Package ‘vimp’

August 27, 2019

Type Package
Title Nonparametric Variable Importance
Version 1.1.6
Author Brian D. Williamson [aut, cre],
Noah Simon [aut],
Marco Carone [aut]
Maintainer Brian D. Williamson <brianw26@uw.edu>
Description Calculate point estimates of and valid confidence intervals for nonparametric variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (2017) <https://biostats.bepress.com/uwbiostat/paper422/>.
License MIT + file LICENSE
Depends R (>= 3.1.0)
Imports SuperLearner, stats, graphics
LazyData TRUE
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, MASS, gam, xgboost, glmnet, quadprog, covr, testthat
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-26 22:30:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>average_vim</td>
<td>2</td>
</tr>
<tr>
<td>cv_vim</td>
<td>3</td>
</tr>
<tr>
<td>cv_vim_nodonsker</td>
<td>6</td>
</tr>
<tr>
<td>format.vim</td>
<td>9</td>
</tr>
<tr>
<td>merge_vim</td>
<td>10</td>
</tr>
</tbody>
</table>
average_vim

Average multiple independent importance estimates

Description

Average the output from multiple calls to \texttt{vimp_regression}, for different independent groups, into a single estimate with a corresponding standard error and confidence interval.

Usage

\begin{verbatim}
average_vim(...) weights = rep(1/length(list(...)), length(list(...)))
\end{verbatim}

Arguments

\begin{itemize}
 \item \ldots an arbitrary number of \texttt{vim} objects
 \item weights how to average the vims together, and must sum to 1; defaults to \(1/(\text{number of vims})\) for each vim, corresponding to the arithmetic mean
\end{itemize}

Value

an object of class \texttt{vim} containing the (weighted) average of the individual importance estimates, as well as the appropriate standard error and confidence interval. This results in a list containing:

\begin{itemize}
 \item call - the call to \texttt{average_vim()}
 \item s - a list of the column(s) to calculate variable importance for
 \item SL.library - a list of the libraries of learners passed to \texttt{SuperLearner}
 \item full_fit - a list of the fitted values of the chosen method fit to the full data
 \item red_fit - a list of the fitted values of the chosen method fit to the reduced data
 \item est - a vector with the corrected estimates
 \item naive - a vector with the naive estimates
 \item update - a list with the influence curve-based updates
 \item mat - a matrix with the estimated variable importance, the standard error, and the \((1 - \alpha) \times 100\% \) confidence interval
\end{itemize}
- `full_mod` - a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- `red_mod` - a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- `alpha` - the level, for confidence interval calculation

Examples

```r
library(SuperLearner)
library(gam)
## generate the data
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

## set up a library for SuperLearner
learners <- "SL.gam"

## get estimates on independent splits of the data
samp <- sample(1:n, n/2, replace = FALSE)

## using Super Learner
est_2 <- vimp_regression(Y = y[samp], X = x[samp, ], indx = 2, run_regression = TRUE, alpha = 0.05, SL.library = learners, cvControl = list(V = 10))

est_1 <- vimp_regression(Y = y[-samp], X = x[-samp, ], indx = 2, run_regression = TRUE, alpha = 0.05, SL.library = learners, cvControl = list(V = 10))

ests <- average_vim(est_1, est_2, weights = c(1/2, 1/2))
```

Description

Compute estimates and confidence intervals for the nonparametric variable importance parameter of interest, using cross-validation with two validation folds in the updating procedure. This essentially involves splitting the data into V train/test1/test2 splits; train the learners on the training data, evaluate importance on the test data; and average over these splits.
cv_vim(Y, X, f1, f2, indx = 1, V = 10, folds = NULL,
type = "regression", run_regression = TRUE,
SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), alpha = 0.05,
na.rm = FALSE, ...)

Arguments

Y the outcome.
X the covariates.
f1 the fitted values from a flexible estimation technique regressing Y on X; a list of length V, where each object is a list of two sets of predictions: the first on a first validation set, and the second on a second validation set.
f2 the fitted values from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is a list of two sets of predictions: the first on a first validation set, and the second on a second validation set.
indx the indices of the covariate(s) to calculate variable importance for; defaults to 1.
V the number of folds for cross-validation, defaults to 10.
folds the folds to use, if f1 and f2 are supplied; an n by V matrix populated with 0s, 1s, and 2s, as returned by two.validation_set_cv.
type the type of parameter (e.g., ANOVA-based is "regression").
run_regression if outcome Y and covariates X are passed to vimp_regression, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
SL.library a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
alpha the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
na.rm should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
... other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- call - the call to cv_vim
- s - the column(s) to calculate variable importance for
- SL.library - the library of learners passed to SuperLearner
- full_fit - the fitted values of the chosen method fit to the full data (a list, for train and test data)
cv_vim

- red_fit - the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
- est - the estimated variable importance
- naive - the naive estimator of variable importance
- naives - the naive estimator on each fold
- updates - the influence curve-based update for each fold
- se - the standard error for the estimated variable importance
- ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
- full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
- red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - the level, for confidence interval calculation
- folds - the folds used for cross-validation

Value

An object of class \texttt{vim}. See Details for more information.

See Also

\texttt{SuperLearner} for specific usage of the \texttt{SuperLearner} function and package.

Examples

```r
library(SuperLearner)
library(gam)
n <- 100
p <- 2
## generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

## generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

## set up a library for SuperLearner
learners <- c("SL.mean", "SL.gam")

## -------------------------------
## using Super Learner
## -------------------------------
set.seed(4747)
est <- cv_vim(Y = y, X = x, indx = 2, V = 5, type = "regression", run_regression = TRUE,
```

\begin{verbatim}
SL.library = learners, alpha = 0.05)

doing things by hand, and plugging them in
--
set up the folds
V <- 5
indx <- 2
set.seed(4747)
folds <- two_validation_set_cv(length(y), V)
get the fitted values by fitting the super learner on each pair
fhat_ful <- list()
fhat_red <- list()
for (v in 1:V) {
 fhat_ful[[v]] <- list()
 fhat_red[[v]] <- list()
 ## fit super learner
 fit <- SuperLearner::SuperLearner(Y = y[folds[, v] == 0, , drop = FALSE],
 X = x[folds[, v] == 0, , drop = FALSE], SL.library = learners)
 fitted_v <- SuperLearner::predict.SuperLearner(fit)$pred
 ## get predictions on the first validation fold
 fhat_ful[[v]][[1]] <- SuperLearner::predict.SuperLearner(fit,
 newdata = x[folds[, v] == 1, , drop = FALSE])$pred
 ## get predictions on the second validation fold
 fhat_ful[[v]][[2]] <- SuperLearner::predict.SuperLearner(fit,
 newdata = x[folds[, v] == 2, , drop = FALSE])$pred
 ## fit the super learner on the reduced covariates
 red <- SuperLearner::SuperLearner(Y = fitted_v,
 X = x[folds[, v] == 0, -indx, drop = FALSE], SL.library = learners)
 ## get predictions on the first validation fold
 fhat_red[[v]][[1]] <- SuperLearner::predict.SuperLearner(red,
 newdata = x[folds[, v] == 1, -indx, drop = FALSE])$pred
 ## get predictions on the second validation fold
 fhat_red[[v]][[2]] <- SuperLearner::predict.SuperLearner(red,
 newdata = x[folds[, v] == 2, -indx, drop = FALSE])$pred
}
est <- cv_vim(Y = y, f1 = fhat_ful, f2 = fhat_red, indx = 2,
V = 5, folds = folds, type = "regression", run_regression = FALSE, alpha = 0.05)
\end{verbatim}

cv_vim_nodonker

Nonparametric Variable Importance Estimates using Cross-validation, without Donsker class relaxation

Description

Compute estimates and confidence intervals for the nonparametric variable importance parameter of interest, using cross-validation with a single validation fold in the updating procedure. This procedure differs from `cv_vim` in that this procedure uses the same data for the naive estimator.
and the update, and thus does not relax Donsker class conditions necessary for valid confidence intervals.

Usage

```r
cv_vim_nodonsker(Y, X, f1, f2, indx = 1, V = 10, folds = NULL,
                 type = "regression", run_regression = TRUE,
                 SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), alpha = 0.05,
                 na.rm = FALSE, ...)
```

Arguments

- **Y** the outcome.
- **X** the covariates.
- **f1** the fitted values from a flexible estimation technique regressing Y on X; a list of length V, where each object is one set of predictions on a validation set.
- **f2** the fitted values from a flexible estimation technique regressing the fitted values in f1 on X withholding the columns in indx; a list of length V, where each object is one set of predictions on a validation set.
- **indx** the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- **V** the number of folds for cross-validation, defaults to 10.
- **folds** the folds to use, if f1 and f2 are supplied.
- **type** the type of parameter (e.g., ANOVA-based is "regression").
- **run_regression** if outcome Y and covariates X are passed to vimp_regression, and run_regression is TRUE, then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
- **SL.library** a character vector of learners to pass to SuperLearner, if f1 and f2 are Y and X, respectively. Defaults to SL.glmnet, SL.xgboost, and SL.mean.
- **alpha** the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
- **na.rm** should we remove NA's in the outcome and fitted values in computation? (defaults to FALSE)
- **...** other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the vim object. This results in a list containing:

- **call** - the call to cv_vim
- **s** - the column(s) to calculate variable importance for
- **SL.library** - the library of learners passed to SuperLearner
- **full_fit** - the fitted values of the chosen method fit to the full data (a list, for train and test data)
• red_fit - the fitted values of the chosen method fit to the reduced data (a list, for train and test data)
• est - the estimated variable importance
• naive - the naive estimator of variable importance
• naives - the naive estimator on each fold
• updates - the influence curve-based update for each fold
• se - the standard error for the estimated variable importance
• ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
• full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
• red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
• alpha - the level, for confidence interval calculation
• folds - the folds used for cross-validation

Value

An object of class \texttt{vim}. See Details for more information.

See Also

\texttt{SuperLearner} for specific usage of the \texttt{SuperLearner} function and package.

Examples

library(SuperLearner)
library(gam)
n <- 100
p <- 2
generate the data
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal (smooth, 1)
y <- as.matrix(smooth + stats::rnorm(n, 0, 1))

set up a library for SuperLearner
learners <- c("SL.mean", "SL.gam")

using Super Learner
set.seed(4747)
est <- cv_vim_nodonsker(Y = y, X = x, indx = 2, V = 5, type = "regression", run_regression = TRUE,
SL.library = learners, alpha = 0.05)

doing things by hand, and plugging them in
set up the folds
indx <- 2
V <- 5
set.seed(4747)
folds <- rep(seq_len(V), length = n)
folds <- sample(folds)
get the fitted values by fitting the super learner on each pair
fhat_ful <- list()
fhat_red <- list()
for (v in 1:V) {
 ## fit super learner
 fit <- SuperLearner::SuperLearner(Y = y[folds != v, , drop = FALSE],
 X = x[folds != v, , drop = FALSE], SL.library = learners, cvControl = list(V = 5))
 fitted_v <- SuperLearner::predict.SuperLearner(fit)$pred
 ## get predictions on the validation fold
 fhat_ful[[v]] <- SuperLearner::predict.SuperLearner(fit,
 newdata = x[folds == v, , drop = FALSE]$pred
 ## fit the super learner on the reduced covariates
 red <- SuperLearner::SuperLearner(Y = fitted_v,
 X = x[folds != v, -indx, drop = FALSE], SL.library = learners, cvControl = list(V = 5))
 ## get predictions on the validation fold
 fhat_red[[v]] <- SuperLearner::predict.SuperLearner(red,
 newdata = x[folds == v, -indx, drop = FALSE]$pred
}
est <- cv_vim_nodonsker(Y = y, f1 = fhat_ful, f2 = fhat_red, indx = 2,
V = 5, folds = folds, type = "regression", run_regression = FALSE, alpha = 0.05)

format.vim

Format a vim object

Description

Nicely formats the output from a vim object for printing.

Usage

```r
## S3 method for class 'vim'
format(x, ...)
```

Arguments

- `x` the vim object of interest.
- `...` other options, see the generic `format` function.
merge_vim

Merge multiple vim objects into one

Description

Take the output from multiple different calls to vimp_regression and merge into a single vim object; mostly used for plotting results.

Usage

merge_vim(...)

Arguments

... an arbitrary number of vim objects, separated by commas.

Value

an object of class vim containing all of the output from the individual vim objects. This results in a list containing:

- call - the call to merge_vim()
- s - a list of the column(s) to calculate variable importance for
- SL.library - a list of the libraries of learners passed to SuperLearner
- full_fit - a list of the fitted values of the chosen method fit to the full data
- red_fit - a list of the fitted values of the chosen method fit to the reduced data
- est - a vector with the corrected estimates
- naive - a vector with the naive estimates
- update - a list with the influence curve-based updates
- se - a vector with the standard errors
- ci - a matrix with the CIs
- mat - a matrix with the estimated variable importance, the standard errors, and the \((1 - \alpha) \times 100\%\) confidence intervals
- full_mod - a list of the objects returned by the estimation procedure for the full data regression (if applicable)
- red_mod - a list of the objects returned by the estimation procedure for the reduced data regression (if applicable)
- alpha - a list of the levels, for confidence interval calculation
Examples

```r
library(SuperLearner)
library(gam)
## generate the data
## generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

## apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

## generate Y ~ Normal (smooth, 1)
y <- smooth + stats::rnorm(n, 0, 1)

## set up a library for SuperLearner
learners <- "SL.gam"

## using Super Learner
est_2 <- vimp_regression(Y = y, X = x, indx = 2,
run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 10))

est_1 <- vimp_regression(Y = y, X = x, indx = 1,
run_regression = TRUE, alpha = 0.05,
SL.library = learners, cvControl = list(V = 10))

ests <- merge_vim(est_1, est_2)
```

onestep_based_estimator

Estimate variable importance using a one-step estimator-based approach

Description

Compute nonparametric estimates of the variable importance parameter interpreted as the proportion of variability explained by including a group of covariates in the estimation technique.

Usage

```r
onestep_based_estimator(full, reduced, y, type = "regression",
na.rm = FALSE)
```

Arguments

- `full`: fitted values from a regression of the outcome on the full set of covariates.
- `reduced`: fitted values from a regression of the fitted values from the full regression on the reduced set of covariates.
print.vim

\[
y, \text{ the outcome.}
\]
\[
type, \text{ which parameter are you estimating (defaults to regression, for ANOVA-based variable importance)?}
\]
\[
a.r\text{m, logical; should NA's be removed in computation? (defaults to FALSE)}
\]

Details
See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value
The estimated variable importance for the given group of left-out covariates.

plot.vim

Plot vim objects

Description
Plot the estimates and standard errors for a set of vim objects.

Usage
S3 method for class 'vim'
plot(x, y, ...)

Arguments
\[
x, \text{ an vim object.}
\]
\[
y, \text{ a vector of names, given in the same order as the estimates in the vim object.}
\]
\[
..., \text{ other options, see the generic plot function.}
\]

print.vim

Print a vim object

Description
Prints out the table of estimates, confidence intervals, and standard errors for a vim object.

Usage
S3 method for class 'vim'
print(x, ...)

Arguments
\[
x, \text{ the vim object of interest.}
\]
\[
..., \text{ other options, see the generic print function.}
\]
two_validation_set_cv

V-fold cross-validation with two validation sets

Description

Set up V-fold cross-validation, where rather than the usual train/test split for each fold, now there are two test datasets. In practice, this means that each datum is in the training data V - 2 times, in the first test set once, and in the second test set once.

Usage

two_validation_set_cv(n, V)

Arguments

n the sample size
V the number of folds

Details

This method is only different from V-fold cross-validation by how much data is used in the training sample, and the fact that two validation samples are needed. Specifically, in two-validation-set V-fold CV, n/V fewer observations are used in training than in V-fold CV. These n/V observations are used in the second validation set.

Value

an n by V matrix containing the train/test set 1/test set 2 data for each fold.

Examples

n <- 100
V <- 5
set up two-validation-set 5-fold CV
folds <- two_validation_set_cv(n, V)

vimp: Nonparametric variable importance assessment

Description

The vimp package provides one major function: vim. This function calculates an estimate of the variable importance parameter of interest developed by Williamson, Gilbert, Simon, and Carone. The parameter is defined as the additional variability in the outcome explained by including the covariates of interest in the estimating procedure.
vimp Functions

The function `vimp_regression()` computes the estimates, standard error estimates, and confidence intervals for the ANOVA-based variable importance measure. It is an object of class "vim", and has its own print method.

The function `merge_vim()` takes the output of multiple calls to `vimp_regression()`, and combines the results into a single vim object.

The function `format()` formats a vim object for printing; `print()` prints the results; and `plot()` plots the estimates and standard errors.

vimp_ci

Confidence intervals for variable importance

Description

Compute confidence intervals for the true variable importance parameter interpreted as the proportion of variability explained by including a group of covariates in the estimation technique.

Usage

```r
vimp_ci(est, se, level = 0.95)
```

Arguments

- `est` estimate of variable importance from a call to `variableImportance`.
- `se` estimate of the standard error of `est`, from a call to `variableImportanceSE`.
- `level` confidence interval type (defaults to 0.95).

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The Wald-based confidence interval for the true importance of the given group of left-out covariates.
Description

Compute estimates of and confidence intervals for nonparametric ANOVA-based variable importance.

Usage

\[
vimp_regression(Y, X, f1 = NULL, f2 = NULL, indx = 1, \text{run_regression = TRUE, SL.library = c("SL.glmnet", "SL.xgboost", "SL.mean"), alpha = 0.05, na.rm = FALSE, ...})
\]

Arguments

- **Y**: the outcome.
- **X**: the covariates.
- **f1**: the fitted values from a flexible estimation technique regressing \(Y \) on \(X \).
- **f2**: the fitted values from a flexible estimation technique regressing the fitted values in \(f1 \) on \(X \) withholding the columns in \(indx \).
- **indx**: the indices of the covariate(s) to calculate variable importance for; defaults to 1.
- **run_regression**: if outcome \(Y \) and covariates \(X \) are passed to \(vimp_regression \), and \(run_regression \) is \(\text{TRUE} \), then Super Learner will be used; otherwise, variable importance will be computed using the inputted fitted values.
- **SL.library**: a character vector of learners to pass to \(\text{SuperLearner} \), if \(f1 \) and \(f2 \) are \(Y \) and \(X \), respectively. Defaults to \(\text{SL.glmnet}, \text{SL.xgboost}, \text{and SL.mean} \).
- **alpha**: the level to compute the confidence interval at. Defaults to 0.05, corresponding to a 95% confidence interval.
- **na.rm**: should we remove NA's in the outcome and fitted values in computation? (defaults to \(\text{FALSE} \))
- **...**: other arguments to the estimation tool, see "See also".

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function, and the validity of the confidence intervals. In the interest of transparency, we return most of the calculations within the \(\text{vim} \) object. This results in a list containing:

- **call**: the call to \(\text{vim} \)
- **s**: the column(s) to calculate variable importance for
- **SL.library**: the library of learners passed to \(\text{SuperLearner} \)
- **full_fit**: the fitted values of the chosen method fit to the full data
• red_fit - the fitted values of the chosen method fit to the reduced data
• est - the estimated variable importance
• naive - the naive estimator of variable importance
• update - the influence curve-based update
• se - the standard error for the estimated variable importance
• ci - the \((1 - \alpha) \times 100\%\) confidence interval for the variable importance estimate
• full_mod - the object returned by the estimation procedure for the full data regression (if applicable)
• red_mod - the object returned by the estimation procedure for the reduced data regression (if applicable)
• alpha - the level, for confidence interval calculation

Value

An object of classes \texttt{vim} and \texttt{vim_regression}. See Details for more information.

See Also

\texttt{SuperLearner} for specific usage of the \texttt{SuperLearner} function and package.

Examples

library(SuperLearner)
library(gam)
generate the data
generate X
p <- 2
n <- 100
x <- data.frame(replicate(p, stats::runif(n, -5, 5)))

apply the function to the x's
smooth <- (x[,1]/5)^2*(x[,1]+7)/5 + (x[,2]/3)^2

generate Y ~ Normal \((\text{smooth}, 1)\)
y <- smooth + stats::rnorm(n, 0, 1)

set up a library for \texttt{SuperLearner}
learners <- "SL.gam"

using Y and X
est <- vimp_regression(y, x, indx = 2,
 alpha = 0.05, run_regression = TRUE,
 SL.library = learners, cvControl = list(V = 10))

using pre-computed fitted values
full <- SuperLearner(Y = y, X = x,
 SL.library = learners, cvControl = list(V = 10))
full.fit <- predict(full)$pred
reduced <- SuperLearner(Y = full.fit, X = x[, 2], drop = FALSE),
vimp_se

SL.library = learners, cvControl = list(V = 10))
red.fit <- predict(reduced)$pred

est <- vimp_regression(Y = y, f1 = full.fit, f2 = red.fit,
 indx = 2, run_regression = FALSE, alpha = 0.05)

vimp_se

Estimate standard errors

Description

Compute standard error estimates for estimates of the variable importance parameter interpreted as the proportion of variability explained by including a group of covariates in the estimation technique.

Usage

vimp_se(update, n = length(update), na.rm = FALSE)

Arguments

- **update**: the influence curve-based update
- **n**: the sample size
- **na.rm**: logical; should NA’s be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The standard error for the estimated variable importance for the given group of left-out covariates.

vimp_update

Estimate the influence function

Description

Compute the value of the influence function for the given group of left-out covariates.

Usage

vimp_update(full, reduced, y, type = "regression", na.rm = FALSE)
Arguments

- **full**: fitted values from a regression of the outcome on the full set of covariates.
- **reduced**: fitted values from a regression either (1) of the outcome on the reduced set of covariates, or (2) of the fitted values from the full regression on the reduced set of covariates.
- **y**: the outcome.
- **type**: which parameter are you estimating (defaults to regression, for ANOVA-based variable importance)?
- **na.rm**: logical; should NAs be removed in computation? (defaults to FALSE)

Details

See the paper by Williamson, Gilbert, Simon, and Carone for more details on the mathematics behind this function and the definition of the parameter of interest.

Value

The influence function values for the given group of left-out covariates.
Index

average_vim, 2

cv_vim, 3
cv_vim_nodonsker, 6

format.vim, 9

merge_vim, 10

onestep_based_estimator, 11

plot.vim, 12
print.vim, 12

SuperLearner, 5, 8, 16

two_validation_set_cv, 4, 13

vimp, 13
vimp-package (vimp), 13
vimp_ci, 14
vimp_regression, 15
vimp_se, 17
vimp_update, 17