Package ‘vip’
August 21, 2023

Type Package
Title Variable Importance Plots
Version 0.4.1

Description A general framework for constructing variable importance plots from various types of machine learning models in R. Aside from some standard model-specific variable importance measures, this package also provides model-agnostic approaches that can be applied to any supervised learning algorithm. These include 1) an efficient permutation-based variable importance measure, 2) variable importance based on Shapley values (Strumbelj and Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>, and 3) the variance-based approach described in Greenwell et al. (2018) <arXiv:1805.04755>. A variance-based method for quantifying the relative strength of interaction effects is also included (see the previous reference for details).

License GPL (≥ 2)

URL https://github.com/koalaverse/vip/,
 https://koalaverse.github.io/vip/

BugReports https://github.com/koalaverse/vip/issues

Encoding UTF-8

VignetteBuilder knitr

Depends R (≥ 4.1.0)

Imports foreach, ggplot2 (≥ 0.9.0), stats, tibble, utils, yardstick

Suggests bookdown, DT, covr, doParallel, dplyr, fastshap (≥ 0.1.0), knitr, lattice, mlbench, modeldata, NeuralNetTools, pdp, rmarkdown, tinytest (≥ 1.4.1), varImp

Enhances C50, caret, Cubist, earth, gbm, glmnet, h2o, lightgbm, mixOmics, mlr, mlr3, neuralnet, nnet, parsnip (≥ 0.1.7), party, partykit, pls, randomForest, ranger, rpart, RSNNS, sparklyr (≥ 0.8.0), tidymodels, workflows (≥ 0.2.3), xgboost

LazyData true

RoxygenNote 7.2.3
Description

Simulate data from the Friedman 1 benchmark problem. These data were originally described in Friedman (1991) and Breiman (1996). For details, see sklearn.datasets.make_friedman1.

Usage

```r
gen_friedman(
  n_samples = 100,
  n_features = 10,
  n_bins = NULL,
  sigma = 0.1,
  seed = NULL
)
```
Arguments

- **n_samples**: Integer specifying the number of samples (i.e., rows) to generate. Default is 100.
- **n_features**: Integer specifying the number of features to generate. Default is 10.
- **n_bins**: Integer specifying the number of (roughly) equal sized bins to split the response into. Default is `NULL` for no binning. Setting to a positive integer > 1 effectively turns this into a classification problem where `n_bins` gives the number of classes.
- **sigma**: Numeric specifying the standard deviation of the noise.
- **seed**: Integer specifying the random seed. If `NULL` (the default) the results will be different each time the function is run.

References

Examples

```r
gen_friedman()
```

list_metrics

List metrics

Description

List all available performance metrics.

Usage

```r
list_metrics()
```

Value

A data frame with the following columns:

- **metric**: the optimization or tuning metric;
- **description**: a brief description about the metric;
- **task**: whether the metric is suitable for regression or classification;
- **smaller_is_better**: logical indicating whether or not a smaller value of the metric is considered better.
- **yardstick_function**: the name of the corresponding function from the `yardstick` package.

Examples

```r
(metrics <- list_metrics())
metrics[metrics$task == "Multiclass classification", ]
```
Description

A data set containing the survival outcome, passenger class, age, sex, and the number of family members for a large number of passengers aboard the ill-fated Titanic.

Usage
titanic

Format

A data frame with 1309 observations on the following 6 variables:

- `survived` - binary with levels "yes" for survived and "no" otherwise;
- `pclass` - integer giving the corresponding passenger (i.e., ticket) class with values 1–3;
- `age` - the age in years of the corresponding passenger (with 263 missing values);
- `sex` - factor giving the sex of each passenger with levels "male" and "female";
- `sibsp` - integer giving the number of siblings/spouses aboard for each passenger (ranges from 0–8);
- `parch` - integer giving the number of parents/children aboard for each passenger (ranges from 0–9).

Note

As mentioned in the column description, `age` contains 263 `NA` (or missing values). For a complete version (or versions) of the data set, see `titanic_mice`.

Source

https://hbiostat.org/data/.

Description

The `titanic` data set contains 263 missing values (i.e., `NA`'s) in the `age` column. This version of the data contains imputed values for the `age` column using multivariate imputation by chained equations via the `mice` package. Consequently, this is a list containing 11 imputed versions of the observations contained in the `titanic` data frame; each completed data sets has the same dimension and column structure as `titanic`.
Usage
titanic_mice

Format
An object of class mild (inherits from list) of length 21.

Source

vi
Variable importance

Description
Compute variable importance scores for the predictors in a model.

Usage

```r
vi(object, 
## Default S3 method: 
vi(
    object,
    method = c("model", "firm", "permute", "shap"),
    feature_names = NULL,
    abbreviate_feature_names = NULL,
    sort = TRUE,
    decreasing = TRUE,
    scale = FALSE,
    rank = FALSE,
...
)
```

Arguments

- **object**: A fitted model object (e.g., a `randomForest` object) or an object that inherits from class "vi".
- **...**: Additional optional arguments to be passed on to `vi_model`, `vi_firm`, `vi_permute`, or `vi_shap`; see their respective help pages for details.
- **method**: Character string specifying the type of variable importance (VI) to compute. Current options are:
 - "model" (the default), for model-specific VI scores (see `vi_model` for details).
 - "firm", for variance-based VI scores (see `vi_firm` for details).
• "permute", for permutation-based VI scores (see `vi_permute` for details).
• "shap", for Shapley-based VI scores (see `vi_shap` for details).

`feature_names` Character string giving the names of the predictor variables (i.e., features) of interest.

`abbreviate_feature_names` Integer specifying the length at which to abbreviate feature names. Default is `NULL` which results in no abbreviation (i.e., the full name of each feature will be printed).

`sort` Logical indicating whether or not to order the sort the variable importance scores. Default is `TRUE`.

`decreasing` Logical indicating whether or not the variable importance scores should be sorted in descending (TRUE) or ascending (FALSE) order of importance. Default is `TRUE`.

`scale` Logical indicating whether or not to scale the variable importance scores so that the largest is 100. Default is `FALSE`.

`rank` Logical indicating whether or not to rank the variable importance scores (i.e., convert to integer ranks). Default is `FALSE`. Potentially useful when comparing variable importance scores across different models using different methods.

Value

A tidy data frame (i.e., a tibble object) with two columns:

- **Variable** - the corresponding feature name;
- **Importance** - the associated importance, computed as the average change in performance after a random permutation (or permutations, if `nsim > 1`) of the feature in question.

For `lm/glm`-like objects, whenever `method = "model"`, the sign (i.e., POS/NEG) of the original coefficient is also included in a column called `Sign`.

If `method = "permute"` and `nsim > 1`, then an additional column (`StDev`) containing the standard deviation of the individual permutation scores for each feature is also returned; this helps assess the stability/variation of the individual permutation importance for each feature.

Examples

```r
# A projection pursuit regression example
#
# Load the sample data
data(mtcars)

# Fit a projection pursuit regression model
mtcars.ppr <- ppr(mpg ~ ., data = mtcars, nterms = 1)

# Prediction wrapper that tells vi() how to obtain new predictions from your fitted model
pfun <- function(object, newdata) predict(object, newdata = newdata)
```
Compute permutation-based variable importance scores
set.seed(1434) # for reproducibility
(vis <- vi(mtcars.ppr, method = "permute", target = "mpg", nsim = 10,
metric = "rmse", pred_wrapper = pfun, train = mtcars))

Plot variable importance scores
vip(vis, include_type = TRUE, all_permutations = TRUE,
 geom = "point", aesthetics = list(color = "forestgreen", size = 3))

A binary classification example
#
Not run:
library(rpart) # for classification and regression trees

Load Wisconsin breast cancer data; see ?mlbench::BreastCancer for details
data(BreastCancer, package = "mlbench")
bc <- subset(BreastCancer, select = -Id) # for brevity

Fit a standard classification tree
set.seed(1032) # for reproducibility
tree <- rpart(Class ~ ., data = bc, cp = 0)

Prune using 1-SE rule (e.g., use `plotcp(tree)` for guidance)
cp <- tree$cptable
cp <- cp[cp[, "nsplit"] == 2L, "CP"]
tree2 <- prune(tree, cp = cp) # tree with three splits

Default tree-based VIP
vip(tree2)

Computing permutation importance requires a prediction wrapper. For
classification, the return value depends on the chosen metric; see
`?vip::vi_permute` for details.
pfun <- function(object, newdata) {
 # Need vector of predicted class probabilities when using log-loss metric
 predict(object, newdata = newdata, type = "prob")[, "malignant"]
}

Permutation-based importance (note that only the predictors that show up
in the final tree have non-zero importance)
set.seed(1046) # for reproducibility
vi(tree2, method = "permute", nsim = 10, target = "Class", train = bc,
 metric = "logloss", pred_wrapper = pfun, reference_class = "malignant")

Equivalent (but not sorted)
set.seed(1046) # for reproducibility
vi_permute(tree2, nsim = 10, target = "Class", metric = "logloss",
 pred_wrapper = pfun, reference_class = "malignant")

End(Not run)
Variable importance plots

Description
Plot variable importance scores for the predictors in a model.

Usage

```r
vip(object, ...)
```

Default S3 method:
vip(
 object,
 num_features = 10L,
 geom = c("col", "point", "boxplot", "violin"),
 mapping = NULL,
 aesthetics = list(),
 horizontal = TRUE,
 all_permutations = FALSE,
 jitter = FALSE,
 include_type = FALSE,
 ...
)

S3 method for class 'model_fit'
vip(object, ...)

S3 method for class 'workflow'
vip(object, ...)

S3 method for class 'WrappedModel'
vip(object, ...)

S3 method for class 'Learner'
vip(object, ...)

Arguments

- **object**: A fitted model (e.g., of class `randomForest` object) or a `vi` object.
- **...**: Additional optional arguments to be passed on to `vi`.
- **num_features**: Integer specifying the number of variable importance scores to plot. Default is 10.
- **geom**: Character string specifying which type of plot to construct. The currently available options are described below.
geom = "col" uses geom_col to construct a bar chart of the variable importance scores.

geom = "point" uses geom_point to construct a Cleveland dot plot of the variable importance scores.

geom = "boxplot" uses geom_boxplot to construct a boxplot plot of the variable importance scores. This option can only for the permutation-based importance method with nsim > 1 and keep = TRUE; see vi_permute for details.

geom = "violin" uses geom_violin to construct a violin plot of the variable importance scores. This option can only for the permutation-based importance method with nsim > 1 and keep = TRUE; see vi_permute for details.

Examples

A projection pursuit regression example using permutation-based importance
#

Load the sample data
data(mtcars)

Fit a projection pursuit regression model
model <- ppr(mpg ~ ., data = mtcars, nterms = 1)

Construct variable importance plot (permutation importance, in this case)
set.seed(825) # for reproducibility
pfun <- function(object, newdata) predict(object, newdata = newdata)
vi(mtcars, target = "mpg", nsim = 10, metric = "rmse", pred_wrapper = pfun)

Better yet, store the variable importance scores and then plot
set.seed(825) # for reproducibility
vis <- vi(model, method = "permute", train = mtcars, target = "mpg", nsim = 10, metric = "rmse", pred_wrapper = pfun)
vip(vis, geom = "point", horiz = FALSE)

Plot unaggregated permutation scores (boxplot colored by feature)
library(ggplot2) # for `aes()`-related functions and tidy eval helpers
vip(vis, geom = "boxplot", all_permutations = TRUE, jitter = TRUE,
 #mapping = aes_string(fill = "Variable"), # for ggplot2 (< 3.0.0)
 mapping = aes(fill = .data["Variable"])), # for ggplot2 (>= 3.0.0)
 aesthetics = list(color = "grey35", size = 0.8))

A binary classification example
#
Not run:
library(rpart) # for classification and regression trees

Load Wisconsin breast cancer data; see ?mlbench::BreastCancer for details
data(BreastCancer, package = "mlbench")
bc <- subset(BreastCancer, select = -Id) # for brevity

Fit a standard classification tree
set.seed(1032) # for reproducibility
tree <- rpart(Class ~ ., data = bc, cp = 0)

Prune using 1-SE rule (e.g., use `plotcp(tree)` for guidance)

End(Not run)
Description

Compute variance-based variable importance (VI) scores using a simple feature importance ranking measure (FIRM) approach; for details, see Greenwell et al. (2018) and Scholbeck et al. (2019).

Usage

```r
vi_firm(object, 
## Default S3 method: 
vi_firm(
  object,
  feature_names = NULL,
  train = NULL,
  var_fun = NULL,
  var_continuous = stats::sd,
  var_categorical = function(x) diff(range(x))/4,
  ...
)
```

Arguments

- `object`: A fitted model object (e.g., a `randomForest` object).
- `...`: Additional arguments to be passed on to the `pdp::partial()` function (e.g., `ice = TRUE`, `prob = TRUE`, or a prediction wrapper via the `pred.fun` argument); see `?pdp::partial` for details on these and other useful arguments.
- `feature_names`: Character string giving the names of the predictor variables (i.e., features) of interest. If `NULL` (the default) then the internal `get_feature_names()` function will be called to try and extract them automatically. It is good practice to always specify this argument.
- `train`: A matrix-like R object (e.g., a data frame or matrix) containing the training data. If `NULL` (the default) then the internal `get_training_data()` function will be called to try and extract it automatically. It is good practice to always specify this argument.
- `var_fun`: Deprecated; use `var_continuous` and `var_categorical` instead.
- `var_continuous`: Function used to quantify the variability of effects for continuous features. Defaults to using the sample standard deviation (i.e., `stats::sd()`).
- `var_categorical`: Function used to quantify the variability of effects for categorical features. Defaults to using the range divided by four; that is, `function(x) diff(range(x))/4`.

Details

This approach is based on quantifying the relative “flatness” of the effect of each feature and assumes the user has some familiarity with the `pdp::partial()` function. The Feature effects can be assessed using partial dependence (PD) plots (Friedman, 2001) or individual conditional expectation (ICE) plots (Goldstein et al., 2014). These methods are model-agnostic and can be applied to...
any supervised learning algorithm. By default, relative "flatness" is defined by computing the standard deviation of the y-axis values for each feature effect plot for numeric features; for categorical features, the default is to use range divided by 4. This can be changed via the \texttt{var_continuous} and \texttt{var_categorical} arguments. See Greenwell et al. (2018) for details and additional examples.

\textbf{Value}

A tidy data frame (i.e., a tibble object) with two columns:

- \texttt{Variable} - the corresponding feature name;
- \texttt{Importance} - the associated importance, computed as described in Greenwell et al. (2018).

\textbf{Note}

This approach can provide misleading results in the presence of interaction effects (akin to interpreting main effect coefficients in a linear with higher level interaction effects).

\textbf{References}

\textbf{Examples}

```r
## Not run:
#
# A projection pursuit regression example
#
#
# Load the sample data
data(mtcars)

# Fit a projection pursuit regression model
mtcars.ppr <- ppr(mpg ~ ., data = mtcars, nterms = 1)

# Compute variable importance scores using the FIRM method; note that the pdp
# package knows how to work with a "ppr" object, so there's no need to pass
# the training data or a prediction wrapper, but it's good practice.
vi_firm(mtcars.ppr, train = mtcars)

# For unsupported models, need to define a prediction wrapper; this approach
# will work for ANY model (supported or unsupported, so better to just always
# define it pass it)
pfun <- function(object, newdata) {
  # To use partial dependence, this function needs to return the AVERAGE
  # prediction (for ICE, simply omit the averaging step)
  mean(predict(object, newdata = newdata))
}

# Equivalent to the previous results (but would work if this type of model
# was not explicitly supported)
vi_firm(mtcars.ppr, pred.fun = pfun, train = mtcars)

# Equivalent VI scores, but the output is sorted by default
vi(mtcars.ppr, method = "firm")

# Use MAD to estimate variability of the partial dependence values
vi_firm(mtcars.ppr, var_continuous = stats::mad)

# Plot VI scores
vip(mtcars.ppr, method = "firm", train = mtcars, pred.fun = pfun)
## End(Not run)

---

**vi_model**

**Model-specific variable importance**

**Description**

Compute model-specific variable importance scores for the predictors in a fitted model.

**Usage**

```r
vi_model(object, ...)
```

## Default S3 method:

```r
vi_model(object, ...)
```

## S3 method for class 'C5.0'

```r
vi_model(object, type = c("usage", "splits"), ...)
```

## S3 method for class 'train'

```r
vi_model(object, ...)
```

## S3 method for class 'cubist'

```r
vi_model(object, ...)
```

## S3 method for class 'earth'

```r
vi_model(object, type = c("nsubsets", "rss", "gcv"), ...)
```

## S3 method for class 'gbm'

```r
vi_model(object, ...)
```
vi_model(object, type = c("relative.influence", "permutation"), ...)

## S3 method for class 'glmnet'
vi_model(object, lambda = NULL, ...)

## S3 method for class 'cv.glmnet'
vi_model(object, lambda = NULL, ...)

## S3 method for class 'H2OBinomialModel'
vi_model(object, ...)

## S3 method for class 'H2OMultinomialModel'
vi_model(object, ...)

## S3 method for class 'H2ORegressionModel'
vi_model(object, ...)

## S3 method for class 'lgb.Booster'
vi_model(object, type = c("gain", "cover", "frequency"), ...)

## S3 method for class 'mixo_pls'
vi_model(object, ncomp = NULL, ...)

## S3 method for class 'mixo_spls'
vi_model(object, ncomp = NULL, ...)

## S3 method for class 'WrappedModel'
vi_model(object, ...)

## S3 method for class 'Learner'
vi_model(object, ...)

## S3 method for class 'nn'
vi_model(object, type = c("olden", "garson"), ...)

## S3 method for class 'nnet'
vi_model(object, type = c("olden", "garson"), ...)

## S3 method for class 'RandomForest'
vi_model(object, type = c("accuracy", "auc"), ...)

## S3 method for class 'constparty'
vi_model(object, ...)

## S3 method for class 'cforest'
vi_model(object, ...)

## S3 method for class 'mvr'
vi_model(object, ...) ## S3 method for class 'mixo_pls'
vi_model(object, ncomp = NULL, ...)

## S3 method for class 'mixo_spls'
vi_model(object, ncomp = NULL, ...)

## S3 method for class 'WrappedModel'
vi_model(object, ...)

## S3 method for class 'Learner'
vi_model(object, ...)

## S3 method for class 'randomForest'
vi_model(object, ...)

## S3 method for class 'ranger'
vi_model(object, ...)

## S3 method for class 'rpart'
vi_model(object, ...)

## S3 method for class 'mlp'
vi_model(object, type = c("olden", "garson"), ...)

## S3 method for class 'ml_model_decision_tree_regression'
vi_model(object, ...)

## S3 method for class 'ml_model_decision_tree_classification'
vi_model(object, ...)

## S3 method for class 'ml_model_gbt_regression'
vi_model(object, ...)

## S3 method for class 'ml_model_gbt_classification'
vi_model(object, ...)

## S3 method for class 'ml_model_generalized_linear_regression'
vi_model(object, ...)

## S3 method for class 'ml_model_linear_regression'
vi_model(object, ...)

## S3 method for class 'ml_model_random_forest_regression'
vi_model(object, ...)

## S3 method for class 'ml_model_random_forest_classification'
### Arguments

- **object**: A fitted model object (e.g., a `randomForest` object). See the details section below to see how variable importance is computed for supported model types.
- **...**: Additional optional arguments to be passed on to other methods. See the details section below for arguments that can be passed to specific object types.
- **type**: Character string specifying the type of variable importance to return (only used for some models). See the details section below for which methods this argument applies to.
- **lambda**: Numeric value for the penalty parameter of a `glmnet` model (this is equivalent to the `s` argument in `coef.glmnet`). See the section on `glmnet` in the details below.
- **ncomp**: An integer for the number of partial least squares components to be used in the importance calculations. If more components are requested than were used in the model, all of the model’s components are used.

### Details

Computes model-specific variable importance scores depending on the class of `object`:

- **C5.0**: Variable importance is measured by determining the percentage of training set samples that fall into all the terminal nodes after the split. For example, the predictor in the first split automatically has an importance measurement of 100 percent since all samples are affected by this split. Other predictors may be used frequently in splits, but if the terminal nodes cover only a handful of training set samples, the importance scores may be close to zero. The same strategy is applied to rule-based models and boosted versions of the model. The underlying function can also return the number of times each predictor was involved in a split by using the option `metric = "usage"`. See `C5imp` for details.
- **cubist**: The Cubist output contains variable usage statistics. It gives the percentage of times where each variable was used in a condition and/or a linear model. Note that this output will probably be inconsistent with the rules shown in the output from `summary.cubist`. At each split of the tree, Cubist saves a linear model (after feature selection) that is allowed to have terms for each variable used in the current split or any split above it. Quinlan (1992) discusses a smoothing algorithm where each model prediction is a linear combination of the parent and child model along the tree. As such, the final prediction is a function of all the linear models.
from the initial node to the terminal node. The percentages shown in the Cubist output reflects all the models involved in prediction (as opposed to the terminal models shown in the output). The variable importance used here is a linear combination of the usage in the rule conditions and the model. See summary.cubist and varimp for details.

- **glmnet** - Similar to (generalized) linear models, the absolute value of the coefficients are returned for a specific model. It is important that the features (and hence, the estimated coefficients) be standardized prior to fitting the model. You can specify which coefficients to return by passing the specific value of the penalty parameter via the lambda argument (this is equivalent to the s argument in coef.glmnet). By default, lambda = NULL and the coefficients corresponding to the final penalty value in the sequence are returned; in other words, you should ALWAYS SPECIFY lambda! For cv.glmnet objects, the largest value of lambda such that the error is within one standard error of the minimum is used by default. For a multinomial response, the coefficients corresponding to the first class are used; that is, the first component of coef.glmnet.

- **cforest** - Variable importance is measured in a way similar to those computed by importance. Besides the standard version, a conditional version is available that adjusts for correlations between predictor variables. If conditional = TRUE, the importance of each variable is computed by permuting within a grid defined by the predictors that are associated (with 1 - p-value greater than threshold) to the variable of interest. The resulting variable importance score is conditional in the sense of beta coefficients in regression models, but represents the effect of a variable in both main effects and interactions. See Strobl et al. (2008) for details. Note, however, that all random forest results are subject to random variation. Thus, before interpreting the importance ranking, check whether the same ranking is achieved with a different random seed - or otherwise increase the number of trees ntree in ctree_control. Note that in the presence of missings in the predictor variables the procedure described in Hapfelmeier et al. (2012) is performed. See varimp for details.

- **earth** - The earth package uses three criteria for estimating the variable importance in a MARS model (see evimp for details):
  - The nsubsets criterion (type = "nsubsets") counts the number of model subsets that include each feature. Variables that are included in more subsets are considered more important. This is the criterion used by summary.earth to print variable importance. By "subsets" we mean the subsets of terms generated by earth()’s backward pass. There is one subset for each model size (from one to the size of the selected model) and the subset is the best set of terms for that model size. (These subsets are specified in the $prune.terms component of earth()’s return value.) Only subsets that are smaller than or equal in size to the final model are used for estimating variable importance. This is the default method used by vi_model.
  - The rss criterion (type = "rss") first calculates the decrease in the RSS for each subset relative to the previous subset during earth()’s backward pass. (For multiple response models, RSS’s are calculated over all responses.) Then for each variable it sums these decreases over all subsets that include the variable. Finally, for ease of interpretation the summed decreases are scaled so the largest summed decrease is 100. Variables which cause larger net decreases in the RSS are considered more important.
  - The gcv criterion (type = "gcv") is similar to the rss approach, but uses the GCV statistic instead of the RSS. Note that adding a variable can sometimes increase the GCV. (Adding the variable has a deleterious effect on the model, as measured in terms of its estimated predictive power on unseen data.) If that happens often enough, the variable can have a negative total importance, and thus appear less important than unused variables.
• **gbm** - Variable importance is computed using one of two approaches (See `summary.gbm` for details):
  
  – The standard approach (`type = "relative.influence"`) described in Friedman (2001). When `distribution = "gaussian"` this returns the reduction of squared error attributable to each variable. For other loss functions this returns the reduction attributable to each variable in sum of squared error in predicting the gradient on each iteration. It describes the *relative influence* of each variable in reducing the loss function. This is the default method used by `vi_model`.
  
  – An experimental permutation-based approach (`type = "permutation"`). This method randomly permutes each predictor variable at a time and computes the associated reduction in predictive performance. This is similar to the variable importance measures Leo Breiman uses for random forests, but `gbm` currently computes using the entire training dataset (not the out-of-bag observations).

• **H2OModel** - See `h2o.varimp` or visit [https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html](https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html) for details.

• **nnet** - Two popular methods for constructing variable importance scores with neural networks are the Garson algorithm (Garson 1991), later modified by Goh (1995), and the Olden algorithm (Olden et al. 2004). For both algorithms, the basis of these importance scores is the network’s connection weights. The Garson algorithm determines variable importance by identifying all weighted connections between the nodes of interest. Olden’s algorithm, on the other hand, uses the product of the raw connection weights between each input and output neuron and sums the product across all hidden neurons. This has been shown to outperform the Garson method in various simulations. For DNNs, a similar method due to Gedeon (1997) considers the weights connecting the input features to the first two hidden layers (for simplicity and speed); but this method can be slow for large networks. To implement the Olden and Garson algorithms, use `type = "olden"` and `type = "garson"`, respectively. See `garson` and `olden` for details.

• **lm/glm** - In (generalized) linear models, variable importance is typically based on the absolute value of the corresponding *t*-statistics (Bring, 1994). For such models, the sign of the original coefficient is also returned. By default, `type = "stat"` is used; however, if the inputs have been appropriately standardized then the raw coefficients can be used with `type = "raw"`. Note that Bring (1994) provides motivation for using the absolute value of the associated *t*-statistics.

• **sparklyr** - The Spark ML library provides standard variable importance measures for tree-based methods (e.g., random forests). See `ml_feature_importances` for details.

• **randomForest** Random forests typically provide two measures of variable importance.
  
  – The first measure is computed from permuting out-of-bag (OOB) data: for each tree, the prediction error on the OOB portion of the data is recorded (error rate for classification and MSE for regression). Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all trees in the forest, and normalized by the standard deviation of the differences. If the standard deviation of the differences is equal to 0 for a variable, the division is not done (but the average is almost always equal to 0 in that case).
  
  – The second measure is the total decrease in node impurities from splitting on the variable, averaged over all trees. For classification, the node impurity is measured by the Gini index. For regression, it is measured by residual sum of squares.
See importance for details, including additional arguments that can be passed via the . . . argument in vi_model.

- cforest - Same approach described in cforest (from package partykit) above. See varimp and varimpAUC (if type = "auc") for details.

- ranger - Variable importance for ranger objects is computed in the usual way for random forests. The approach used depends on the importance argument provided in the initial call to ranger. See importance for details.

- rpart - As stated in one of the rpart vignettes. A variable may appear in the tree many times, either as a primary or a surrogate variable. An overall measure of variable importance is the sum of the goodness of split measures for each split for which it was the primary variable, plus "goodness" * (adjusted agreement) for all splits in which it was a surrogate. Imagine two variables which were essentially duplicates of each other; if we did not count surrogates, they would split the importance with neither showing up as strongly as it should. See rpart for details.

- caret - Various model-specific and model-agnostic approaches that depend on the learning algorithm employed in the original call to caret. See varImp for details.

- xgboost - For linear models, the variable importance is the absolute magnitude of the estimated coefficients. For that reason, in order to obtain a meaningful ranking by importance for a linear model, the features need to be on the same scale (which you also would want to do when using either L1 or L2 regularization). Otherwise, the approach described in Friedman (2001) for gbms is used. See xgb.importance for details. For tree models, you can obtain three different types of variable importance:
  - Using type = "gain" (the default) gives the fractional contribution of each feature to the model based on the total gain of the corresponding feature’s splits.
  - Using type = "cover" gives the number of observations related to each feature.
  - Using type = "frequency" gives the percentages representing the relative number of times each feature has been used throughout each tree in the ensemble.

- lightgbm - Same as for xgboost models, except lgb.importance (which this method calls internally) has an additional argument, percentage, that defaults to TRUE, resulting in the VI scores shown as a relative percentage; pass percentage = FALSE in the call to vi_model() to produce VI scores for lightgbm models on the raw scale.

Value

A tidy data frame (i.e., a tibble object) with two columns:

- Variable - the corresponding feature name;
- Importance - the associated importance, computed as the average change in performance after a random permutation (or permutations, if nsim > 1) of the feature in question.

For lm/glm-like objects, the sign (i.e., POS/NEG) of the original coefficient is also included in a column called Sign.

Note

Inspired by the caret’s varImp function.
Examples

```r
Not run:
Basic example using imputed titanic data set
t3 <- titanic_mice[[1L]]

Fit a simple model
set.seed(1449) # for reproducibility
bst <- lightgbm::lightgbm(
 data = data.matrix(subset(t3, select = -survived)),
 label = ifelse(t3$survived == "yes", 1, 0),
 params = list("objective" = "binary", "force_row_wise" = TRUE),
 verbose = 0
)

Compute VI scores
vi(bst) # defaults to `method = "model"

vi_model(bst) # same as above

Same as above (since default is `method = "model"`), but returns a plot
vip(bst, geom = "point")
vi_model(bst, type = "cover")
vi_model(bst, type = "cover", percentage = FALSE)

Compare to
lightgbm::lgb.importance(bst)

End(Not run)
```

### Description

Compute permutation-based variable importance scores for the predictors in a model; for details on the algorithm, see Greenwell and Boehmke (2020).

### Usage

```r
vi_permute(object, ...)
```

## Default S3 method:
```
vi_permute(
 object,
```

feature_names = NULL,
train = NULL,
target = NULL,
metric = NULL,
smaller_is_better = NULL,
type = c("difference", "ratio"),
nsim = 1,
keep = TRUE,
sample_size = NULL,
sample_frac = NULL,
reference_class = NULL,
event_level = NULL,
pred_wrapper = NULL,
verbose = FALSE,
parallel = FALSE,
parallelize_by = c("features", "repetitions"),
...  
)

Arguments

object
A fitted model object (e.g., a randomForest object).

feature_names
Character string giving the names of the predictor variables (i.e., features) of interest. If NULL (the default) then they will be inferred from the train and target arguments (see below). It is good practice to always specify this argument.

train
A matrix-like R object (e.g., a data frame or matrix) containing the training data. If NULL (the default) then the internal get_training_data() function will be called to try and extract it automatically. It is good practice to always specify this argument.

target
Either a character string giving the name (or position) of the target column in train or, if train only contains feature columns, a vector containing the target values used to train object.

metric
Either a function or character string specifying the performance metric to use in computing model performance (e.g., RMSE for regression or accuracy for binary classification). If metric is a function, then it requires two arguments, actual and predicted, and should return a single, numeric value. Ideally, this should be the same metric that was used to train object. See list_metrics() for a list of built-in metrics.

smaller_is_better
Logical indicating whether or not a smaller value of metric is better. Default is NULL. Must be supplied if metric is a user-supplied function.

type
Character string specifying how to compare the baseline and permuted performance metrics. Current options are "difference" (the default) and "ratio".

nsim
Integer specifying the number of Monte Carlo replications to perform. Default is 1. If nsim > 1, the results from each replication are simply averaged together (the standard deviation will also be returned).
keep Logical indicating whether or not to keep the individual permutation scores for all nsim repetitions. If TRUE (the default) then the individual variable importance scores will be stored in an attribute called "raw_scores". (Only used when nsim > 1.)

sample_size Integer specifying the size of the random sample to use for each Monte Carlo repetition. Default is NULL (i.e., use all of the available training data). Cannot be specified with sample_frac. Can be used to reduce computation time with large data sets.

sample_frac Proportion specifying the size of the random sample to use for each Monte Carlo repetition. Default is NULL (i.e., use all of the available training data). Cannot be specified with sample_size. Can be used to reduce computation time with large data sets.

reference_class Deprecated, use event_level instead.

event_level String specifying which factor level of truth to consider as the "event". Options are "first" (the default) or "second". This argument is only applicable for binary classification when metric is one of "roc_auc", "pr_auc", or "youden". This argument is passed on to the corresponding yardstick metric.

pred_wrapper Prediction function that requires two arguments, object and newdata. The output of this function should be determined by the metric being used:

- Regression - A numeric vector of predicted outcomes.
- Binary classification - A vector of predicted class labels (e.g., if using misclassification error) or a vector of predicted class probabilities for the reference class (e.g., if using log loss or AUC).
- Multiclass classification - A vector of predicted class labels (e.g., if using misclassification error) or a matrix/data frame of predicted class probabilities for each class (e.g., if using log loss or AUC).

verbose Logical indicating whether or not to print information during the construction of variable importance scores. Default is FALSE.

parallel Logical indicating whether or not to run vi_permute() in parallel (using a backend provided by the foreach package). Default is FALSE. If TRUE, a foreach-compatible backend must be provided by must be provided. Note that set.seed() will not not work with foreach’s parallellized for loops; for a workaround, see this solution.

parallelize_by Character string specifying whether to parallelize across features (parallelize_by = "features") or repetitions (parallelize_by = "reps"); the latter is only useful whenever nsim > 1. Default is "features".

Value

A tidy data frame (i.e., a tibble object) with two columns:

- Variable - the corresponding feature name;
- Importance - the associated importance, computed as the average change in performance after a random permutation (or permutations, if nsim > 1) of the feature in question.
If \( n_{\text{sim}} > 1 \), then an additional column (StDev) containing the standard deviation of the individual permutation scores for each feature is also returned; this helps assess the stability/variation of the individual permutation importance for each feature.

References


Examples

```r
Not run:
#
Regression example
#
library(ranger) # for fitting random forests

trn <- gen_friedman(500, seed = 101) # ?vip::gen_friedman

Prediction wrapper
pfun <- function(object, newdata) {
 # Needs to return vector of predictions from a ranger object; see
 # `ranger::predict.ranger` for details on making predictions
 predict(object, data = newdata)$predictions
}

Fit a (default) random forest
set.seed(0803) # for reproducibility
rfo <- ranger(y ~ ., data = trn)

Compute permutation-based VI scores
set.seed(2021) # for reproducibility
vis <- vi(rfo, method = "permute", target = "y", metric = "rsq",
 pred_wrapper = pfun, train = trn)
print(vis)

Same as above, but using `vi_permute()` directly
set.seed(2021) # for reproducibility
vi_permute(rfo, target = "y", metric = "rsq", pred_wrapper = pfun,
 train = trn)

Plot VI scores (could also replace `vi()` with `vip()` in above example)
vip(vis, include_type = TRUE)

Mean absolute error
mae <- function(truth, estimate) {
 mean(abs(truth - estimate))
}

Permutation-based VIP with user-defined MAE metric
set.seed(1101) # for reproducibility
```
vi_permute(rfo, target = "y", metric = mae, smaller_is_better = TRUE, 
    pred_wrapper = pfun, train = trn)

# Same as above, but using 'yardstick' package instead of user-defined metric
vi_permute(rfo, target = "y", metric = yardstick::mae_vec, 
          smaller_is_better = TRUE, pred_wrapper = pfun, train = trn)

# Classification (binary) example

library(randomForest) # another package for fitting random forests

# Complete (i.e., imputed version of titanic data); see '?vip::titanic_mice'
head(t1 <- titanic_mice[[1L]])
t1$pclass <- as.ordered(t1$pclass) # makes more sense as an ordered factor

# Fit another (default) random forest
set.seed(2053) # for reproducibility
(rfo2 <- randomForest(survived ~ ., data = t1))

# Define prediction wrapper for predicting class labels from a
# "randomForest" object
pfun_class <- function(object, newdata) {
    # Needs to return factor of classifications
    predict(object, newdata = newdata, type = "response")
}

# Sanity check
pfun_class(rfo2, newdata = head(t1))
## 1 2 3 4 5 6
## yes yes yes no yes no
## Levels: no yes

# Compute mean decrease in accuracy
set.seed(1359) # for reproducibility
vi(rfo2, 
    method = "permute", 
    train = t1, 
    target = "survived", 
    metric = "accuracy", # or pass in `yardstick::accuracy_vec` directly
    # smaller_is_better = FALSE, # no need to set for built-in metrics
    pred_wrapper = pfun_class, 
    nsim = 30 # use 30 repetitions
)
## # A tibble: 5 x 3
##  <chr> <dbl> <dbl>
## 1 sex  0.228  0.0110
## 2 pclass 0.0825  0.00505
## 3 age  0.0721  0.00557
## 4 sibsp 0.0346  0.00430
# Define prediction wrapper for predicting class probabilities from a `randomForest` object
pfun_prob <- function(object, newdata) {
  # Needs to return vector of class probabilities for event level of interest
  predict(object, newdata = newdata, type = "prob")[, "yes"]
}

# Sanity check
pfun_prob(rfo2, newdata = head(t1)) # estimated P(survived=yes | x)

# Compute mean increase in Brier score
set.seed(1411) # for reproducibility
vi(rfo2,
  method = "permute",
  train = t1,
  target = "survived",
  metric = yardstick::brier_class_vec, # or pass in "brier" directly
  smaller_is_better = FALSE, # need to set when supplying a function
  pred_wrapper = pfun_prob,
  nsim = 30 # use 30 repetitions
)

## A tibble: 5 × 3
##  Variable Importance StDev
##  <chr>     <dbl>   <dbl>
## 1 sex       0.210   0.00869
## 2 pclass    0.0992  0.00462
## 3 age       0.0970  0.00469
## 4 parch     0.0547  0.00273
## 5 sibsp     0.0422  0.00200

# Some metrics, like AUROC, treat one class as the "event" of interest. In such cases, it's important to make sure the event level (which typically defaults to which ever event class comes first in alphabetical order) matches the event class that corresponds to the prediction wrappers returned probabilities. To do this, you can (and should) set the `event_class` argument. For instance, our prediction wrapper specified `survived = "yes"` as the event of interest, but this is considered the second event:
levels(t1$survived)

## [1] "no" "yes"

# So, we need to specify the second class as the event of interest via the `event_level` argument (otherwise, we would get the negative of the results we were hoping for; a telltale sign the event level and prediction wrapper do not match)
set.seed(1413) # for reproducibility
vi(rfo,
  method = "permute",
  pred_wrapper = pfun_prob,
  event_level = "yes", # set the second class as the event of interest
  nsim = 30 # use 30 repetitions
)
train = train,  
metric = "roc_auc",  
event_level = "second",  
pred_wrapper = pfun_prob,  
nsim = 30  
)
## A tibble: 5 × 3
##   Variable Importance StDev
##  <chr>      <dbl>    <dbl>
## 1 sex        0.229    0.0137
## 2 pclass     0.0920   0.00533
## 3 age        0.0850   0.00477
## 4 sibsp      0.0283   0.00211
## 5 parch      0.0251   0.00351

Description

Compute SHAP-based VI scores for the predictors in a model. See details below.

Usage

vi_shap(object, ...)

## Default S3 method:
vi_shap(object, feature_names = NULL, train = NULL, ...)

Arguments

object A fitted model object (e.g., a randomForest object).

... Additional arguments to be passed on to fastshap::explain() (e.g., nsim = 30, adjust = TRUE, or avprediction wrapper via the pred_wrapper argument); see ?fastshap::explain for details on these and other useful arguments.

feature_names Character string giving the names of the predictor variables (i.e., features) of interest. If NULL (the default) then they will be inferred from the train and target arguments (see below). It is good practice to always specify this argument.

train A matrix-like R object (e.g., a data frame or matrix) containing the training data. If NULL (the default) then the internal get_training_data() function will be called to try and extract it automatically. It is good practice to always specify this argument.
Details

This approach to computing VI scores is based on the mean absolute value of the SHAP values for each feature; see, for example, https://github.com/shap/shap and the references therein.


Value

A tidy data frame (i.e., a tibble object) with two columns:

- **Variable** - the corresponding feature name;
- **Importance** - the associated importance, computed as the mean absolute Shapley value.

Examples

```r
Not run:
library(ggplot2) # for theme_light() function
library(xgboost)

Simulate training data
trn <- gen_friedman(500, sigma = 1, seed = 101) # vip::gen_friedman

Feature matrix
X <- data.matrix(subset(trn, select = -y)) # matrix of feature values

Fit an XGBoost model; hyperparameters were tuned using 5-fold CV
set.seed(859) # for reproducibility
bst <- xgboost(X, label = trn$y, nrounds = 338, max_depth = 3, eta = 0.1,
 verbose = 0)

Construct VIP using "exact" SHAP values from XGBoost's internal Tree SHAP functionality
vip(bst, method = "shap", train = X, exact = TRUE, include_type = TRUE,
 geom = "point", horizontal = FALSE,
 aesthetics = list(color = "forestgreen", shape = 17, size = 5)) +
 theme_light()

Use Monte-Carlo approach, which works for any model; requires prediction wrapper

pfun_prob <- function(object, newdata) { # prediction wrapper
 predict(object, newdata = newdata, type = "prob")[, "yes"]
}

Compute Shapley-based VI scores
set.seed(853) # for reproducibility
vi_shap(rfo, train = subset(t1, select = -survived), pred_wrapper = pfun_prob,
 nsim = 30)

A tibble: 5 x 2
Variable Importance
<chr> <dbl>
```
## 1 pclass 0.104
## 2 age 0.0649
## 3 sex 0.272
## 4 sibsp 0.0260
## 5 parch 0.0291

## End(Not run)
## Index

* datasets  
  titanic, 4  
  titanic_mice, 4

aes, 9  
C5.0, 16  
C5imp, 16  
caret, 19  
cforest, 17, 19  
cof.glmnet, 16, 17  
ctree_control, 17  
cubist, 16  
cv.glmnet, 17  
earth, 17  
evimp, 17  
fastshap::explain(), 26  
foreach, 21, 22  
garson, 18  
gbm, 18, 19  
gen_friedman, 2  
geom_boxplot, 9  
geom_col, 9  
geom_point, 9  
geom_violin, 9  
glm, 6, 18, 19  
glmnet, 16, 17  
h2o.varimp, 18  
H2OModel, 18  
importance, 17, 19  
layer, 9  
lgb.importance, 19  
lightgbm, 19  
list_metrics, 3  
list_metrics(), 21  

lm, 6, 18, 19  
ml_feature_importances, 18  
nnet, 18  
olden, 18  
pdp::partial(), 11  
randomForest, 5, 8, 11, 16, 18, 21, 26  
ranger, 19  
rpart, 19  
sparklyr, 18  
stats::sd(), 11  
summary.cubist, 17  
summary.earth, 17  
summary.gbm, 18  
tibble, 6, 12, 19, 22, 27  
titanic, 4, 4  
titanic_mice, 4, 4  

varImp, 17, 19  
varimp, 17, 19  
varimpAUC, 19  
vi, 5, 8  
vi_firm, 5, 10  
vi_model, 5, 13, 17–19  
vi_permute, 5, 6, 9, 20  
vi_shap, 5, 6, 26  
 vip, 8  

xgb.importance, 19  
xgboost, 19  

yardstick, 3, 22