeAuthors, 18
taxname.simpl, 18
taxname.simplify (taxname.simpl), 18
taxval, 19, 31
TCS.replace, 21
tdb_cache, 7, 22
tv.bib, 23
tv.coverperc, 23, 31
tv.db, 24
tv.dict (tv.db), 24
tv.eco (tv.traits), 30
tv.home, 25, 26
INDEX

tv.home(), 23
tv.metadata, 25
tv.obs, 19, 26, 31, 32
tv.readXML, 27
tv.refl, 28
TV.replace, 28
tv.site, 27, 29, 31
tv.traits, 30
tv.veg, 3, 20, 26, 27, 30
tv.write, 32

vegdata (vegdata-package), 3
vegdata-package, 3