Package ‘vioplot’

December 9, 2022

Title Violin Plot
Version 0.4.0
Date 2022-12-08
Description A violin plot is a combination of a box plot and a kernel density plot. This package allows extensive customisation of violin plots.
Depends sm, zoo
License BSD_3_clause + file LICENSE
URL https://github.com/TomKellyGenetics/vioplot
BugReports https://github.com/TomKellyGenetics/vioplot/issues
RoxygenNote 7.1.2
Suggests base, ggplot2, RColorBrewer, knitr, rmarkdown, testthat
Language en-GB
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Daniel Adler [aut, cph],
 S. Thomas Kelly [aut, cre],
 Tom M. Elliott [aut, ctb],
 Jordan Adamson [aut, ctb]
Maintainer S. Thomas Kelly <tomkellygenetics@gmail.com>
Repository CRAN
Date/Publication 2022-12-09 17:50:02 UTC

R topics documented:

histoplot .. 2
vioplot .. 8
vioplot.stats ... 15

Index 17
Description

Produce histogram plot(s) of the given (grouped) values with enhanced annotation and colour per group. Includes customisation of colours for each aspect of the histogram, boxplot, and separate histograms. This supports input of data as a list or formula, being backwards compatible with `histoplot` (0.2) and taking input in a formula as used for `boxplot`.

Interpreting the columns (or rows) of a matrix as different groups, draw a boxplot for each.

Usage

```r
## S3 method for class 'matrix'
histoplot(x, use.cols = TRUE, ...)

## S3 method for class 'list'
histoplot(x, ...)

## S3 method for class 'data.frame'
histoplot(x, ...)

## S3 method for class 'matrix'
histoplot(x, use.cols = TRUE, ...)

## S3 method for class 'formula'
histoplot(
  formula,
  data = NULL,
  ..., 
  subset,
  na.action = NULL,
  add = FALSE,
  ann = !add,
  horizontal = FALSE,
  side = "both",
  xlab = mklab(y_var = horizontal),
  ylab = mklab(y_var = !horizontal),
  names = NULL,
  drop = FALSE,
  sep = ".",
  lex.order = FALSE
)

## Default S3 method:
histoplot(
```
histoplot

x,
..., data = NULL, breaks = "Sturges", xlim = NULL, ylim = NULL, names = NULL, horizontal = FALSE, col = "grey50", border = par()$fg, lty = 1, lwd = 1, rectCol = par()$fg, lineCol = par()$fg, pchMed = 19, colMed = "white", colMed2 = "grey 75", at, add = FALSE, wex = 1, drawRect = TRUE, areaEqual = FALSE, axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, asp = NA, main = "", sub = "", xlab = NA, ylab = NA, line = NA, outer = FALSE, xlog = NA, ylog = NA, adj = NA, ann = NA, ask = NA, bg = NA, bty = NA, cex = NA, cex.axis = NA, cex.lab = NA, cex.main = NA, cex.names = NULL, cex.sub = NA, cin = NA, col.axis = NA,
col.lab = NA,
col.main = NA,
col.sub = NA,
cra = NA,
crt = NA,
csi = NA,
cxy = NA,
din = NA,
err = NA,
family = NA,
fg = NA,
fig = NA,
fin = NA,
font = NA,
font.axis = NA,
font.lab = NA,
font.main = NA,
font.sub = NA,
lab = NA,
las = NA,
lend = NA,
lheight = NA,
ljoin = NA,
lmitre = NA,
mai = NA,
mar = NA,
mex = NA,
mfcol = NA,
mfg = NA,
mfrow = NA,
mgp = NA,
mkh = NA,
new = NA,
oma = NA,
omd = NA,
omi = NA,
page = NA,
pch = NA,
pin = NA,
plt = NA,
ps = NA,
pty = NA,
smo = NA,
srt = NA,
tck = NA,
tcl = NA,
usr = NA,
xaxp = NA,
histoplot

xaxs = NA,
xaxt = NA,
xd = NA,
yaxp = NA,
yaxs = NA,
yaxt = NA,
ylbias = NA,
log = "",
logLab = c(1, 2, 5),
na.action = NULL,
na.rm = T,
side = "both"
)

Arguments

x a numeric matrix.

... Further arguments to histoplot.

use.cols logical indicating if columns (by default) or rows (use.cols = FALSE) should be plotted.

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The default is to ignore missing values in either the response or the group.

add logical. if FALSE (default) a new plot is created

horizontal logical. To use horizontal or vertical histograms. Note that log scale can only be used on the x-axis for horizontal histograms, and on the y-axis otherwise.

side defaults to "both". Assigning "left" or "right" enables one sided plotting of histograms. May be applied as a scalar across all groups.

names one label, or a vector of labels for the data must match the number of data given
drop, sep, lex.order defines groups to plot from formula, passed to split.default, see there.

breaks the breaks for the density estimator, as explained in hist

xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.

col Graphical parameter for fill colour of the histogram(s) polygon. NA for no fill colour. If col is a vector, it specifies the colour per histogram, and colours are reused if necessary.

border Graphical parameters for the colour of the histogram border passed to lines. NA for no border. If border is a vector, it specifies the colour per histogram, and colours are reused if necessary.

lty, lwd Graphical parameters for the histogram passed to lines and polygon
rectCol

Graphical parameters to control fill colour of the box. NA for no fill colour. If col is a vector, it specifies the colour per histogram, and colours are reused if necessary.

lineCol

Graphical parameters to control colour of the box outline and whiskers. NA for no border. If lineCol is a vector, it specifies the colour per histogram, and colours are reused if necessary.

pchMed

Graphical parameters to control shape of the median point. If pchMed is a vector, it specifies the shape per histogram.

colMed, colMed2

Graphical parameters to control colour of the median point. If colMed is a vector, it specifies the colour per histogram. colMed specifies the fill colour in all cases unless pchMed is 21:25 in which case colMed is the border colour and colMed2 is the fill colour.

at

position of each histogram. Default to 1:n

wex

relative expansion of the histogram. If wex is a vector, it specifies the area/width size per histogram and sizes are reused if necessary.

drawRect

logical. The box is drawn if TRUE.

areaEqual

logical. Density plots checked for equal area if TRUE. wex must be scalar, relative widths of histograms depend on area.

axes, frame.plot, panel.first, panel.last, asp, line, outer, adj, ann, ask, bg, bty, cin, col.axis, col.lab, col.main, ...

Arguments to be passed to methods, such as graphical parameters (see `par`).

main, sub, xlab, ylab

graphical parameters passed to plot.

ylog, xlog

A logical value (see log in `plot.default`). If ylog is TRUE, a logarithmic scale is in use (e.g., after plot(*, log = "y")). For horizontal = TRUE then, if xlog is TRUE, a logarithmic scale is in use (e.g., after plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear scale.

cex

A numerical value giving the amount by which plotting text should be magnified relative to the default.

cex.axis

The magnification to be used for y axis annotation relative to the current setting of cex.

cex.lab

The magnification to be used for x and y labels relative to the current setting of cex.

cex.main

The magnification to be used for main titles relative to the current setting of cex.

cex.names

The magnification to be used for x axis annotation relative to the current setting of cex. Takes the value of cex.axis if not given.

cex.sub

The magnification to be used for sub-titles relative to the current setting of cex.

yaxt

A character which specifies the y axis type. Specifying "n" suppresses plotting.

log

Logarithmic scale if log = "y" or TRUE. Invokes ylog = TRUE. If horizontal is TRUE then invokes xlog = TRUE.

logLab

Increments forlabelling y-axis on log-scale, defaults to numbers starting with 1, 2, 5, and 10.

na.rm

logical value indicating whether NA values should be stripped before the computation proceeds. Defaults to TRUE.
Examples

box- vs histogram-plot
par(mfrow=c(2,1))
mu<-2
si<-0.6
bimodal<-c(rnorm(1000,-mu,si),rnorm(1000,mu,si))
uniform<-runif(2000,-4,4)
normal<-rnorm(2000,0,3)
histoplot(bimodal,uniform,normal)
boxplot(bimodal,uniform,normal)

add to an existing plot
x <- rnorm(100)
y <- rnorm(100)
plot(x, y, xlim=c(-5,5), ylim=c(-5,5))
histoplot(x, col="tomato", horizontal=TRUE, at=-4, add=TRUE,lty=2, rectCol="gray")
histoplot(y, col="cyan", horizontal=FALSE, at=-4, add=TRUE,lty=2)

formula input
data("iris")
histoplot(Sepal.Length~Species, data = iris, main = "Sepal Length",
 col=c("lightgreen", "lightblue", "palevioletred"))
legend("topleft", legend=c("setosa", "versicolor", "virginica"),
 fill=c("lightgreen", "lightblue", "palevioletred"), cex = 0.5)
data("diamonds", package = "ggplot2")
palette <- RColorBrewer::brewer.pal(9, "Pastel1")
par(mfrow=c(3, 1))
histoplot(price ~ cut, data = diamonds, las = 1, col = palette)
histoplot(price ~ clarity, data = diamonds, las = 2, col = palette)
histoplot(price ~ color, data = diamonds, las = 2, col = palette)
par(mfrow=c(3, 1))

#generate example data
data_one <- rnorm(100)
data_two <- rnorm(50, 1, 2)

#generate histogram plot with similar functionality to histoplot
histoplot(data_one, data_two, col="magenta")

#note vioploplot defaults to a greyscale plot
histoplot(data_one, data_two)

#colours can be customised separately, with axis labels, legends, and titles
histoplot(data_one, data_two, col=c("red","blue"), names=c("data one", "data two"),
 main="data histogram", xlab="data class", ylab="data read")
legend("topleft", fill=c("red","blue"), legend=c("data one", "data two"))

#colours can be customised for the histogram fill and border separately
histoplot(data_one, data_two, col="grey85", border="purple", names=c("data one", "data two"),
 main="data histogram", xlab="data class", ylab="data read")
Produce violin plot(s) of the given (grouped) values with enhanced annotation and colour per group. Includes customisation of colours for each aspect of the violin, boxplot, and separate violins. This supports input of data as a list or formula, being backwards compatible with `vioplot` (0.2) and taking input in a formula as used for `boxplot`.

Interpreting the columns (or rows) of a matrix as different groups, draw a boxplot for each.
Usage

S3 method for class 'matrix'
vioplot(x, use.cols = TRUE, ...)

S3 method for class 'list'
vioplot(x, ...)

S3 method for class 'data.frame'
vioplot(x, ...)

S3 method for class 'matrix'
vioplot(x, use.cols = TRUE, ...)

S3 method for class 'formula'
vioplot(
 formula,
 data = NULL,
 ...,
 subset,
 na.action = NULL,
 add = FALSE,
 ann = !add,
 horizontal = FALSE,
 side = "both",
 xlab = mklab(y_var = horizontal),
 ylab = mklab(y_var = !horizontal),
 names = NULL,
 drop = FALSE,
 sep = ".",
 lex.order = FALSE
)

Default S3 method:
vioplot(
 x,
 ...,
 data = NULL,
 range = 1.5,
 h = NULL,
 xlim = NULL,
 ylim = NULL,
 names = NULL,
 horizontal = FALSE,
 col = "grey50",
 border = par()$fg,
 lty = 1,
 lwd = 1,
 rectCol = par()$fg,
lineCol = par()$fg,
pchMed = 19,
colMed = "white",
colMed2 = "grey 75",
at,
add = FALSE,
wex = 1,
drawRect = TRUE,
areaEqual = FALSE,
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
asp = NA,
main = "",
sub = "",
lab = NA,
ylab = NA,
line = NA,
outer = FALSE,
xlog = NA,
ylog = NA,
ad = NA,
ann = NA,
ask = NA,
bg = NA,
bty = NA,
cex = NA,
cex.axis = NA,
cex.lab = NA,
cex.main = NA,
cex.names = NULL,
cex.sub = NA,
cin = NA,
col.axis = NA,
col.lab = NA,
col.main = NA,
col.sub = NA,
cra = NA,
crt = NA,
csi = NA,
cxy = NA,
din = NA,
err = NA,
family = NA,
fg = NA,
fig = NA,
fin = NA,
font = NA,
font.axis = NA,
font.lab = NA,
font.main = NA,
font.sub = NA,
lab = NA,
las = NA,
lend = NA,
lheight = NA,
ljoin = NA,
lmitre = NA,
mai = NA,
mar = NA,
mex = NA,
mfcol = NA,
mfg = NA,
mfrow = NA,
mgp = NA,
mkh = NA,
new = NA,
oma = NA,
oma = NA,
oma = NA,
page = NA,
pch = NA,
pin = NA,
plt = NA,
ps = NA,
pty = NA,
smo = NA,
srt = NA,
tck = NA,
tcl = NA,
usr = NA,
xaxp = NA,
xaxs = NA,
xaxt = NA,
xpd = NA,
yaxp = NA,
yaxs = NA,
yaxt = NA,
ylbias = NA,
log = "",
logLab = c(1, 2, 5),
na.action = NULL,
na.rm = T,
side = "both",
plotCentre = "point"
Arguments

x

a numeric matrix.

...

Further arguments to `vioplot`.

use.cols

logical indicating if columns (by default) or rows (use.cols = FALSE) should be plotted.

formula

a formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor).

data

a data.frame (or list) from which the variables in formula should be taken.

subset

an optional vector specifying a subset of observations to be used for plotting.

na.action

a function which indicates what should happen when the data contain NAs. The default is to ignore missing values in either the response or the group.

add

logical. if FALSE (default) a new plot is created

horizontal

logical. To use horizontal or vertical violins. Note that log scale can only be used on the x-axis for horizontal violins, and on the y-axis otherwise.

side

defaults to "both". Assigning "left" or "right" enables one sided plotting of violins. May be applied as a scalar across all groups.

names

one label, or a vector of labels for the data must match the number of data given

drop, sep, lex.order

defines groups to plot from formula, passed to `split.default`, see there.

range

a factor to calculate the upper/lower adjacent values

h

the height for the density estimator, if omit as explained in `sm.density`, h will be set to an optimum. A vector of length one, two or three, defining the smoothing parameter. A normal kernel function is used and h is its standard deviation. If this parameter is omitted, a normal optimal smoothing parameter is used.

xlim, ylim

numeric vectors of length 2, giving the x and y coordinates ranges.

col

Graphical parameter for fill colour of the violin(s) polygon. NA for no fill colour. If col is a vector, it specifies the colour per violin, and colours are reused if necessary.

border

Graphical parameters for the colour of the violin border passed to lines. NA for no border. If border is a vector, it specifies the colour per violin, and colours are reused if necessary.

lty, lwd

Graphical parameters for the violin passed to lines and polygon

rectCol

Graphical parameters to control fill colour of the box. NA for no fill colour. If col is a vector, it specifies the colour per violin, and colours are reused if necessary.

lineCol

Graphical parameters to control colour of the box outline and whiskers. NA for no border. If lineCol is a vector, it specifies the colour per violin, and colours are reused if necessary.

pchMed

Graphical parameters to control shape of the median point. If pchMed is a vector, it specifies the shape per violin.
vioplot

colMed, colMed2
Graphical parameters to control colour of the median point. If colMed is a
vector, it specifies the colour per violin. colMed specifies the fill colour in all
cases unless pchMed is 21:25 in which case colMed is the border colour and
colMed2 is the fill colour.

at
position of each violin. Default to 1:n

wex
relative expansion of the violin. If wex is a vector, it specifies the area/width
size per violin and sizes are reused if necessary.

drawRect
logical. The box is drawn if TRUE.

areaEqual
logical. Density plots checked for equal area if TRUE. wex must be scalar,
relative widths of violins depend on area.

axes, frame.plot, panel.first, panel.last, asp, line, outer, adj, ann, ask, bg, bty, cin, col.axis, col.lab, Arguments to be passed to methods, such as graphical parameters (see par).

main, sub, xlab, ylab
graphical parameters passed to plot.

ylog, xlog
A logical value (see log in plot.default). If ylog is TRUE, a logarithmic scale
is in use (e.g., after plot(*, log = "y")). For horizontal = TRUE then, if xlog is
TRUE, a logarithmic scale is in use (e.g., after plot(*, log = "x")). For a new
device, it defaults to FALSE, i.e., linear scale.

cex
A numerical value giving the amount by which plotting text should be magnified
relative to the default.

cex.axis
The magnification to be used for y axis annotation relative to the current setting of
cex.

cex.lab
The magnification to be used for x and y labels relative to the current setting of
cex.

cex.main
The magnification to be used for main titles relative to the current setting of cex.

cex.names
The magnification to be used for x axis annotation relative to the current setting of
cex. Takes the value of cex.axis if not given.

cex.sub
The magnification to be used for sub-titles relative to the current setting of cex.

yaxt
A character which specifies the y axis type. Specifying "n" suppresses plotting.

log
Logarithmic scale if log = "y" or TRUE. Invokes ylog = TRUE. If horizontal is
TRUE then invokes xlog = TRUE.

logLab
Increments for labelling y-axis on log-scale, defaults to numbers starting with 1,
2, 5, and 10.

na.rm
logical value indicating whether NA values should be stripped before the com-
putation proceeds. Defaults to TRUE.

plotCentre
defaults to "points", plotting a central point at the median. If "line" is given a
median line is plotted (subject to side) alternatively.

Examples

box- vs violin-plot
par(mfrow=c(2,1))
```r
mu<-2
si<-0.6
bimodal<-c(rnorm(1000,-mu,si),rnorm(1000,mu,si))
uniform<-runif(2000,-4,4)
normal<-rnorm(2000,0,3)
vioplot(bimodal,uniform,normal)

# add to an existing plot
x <- rnorm(100)
y <- rnorm(100)
plot(x, y, xlim=c(-5,5), ylim=c(-5,5))
vioplot(x, col="tomato", horizontal=TRUE, at=-4, add=TRUE,lty=2, rectCol="gray")
vioplot(y, col="cyan", horizontal=FALSE, at=-4, add=TRUE,lty=2)

# formula input
data("iris")
vioplot(Sepal.Length~Species, data = iris, main = "Sepal Length",
col=c("lightgreen", "lightblue", "palevioletred"))
legend("topleft", legend=c("setosa", "versicolor", "virginica"),
fill=c("lightgreen", "lightblue", "palevioletred"), cex = 0.5)
data("diamonds", package = "ggplot2")
palette <- RColorBrewer::brewer.pal(9, "Pastel1")
par(mfrow=c(3, 1))
vioplot(price ~ cut, data = diamonds, las = 1, col = palette)
vioplot(price ~ clarity, data = diamonds, las = 2, col = palette)
vioplot(price ~ color, data = diamonds, las = 2, col = palette)
par(mfrow=c(3, 1))

#generate example data
data_one <- rnorm(100)
data_two <- rnorm(50, 1, 2)

#generate violin plot with similar functionality to vioplot
vioplot(data_one, data_two, col="magenta")

#note vioplox defaults to a greyscale plot
vioplot(data_one, data_two)

#colours can be customised separately, with axis labels, legends, and titles
vioplot(data_one, data_two, col=c("red","blue"), names=c("data one", "data two"),
main="data violin", xlab="data class", ylab="data read")
legend("topleft", fill=c("red","blue"), legend=c("data one", "data two"))

#colours can be customised for the violin fill and border separately
vioplot(data_one, data_two, col="grey85", border="purple", names=c("data one", "data two"),
main="data violin", xlab="data class", ylab="data read")

#colours can also be customised for the boxplot rectangle and lines (border and whiskers)
vioplot(data_one, data_two, col="grey85", rectCol="lightblue", lineCol="blue",
border="purple", names=c("data one", "data two"),
main="data violin", xlab="data class", ylab="data read")
```
These colors can also be customized separately for each violin.

```r
vioplot(data_one, data_two, col=c("skyblue", "plum"), rectCol=c("lightblue", "palevioletred"), 
        lineCol="blue", border=c("royalblue", "purple"), names=c("data one", "data two"), 
        main="data violin", xlab="data class", ylab="data read")
```

This applies to any number of violins, given that colors are provided for each.

```r
vioplot(data_one, data_two, rnorm(200, 3, 0.5), rpois(200, 2.5), rbinom(100, 10, 0.4), 
        col=c("red", "orange", "green", "blue", "violet"), 
        rectCol=c("palevioletred", "peachpuff", "lightgreen", "lightblue", "plum"), 
        lineCol=c("red", "orangered", "forestgreen", "royalblue", "mediumorchid"), 
        border=c("red", "orangered", "forestgreen", "royalblue", "mediumorchid"), 
        names=c("data one", "data two", "data three", "data four", "data five"), 
        main="data violin", xlab="data class", ylab="data read")
```

The `areaEqual` parameter scales with width of violins.
Violins will have equal density area (including missing tails) rather than equal maximum width.

```r
vioplot(data_one, data_two, areaEqual=TRUE) 
```

```r
vioplot(data_one, data_two, rnorm(200, 3, 0.5), rpois(200, 2.5), rbinom(100, 10, 0.4), 
        areaEqual=TRUE, col=c("red", "orange", "green", "blue", "violet"), 
        rectCol=c("palevioletred", "peachpuff", "lightgreen", "lightblue", "plum"), 
        lineCol=c("red", "orangered", "forestgreen", "royalblue", "mediumorchid"), 
        border=c("red", "orangered", "forestgreen", "royalblue", "mediumorchid"), 
        names=c("data one", "data two", "data three", "data four", "data five"), 
        main="data violin", xlab="data class", ylab="data read")
```

vioplot.stats

Violin Plot Statistics

Description

This function is typically called by another function to gather the statistics necessary for producing box plots, but may be invoked separately. See: `boxplot.stats`

Usage

```r
## S3 method for class 'stats'
vioplot(x, coef = 1.5, do.conf = TRUE, do.out = TRUE, ...)
```

Arguments

- `x` a numeric vector for which the violin plot will be constructed. NAs and NaNs are allowed and omitted.
coef this determines how far the plot ‘whiskers’ extend out from the box. If coef is positive, the whiskers extend to the most extreme data point which is no more than coef times the length of the box away from the box. A value of zero causes the whiskers to extend to the data extremes (and no outliers be returned).

do.conf, do.out logicals; if FALSE, the conf or out component respectively will be empty in the result.

... arguments passed to vioplot.
Index

* graphics
 histoplot, 2
 vioplot, 8
* histogram
 histoplot, 2
* plot
 histoplot, 2
 vioplot, 8
* violin
 vioplot, 8
boxplot, 2, 8
boxplot.stats, 15
histogram.matrix (histoplot), 2
histoplot, 2, 2, 5
par, 6, 13
plot.default, 6, 13
violin.matrix (vioplot), 8
violin.stats (vioplot.stats), 15
violinplot (vioplot), 8
violinplot.stats (vioplot.stats), 15
vioplot, 8, 8, 12, 16
vioplot.stats, 15