Package ‘vinereg’

October 12, 2022

Type Package
Title D-Vine Quantile Regression
Version 0.8.3
Maintainer Thomas Nagler <tnagler.com>
Description Implements D-vine quantile regression models with
parametric or nonparametric pair-copulas. See
Kraus and Czado (2017) <doi:10.1016/j.csda.2016.12.009> and
License GPL-3
Imports rvinecopulib (>= 0.6.1.1.2), kde1d (>= 1.0.2), Rcpp,
assertthat
LinkingTo rvinecopulib, RcppEigen, Rcpp, BH, wdm, RcppThread, kde1d
RoxygenNote 7.1.2
Suggests knitr, rmarkdown, ggplot2, AppliedPredictiveModeling,
quantreg, tidyr, dplyr, purrr, scales, mgcv, testthat, covr
VignetteBuilder knitr
URL https://tnagler.github.io/vinereg/
BugReports https://github.com/tnagler/vinereg/issues
Encoding UTF-8
NeedsCompilation yes
Author Thomas Nagler [aut, cre],
Dani Kraus [ctb]
Repository CRAN
Date/Publication 2022-03-23 12:30:02 UTC

R topics documented:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cpit</td>
<td>2</td>
</tr>
<tr>
<td>plot_effects</td>
<td>2</td>
</tr>
<tr>
<td>predict.vinereg</td>
<td>3</td>
</tr>
<tr>
<td>vinereg</td>
<td>4</td>
</tr>
</tbody>
</table>
cpit

Conditional probability integral transform

Description

Calculates the conditional distribution of the response given the covariates.

Usage

```r
cpit(object, newdata, cores = 1)
```

Arguments

- **object**: an object of class `vinereg`.
- **newdata**: matrix of response and covariate values for which to compute the conditional distribution.
- **cores**: integer; the number of cores to use for computations.

Examples

```r
# simulate data
x <- matrix(rnorm(500), 250, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(250, 2, 0.5)))

# fit vine regression model
fit <- vinereg(y ~ ., dat)

hist(cpit(fit, dat)) # should be approximately uniform
```

plot_effects

Plot marginal effects of a D-vine regression model

Description

The marginal effects of a variable is the expected effect, where expectation is meant with respect to all other variables.

Usage

```r
plot_effects(object, alpha = c(0.1, 0.5, 0.9), vars = object$order)
```
predict.vinereg

Arguments

- **object**
 - a `vinereg` object
- **alpha**
 - vector of quantile levels.
- **vars**
 - vector of variable names.

Examples

```r
# simulate data
x <- matrix(rnorm(200), 100, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(100, 2, 0.5)))

# fit vine regression model
fit <- vinereg(y ~ ., dat)
plot_effects(fit)
```

predict.vinereg
Predict conditional mean and quantiles from a D-vine regression model

Description

Predict conditional mean and quantiles from a D-vine regression model

Usage

```r
## S3 method for class 'vinereg'
predict(object, newdata, alpha = 0.5, cores = 1, ...)

## S3 method for class 'vinereg'
fitted(object, alpha = 0.5, ...)
```

Arguments

- **object**
 - an object of class `vinereg`.
- **newdata**
 - matrix of covariate values for which to predict the quantile.
- **alpha**
 - vector of quantile levels; NA predicts the mean based on an average of the 1:10 / 11-quantiles.
- **cores**
 - integer; the number of cores to use for computations.
- ...
 - unused.

Value

A data.frame of quantiles where each column corresponds to one value of alpha.
See Also

vinereg

Examples

simulate data
x <- matrix(rnorm(200), 100, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(100, 2, 0.5)))

fit vine regression model
(fit <- vinereg(y ~ ., dat))

inspect model
summary(fit)
plot_effects(fit)

model predictions
mu_hat <- predict(fit, newdata = dat, alpha = NA) # mean
med_hat <- predict(fit, newdata = dat, alpha = 0.5) # median

observed vs predicted
plot(cbind(y, mu_hat))

fixed variable order (no selection)
(fit <- vinereg(y ~ ., dat, order = c("x.2", "x.1", "z.1")))

vinereg

\textit{D-vine regression models}

Description

Sequential estimation of a regression D-vine for the purpose of quantile prediction as described in Kraus and Czado (2017).

Usage

vinereg(
 formula,
data,
family_set = "parametric",
selcrit = "aic",
order = NA,
par_1d = list(),
weights = numeric(),
cores = 1,
...,
 uscale = FALSE
)
Arguments

- **formula**: an object of class "formula"; same as `lm()`.
- **data**: data frame (or object coercible by `as.data.frame()`) containing the variables in the model.
- **family_set**: see `family_set` argument of `rvinecopulib::bicop()`.
- **selcrit**: selection criterion based on conditional log-likelihood. "loglik" (default) imposes no correction; other choices are "aic" and "bic".
- **order**: the order of covariates in the D-vine, provided as vector of variable names (after calling `vinereg:::expand_factors(model.frame(formula, data))`); selected automatically if `order = NA` (default).
- **par_1d**: list of options passed to `kde1d::kde1d()`, must be one value for each margin, e.g. `list(xmin = c(0, 0, NaN))` if the response and first covariate have non-negative support.
- **weights**: optional vector of weights for each observation.
- **cores**: integer; the number of cores to use for computations.
- **...**: further arguments passed to `rvinecopulib::bicop()`.
- **uscale**: if TRUE, `vinereg` assumes that marginal distributions have been taken care of in a preliminary step.

Details

If discrete variables are declared as `ordered()` or `factor()`, they are handled as described in Panagiotelis et al. (2012). This is different from previous version where the data was jittered before fitting.

Value

An object of class vinereg. It is a list containing the elements

- **formula**: the formula used for the fit.
- **selcrit**: criterion used for variable selection.
- **model_frame**: the data used to fit the regression model.
- **margins**: list of marginal models fitted by `kde1d::kde1d()`.
- **vine**: an `rvinecopulib::vinecop_dist()` object containing the fitted D-vine.
- **stats**: fit statistics such as conditional log-likelihood/AIC/BIC and p-values for each variable’s contribution.
- **order**: order of the covariates chosen by the variable selection algorithm.
- **selected_vars**: indices of selected variables.

Use `predict.vinereg()` to predict conditional quantiles. `summary.vinereg()` shows the contribution of each selected variable with the associated p-value derived from a likelihood ratio test.
References

Kraus and Czado (2017), D-vine copula based quantile regression, Computational Statistics and Data Analysis, 110, 1-18

See Also

predict.vinereg

Examples

simulate data
x <- matrix(rnorm(200), 100, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(100, 2, 0.5)))

fit vine regression model
(fit <- vinereg(y ~ ., dat))

inspect model
summary(fit)
plot_effects(fit)

model predictions
mu_hat <- predict(fit, newdata = dat, alpha = NA) # mean
med_hat <- predict(fit, newdata = dat, alpha = 0.5) # median

observed vs predicted
plot(cbind(y, mu_hat))

fixed variable order (no selection)
(fit <- vinereg(y ~ ., dat, order = c("x.2", "x.1", "z.1")))
Index

as.data.frame(), 5

cpit, 2

fitted.vinereg(predict.vinereg), 3

kde1d::kde1d(), 5

lm(), 5

plot_effects, 2

predict.vinereg, 3, 6

predict.vinereg(), 5

rvinecopulib::bicop(), 5

rvinecopulib::vinecop_dist(), 5

vinereg, 4, 4