Package ‘visTree’

November 4, 2018

Title Visualization of Subgroups for Decision Trees
Version 0.8.1
Description Provides a visualization for characterizing subgroups defined by a decision tree structure. The visualization simplifies the ability to interpret individual pathways to subgroups; each sub-plot describes the distribution of observations within individual terminal nodes and percentile ranges for the associated inner nodes.
Depends R (>= 3.4.0)
License GPL-3
Encoding UTF-8
Imports partykit, rpart, colorspace
LazyData true
RoxygenNote 6.1.0
Suggests covr, knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Ashwini Venkatasubramaniam [aut, cre], Julian Wolfson [aut, ctb]
Maintainer Ashwini Venkatasubramaniam <ashwinikv01@gmail.com>
Repository CRAN
Date/Publication 2018-11-04 16:00:02 UTC

R topics documented:

 blsdata .. 2
 l_node .. 3
 makeTransparent .. 3
 minmax_mat .. 4
 path_node .. 4
 plot_minmax .. 5
 ptree_criteria .. 6
 ptree_left ... 6
The variables are as follows:

- `trt`: Treatment
- `sex`: Sex
- `bmi0`: BMI
- `snackkcal0`: Snacking kilo calories
- `srgfv0`: Serving size of fruits and vegetables
- `srgssb0`: Serving size of beverages
- `kcal24h0`
- `edeq01`
- `edeq02`
- `edeq13`
- `edeq14`
- `edeq15`
- `edeq22`
- `edeq23`
- `edeq25`
- `edeq26`
- `cdrsbody0`: Body image
- `weighfreq0`: Weighing frequency
- `freqff0`: Fast food frequency
Examples

data(blsdata)

1_node

Description
Decision tree structure

Usage
1_node(newtree, node_id = 1, start_criteria = character(0))

Arguments
newtree Decision tree generated as a party object
node_id Node ID
start_criteria Character vector

makeTransparent

Description
Function to adjust the transparency and define the color scheme within the visualization.

Usage
makeTransparent(colortype, alpha)

Arguments
colortype Color palette
alpha Transparency
minmax_mat
Minmax matrix

Description

Identifies splits and relevant criteria

Usage

```
minmax_mat(str, varnms, Y, interval)
```

Arguments

- **str**: Structure of pathway from the root node in the decision tree to each terminal node
- **varnms**: Names of covariates
- **Y**: Response variable in the dataset
- **interval**: logical. Continuous response (interval = FALSE) and Categorical response (interval = TRUE).

path_node
Function for determining a pathway

Description

Generates the pathway from the root node to individual terminal nodes of a decision tree generated as a party object using the partykit package.

Usage

```
path_node(newtree, idnumber = 0)
```

Arguments

- **newtree**: Decision tree generated as a party object
- **idnumber**: Terminal ID number
plot_minmax

Generate individual subplots within the graphical visualization

Description

This function is utilized to generate a series of sub-plots, where each subplot corresponds to individual terminal nodes within the decision tree structure. Each subplot is composed of a histogram (or a barchart) that displays the distribution for the relevant subgroup and colored horizontal bars that summarize the set of covariate splits.

Usage

```
plot_minmax(My, X, Y, str, color.type, alpha, add.p.axis, add.h.axis, cond.tree, text.main, text.bar, text.round, text.percentile, density.line, text.title, text.axis, text.label)
```

Arguments

- `My`: A matrix to define the split points within the decision tree structure
- `X`: Covariates
- `Y`: Response variable
- `str`: Structure of pathway from the root node in the decision tree to each terminal node
- `color.type`: Color palettes. (rainbow_hcl = 1; heat_hcl = 2; terrain_hcl = 3; sequential_hcl = 4; diverge_hcl = 5)
- `alpha`: Transparency of individual horizontal bars. Choose values between 0 to 1.
- `add.h.axis`: logical. Add axis for the outcome (add.h.axis = TRUE), remove axis for the outcome (add.h.axis = FALSE).
- `cond.tree`: Tree as a party object
- `text.main`: Change the size of the main titles
- `text.bar`: Change the size of the text in the horizontal bar and below the bar plot
- `text.round`: Round the threshold displayed on the bar
- `text.percentile`: Change the size of the percentile title
- `density.line`: Draw a density line
- `text.title`: Change the size of the text in the title
- `text.axis`: Change the size of the text of axis labels
- `text.label`: Change the size of the axis annotation
ptree_criteria Splitting Criteria

Description
Identifies the splitting criteria for the relevant node leading to lower level inner nodes or a terminal node.

Usage
ptree_criteria(newtree, node_id, left)

Arguments
newtree Decision tree
node_id Node id
left Splits to the left

ptree_left Left split

Description
Identifies a node that corresponds to the left split

Usage
ptree_left(newtree, start_id)

Arguments
newtree Decision tree generated as a party object
start_id Character vector
ptree_right
Right Split

Description
Identifies a node that corresponds to the right split

Usage
`ptree_right(newtreeL start_id)`

Arguments
- `newtree`
 Decision tree generated as a party object
- `start_id`
 Character vector

ptree_y
Function for determining a pathway

Description
Identifies the predicted outcome value for the relevant node.

Usage
`ptree_y(newtree, node_id)`

Arguments
- `newtree`
 Decision tree generated as a party object
- `node_id`
 Node ID

trim
Function for determining a pathway

Description
Parsing function

Usage
`trim(x)`

Arguments
- `x`
 String
visTree

Visualization of subgroups for decision trees

Description
This visualization characterizes subgroups defined by a decision tree structure and identifies the range of covariate values associated with outcome values in each subgroup.

Usage
visTree(cond.tree, rng = NULL, interval = FALSE, color.type = 1,
alpha = 0.5, add.h.axis = TRUE, add.p.axis = TRUE,
text.round = 1, text.main = 1.5, text.bar = 1.5,
text.title = 1.5, text.label = 1.5, text.axis = 1.5,
text.percentile = 0.7, density.line = TRUE)

Arguments
cond.tree Decision tree generated as a party object.
rng Restrict plotting to a particular set of nodes. Default value is set as NULL.
interval logical. Continuous outcome (interval = FALSE) and Categorical outcome (interval = TRUE).
color.type Color palettes (rainbow_hcl = 1; heat_hcl = 2; terrain_hcl = 3; sequential_hcl = 4; diverge_hcl = 5)
alpha Transparency for horizontal colored bars in each subplot. Values between 0 to 1.
add.h.axis logical. Add axis for the outcome distribution (add.h.axis = TRUE), remove axis for the outcome (add.h.axis = FALSE).
add.p.axis logical. Add axis for the percentiles (add.p.axis = TRUE) computed over covariate values, remove axis for the percentiles (add.p.axis = FALSE).
text.round Round the threshold displayed on the horizontal bar
text.main Change the size of the main titles
text.bar Change the size of the text in the horizontal bar
text.title Change the size of the text in the title
text.label Change the size of the axis annotation
text.axis Change the size of the text of axis labels
text.percentile Change the size of the percentile title
density.line logical. Draw a density line. (density.line = TRUE).

Author(s)
Ashwini Venkatasubramaniam and Julian Wolfson
Examples

data(blsdata)
newblsdata<-blsdata[,c(7,21, 22,23, 24, 25, 26)]
Continuous response
ptree1<-partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree1, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.5)

Repeated covariates in the splits of the decision tree
ptree2<-partykit::ctree(kcal24h0 ~ kcal+rrvfood+resteating+age, data = blsdata)
visTree(ptree2, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.5)

Categorical response
blsdataedit<-blsdata[,-7]
blsdataedit$bin<-0
blsdataedit$bin<-cut(blsdata$kcal24h0, unique(quantile(blsdata$kcal24h0)),
include.lowest = TRUE, dig.lab = 4)
names(blsdataedit)[26]<-"kcal24h0"
ptree3<-partykit::ctree(kcal24h0 ~ hunger+rrvfood+resteating+liking, data = blsdataedit)
visTree(ptree3, interval = TRUE, color.type = 1, alpha = 0.6,
text.percentile = 1.2, text.bar = 1.8)

Other decision trees (e.g., rpart)
ptree4<-rpart::rpart(kcal24h0 ~ wanting+liking+rrvfood, data = newblsdata,
control = rpart::rpart.control(cp = 0.029))
visTree(ptree4, text.bar = 1.8, text.label = 1.4, text.round = 1,
density.line = TRUE, text.percentile = 1.3)

Change the color scheme and transparency of the horizontal bars
ptree4<-partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree4, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.65,
color.type = 3)

Remove the axes corresponding to the percentiles and the response values.
ptree4<-partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree4, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.65,
color.type = 3, add.p.axis = FALSE, add.h.axis = FALSE)

Remove the density line over the histograms
ptree4<-partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree4, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.65,
color.type = 3, density.line = FALSE)
Index

*Topic datasets
blsdata, 2

*Topic decision
l_node, 3
makeTransparent, 3
minmax_mat, 4
path_node, 4
plot_minmax, 5
ptree_criteria, 6
ptree_left, 6
ptree_right, 7
ptree_y, 7
trim, 7
visTree, 8

*Topic matrix
plot_minmax, 5

*Topic pathway
l_node, 3
makeTransparent, 3
minmax_mat, 4
path_node, 4
plot_minmax, 5
ptree_criteria, 6
ptree_left, 6
ptree_right, 7
ptree_y, 7
trim, 7
visTree, 8

*Topic tree
l_node, 3
makeTransparent, 3
minmax_mat, 4
path_node, 4
plot_minmax, 5
ptree_criteria, 6
ptree_left, 6
ptree_right, 7
ptree_y, 7
trim, 7

*Topic visualization
minmax_mat, 4
visTree, 8