Package ‘vetools’
February 20, 2015

Encoding UTF-8
Depends R (>= 2.10), sp
Imports stringr, tis, lubridate, maptools, plyr, xts, scales
Maintainer Andrew Sajo-Castelli <asajo@usb.ve>
License GPL
Title Tools for Venezuelan Environmental Data
LazyData false
Type Package
Description Integrated data management library that offers a variety of tools concerning the loading and manipulation of environmental data available from different Venezuelan government sources. Facilities are provided to plot temporal and spatial data as well as understand the health of a collection of meteorological data.
Version 1.3-28
Revision $Rev: 4$
BugReports https://github.com/talassio/vetools/issues
Author Andrew Sajo-Castelli [aut, cre], Desiree Villalta [ctb], Lelys Bravo [ctb]
NeedsCompilation no
Repository CRAN
Date 2013-08-01 14:10:01
Date/Publication 2014-10-15 08:47:53

R topics documented:
vetools-package ... 2
Catalog ... 4
CatalogConvention ... 5
complete.series .. 6
CuencaCaroni ... 8
diasdelmes ... 9
diffmonths ... 9
Description

This toolset provides a bundle of functions to handle and unify the diverse data formats of distinct government agencies and military bodies: Ministerio del Ambiente, Marina Venezolana, etc. It also provides all necessary tools to load these data sets. In order to standardize the structure of the data provided and/or processed, a vetools Catalog Convention is presented.

Details

- **Package:** vetools
- **Type:** Package
- **Version:** 1.x series
- **Initial Release Date:** 2013-08-01
- **License:** GPL

Input functions:
- `read.HIDROX`
- `read.MINAMB`
- `read.MARN`
Preprocessing functions:
disaggregate.ts
disaggregate.MARN
complete.series
fill.small.missing

EST family functions:
est.cut
est.fill
est.rm
est.union
est.sort

Descriptive functions:
panorama
panomapa
summary.Catalog
print.Catalog
plot.Catalog

SHAPE family functions:
get.shape.state
get.shape.venezuela
get.shape.range
get.Grid.size

Class Catalog
Catalog
is.Catalog
as.Catalog

For a complete list of functions, use library(help = "vetools").

Convention Sheet:
Catalog Convention White Sheet

Datasets:
CuencaCaroni
Vargas
Vargas2

Author(s)
Maintainer: A. M. Sajo-Castelli <asajo@usb.ve>
Catalog

References

Catalog

Collection of class Catalog

Description

Constructs or tests for collections

Usage

Catalog(catalog, data, ...)

is.Catalog(x, ignore.class = FALSE)

as.Catalog(x)

Arguments

catalog A list of exactly ten elements and zero or more optional elements. See details in Catalog Convention
data A list of any kind of the same length as catalog
x Possibly a collection of class Catalog
ignore.class Test if x is a collection ignoring its class
... zero or more R objects to include in the construction of the collection

Value

Catalog and as.Catalog return a collection of class Catalog, fully qualified and following the Catalog Convention. If "..." is not missing then all its objects are included in the collection.

is.Catalog returns a logical value.

Author(s)

A.M. Sajo-Castelli

See Also

Catalog Convention, vetools.
Description

This white sheet describes the Catalog Convention of vetools package.

Catalog Convention White Sheet (Revision 3)

The purpose of this convention is to standardize the data structure used to store the environmental data and associated meta-data. All data-sets provided and processed by the vetools package that follow this convention are of class "Catalog" and are referred as "Collection"s. Each collection provides the following structure of class list:

- A list of class "list" with name "catalog" where each element is composed of exactly ten standard elements and zero or more optional/extra elements. The required standard elements are:
 - Name: Station’s name, class "character"
 - Altitude: Station’s altitude in metres. Some data sources lack this information and is taken to be NA
 - Latitude: Latitude in degrees
 - Longitude: Longitude in degrees, some data sources use West direction
 - Measure.code: Measured variable code, sometimes indicates MKS unit
 - Measure.unit: Measured data variable description
 - Install: Date of station’s installation
 - Start: Date of start of operation of the station. Some data sources lack this information and is taken to be the same as Instalacion
 - State: The state of the country to which the station belongs, some sources lack this information and can be taken to be NA
 - Avble.yrs: A vector containing the years on which the station allegedly operated. Some source lack this information and is extracted from the measured variable and reflects those years that have at least one measurement.

- One or more lists of measurement data variables, generally of class "ts". It is required that at least one be present under the name of "data".

This pair of lists ("catalog" and "data") form the collection. The two (or more) items are always of class "list" and are in direct correspondence, i.e. item n of the "catalog" corresponds to the measured variable item n in "data".

For example, suppose collection is a collection of 30 stations, then collection$catalog[[4]] element describes the measurement of collection$data[[4]].

Functions

Functions provided to read data sources are

read.HIDROX imports Argus 1.0 data source files
read.MARN imports M.A.R.N. files
complete.series

Complete relatively large holes in data-sets

Description

This function completes relatively large holes in monthly time-series objects.

Usage

```
complete.series(collection, model, k.ubic = NA, centers = 3, nstart = 3,
weps = 0.05, MAX.ITER = 100, AEM.debug = T)
```
complete.series

Arguments

collection
A list of class Catalog that contains the objects to complete.

model
A list of fixed-effects models related to `collection$data`.

k.unique
A data.frame of exactly one member `k.unique$cluster` which is a scalar vector
of length equal to `collection$data` and specifying to which cluster belongs to
each element of the list `collection$data`.

centers
If `k.unique` is unavailable, this sets the quantity of clusters to build.

nstart
If `k.unique` is unavailable, then this parameter sets the initial quantity of center
with which to start the k-means algorithm.

weps
Tolerance for the E-M Algorithm.

MAX.ITER
Maximum number of iterations for the E-M Algorithm.

AEM.debug
Logical flag indicating if verbosity is required.

Details

The main idea behind this functions is to complete the time-series of the list by first clustering
similar stations and then applying to each cluster the E-M Algorithm in order to complete the series.
The E-M Algorithms is an iterative method that in each iteration performs two tasks: first estimates
the expected values and then maximizes their likelihood. This goes on until some stopping criteria
is met.

Value

Returns a completed version of `collection` (`collection$data`).

Note

The current implementation is known to have problems. The iterative process not always con-
verges. It is also known that the E-M has been surpassed by other methods and it would be desireble
to replace it.

Author(s)

A. Jhan, fixed-up by A.M. Sajo-Castelli.

See Also

`fill.small.missing`

Examples

```r
## Not run:
for (k in 1:15) {
  fit[[k]] = lm(collection$data[[k]] ~ ZZ - 1, singular.ok=T, na.action=na.omit)
}
collection.completed = complete.series(collection, fit)
## End(Not run)
```
Description

Monthly precipitation values for meteorological stations located in the Cuenca del Caroní, Bolívar state, Venezuela.

Data set of precipitation for 91 meteorological stations located in the Bolívar state, Venezuela. Data set follows vetools Catalog Convention. See Catalog Convention.

Usage

data(CuencaCaroni)

Format

This data set contains a collection of two members of class list, each of 91 elements:

- **CuencaCaroni$catalog** list of each station’s meta data. Follows vetools Catalog Convention. To see meta data summary(CuencaCaroni).
- **CuencaCaroni$data** list containing each station’s time-series of class "ts".

Details

This data set provides monthly precipitation for 91 meteorological stations located in the Cuenca del Caroní region of the Bolívar state of Venezuela. The region is delimited between -63.88083, -60.60722 degrees and 3.895833 and 8.333333 degrees (North). Time-series for stations vary between 1949 and 2011.

The data set was imported into R using read.MINAMB function.

Source

See Also

Vargas, Catalog Convention, read.MINAMB.

Examples

```R
## Not run:
data(CuencaCaroni)
summary(CuencaCaroni)
plot(CuencaCaroni$data[[2]])
start(CuencaCaroni$data[[80]])
end(CuencaCaroni$data[[80]])
frequency(CuencaCaroni$data[[80]])
```
\textbf{diasdelmes} \hspace{2cm} \textit{Sum of days}

\textbf{Description}
This function returns the number of days in a sequence of months. Takes into account leap years.

\textbf{Usage}
diasdelmes(y, meses)

\textbf{Arguments}
\begin{itemize}
 \item \textit{y} \hspace{1cm} integer, year from which to reference the months specified by meses
 \item \textit{meses} \hspace{1cm} a vector of length greater or equal to 1 specifying the months to sum
\end{itemize}

\textbf{Value}
returns the number of days specified in the months meses of the year \textit{y}.

\textbf{Author(s)}
A.M. Sajo-Castelli

\textbf{See Also}
\texttt{vetoools, diffmonths, tssum, m12, time2ym, ym2time, xts2ts}.

\textbf{diffmonths} \hspace{2cm} \textit{Difference between two time-series}

\textbf{Description}
Calculates the difference in months of two time-series objects.

\textbf{Usage}
diffmonths(date1, date2)

\textbf{Arguments}
\begin{itemize}
 \item \textit{date1} \hspace{1cm} objects of class "ts"
 \item \textit{date2} \hspace{1cm} objects of class "ts"
\end{itemize}
disaggregate.MARN

Value

Returns the number of months between the start of two class "ts" objects.

Author(s)

A.M. Sajo-Castelli

See Also

vetools, diasdelmes, tssum, ml2, time2ym, ym2time, xts2ts.

disaggregate.MARN

Disaggregates a time-series using a reference (surrogate) serie

Description

For a brief introduction on disaggregation see disaggregate.ts. In order to disaggregate, a distribution of the asterisks is required. In this implementation, the distribution is estimated using a surrogate serie. In general terms the surrogate serie is very carefully drafted.

Usage

disaggregate.MARN(stream = NULL, reference = NULL, na.action = "error", asterisk = -9999, date.eps = 0.004, float.eps = 1e-04, return.incomplete = TRUE)

Arguments

stream
 An aggregated ts object.
reference
 A reference or surrogate ts object.
na.action
 Action to take if the sample distribution has NAs present. Can be "mean" ("average", "warning", "continue") or "error". In the first case the sampled distribution is the average. On the second, the process is stoped, if return.incomplete is true then the progress of disaggregation is returned.
asterisk
 Scalar denoting values to complete.
date.eps
 Tolerance in date/time matching.
float.eps
 Smallest mass to distribute along the aggregated elements.
return.incomplete
 Boolean value to interrupt the process and return the incompletely disaggregated series. See details.
Details

The parameter `return.incomplete` is very useful to build surrogate series, as follows. Say there is a list of 15 aggregated series, then in order to build a reference series for all of them, the following heuristic can help. Suppose these series are ordered by least NAs and asterisks present.

```r
reference <- pr[[1]]
k = 1
restart:
for (station in 1:k) {
    reference <- desagregate.MARN(pr[[k]],
                            reference, return.incomplete=TRUE)
}
if (reference is not yet fully desagregated) { k <- k + 1 }
goto restart
```

The main feature of this procedure is that it always tries to use the best series first then the second best, etc. It may not complete the task if the sample distribution contains NAs for all 15 stations. Under this precarious condition, artificial or external information can be used.

Value

Returns a disaggregated series. If the switch `return.incomplete` is true, then it returns a series that was disaggregated until NAs where found on the sample distribution.

Author(s)

A.M. Sajo-Castelli

See Also

disaggregate.ts

Description

This function disaggregates pilled-up data. Aggregation points are denoted by the scalar following one or more asterisks. The job of this function is to distribute the mass accumulated in the first non asterisk measurement between the previous points marked with asterisks.

Usage

```r
disaggregate.ts(x, ...)
```
Arguments

- \textit{x}: An aggregated \textit{ts} object.
- \ldots
 - \textit{defaults to asterisk = -9999 and fun = median}. Where \textit{asterisk} is a scalar that denotes values to complete, defaults to -9999, and \textit{fun} is the name of the function to use to build the sampled distributions. Defaults to \textit{median}.

Details

Say a time-series is of weekly frequency and is

<table>
<thead>
<tr>
<th>Week</th>
<th>Mon</th>
<th>Tue</th>
<th>Wen</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{k}</td>
<td>14.5</td>
<td>19.0</td>
<td>25.5</td>
<td>25.2</td>
<td>19.8</td>
<td>12.3</td>
<td>13.7</td>
</tr>
<tr>
<td>\textit{k+1}</td>
<td>NA</td>
<td>18.7</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>83.2</td>
<td>14.2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The task is to distribute 83.2 between Wen and Sat of week \textit{k+1} using the sampled distribution of Wen, Thu, Fri and Sat of \textit{all} available weeks. Sometime this is not possible and in this case all days get the equal mass distribution.

Value

- Returns a disaggregated \textit{ts} object.

Author(s)

- A.M. Sajo-Castelli

See Also

- \texttt{disaggregate.MARN}

\begin{verbatim}
\texttt{est.cut} Crops a list of time-series
\end{verbatim}

Description

Given a time window, this function crops all the stations in a collection of data/catalog pair. If a given station starts after the end date (\textit{end}) or ends before the initial date (\textit{start}), it is removed from the catalog.

Usage

\begin{verbatim}
est.cut(collection, start = c(1960, 1), end = c(2020, 12))
\end{verbatim}
est.fill

Arguments

collection A list of class Catalog.
start The start of the window to crop. A vector of two elements (year, month).
end The end of the windows to crop.

Value

Returns a list with the updated (cropped) collection. Note that the information regarding the stations meta-data is NOT modified. (!)

Author(s)

A.M. Sajo-Castelli.

See Also

The other est.* family members: est.rm, est.fill, est.sort, est.union.

est.fill
For each member of a collection call the function
fill.small.missing

Description

Given a list of class Catalog, it completes each station’s data in such a manner that all stations either start or end at the same time. Missing values for each station are estimated by calling the function fill.small.missing.

Usage

est.fill(collection, cut = c(1968, 3), at.start = T)

Arguments

collection A list of class Catalog with member data of class ts with frequency 365.25.
cut A vector designating the (year, month) that all stations will start.
at.start Boolean value indicating whether the stations data should be completed from the start or the end.
Details

The purpose of this function is to have a common start and/or end dates for a given collection of stations. Suppose there are three stations in a collection, with span

\[
\text{range(col$\text{data}[1]])} \rightarrow c(1981,4) \text{ to } c(2013,3) \\
\text{range(col$\text{data}[2]])} \rightarrow c(1981,2) \text{ to } c(2013,4) \\
\text{range(col$\text{data}[3]])} \rightarrow c(1981,3) \text{ to } c(2013,5)
\]

and would like to have them all start on (1981,2) and end on (2013,5). This function can achieve this task.

Value

Returns a list of class Catalog with member data completed.

Author(s)

A.M. Sajo-Castelli

See Also

The other est.* family members: est.rm, est.sort, est.cut, est.union.

est.rm

Removes stations from a collection of class Catalog

Description

Given a list of indexes (list), this function removes stations from a collection of data/catalog pair.

Usage

\[
est.rm(collection, list)
\]

Arguments

- **collection**: A list of class Catalog.
- **list**: A vector of scalars indicating the stations to remove. The elements of this vector must be between 1 and length(collection$\text{data}).

Value

Returns a list of class Catalog with the updated collection.
Note

By specifying a negative list of elements, it is possible to select only those stations:

```r
# Remove first 3 stations:
col <- est.rm(collection, list=1:3)
# Select only the first 3 stations:
col <- est.rm(collection, list=-1:3))
```

Author(s)

A.M. Sajo-Castelli

See Also

The other est.* family members: est.cut, est.fill, est.sort, est.union.

est.sort

Sort a data/catalog pair

Description

Given a collection of data/catalog pairs, this function orders them by the start time. Sorts by \(\text{start(collection$data[[k]])} \), provided that the member data is of class ts.

Usage

```r
est.sort(collection, ascending = T, by.year.only = F)
```

Arguments

- **collection**: A list of class Catalog objects.
- **ascending**: Boolean value indicating whether it is ordered by earliest or latest starting station.
- **by.year.only**: Use only the year to sort instead of year/month. Defaults to FALSE.

Value

Returns a sorted list of class catalog, sorted by start date of the objects in collection$data.

Author(s)

A.M. Sajo-Castelli

See Also

The other est.* family members: est.rm, est.fill, est.cut, est.union.
est.union

Unites data from a collection of data/catalog pair

Description

This function merges a list of ts objects into a single time-series. It does it by taking the mean (median, fun) of the common elements for each time.

Usage

est.union(collection, fun = mean, return.matrix=FALSE)

Arguments

collection A list of class Catalog.
fun The function by which to unite the common elements. Defaults to mean.
return.matrix Returns a matrix where each column is a time-series (of each station), synchronized in time.

Value

Returns an enhanced Catalog object with an additional member called union of class ts that contains the union of all stations described in collection. If return.matrix is true, then it returns a matrix time stamped where each column is a station data.

Author(s)

A.M. Sajo-Castelli

See Also

The other est.* family members: est.rm, est.sort, est.cut, est.fill.

Examples

```r
## Not run:
names(collection)
collection = est.union(collection)
names(collection)
plot(collection$union)
abline(h = 250, v = 1997:2000)
## End(Not run)
```
fill.small.missing Complete daily-frequency time-series

Description

This routine completes a series of frequency 365.25. Each NA is estimated using the function \texttt{fun} (median) of the same day of all other years (where available).

Usage

\begin{verbatim}
fill.small.missing(serie, max.len = 3 * 30, func = median)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{serie} A \texttt{ts} object.
\item \texttt{max.len} Largest gap (in days) to complete using this method. Defaults to 3 months.
\item \texttt{func} Function to use in order to estimate an NA. Defaults to median.
\end{itemize}

Details

This function completes \textit{small} gaps of NA, it is not intended to complete long periods of NAs. If required to complete large sets of NAs, see \texttt{complete.series}.

Value

Returns a \texttt{ts} object with gaps of NA greater than \texttt{max.len} days (if present).

Note

This function is verbose, some information of its running tasks is presented.

Author(s)

A.M. Sajo-Castelli, Desiree Villalta.

See Also

\texttt{complete.series}
Build a grid around an object of class "SpatialPolygonsDataFrame"

description

Construct a grid that contains the shape (object of class "SpatialPolygonsDataFrame") and is spaced by a given distance.

usage

get.Grid.size(shape, origin.grid, x.res = 0.05, y.res = 0.05, plot = FALSE)

arguments

shape Object of class "SpatialPolygonsDataFrame"
origin.grid External grid constructed by this same function. See Details
x.res Longitudinal separation in degrees, defaults to 0.05 degrees
y.res Latitudinal separation in degrees, defaults to 0.05 degrees
plot Boolean. Shows the constructed grid over the shape

details

About the origin.grid parameter. Say there is the need to work on a nation-wide scale. For this you construct a grid over the whole shapes constituting the country, naming is extremal or external grid. Now to study in detail a given state it is recommended to construct a smaller grid covering only state of interest and not the whole nation. Doing this it is necessary to assure that the smaller grid intersects the external grid. Providing the parameter commandorigin.grid constructs a small grid over the given shape but that overlaps exactly with the external grid commandorigin.grid. An example that illustrates the above could be:

```r
# External grid
VE <- get.shape.state(get.shape.state($Abb)
External.Grid <- get.Grid.size(VE, plot=F, x.res=1, y.res=1)
# Small grid over a state
NE <- get.shape.state(c("MI","NE"))
Small.Grid <- get.Grid.size(NE, External.Grid, plot=T, x.res=0.25, y.res=0.25)
```
get.Grid.size

Value

ncol Number of columns of the grid
nrow Number of rows of the grid
longs Longitudinal position for each column of the grid
lats Latitudinal position for each row of the grid
x.res Longitudinal resolution used
y.res Latitudinal resolution used

Author(s)

A.M. Sajo-Castelli

See Also

getcshape venezuela, getshape state, getshape range.

Examples

Not run:
Construct extremal grid for whole country
VE <- get.shape.state(get.shape.state(VE)$Abb)
External.Grid <- get.Grid.size(VE)

Build grid over Amazona state synchronized with External.Grid
AM <- get.shape.state("AM")
AM.Grid <- get.Grid.size(AM, origin.grid=External.Grid)

Build grid over Amazona state
AM <- get.shape.state("AM")
get.shape.range

Description

Extracts the longitudes and latitudes of an object of class SpatialPolygonsDataFrame.

Usage

g.get.shape.range(shape)

Arguments

shape

Object of class SpatialPolygonsDataFrame. Object usually comes from get.shape venezuela
or get.shape.state.

Value

Matrix of one row and four columns, containing the Longitudinal and Latitudinal ranges. Of the
form

Long.start Long.end Lat.start Lat.end
[1,] -73.37749 -59.7991 0.6492503 12.2012

Author(s)

A.M. Sajo-Castelli

See Also

g.get.shape venezuela, get.shape.state, get.Grid.size.

Examples

VE <- get.shape venezuela()
g.get.shape.range(VE)
get.shape.state

Retrive SHAPE files

Description

These functions retrieve the necessary SHAPE files to display the Venezuelan political border or any combination of states.

Usage

get.shape.state(abb, shape.file = "venezuelaestados")
get.shape.venezuela(shape.file = "venezuela")

Arguments

- `abb`: a vector of characters containing the two letter abbreviations of the states to load.
- `shape.file`: the base name of the SHAPE file to use.

Details

If the parameter `abb` is missing, then a data frame is shown and returned containing the states names, abbreviations and SHAPE file IDs.

Value

returns an object of class "SpatialPolygonsDataFrame" that can be plotted using the `plot` command.

Note

SHAPE files `venezuela` and "venezuela estados" have a slight size mismatch:

```r
> VE <- get.shape.venezuela()
> VS <- get.shape.state(get.shape.state()$Abb)
> get.shape.range(VE)
  Long.start Long.end Lat.start Lat.end
SHAPE  -73.3774 -59.7991  0.6498817  12.20108
> get.shape.range(VS)
  Long.start Long.end Lat.start Lat.end
SHAPE  -73.37749 -59.7991  0.6492503  12.2012
```

Author(s)

Wrapped in R by A. M. Sajo-Castelli
References
Maps where constructed and exported from ArcGIS 2.x.

See Also
get.shape.range, get.Grid.size.

Examples
```r
## Get national boundary SHAPE
VE <- get.shape.venezuela()
## Not run: plot(VE, asp=1, axes=T)

## Get list of all available shapes
get.shape.state()

## Get national and statal boudaries SHAPE
VS <- get.shape.state(get.shape.state($)Abb)
## Not run: plot(VS, col="gray80", asp=1, axes=F)

## Retrieve Zone III states
BOAMDA = get.shape.state(c("BO", "AM", "DA"))
## Not run: plot(BOAMDA, add=T, border="darkred", lwd=2, col="pink")
```

m12

Smart modulo 12 for time aritmetics

Description
Calculates which month corresponds to the number x, *smart* modulo 12-wise.

Usage

```r
m12(x)
```

Arguments

- **x** integer

Value

Returns an integer 1 through 12 for the corresponding month of a positive integer x, starting with x=1 being january. Note that x=13 is also january...

Author(s)

A.M. Sajo-Castelli
Overview of a collection of stations

Description

These functions present an overview of the data quality for a collection of meteorological stations in a temporal or spatial perspective.

Usage

```r
panorama(collection, main, cut, ylab.push.factor = 10, cut.col = "darkred", cut.lty = 1, cut.lwd = 2, col = "RoyalBlue", col.ramp = c("red", "pink", "blue"), col.line = "gray30", mar = c(5, 4 + ylab.push.factor, 3, 2), cex.axis = 0.8, cex.yaxis = 0.7, xlab = "Year", color.by.data = FALSE, ...

panomapa(collection, main, axis = TRUE, xlab = "Long", ylab = "Lat", lab.col = "black", bg = NA, map.bg = NA, map.col = "black", col.ramp = c("Green3", "darkorange1", "red"), arrow.cex = 4.5, arrow.plot = TRUE, pt.col = rgb(0, 0, 0, 0.75), pt.cex = 4.5, pt.pch = 21, leg.pt.bg = pt.bg, leg.bg = NA, leg.title = "Lengevity\n(years)", leg.offset = c(0, 0), leg.y.intersp = 1.75)
```

Arguments

- `arrow.cex`: Magnification passed to `arrow.plot`, defaults to 4.5
- `arrow.plot`: Logical flag to indicate if to call `arrow.plot`, defaults to TRUE.
- `axis`: Logical flag to indicate if to plot the axes, defaults to TRUE
- `bg`: Background color for the map, defaults to NA
- `cex.axis`: Magnification for axis, defaults to 0.8
- `cex.yaxis`: Magnification for y-axis, defaults to 0.8 = 0.7
- `col`: col from `par`, defaults to "RoyalBlue"
- `col.line`: Color for lines, defaults to "gray30"
- `col.ramp`: Color for the color ramp, defaults to `c("red", "pink", "blue")` for `panorama` and to `c("Green3", "darkorange1", "red")` for `panomapa`
- `color.by.data`: Logical flag to use `collection$data` to color the plotted boxes. This implies that all elements of data are between zero and one. Defaults to FALSE.
- `collection`: An collection of stations. Object of class Catalog
- `cut`: A concatenation of dates for which to trace a vertical line
cut.col Color to the cut line(s), defaults to "darkred". Can be a list
cut.lty Line type for the cut line(s), defaults to 1. Can be a list
cut.lwd Line width for the cut line(s), defaults to 2. Can be a list
lab.col Color for the labels, defaults to "black"
leg.bg Legend box Background color, defaults to NA
leg.offset Legend offset, defaults to c(0, 0)
leg.pt.bg Legend points background color, defaults to pt.bg
leg.title Legend title, defaults to "Lengevity\n(years)"
leg.y.intersp Legend y interspace, is passed to legend and defaults to 1.75
main Main title
map.bg Map background color, defaults to NA
map.col map lines color, defaults to "black"
mar par()$mar, defaults to c(5, 4 + ylab.push.factor, 3, 2)
pt.cex Points magnification in map, defaults to 4.5
pt.col Points color in map, defaults to rgb(0, 0, 0, 0.75)
pt.pch Points pch in map, defaults to 21
xlab for panorama defaults to "Year" and for panomapa to "Long"
ylab y-axes label, defaults to "Lat"
ylab.push.factor Factor in which to push the labels in panorama, defaults to 10

... Any valid parameters for par()

Value
These functions do not return anything.

Author(s)
A.M. Sajo-Castelli

See Also
vetools, Catalog Convention, summary.

Examples

Not run:
panorama(collection)
collection
panomapa(collection)
plot(collection)
End(Not run)
plotArrow

Plots a neat North arrow

Description

Simple and configurable alternative to draw a "North Arrow" on maps.

Usage

```r
plotArrow(shape="",
  pos = 1,
  offset.arrow = c(0, 0),
  north.lwd = par($)lwd+2,
  north.col = par($)col,
  ...
)
```

Arguments

- **shape**
 The shape file used to estimate the x and y coordinates on where to plot the arrow's polygons.
- **pos**
 Where to position the arrow: 1 SW, 2 SE, 3 NE, 4 NW.
- **offset.arrow**
 Offset pair (x.offset, y.offset).
- **north.lwd**
 Line width for the North lines.
- **north.col**
 Color to apply to the North lines.
- **...**
 With ..., it is possible to specify the color and thickness of the arrow via the col and lwd parameters. Overall magnification is controlled by cex.

Note

This implementation should support adding the scale bar.

Author(s)

A.M. Sajo-Castelli

See Also

- `plotLayers`
plotLayers

Plot simultaneously one or more layers of information

Description

Plots several layer of information, overlaying different kind of information. This function make it easy to plot several shapefiles/data pair information over one single plot.

Usage

plotLayers(...)

Arguments

...
a list of lists, where each element of the list describes a layer of information. The list must contain a FUN member that indicates which function will be used to plot, generally FUN is plot, text, points, etc. The rest of the list describes the plotting attributes for each layer. See Examples.

Details

This function can also be embeded into filled.contour function. Example two produces the following graphic.
Value

Function does not return any value.

Author(s)
A.M. Sajo-Castelli

See Also
vetools

Examples

library(maptools)
library(vetools)

Example 1
ZU <- get.shape.state("ZU")
Load environmental data from governmental sources

Description

This sheet describes the functions to load environmental data from the formats used by **MARN** The Ministry del Ambiente y Recursos Naturales.
MINAMB The Ministerio del Ambiente.
HIDROX The Argus data repository, see the references.

Each Ministry used a different data format to store the measured variables. For each available data, a read function is tailored.

Usage

read.HIDROX(file, state = NA, altitudes = NA, serial = NA, unit = NA)
read.MARN(file)
read.MINAMB(file, state = NA, YSPLIT = 20)

Arguments

file String containing the path to the file to load.
state A two letter character string identifying the state, see get.shape.state(NA) for a complete list.
altitudes A list containing information relative to the elevation of each station in the file.
serial A list containing information relative to the serial of each station in the file.
unit A character string identifying the unit of the measured data, e.g. mm/month.
YSPLIT This variable indicates from which decade (1900+YSPLIT) to consider between the 20th and 21st centuries.

Details

To explore the each data format, the package ships three test files.
See the folder system.file("tests",package="vetools").

Value

Returns a list of class Catalog with exactly two members, see Catalog Convention.

catalog The catalog, a list of each stations meta data.
data The data related to the catalog, a list of objects ts.

Author(s)

A.M. Sajo-Castelli

References

See Also

Catalog Convention.
Examples

```r
## Not run:
collection.ZU = read.HIDROX('repo_est_ZU.csv', state="ZU", unit="Prec [mm/month]")
summary(collection.ZU)
collection.ZU

## End(Not run)
```

summary.Catalog

Summary

A summary, a panoramic overview in temporal or spatial fashion for a given collection of data/catalog pairs.

Description

Given a list in the Catalog Convention format, these functions print or plot a summary of the stations data and meta-data.

Usage

```r
## S3 method for class 'Catalog'
summary(object, ...) 
## S3 method for class 'Catalog'
plot(x, ...) 
## S3 method for class 'Catalog'
print(x, ...) 
```

Arguments

- `object`: An object of class `catalogo`.
- `x`: An object of class `catalogo`.
- `...`: See `panorama` and `panomapa`.

Note

The method `print` calls the function `panorama` and the method `plot` calls `panomapa`.

Author(s)

A.M. Sajo-Castelli

See Also

CatalogConvention
Examples

```r
## Not run:
collection = read.HIDROX('test-HIDROX.csv')
summary(collection)
print(collection)
plot(collection)
## End(Not run)
```

time2ym

Time related conversion functions

Description

These functions convert between class "Date" and c(year, month) dates.

Usage

time2ym(d)

ym2time(e)

Arguments

d object of class "Date" that can be converted to c(year, month)
e object of class "ts"

Value

time2ym returns a vector of length 2 specifying year and month corresponding to a date given, compatible with commands start and end for objects of class "ts"

ym2time returns a class "Date" object determined by the specified year and month

Author(s)

A.M. Sajo-Castelli

See Also

vetools, diffmonths, tssum, diadelmes, xts2ts.
tssum

The sum for time-series objects

description
This function is time related that helps manipulate time-series.

Usage
```
tssum(series, months = 1:12, max.na.fraction = 0.3, safe.check = FALSE)
```

Arguments
- `series`
a class "ts" object
- `months`
a vector of length 1 to 12 specifying the months to sum
- `max.na.fraction`
 fraction of NAs to admit before discarding accumulated sum over meses
- `safe.check`
 boolean specifying if some debugging checks should be performed

Value
returns a time-series object of class "ts" of frequency `length(meses)` with the accumulated sum over the months defined in meses.

Author(s)
A.M. Sajo-Castelli

See Also
- `vetools`, `diffmonths`, `diasdelmes`, `m12`, `time2ym`, `ym2time`, `xts2ts`

vargas

Rainfall in Vargas, Venezuela

Description
Daily, monthly and quarterly precipitation values for meteorological stations located in the Vargas state, Venezuela.

There are two collections (data sets) of precipitation, Vargas and Vargas2, both data sets have the same source of meteorological stations located in the Vargas state, Venezuela. Data sets follows `vetools` Catalog Convention. See Catalog Convention.
Usage

```r
data(Vargas)
data(Vargas2)
```

Format

The first collection `Vargas` contains four lists of 33 elements:

- **Vargas$catalog** list of each station’s meta data. Follows `vetools` Catalog Convention. To see meta data summary(`Vargas`).
- **Vargas$daily** list containing each station’s daily time-series of class "ts" of frequency 365.25.
- **Vargas$data** list containing each station’s monthly time-series of class "ts" of frequency 12.
- **Vargas$quarterly** list containing each station’s quarterly time-series of class "ts" of frequency 4. The quarters are defined in base of Venezuela’s rainy season: Feb-Apr, May-Jul, Aug-Oct, Nov-Jan.

The "data" and "quarterly" member series where built upon daily using the command `tssum` with arguments `meses=1:12` and `meses=c(2, 5, 8, 11)` respectively.

The second collection `Vargas2` contains three elements:

- **Vargas2$catalog** list of 32 station’s meta data. Follows `vetools` Catalog Convention. To see meta data summary(`Vargas2`).
- **Vargas2$data** list of length 32 containing each station’s time-series of class "ts" on monthly basis. These series where completed using the Expectation-Maximization Algorithm.
- **Vargas2$statewise** representative time-serie for the whole Vargas state. This series was build upon `Vargas2$data`.

Details

This data set provides day, monthly, quarterly and representative precipitation for 33 (32) meteorological stations located in the Vargas state of Venezuela. The region is delimited between -66.30917, -67.35 degrees and 10.46667 and 10.63 degrees (North), stations height vary between 0 and 1537 metres above sea level. Time-series for statios vary between 1948 and 2006.

The data set was imported into `R` using `read.MARN` function.

Source

See Also

`CuencaCaroni`, `vetools` Catalog Convention, `read.MARN`, `disaggregate.MARN`, `tssum`.
Examples

```r
## Not run:
data(Vargas, package='vetools')
summary(Vargas)
plot(Vargas$data[[2]])
start(Vargas$data[[1]])
end(Vargas$data[[1]])
frequency(Vargas$daily[[1]])
cat(Vargas$catalog[[1]]$Name)
## End(Not run)
```

xts2ts

Time-serie conversion routine

Description

Converts from class "xts" to class "ts"

Usage

```
xts2ts(b.xts)
```

Arguments

- `b.xts` object of class "xts" to convert to class "ts"

Value

returns an object of class "ts"

Author(s)

A.M. Sajo-Castelli

See Also

[**vetools**, **diffmonths**, **tssum**, **diasdelmes**, **time2ym**, **ym2time**, **m12**]
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>6</td>
</tr>
<tr>
<td>aggregation</td>
<td>11</td>
</tr>
<tr>
<td>disaggregation</td>
<td>10</td>
</tr>
<tr>
<td>arrow</td>
<td>25</td>
</tr>
<tr>
<td>caroni</td>
<td>8</td>
</tr>
<tr>
<td>catalog</td>
<td>5</td>
</tr>
<tr>
<td>catalog (summary)</td>
<td>30</td>
</tr>
<tr>
<td>completion</td>
<td>6</td>
</tr>
<tr>
<td>datasets</td>
<td>8</td>
</tr>
<tr>
<td>Vargas</td>
<td>32</td>
</tr>
<tr>
<td>disaggregation</td>
<td>10</td>
</tr>
<tr>
<td>disaggregate (MARN)</td>
<td></td>
</tr>
<tr>
<td>disaggregate (ts)</td>
<td>11</td>
</tr>
<tr>
<td>environmental</td>
<td>2</td>
</tr>
<tr>
<td>est.cut</td>
<td>12</td>
</tr>
<tr>
<td>est.fill</td>
<td>13</td>
</tr>
<tr>
<td>est.rm</td>
<td>14</td>
</tr>
<tr>
<td>est.sort</td>
<td>15</td>
</tr>
<tr>
<td>est.union</td>
<td>16</td>
</tr>
<tr>
<td>fill</td>
<td>17</td>
</tr>
<tr>
<td>grid</td>
<td>18</td>
</tr>
<tr>
<td>load</td>
<td>28</td>
</tr>
<tr>
<td>missing</td>
<td>17</td>
</tr>
<tr>
<td>overview</td>
<td>23</td>
</tr>
<tr>
<td>panomapa</td>
<td>23</td>
</tr>
<tr>
<td>panorama</td>
<td>23</td>
</tr>
<tr>
<td>read</td>
<td>28</td>
</tr>
<tr>
<td>shapefile</td>
<td>20</td>
</tr>
<tr>
<td>shapefile (get)</td>
<td>21</td>
</tr>
<tr>
<td>shapefile (get.grid.size)</td>
<td>30</td>
</tr>
<tr>
<td>time</td>
<td>9</td>
</tr>
<tr>
<td>time (diasdelmes)</td>
<td>9</td>
</tr>
<tr>
<td>time (diffmonths)</td>
<td>9</td>
</tr>
<tr>
<td>time (m12)</td>
<td>22</td>
</tr>
<tr>
<td>time (time2ym)</td>
<td>31</td>
</tr>
<tr>
<td>time (tssum)</td>
<td>32</td>
</tr>
<tr>
<td>time (xts2ts)</td>
<td>34</td>
</tr>
<tr>
<td>tssum</td>
<td>32</td>
</tr>
<tr>
<td>xts2ts</td>
<td>34</td>
</tr>
<tr>
<td>Vargas</td>
<td>32</td>
</tr>
<tr>
<td>venezuela</td>
<td>8</td>
</tr>
</tbody>
</table>
Vargas, 32
vetools-package, 2

+Topic vetools
 Catalog, 4
diasdelmes, 9
diffmonths, 9
m12, 22
plotLayers, 26
tssum, 32
xts2ts, 34

as.Catalog, 3
as.Catalog(Catalog), 4
Catalog, 3, 4
catalog(Catalog), 4
Catalog Convention, 2, 4, 8, 24, 29, 30, 32, 33
Catalog Convention (CatalogConvention), 5
Catalog Convention White Sheet, 3
CatalogConvention, 5, 30
complete.series, 3, 6, 17
Cuencacaroni, 3, 8, 33
diasdelmes, 9, 10, 23, 31, 32, 34
diffmonths, 9, 9, 23, 31, 32, 34
disaggregate.MARN, 3, 10, 12, 33
disaggregate.ts, 3, 10, 11, 11
end, 31
est.cut, 3, 12, 14–16
est.fill, 3, 13, 13, 15, 16
est.rm, 3, 13, 14, 14, 15, 16
est.sort, 3, 13–15, 15, 16
est.union, 3, 13–15, 16

fill.small.missing, 3, 7, 13, 17
get.Grid.size, 3, 18, 20, 22
get.shape.range, 3, 19, 20, 22
get.shape.state, 3, 19, 20, 21
get.shape.state(NA), 29
get.shape.venezuela, 3, 19, 20
get.shape.venezuela(get.shape.state), 21

is.Catalog, 3
is.Catalog(Catalog), 4

m12, 9, 10, 22, 32, 34
panomapa, 3, 30
panomapa (panorama), 23
panorama, 3, 23, 30
plot, 21
plot.Catalog, 3
plot.Catalog(summary.Catalog), 30
plotArrow, 25
plotLayers, 25, 26
print.Catalog, 3
print.Catalog(summary.Catalog), 30
range (get.shape.range), 20
read.HIDROX, 2, 5, 6, 28
read.MARN, 2, 5, 6, 33
read.MARN (read.HIDROX), 28
read.MINAMB, 2, 6, 8
read.MINAMB (read.HIDROX), 28
start, 31
summary, 24
summary.Catalog, 3, 6, 30
time2ym, 9, 10, 23, 31, 32, 34
tssum, 9, 10, 23, 31, 32, 33, 34
Vargas, 3, 8, 32
Vargas2, 3
Vargas2 (Vargas), 32
vetools, 2, 4, 6, 8–10, 23, 24, 27, 31–34
vetools (vetools-package), 2
vetools Catalog Convention
 (CatalogConvention), 5
vetools-package, 2
xts2ts, 9, 10, 23, 31, 32, 34
ym2time, 9, 10, 23, 32, 34
ym2time (time2ym), 31