Package ‘vimp’

April 12, 2020

Type Package

Title Perform Inference on Algorithm-Agnostic Variable Importance

Version 2.0.1

Description Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020) and Williamson et al. (arXiv, 2020+) <arXiv:2004.03683>.

Depends R (>= 3.1.0)

Imports SuperLearner, stats, dplyr, magrittr, ROCR, tibble, rlang

Suggests knitr, rmarkdown, MASS, gam, xgboost, glmnet, ranger, quadprog, covr, testthat, ggplot2, cowplot, RCurl, forcats

License MIT + file LICENSE

URL https://github.com/bdwilliamson/vimp

BugReports https://github.com/bdwilliamson/vimp/issues

LazyData TRUE

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Author Brian D. Williamson [aut, cre]

Noah Simon [aut] (https://orcid.org/0000-0002-7024-548X),
Marco Carone [aut] (https://orcid.org/0000-0003-2106-0953)

Maintainer Brian D. Williamson <brianw26@uw.edu>

Repository CRAN

Date/Publication 2020-04-11 22:50:02 UTC
R topics documented:

average_vim .. 3
cv_predictiveness_point_est 4
cv_predictiveness_update 5
cv_vim .. 6
cv_vimp_point_est .. 9
cv_vimp_update .. 11
cv_vim_nodonsker .. 12
format_vim ... 15
measure_accuracy ... 15
measure_auc ... 16
measure_cross_entropy ... 16
measure_deviance ... 17
measure_mse .. 17
measure_r_squared .. 18
merge_vim ... 18
predictiveness_ci ... 20
predictiveness_point_est 20
predictiveness_se ... 21
predictiveness_update ... 22
print_vim .. 23
run_sl .. 23
sample_subsets .. 24
spvim_ics .. 25
spvim_se ... 26
sp_vim .. 27
vim ... 29
vimp ... 32
vimp_accuracy .. 33
vimp_anova .. 35
vimp_auc ... 38
vimp_ci ... 40
vimp_deviance ... 41
vimp_hypothesis_test ... 43
vimp_point_est ... 45
vimp_regression .. 46
vimp_rsquared ... 48
vimp_se .. 51
vimp_update ... 52

Index ... 53
Description

Average the output from multiple calls to `vimp_regression`, for different independent groups, into a single estimate with a corresponding standard error and confidence interval.

Usage

```r
average_vim(..., weights = rep(1/length(list(...)), length(list(...))))
```

Arguments

- `...`: an arbitrary number of `vim` objects.
- `weights`: how to average the vims together, and must sum to 1; defaults to 1/(number of vims) for each vim, corresponding to the arithmetic mean.

Value

an object of class `vim` containing the (weighted) average of the individual importance estimates, as well as the appropriate standard error and confidence interval. This results in a list containing:

- `call`: the call to `average_vim()`
- `s`: a list of the column(s) to calculate variable importance for
- `SL.library`: a list of the libraries of learners passed to `SuperLearner`
- `full_fit`: a list of the fitted values of the chosen method fit to the full data
- `red_fit`: a list of the fitted values of the chosen method fit to the reduced data
- `est`: a vector with the corrected estimates
- `naive`: a vector with the naive estimates
- `update`: a list with the influence curve-based updates
- `mat`: a matrix with the estimated variable importance, the standard error, and the $(1 - \alpha) \times 100\%$ confidence interval
- `full_mod`: a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- `red_mod`: a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- `alpha`: the level, for confidence interval calculation
- `y`: a list of the outcomes
cv_predictiveness_point_est

Estimate a nonparametric predictiveness functional using cross-validation

Description

Compute nonparametric estimates of the chosen measure of predictiveness.

Usage

cv_predictiveness_point_est(
 fitted_values,
 y,
 weights = rep(1, length(y)),
 folds,
 type = "r_squared",
)
Arguments

fitted_values fitted values from a regression function; a list of length V, where each object is a set of predictions on the validation data.

y the outcome.

weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)

folds the cross-validation folds

type which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?

na.rm logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated measure of predictiveness.

cv_predictiveness_update

Estimate the influence function for an estimator of predictiveness

description

Estimate the influence function for the given measure of predictiveness.

Usage

cv_predictiveness_update(
 fitted_values,
 y,
 folds,
 weights = rep(1, length(y)),
 type = "r_squared",
 na.rm = FALSE
)
cv_vim

Nonparametric Variable Importance Estimates using Cross-validation

description
Compute estimates and confidence intervals for the nonparametric variable importance parameter of interest, using cross-validation. This essentially involves splitting the data into V train/test splits; train the learners on the training data, evaluate importance on the test data; and average over these splits.

Usage
```
cv_vim(
  Y, 
  X, 
  f1, 
  f2, 
  indx = 1, 
  V = length(unique(folds)), 
  folds = NULL, 
  stratified = FALSE, 
  weights = rep(1, length(Y)), 
  type = "r_squared", 
  run_regression = TRUE, 
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), 
  alpha = 0.05, 
)```

Arguments
- `fitted_values`: fitted values from a regression function; a list of length V, where each object is a set of predictions on the validation data.
- `y`: the outcome.
- `folds`: the cross-validation folds
- `weights`: weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
- `type`: which risk parameter are you estimating (defaults to `r_squared`, for the $R^2$)?
- `na.rm`: logical; should NAs be removed in computation? (defaults to `FALSE`)

Details
See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value
The estimated influence function values for the given measure of predictiveness.
Arguments

Y  the outcome.
X  the covariates.
f1 the predicted values on validation data from a flexible estimation technique re-
gressing Y on X in the training data; a list of length V, where each object is a set
of predictions on the validation data.
f2 the predicted values on validation data from a flexible estimation technique re-
gressing the fitted values in f1 on X withholding the columns in indx; a list of
length V, where each object is a set of predictions on the validation data.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V  the number of folds for cross-validation, defaults to 10.
folds the folds to use, if f1 and f2 are supplied. A list of length two; the first element
provides the outer folds (for hypothesis testing), while the second element is a
list providing the inner folds (for cross-validation).
stratified if run_regression = TRUE, then should the generated folds be stratified based on
the outcome (helps to ensure class balance across cross-validation folds)
weights weights for the computed influence curve (e.g., inverse probability weights for
coa...
- call - the call to `cv.vim`
- `s` - the column(s) to calculate variable importance for
- `SL.library` - the library of learners passed to `SuperLearner`
- `full_fit` - the fitted values of the chosen method fit to the full data (a list, for train and test data)
- `red_fit` - the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
- `est` - the estimated variable importance
- `naive` - the naive estimator of variable importance
- `naives` - the naive estimator on each fold
- `updates` - the influence curve-based update for each fold
- `se` - the standard error for the estimated variable importance
- `ci` - the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate
- `full_mod` - the object returned by the estimation procedure for the full data regression (if applicable)
- `red_mod` - the object returned by the estimation procedure for the reduced data regression (if applicable)
- `alpha` - the level, for confidence interval calculation
- `folds` - the folds used for hypothesis testing and cross-validation
- `y` - the outcome
- `weights` - the weights
- `mat` - a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

### Value
An object of class `vim`. See Details for more information.

### See Also
`SuperLearner` for specific usage of the `SuperLearner` function and package.

### Examples
```r
don't test because this can take a long time to run
library(SuperLearner)
library(ranger)
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
```
```r
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

set up a library for SuperLearner
learners <- c("SL.mean", "SL.ranger")

using Super Learner (with a small number of folds, for illustration only)
set.seed(4747)
est <- cv_vim(Y = y, X = x, indx = 2, V = 2,
type = "r_squared", run_regression = TRUE,
SL.library = learners, cvControl = list(V = 5), alpha = 0.05)

doing things by hand, and plugging them in (with a small number of folds, for illustration only)
set up the folds
indx <- 2
V <- 2
set.seed(4747)
folds <- rep(seq_len(V), length = n)
folds <- sample(folds)

get the fitted values by fitting the super learner on each pair
fhat_ful <- list()
fhat_red <- list()
for (v in 1:V) {
 fit <- SuperLearner::SuperLearner(Y = y[folds != v, , drop = FALSE],
 X = x[folds != v, , drop = FALSE],
 SL.library = learners, cvControl = list(V = 5))
 fitted_v <- SuperLearner::predict.SuperLearner(fit)$pred
 fhat_ful[[v]] <- SuperLearner::predict.SuperLearner(fit, newdata = x[folds == v, , drop = FALSE]$pred
 fhat_red <- SuperLearner::SuperLearner(Y = fitted_v,
 X = x[folds != v, -indx, drop = FALSE],
 SL.library = learners, cvControl = list(V = 5))
 red <- SuperLearner::SuperLearner(Y = fitted_v,
 X = x[folds != v, -indx, drop = FALSE],
 SL.library = learners, cvControl = list(V = 5))
 red <- SuperLearner::predict.SuperLearner(red, newdata = x[folds == v, -indx, drop = FALSE]$pred
 fhat_red[[v]] <- SuperLearner::predict.SuperLearner(red, newdata = x[folds == v, - indx, drop = FALSE]$pred
}
est <- cv_vim(Y = y, f1 = fhat_ful, f2 = fhat_red, indx = 2,
 V = V, folds = folds, type = "r_squared", run_regression = FALSE, alpha = 0.05)
```

---

**cv_vimp_point_est**  
Estimate variable importance using cross-validation
Description

Compute nonparametric estimates of the chosen variable importance parameter, with a correction for using data-adaptive techniques to estimate the conditional means only if necessary.

Usage

```r
cv_vimp_point_est(
 full,
 reduced,
 y,
 folds,
 weights = rep(1, length(y)),
 type = "r_squared",
 na.rm = FALSE
)
```

Arguments

- `full`: fitted values from a regression of the outcome on the full set of covariates; a list of length V, where each object is a set of predictions on the validation data.
- `reduced`: fitted values from a regression of the fitted values from the full regression on the reduced set of covariates; a list of length V, where each object is a set of predictions on the validation data.
- `y`: the outcome.
- `folds`: a list of outer and inner folds (outer for hypothesis testing, inner for cross-validation).
- `weights`: weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings).
- `type`: which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
- `na.rm`: logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated variable importance for the given group of left-out covariates.
Estimate the influence function for variable importance parameters

Description
Compute the value of the influence function for the given group of left-out covariates.

Usage

```r
cv_vimp_update(
 full,
 reduced,
 y,
 folds,
 weights = rep(1, length(y)),
 type = "r_squared",
 na.rm = FALSE
)
```

Arguments

- `full`: fitted values from a regression of the outcome on the full set of covariates; a list of length V, where each object is a set of predictions on the validation data.
- `reduced`: fitted values from a regression of the fitted values from the full regression on the reduced set of covariates; a list of length V, where each object is a set of predictions on the validation data.
- `y`: the outcome.
- `folds`: a list of outer and inner folds (outer for hypothesis testing, inner for cross-validation).
- `weights`: weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings).
- `type`: which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
- `na.rm`: logical; should NAs be removed in computation? (defaults to FALSE)

Details
See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value
The influence function values for the given group of left-out covariates.
Nonparametric Variable Importance Estimates using Cross-validation, without Donsker class relaxation

Description

Compute estimates and confidence intervals for the nonparametric variable importance parameter of interest, using cross-validation with a single validation fold in the updating procedure. This procedure differs from \texttt{cv_vim} in that this procedure uses the same data for the naive estimator and the update, and thus does not relax Donsker class conditions necessary for valid confidence intervals.

Usage

\begin{verbatim}
cv_vim_nodonsker(
  Y, 
  X, 
  f1, 
  f2, 
  indx = 1, 
  V = 10, 
  folds = NULL, 
  type = "r_squared", 
  run_regression = TRUE, 
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), 
  alpha = 0.05, 
  na.rm = FALSE, 
  ...
)
\end{verbatim}

Arguments

- **Y** the outcome.
- **X** the covariates.
- **f1** the fitted values from a flexible estimation technique regressing Y on X; a list of length V, where each object is one set of predictions on a validation set.
- **f2** the fitted values from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is one set of predictions on a validation set.
- **indx** the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- **V** the number of folds for cross-validation, defaults to 10.
- **folds** the folds to use, if f1 and f2 are supplied.
- **type** the type of parameter (e.g., ANOVA-based is "regression").
run_regression if outcome Y and covariates X are passed to vimp_regression, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.

na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)

... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call - the call to cv_vim
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to SuperLearner
- full_fit - the fitted values of the chosen method fit to the full data (a list, for train and test data)
- red_fit - the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
- est - the estimated variable importance
- naive - the naive estimator of variable importance
- naives - the naive estimator on each fold
- updates - the influence curve-based update for each fold
- se - the standard error for the estimated variable importance
- ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
- full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- folds - the folds used for cross-validation

Value

An object of class vim. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.
library(SuperLearner)
library(gam)
n <- 100
p <- 2
## generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
## generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))
## set up a library for SuperLearner
learners <- c("SL.mean", "SL.gam")

## using Super Learner
set.seed(4747)
est <- cv_vim_nodonsker(Y = y, X = x, indx = 2, V = 5, type = "regression", run_regression = TRUE, SL.library = learners, alpha = 0.05)

## doing things by hand, and plugging them in
## set up the folds
indx <- 2
V <- 5
set.seed(4747)
folds <- rep(seq_len(V), length = n)
folds <- sample(folds)
## get the fitted values by fitting the super learner on each pair
fhat_ful <- list()
fhat_red <- list()
for (v in 1:V) {
  ## fit super learner
  fit <- SuperLearner::SuperLearner(Y = y[folds != v, , drop = FALSE],
  X = x[folds != v, , drop = FALSE], SL.library = learners, cvControl = list(V = 5))
fitted_v <- SuperLearner::predict.SuperLearner(fit)$pred
  ## get predictions on the validation fold
  fhat_ful[[v]] <- SuperLearner::predict.SuperLearner(fit, newdata = x[folds == v, , drop = FALSE])$pred
  ## fit the super learner on the reduced covariates
  red <- SuperLearner::SuperLearner(Y = fitted_v, X = x[folds != v, -indx, drop = FALSE], SL.library = learners, cvControl = list(V = 5))
  ## get predictions on the validation fold
  fhat_red[[v]] <- SuperLearner::predict.SuperLearner(red, newdata = x[folds == v, -indx, drop = FALSE])$pred
}
est <- cv_vim_nodonsker(Y = y, f1 = fhat_ful, f2 = fhat_red, indx = 2, V = 5, folds = folds, type = "regression", run_regression = FALSE, alpha = 0.05)

---

**format.vim**  
**Format a vim object**

**Description**

Nicely formats the output from a vim object for printing.

**Usage**

```r
S3 method for class 'vim'
format(x, ...)
```

**Arguments**

- `x` the vim object of interest.
- `...` other options, see the generic format function.

---

**measure_accuracy**  
**Estimate the classification accuracy**

**Description**

Compute nonparametric estimate of classification accuracy.

**Usage**

```r
measure_accuracy(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

**Arguments**

- `fitted_values` fitted values from a regression function.
- `y` the outcome.
- `weights` weights (IPW, etc.).
- `na.rm` logical; should NA’s be removed in computation? (defaults to FALSE)

**Value**

A named list of: (1) the estimated classification accuracy of the fitted regression function, and (2) the estimated influence function.
measure_auc

Estimate area under the receiver operating characteristic curve (AUC)

Description
Compute nonparametric estimate of AUC.

Usage
measure_auc(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments
- fitted_values: fitted values from a regression function.
- y: the outcome.
- weights: weights (IPW, etc.).
- na.rm: logical; should NA's be removed in computation? (defaults to FALSE)

Value
A named list of: (1) the estimated AUC of the fitted regression function, and (2) the estimated influence function.

measure_cross_entropy

Estimate the cross-entropy

Description
Compute nonparametric estimate of cross-entropy.

Usage
measure_cross_entropy(
  fitted_values,
  y,
  weights = rep(1, length(y)),
  na.rm = FALSE
)

Arguments
- fitted_values: fitted values from a regression function.
- y: the outcome.
- weights: weights (IPW, etc.).
- na.rm: logical; should NA's be removed in computation? (defaults to FALSE)
measure_deviance

Value
A named list of: (1) the estimated cross-entropy of the fitted regression function, and (2) the estimated influence function.

measure_deviance Estimate the deviance

Description
Compute nonparametric estimate of deviance.

Usage
measure_deviance(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments
- fitted_values: fitted values from a regression function.
- y: the outcome.
- weights: weights (IPW, etc.).
- na.rm: logical; should NA's be removed in computation? (defaults to FALSE)

Value
A named list of: (1) the estimated deviance of the fitted regression function, and (2) the estimated influence function.

measure_mse Estimate mean squared error

Description
Compute nonparametric estimate of mean squared error.

Usage
measure_mse(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)

Arguments
- fitted_values: fitted values from a regression function.
- y: the outcome.
- weights: weights (IPW, etc.).
- na.rm: logical; should NA's be removed in computation? (defaults to FALSE)
Value
A named list of: (1) the estimated mean squared error of the fitted regression function, and (2) the estimated influence function.

<table>
<thead>
<tr>
<th>measure_r_squared</th>
<th>Estimate R-squared Compute nonparametric estimate of R-squared.</th>
</tr>
</thead>
</table>

Description
Estimate R-squared Compute nonparametric estimate of R-squared.

Usage
```r
measure_r_squared(fitted_values, y, weights = rep(1, length(y)), na.rm = FALSE)
```

Arguments
- `fitted_values`: fitted values from a regression function.
- `y`: the outcome.
- `weights`: weights (IPW, etc.).
- `na.rm`: logical; should NA's be removed in computation? (defaults to FALSE)

Value
A named list of: (1) the estimated R-squared of the fitted regression function, and (2) the estimated influence function.

<table>
<thead>
<tr>
<th>merge_vim</th>
<th>Merge multiple vim objects into one</th>
</tr>
</thead>
</table>

Description
Take the output from multiple different calls to vimp_regression and merge into a single vim object; mostly used for plotting results.

Usage
```r
merge_vim(....)
```

Arguments
- `....`: an arbitrary number of vim objects, separated by commas.
Value

an object of class `vim` containing all of the output from the individual `vim` objects. This results in a list containing:

• call - the call to `merge_vim()`
• s - a list of the column(s) to calculate variable importance for
• SL.library - a list of the libraries of learners passed to SuperLearner
• full_fit - a list of the fitted values of the chosen method fit to the full data
• red_fit - a list of the fitted values of the chosen method fit to the reduced data
• est- a vector with the corrected estimates
• naive- a vector with the naive estimates
• update- a list with the influence curve-based updates
• se- a vector with the standard errors
• ci- a matrix with the CIs
• mat - a tibble with the estimated variable importance, the standard errors, and the \((1 - \alpha) \times 100\%\) confidence intervals
• full_mod - a list of the objects returned by the estimation procedure for the full data regression (if applicable)
• red_mod - a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
• alpha - a list of the levels, for confidence interval calculation

Examples

```r
library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

using Super Learner (with a small number of folds, for illustration only)
est_2 <- vimp_regression(Y = y, X = x, indx = 2, V = 2,
 run_regression = TRUE, alpha = 0.05,
 SL.library = learners, cvControl = list(V = 5))
```

\begin{verbatim}
est_1 <- vimp_regression(Y = y, X = x, indx = 1, V = 2, 
               run_regression = TRUE, alpha = 0.05, 
               SL.library = learners, cvControl = list(V = 5))
est <- merge_vim(est_1, est_2)
\end{verbatim}

\section*{predictiveness_ci \hspace{7cm} Confidence intervals for measures of predictiveness}

\subsection*{Description}
Compute confidence intervals for the true measure of predictiveness.

\subsection*{Usage}
\begin{verbatim}
predictiveness_ci(est, se, level = 0.95, one_sided = FALSE)
\end{verbatim}

\subsection*{Arguments}
\begin{itemize}
\item \textbf{est} \hspace{1cm} estimate of predictiveness, e.g., from a call to \texttt{predictiveness_point_est}.
\item \textbf{se} \hspace{1cm} estimate of the standard error of \texttt{est}, e.g., from a call to \texttt{vimp_se}.
\item \textbf{level} \hspace{1cm} confidence interval type (defaults to 0.95).
\item \textbf{one_sided} \hspace{1cm} should one-sided intervals be returned? (defaults to FALSE)
\end{itemize}

\subsection*{Details}
See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

\subsection*{Value}
The Wald-based confidence interval for the true predictiveness of the given group of covariates.

\section*{predictiveness_point_est \hspace{7cm} Estimate a nonparametric predictiveness functional}

\subsection*{Description}
Compute nonparametric estimates of the chosen measure of predictiveness.
predictiveness_point_est(
  fitted_values, y,
  weights = rep(1, length(y)),
  type = "r_squared",
  na.rm = FALSE
)

Arguments

fitted_values fitted values from a regression function.
y the outcome.
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated measure of predictiveness.

predictiveness_se  Estimate standard errors for measures of predictiveness

Description

Compute standard error estimates for estimates of measures of predictiveness.

Usage

predictiveness_se(est, update, denom = NULL, n = length(update), na.rm = FALSE)

Arguments

est the estimate of variable importance.
update the influence curve-based update.
denom a list of point estimate and influence curve for the denominator (if any) to make the measure of predictiveness interpretable.
n the sample size.
na.rm logical; should NA's be removed in computation? (defaults to FALSE).
predictiveness_update

Details
See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value
The standard error for the estimated measure of predictiveness for the given group of covariates.

---

predictiveness_update  Estimate the influence function for an estimator of predictiveness

Description
Estimate the influence function for the given measure of predictiveness.

Usage
```r
predictiveness_update(
 fitted_values,
 y,
 weights = rep(1, length(y)),
 type = "r_squared",
 na.rm = FALSE
)
```

Arguments
- `fitted_values`: fitted values from a regression function.
- `y`: the outcome.
- `weights`: weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings).
- `type`: which risk parameter are you estimating (defaults to `r_squared`, for the \(R^2\))? (defaults to `FALSE`)
- `na.rm`: logical; should NAs be removed in computation? (defaults to `FALSE`)

Details
See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value
The estimated influence function values for the given measure of predictiveness.
print.vim  

Description
Prints out the table of estimates, confidence intervals, and standard errors for a vim object.

Usage
```r
S3 method for class 'vim'
print(x, ...)
```

Arguments
- `x`: the vim object of interest.
- `...`: other options, see the generic `print` function.

run_sl  

Description
Run a Super Learner for the provided subset of features.

Usage
```r
run_sl(Y, X, V, SL.library, s, folds, ...)
```

Arguments
- `Y`: the outcome
- `X`: the covariates
- `V`: the number of folds
- `SL.library`: the library of candidate learners
- `s`: the subset of interest
- `folds`: the CV folds
- `...`: other arguments to Super Learner

Value
a list of length V, with the results of predicting on the hold-out data for each v in 1 through V
Examples

```r
library("SuperLearner")
library("gam")
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

set up a library for SuperLearner
learners <- c("SL.mean", "SL.gam")

run the Super Learner
set.seed(4747)
fitted_lst <- run_sl(y, x, V = 5, SL.library = learners, s =)
```

---

**sample_subsets**

Create necessary objects for SPVIMs

### Description

Creates the Z and W matrices and a list of sampled subsets, S, for SPVIM estimation.

### Usage

```
sample_subsets(p, gamma, n)
```

### Arguments

- `p`: the number of covariates
- `gamma`: the fraction of the sample size to sample (e.g., `gamma = 1` means sample `n` subsets)
- `n`: the sample size

### Value

A list, with elements `Z` (the matrix encoding presence/absence of each feature in the uniquely sampled subsets), `S` (the list of unique sampled subsets), `W` (the matrix of weights), and `z_counts` (the number of times each subset was sampled)
**Examples**

```r
p <- 10
gamma <- 1
n <- 100
set.seed(100)
subset_lst <- sample_subsets(p, gamma, n)
```

---

**spvim_ics**  
*Influence function estimates for SPVIMs*

**Description**

Compute the influence functions for the contribution from sampling observations and subsets.

**Usage**

```r
spvim_ics(Z, z_counts, W, v, psi, G, c_n, ics, measure)
```

**Arguments**

- `Z`: the matrix of presence/absence of each feature (columns) in each sampled subset (rows)
- `z_counts`: the number of times each unique subset was sampled
- `W`: the matrix of weights
- `v`: the estimated predictiveness measures
- `psi`: the estimated SPVIM values
- `G`: the constraint matrix
- `c_n`: the constraint values
- `ics`: a matrix of influence function values for each predictiveness measure
- `measure`: the type of measure (e.g., "r_squared" or "auc")

**Details**

The processes for sampling observations and sampling subsets are independent. Thus, we can compute the influence function separately for each sampling process. For further details, see the paper by Williamson and Feng (2020).

**Value**

A named list of length 2; `contrib_v` is the contribution from estimating V, while `contrib_s` is the contribution from sampling subsets.
Standard error estimate for SPVIM values

spvim_se

Description

Compute standard error estimates based on the estimated influence function for a SPVIM value of interest.

Usage

spvim_se(ics, idx = 1, gamma = 1, na_rm = FALSE)

Arguments

ics the influence function estimates based on the contributions from sampling observations and sampling subsets: a list of length two resulting from a call to spvim_ics.
idx the index of interest
gamma the proportion of the sample size used when sampling subsets
na_rm remove NAs?

Details

Since the processes for sampling observations and subsets are independent, the variance for a given SPVIM estimator is simply the sum of the variances based on sampling observations and on sampling subsets.

Value

The standard error estimate for the desired SPVIM value

See Also

spvim_ics for how the influence functions are estimated.

Examples

```r
don't test because this can take some time to run
library(SuperLearner)
library(gam)
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))
apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2
```
## generate Y ~ Normal (smooth, 1)
```r
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))
```

## set up a library for SuperLearner
```r
learners <- c("SL.mean", "SL.gam")
```

## using Super Learner
```r
set.seed(4747)
est <- sp_vim(Y = y, X = x, V = 5,
type = "r_squared",
SL.library = learners, alpha = 0.05)
```

---

### sp_vim

**Shapley Population Variable Importance Measure (SPVIM) estimates**

#### Description

Compute estimates and confidence intervals for the SPVIMs, using cross-validation. This essentially involves splitting the data into $V$ train/test splits; train the learners on the training data, evaluate importance on the test data; and average over these splits.

#### Usage

```r
sp_vim(
 Y, X, V = 5,
 weights = rep(1, length(Y)),
 type = "r_squared",
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
 gamma = 1,
 alpha = 0.05,
 delta = 0,
 na.rm = FALSE,
 ...
)
```

#### Arguments

- **Y** the outcome.
- **X** the covariates.
- **V** the number of folds for cross-validation, defaults to 10.
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type the type of parameter (e.g., R-squared-based is "r_squared").
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL_glmnet, SL_xgboost, and SL_mean.
gamma the fraction of the sample size to use when sampling subsets (e.g., gamma = 1 samples the same number of subsets as the sample size)
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
... other arguments to the estimation tool, see "See also".

Details
See the paper by Williamson and Feng (2020) for more details on the mathematics behind this function, and the validity of the confidence intervals. The function works by estimating In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call - the call to cv_vim
- SL.library - the library of learners passed to SuperLearner
- v - the estimated predictiveness measure for each sampled subset
- preds_lst - the predicted values from the chosen method for each sampled subset
- est - the estimated SPVIM value for each feature
- ic_lst - the influence functions for each sampled subset
- ic - a list of the SPVIM influence function contributions
- se - the standard errors for the estimated variable importance
- ci - the \((1 - \alpha) \times 100\%\) confidence intervals based on the variable importance estimates
- gamma - the fraction of the sample size used when sampling subsets
- alpha - the level, for confidence interval calculation
- delta - the delta value used for hypothesis testing
- y - the outcome
- weights - the weights
- mat - a tibble with the estimates, SEs, CIs, hypothesis testing decisions, and p-values

Value
An object of class vim. See Details for more information.

See Also
SuperLearner for specific usage of the SuperLearner function and package.
Examples

```r
don't test because this can take some time to run
library(SuperLearner)
library(gam)
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

set up a library for SuperLearner
learners <- c("SL.mean", "SL.gam")

using Super Learner
set.seed(4747)
est <- sp_vim(Y = y, X = x, V = 5, type = "r_squared", SL.library = learners, alpha = 0.05)
```

## vim

### Nonparametric Variable Importance Estimates

#### Description

Compute estimates of and confidence intervals for nonparametric risk-based variable importance.

#### Usage

```r
vim(Y, X, f1 = NULL, f2 = NULL, indx = 1, weights = rep(1, length(Y)), type = "r_squared", run_regression = TRUE, SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), alpha = 0.05, delta = 0, scale = "identity")
```
\begin{verbatim}
na.rm = FALSE,
folds = NULL,
stratified = FALSE,
...
)
\end{verbatim}

**Arguments**

- **Y** the outcome.
- **X** the covariates.
- **f1** the fitted values from a flexible estimation technique regressing Y on X.
- **f2** the fitted values from a flexible estimation technique regressing Y on X withholding the columns in indx.
- **indx** the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- **weights** weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
- **type** the type of importance to compute; defaults to r_squared, but other supported options are auc, accuracy, and anova.
- **run_regression** if outcome Y and covariates X are passed to vimp_accuracy, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
- **SL.library** a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
- **alpha** the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
- **delta** the value of the \( \delta \)-null (i.e., testing if importance < \( \delta \)); defaults to 0.
- **scale** should CIs be computed on original ("identity") or logit ("logit") scale?
- **na.rm** should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
- **folds** the folds used for f1 and f2; assumed to be 1 for the observations used in f1 and 2 for the observations used in f2. If there is only a single fold passed in, then hypothesis testing is not done.
- **stratified** if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
- ... other arguments to the estimation tool, see "See also".

**Details**

In the interest of transparency, we return most of the calculations within the \texttt{vim} object. This results in a list containing:

- \texttt{call} - the call to \texttt{vim}
- \texttt{s} - the column(s) to calculate variable importance for
- \texttt{SL.library} - the library of learners passed to \texttt{SuperLearner}
• type - the type of risk-based variable importance measured
• full_fit - the fitted values of the chosen method fit to the full data
• red_fit - the fitted values of the chosen method fit to the reduced data
• est - the estimated variable importance
• naive - the naive estimator of variable importance
• update - the influence curve-based update
• se - the standard error for the estimated variable importance
• ci - the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate
• test - a decision to either reject (TRUE) or not reject (FALSE) the null hypothesis, based on a conservative test
• pval - a conservative p-value based on the same conservative test as test
• full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
• red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
• alpha - the level, for confidence interval calculation
• folds - the folds used for hypothesis testing
• y - the outcome
• weights - the weights
• mat- a tibble with the estimate, SE, CI, hypothesis testing decision, and p-value

Value
An object of classes vim and the type of risk-based measure. See Details for more information.

See Also
SuperLearner for specific usage of the SuperLearner function and package.

Examples
library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

## apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

## generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))
## set up a library for SuperLearner

```r
learners <- "SL.ranger"
```

## using Y and X; use class-balanced folds

```r
folds_1 <- sample(rep(seq_len(2), length = sum(y == 1)))
folds_0 <- sample(rep(seq_len(2), length = sum(y == 0)))
folds <- vector("numeric", length(y))
folds[y == 1] <- folds_1
folds[y == 0] <- folds_0
est <- vim(y, x, indx = 2, type = "r_squared",
 alpha = 0.05, run_regression = TRUE,
 SL.library = learners, cvControl = list(V = 5),
 folds = folds)
```

## using pre-computed fitted values

```r
full <- SuperLearner(Y = y[folds == 1], X = x[folds == 1,],
 SL.library = learners, cvControl = list(V = 5))
full.fit <- predict(full)$pred
reduced <- SuperLearner(Y = y[folds == 2], X = x[folds == 2, -2, drop = FALSE],
 SL.library = learners, cvControl = list(V = 5))
red.fit <- predict(reduced)$pred
est <- vim(Y = y, f1 = full.fit, f2 = red.fit,
 indx = 2, run_regression = FALSE, alpha = 0.05, folds = folds,
 type = "accuracy")
```

---

### vimp: Nonparametric variable importance assessment

**Description**

The vimp package provides one major function: vim. This function calculates an estimate of the variable importance parameter of interest developed by Williamson, Gilbert, Simon, and Carone. The parameter is defined as the additional variability in the outcome explained by including the covariates of interest in the estimating procedure.

**vimp Functions**

The function `vim_regression()` computes the estimates, standard error estimates, and confidence intervals for the ANOVA-based variable importance measure. It is an object of class "vim", and has its own print method.

The function `merge_vim()` takes the output of multiple calls to `vim_regression()`, and combines the results into a single vim object.

The function `format()` formats a vim object for printing; `print()` prints the results; and `plot()` plots the estimates and standard errors.
vimp_accuracy

Nonparametric Variable Importance Estimates: Classification accuracy

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracy-based variable importance. This is a wrapper function for cv_vim, with type = "accuracy".

Usage

vimp_accuracy(
  Y, X,
  f1 = NULL, f2 = NULL, indx = 1, V = 10,
  weights = rep(1, length(Y)), run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05, delta = 0,
  na.rm = FALSE, folds = NULL, stratified = TRUE,
  scale = "identity",
  ...
)

Arguments

Y the outcome.
X the covariates.
f1 the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2 the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-validation, defaults to 10.
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)

scale scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")

... other arguments to the estimation tool, see "See also".

Details

In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call - the call to vim
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to SuperLearner
- full_fit - the fitted values of the chosen method fit to the full data
- red_fit - the fitted values of the chosen method fit to the reduced data
- est - the estimated variable importance
- naive - the naive estimator of variable importance
- update - the influence curve-based update
- se - the standard error for the estimated variable importance
- ci - the $(1 - \alpha) \times 100\%$ confidence interval for the variable importance estimate
- full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- y - the outcome

Value

An object of classes vim and vim_accuracy. See Details for more information.
vimp_anova

See Also

SuperLearner for specific usage of the SuperLearner function and package.

Examples

library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

## apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

## generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))

## set up a library for SuperLearner
learners <- "SL.ranger"

## estimate (with a small number of folds, for illustration only)
est <- vimp_accuracy(y, x, indx = 2,
alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 5))

vimp_anova
Nonparametric Variable Importance Estimates: ANOVA

Description

Compute estimates of and confidence intervals for nonparametric difference in classification accuracy-based variable importance. This is a wrapper function for cv_vim, with type = "anova".

Usage

vimp_anova(
Y,
X,
f1 = NULL,
f2 = NULL,
indx = 1,
V = 10,
weights = rep(1, length(Y)),
run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
Arguments

Y the outcome.
X the covariates.
f1 the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2 the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-validation, defaults to 10.
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
scale scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")
folds the folds to use, if f1 and f2 are supplied.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:
- call - the call to `vim`
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to `SuperLearner`
- full_fit - the fitted values of the chosen method fit to the full data
- red_fit - the fitted values of the chosen method fit to the reduced data
- est - the estimated variable importance
- naive - the naive estimator of variable importance
- update - the influence curve-based update
- se - the standard error for the estimated variable importance
- ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
- full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- y - the outcome

**Value**

An object of classes `vim` and `vim_regression`. See Details for more information.

**See Also**

`SuperLearner` for specific usage of the `SuperLearner` function and package.

**Examples**

```r
library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_anova(y, x, indx = 2,
 alpha = 0.05, run_regression = TRUE,
```
vimp_auc

Nonparametric Variable Importance Estimates: AUC

Description

Compute estimates of and confidence intervals for nonparametric difference in AUC-based variable importance. This is a wrapper function for cv_vim, with type = "auc".

Usage

vimp_auc(
  Y,
  X,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
  V = 10,
  weights = rep(1, length(Y)),
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  folds = NULL,
  stratified = TRUE,
  scale = "identity",
  ...
)

Arguments

Y the outcome.
X the covariates.
f1 the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2 the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-validation, defaults to 10.
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.

SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.

alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.

delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.

na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)

folds the folds to use, if f1 and f2 are supplied.

stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)

scale scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")

... other other arguments to the estimation tool, see "See also".

Details

AUC for each regression (full and reduced) is computed using performance. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

• call - the call to vim
• s - the column(s) to calculate variable importance for
• SL.library - the library of learners passed to SuperLearner
• full_fit - the fitted values of the chosen method fit to the full data
• red_fit - the fitted values of the chosen method fit to the reduced data
• est - the estimated variable importance
• naive - the naive estimator of variable importance
• update - the influence curve-based update
• se - the standard error for the estimated variable importance
• ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
• full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
• red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
• alpha - the level, for confidence interval calculation
• y - the outcome

Value

An object of classes vim and vim_auc. See Details for more information.
See Also

`SuperLearner` for specific usage of the SuperLearner function and package, and `performance` for specific usage of the ROCR package.

Examples

```r
library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

generate Y ~ Normal (smooth, 1)
y <- matrix(rbinom(n, size = 1, prob = smooth))

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_auc(y, x, indx = 2,
alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 5))
```

---

**vimp_ci**

Confidence intervals for variable importance

Description

Compute confidence intervals for the true variable importance parameter.

Usage

```r
vimp_ci(est, se, scale = "identity", level = 0.95)
```

Arguments

- **est**: estimate of variable importance, e.g., from a call to `vimp_point_est`.
- **se**: estimate of the standard error of est, e.g., from a call to `vimp_se`.
- **scale**: scale to compute interval estimate on (defaults to "identity": compute SE and CI on log scale and back-transform).
- **level**: confidence interval type (defaults to 0.95).
Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true importance of the given group of left-out covariates.

vimp_deviance
Nonparametric Variable Importance Estimates: Deviance

Description

Compute estimates of and confidence intervals for nonparametric deviance-based variable importance. This is a wrapper function for cv_vim, with type = "deviance".

Usage

vimp_deviance(
  Y,
  X,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
  V = 10,
  weights = rep(1, length(Y)),
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  folds = NULL,
  stratified = TRUE,
  scale = "identity",
  ...
)

Arguments

Y the outcome.
X the covariates.
f1 the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2 the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
**vimp_deviance**

- **indx**: The indices of the covariate(s) to calculate variable importance for; defaults to 1.
- **V**: The number of folds for cross-validation, defaults to 10.
- **weights**: Weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings).
- **run_regression**: If outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
- **SL.library**: A character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
- **alpha**: The level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
- **delta**: The value of the δ-null (i.e., testing if importance < δ); defaults to 0.
- **na.rm**: Should we remove NA’s in the outcome and fitted values in computation? (defaults to FALSE)
- **folds**: The folds to use, if f1 and f2 are supplied.
- **stratified**: If run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds).
- **scale**: Scale should CIs be computed on original ("identity") or logit ("logit") scale? (defaults to "identity")
- **...**: Other arguments to the estimation tool, see "See also".

**Details**

In the interest of transparency, we return most of the calculations within the vimp object. This results in a list containing:

- call - the call to vimp
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to SuperLearner
- full_fit - the fitted values of the chosen method fit to the full data
- red_fit - the fitted values of the chosen method fit to the reduced data
- est - the estimated variable importance
- naive - the naive estimator of variable importance
- update - the influence curve-based update
- se - the standard error for the estimated variable importance
- ci - the $(1 - \alpha) \times 100$% confidence interval for the variable importance estimate
- full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- y - the outcome
vimp_hypothesis_test

Value

An object of classes \texttt{vim} and \texttt{vim_deviance}. See Details for more information.

See Also

\texttt{SuperLearner} for specific usage of the \texttt{SuperLearner} function and package.

Examples

```r
library(SuperLearner)
library(ranger)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -1, 1)))

apply the function to the x's
f <- function(x) 0.5 + 0.3*x[1] + 0.2*x[2]
smooth <- apply(x, 1, function(z) f(z))

generate Y ~ Normal (smooth, 1)
y <- matrix(stats::rbinom(n, size = 1, prob = smooth))

set up a library for SuperLearner
learners <- "SL.ranger"

estimate (with a small number of folds, for illustration only)
est <- vimp_deviance(y, x, indx = 2,
alpha = 0.05, run_regression = TRUE,
SL.library = learners, V = 2, cvControl = list(V = 5))
```

vimp_hypothesis_test

Perform a hypothesis test against the null hypothesis of \( \delta \) importance

Description

Perform a hypothesis test against the null hypothesis of zero importance by: (i) for a user-specified level \( \alpha \), compute a \((1 - \alpha) \times 100\%\) confidence interval around the predictiveness for both the full and reduced regression functions (these must be estimated on independent splits of the data); (ii) if the intervals do not overlap, reject the null hypothesis.

Usage

```r
text
```

vimp_hypothesis_test(
    full,
    reduced,
    y,
)
vimp_hypothesis_test

```r
folds,
delta = 0,
weights = rep(1, length(y)),
type = "r_squared",
alpha = 0.05,
cv = FALSE,
scale = "identity",
na.rm = FALSE)
```

**Arguments**

- `full` either (i) fitted values from a regression of the outcome on the full set of covariates from a first independent split of the data (if `cv = FALSE`) or (ii) a list of predicted values from a cross-validated procedure (if `cv = TRUE`).
- `reduced` fitted values from a regression either (1) of the outcome on the reduced set of covariates, or (2) of the predicted values from the full regression on the reduced set of covariates; either (i) a single set of predictions (if `cv = FALSE`) fit on an independent split of the data from `full` or (ii) a list of predicted values from a cross-validated procedure (if `cv = TRUE`).
- `y` the outcome.
- `folds` the folds used for splitting. If `cv = FALSE`, assumed to be a vector with 1 for the full regression and 2 for the reduced regression (if V = 2). If `cv = TRUE`, assumed to be a list with first element the outer folds (for hypothesis testing) and second element a list with the inner cross-validation folds.
- `delta` the value of the $\delta$-null (i.e., testing if importance $< \delta$); defaults to 0.
- `weights` weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
- `type` which parameter are you estimating (defaults to `r_squared`, for difference in R-squared-based variable importance)?
- `alpha` the desired type I error rate (defaults to 0.05).
- `cv` was V-fold cross-validation used to estimate the predictiveness (TRUE) or was the sample split in two (FALSE); defaults to FALSE.
- `scale` scale to compute CI on ("identity" for identity scale, "logit" for logit scale and back-transform)
- `na.rm` logical; should NAs be removed in computation? (defaults to FALSE)

**Details**

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

**Value**

TRUE if the null hypothesis is rejected (i.e., if the confidence intervals do not overlap); otherwise, FALSE.
vimp_point_est  Estimate variable importance

Description

Compute nonparametric estimates of the chosen variable importance parameter, with a correction for using data-adaptive techniques to estimate the conditional means only if necessary.

Usage

vimp_point_est(
  full, 
  reduced, 
  y, 
  folds, 
  weights = rep(1, length(y)), 
  type = "r_squared", 
  na.rm = FALSE
)

Arguments

full fitted values from a regression of the outcome on the full set of covariates.
reduced fitted values from a regression of the fitted values from the full regression on the reduced set of covariates.
y the outcome.
folds the folds for hypothesis testing
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
type which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
na.rm logical; should NA's be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The estimated variable importance for the given group of left-out covariates.
vimp_regression

Nonparametric Variable Importance Estimates

**Description**

Compute estimates of and confidence intervals for nonparametric ANOVA-based variable importance. This is a wrapper function for `cv_vim`, with `type = "anova"`. This function is deprecated in `vimp` version 2.0.0.

**Usage**

```r
vimp_regression(
 Y, # the outcome.
 X, # the covariates.
 f1 = NULL, # the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
 f2 = NULL, # the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
 indx = 1, # the indices of the covariate(s) to calculate variable importance for; defaults to 1.
 V = 10, # the number of folds for cross-validation, defaults to 1.
 weights = rep(1, length(Y)), # weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
 run_regression = TRUE, # if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
 alpha = 0.05,
 delta = 0,
 na.rm = FALSE,
 folds,
 stratified = FALSE,
 ...
)
```

**Arguments**

- **Y**: the outcome.
- **X**: the covariates.
- **f1**: the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
- **f2**: the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
- **indx**: the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- **V**: the number of folds for cross-validation, defaults to 1.
- **weights**: weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
- **run_regression**: if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
folds the folds to use, if f1 and f2 are supplied.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call - the call to vim
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to SuperLearner
- full_fit - the fitted values of the chosen method fit to the full data
- red_fit - the fitted values of the chosen method fit to the reduced data
- est - the estimated variable importance
- naive - the naive estimator of variable importance
- update - the influence curve-based update
- se - the standard error for the estimated variable importance
- ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
- full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- y - the outcome

Value

An object of classes vim and vim_regression. See Details for more information.

See Also

SuperLearner for specific usage of the SuperLearner function and package.
Examples

library(SuperLearner)
library(ranger)

## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

## set up a library for SuperLearner
learners <- "SL.ranger"

## estimate (with a small number of folds, for illustration only)
est <- vimp_regression(y, x, indx = 2,
                        alpha = 0.05, run_regression = TRUE,
                        SL.library = learners, V = 2, cvControl = list(V = 5))

vimp_rsquared

**Nonparametric Variable Importance Estimates: $R^2$**

Description

Compute estimates of and confidence intervals for nonparametric $R^2$-based variable importance. This is a wrapper function for `cv_vim`, with `type = "r_squared"`.

Usage

vimp_rsquared(
  Y,
  X,
  f1 = NULL,
  f2 = NULL,
  indx = 1,
  V = 10,
  weights = rep(1, length(Y)),
  run_regression = TRUE,
  SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"),
  alpha = 0.05,
  delta = 0,
  na.rm = FALSE,
  folds = NULL,
stratified = FALSE,
...
)

Arguments

Y the outcome.
X the covariates.
f1 the predicted values on validation data from a flexible estimation technique regressing Y on X in the training data; a list of length V, where each object is a set of predictions on the validation data.
f2 the predicted values on validation data from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a set of predictions on the validation data.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-validation, defaults to 10.
weights weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
run_regression if outcome Y and covariates X are passed to cv_vim, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
delta the value of the δ-null (i.e., testing if importance < δ); defaults to 0.
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
folds the folds to use, if f1 and f2 are supplied.
stratified if run_regression = TRUE, then should the generated folds be stratified based on the outcome (helps to ensure class balance across cross-validation folds)
...
other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call - the call to vim
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to SuperLearner
- full_fit - the fitted values of the chosen method fit to the full data
- red_fit - the fitted values of the chosen method fit to the reduced data
• est - the estimated variable importance
• naive - the naive estimator of variable importance
• update - the influence curve-based update
• se - the standard error for the estimated variable importance
• ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
• full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
• red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
• alpha - the level, for confidence interval calculation
• y - the outcome

Value

An object of classes \texttt{vim} and \texttt{vim_r-squared}. See Details for more information.

See Also

\texttt{SuperLearner} for specific usage of the \texttt{SuperLearner} function and package.

Examples

library(SuperLearner)
library(ranger)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

## set up a library for SuperLearner
learners <- "SL.ranger"

## estimate (with a small number of folds, for illustration only)
est <- vimp_r-squared(y, x, indx = 2,
           alpha = 0.05, run_regression = TRUE,
           SL.library = learners, V = 2, cvControl = list(V = 5))
vimp_se

Estimate standard errors

Description

Compute standard error estimates for estimates of variable importance.

Usage

vimp_se(
  est,
  update,
  denom = NULL,
  n = length(update),
  scale = "log",
  na.rm = FALSE
)

Arguments

est the estimate of variable importance.
update the influence curve-based update.
denom a list of point estimate and influence curve for the denominator (if any) to make
  the measure of predictiveness interpretable.
n the sample size.
scale the scale to compute SEs on (either "log", for log-scale, or "identity", for same
  scale as point estimate).
na.rm logical; should NA's be removed in computation? (defaults to FALSE).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics
behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated variable importance for the given group of left-out covariates.
vimp_update

Estimate the influence function for variable importance parameters

Description

Compute the value of the influence function for the given group of left-out covariates.

Usage

vimp_update(  
  full,  
  reduced,  
  y,  
  folds = folds,  
  weights = rep(1, length(y)),  
  type = "r_squared",  
  na.rm = FALSE  
)

Arguments

  full          fitted values from a regression of the outcome on the full set of covariates.
  reduced      fitted values from a regression either (1) of the outcome on the reduced set of covariates, or (2) of the fitted values from the full regression on the reduced set of covariates.
  y            the outcome.
  folds        the folds for hypothesis testing.
  weights      weights for the computed influence curve (e.g., inverse probability weights for coarsened-at-random settings)
  type         which parameter are you estimating (defaults to anova, for ANOVA-based variable importance)?
  na.rm        logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The influence function values for the given group of left-out covariates.
Index

average_vim, 3

 cv_predictiveness_point_est, 4
 cv_predictiveness_update, 5
 cv_vim, 6
 cv_vim_nodonsker, 12
 cv_vimp_point_est, 9
 cv_vimp_update, 11

 format.vim, 15

 measure_accuracy, 15
 measure_auc, 16
 measure_cross_entropy, 16
 measure_deviance, 17
 measure_mse, 17
 measure_r_squared, 18
 merge_vim, 18

 performance, 39, 40
 predictiveness_ci, 20
 predictiveness_point_est, 20
 predictiveness_se, 21
 predictiveness_update, 22
 print.vim, 23

 run_sl, 23

 sample_subsets, 24
 sp_vim, 27
 spvim_ics, 25, 26
 spvim_se, 26
 SuperLearner, 8, 13, 28, 31, 35, 37, 40, 43, 47, 50

 vim, 29
 vimp, 32
 vimp_accuracy, 33
 vimp_anova, 35
 vimp_auc, 38
 vimp_ci, 40
 vimp_deviance, 41
 vimp_hypothesis_test, 43
 vimp_point_est, 45
 vimp_regression, 46
 vimp_rsquared, 48
 vimp_se, 51
 vimp_update, 52