Package ‘visTree’

October 12, 2022

Title Visualization of Subgroups for Decision Trees
Version 0.8.1
Description Provides a visualization for characterizing subgroups defined by a decision tree structure. The visualization simplifies the ability to interpret individual pathways to subgroups; each sub-plot describes the distribution of observations within individual terminal nodes and percentile ranges for the associated inner nodes.

Depends R (>= 3.4.0)
License GPL-3
Encoding UTF-8
Imports partykit, rpart, colorspace
LazyData true
RoxygenNote 6.1.0
Suggests covr, knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Ashwini Venkatasubramaniam [aut, cre], Julian Wolfson [aut, ctb]
Maintainer Ashwini Venkatasubramaniam <ashwinikv01@gmail.com>
Repository CRAN
Date/Publication 2018-11-04 16:00:02 UTC

R topics documented:

blsdata ... 2
l_node ... 3
makeTransparent .. 3
minmax_mat .. 4
path_node ... 4
plot_minmax ... 5
ptree_criteria ... 6
ptree_left ... 6
Description

The variables are as follows:

Usage

```r
data(blsdata)
```

Format

A data frame with 226 rows and 26 variables

Details

- trt. Treatment
- sex. Sex
- bmi0. BMI
- snackkcal0. Snacking kilo calories
- srvgfv0. Serving size of fruits and vegetables
- srvgssb0. Serving size of beverages
- kcal24h0.
- edeq01.
- edeq02.
- edeq13.
- edeq14.
- edeq15.
- edeq22.
- edeq23.
- edeq25.
- edeq26.
- cdrsbody0. Body image
- weighfreq0. Weighing frequency
- freqff0. Fast food frequency
Examples

data(blsdata)

Description

Function for determining a pathway

Usage

l_node(newtree, node_id = 1, start_criteria = character(0))

Arguments

- newtree: Decision tree generated as a party object
- node_id: Node ID
- start_criteria: Character vector

Description

Function to adjust the transparency and define the color scheme within the visualization.

Usage

makeTransparent(colortype, alpha)

Arguments

- colortype: Color palette
- alpha: Transparency
minmax_mat
Minmax matrix

Description
Identifies splits and relevant criteria

Usage

```
minmax_mat(str, varnms, Y, interval)
```

Arguments

- **str**
 Structure of pathway from the root node in the decision tree to each terminal node

- **varnms**
 Names of covariates

- **Y**
 Response variable in the dataset

- **interval**
 logical. Continuous response (interval = FALSE) and Categorical response (interval = TRUE).

path_node
Function for determining a pathway

Description
Generates the pathway from the root node to individual terminal nodes of a decision tree generated as a party object using the partykit package.

Usage

```
path_node(newtree, idnumber = 0)
```

Arguments

- **newtree**
 Decision tree generated as a party object

- **idnumber**
 Terminal ID number
plot_minmax

Generate individual subplots within the graphical visualization

Description

This function is utilized to generate a series of sub-plots, where each subplot corresponds to individual terminal nodes within the decision tree structure. Each subplot is composed of a histogram (or a barchart) that displays the distribution for the relevant subgroup and colored horizontal bars that summarize the set of covariate splits.

Usage

```r
plot_minmax(My, X, Y, str, color.type, alpha, add.p.axis, add.h.axis,
            cond.tree, text.main, text.bar, text.round, text.percentile,
            density.line, text.title, text.axis, text.label)
```

Arguments

- **My**: A matrix to define the split points within the decision tree structure
- **X**: Covariates
- **Y**: Response variable
- **str**: Structure of pathway from the root node in the decision tree to each terminal node
- **color.type**: Color palettes. (rainbow_hcl = 1; heat_hcl = 2; terrain_hcl = 3; sequential_hcl = 4; diverge_hcl = 5)
- **alpha**: Transparency of individual horizontal bars. Choose values between 0 to 1.
- **add.p.axis**: logical. Add axis for the percentiles (add.p.axis = TRUE), remove axis for the percentiles (add.p.axis = FALSE).
- **add.h.axis**: logical. Add axis for the outcome (add.h.axis = TRUE), remove axis for the outcome (add.h.axis = FALSE).
- **cond.tree**: Tree as a party object
- **text.main**: Change the size of the main titles
- **text.bar**: Change the size of the text in the horizontal bar and below the bar plot
- **text.round**: Round the threshold displayed on the bar
- **text.percentile**: Change the size of the percentile title
- **density.line**: Draw a density line
- **text.title**: Change the size of the text in the title
- **text.axis**: Change the size of the text of axis labels
- **text.label**: Change the size of the axis annotation
ptree_criteria
Splitting Criteria

Description

Identifies the splitting criteria for the relevant node leading to lower level inner nodes or a terminal node.

Usage

```
ptree_criteria(newtree, node_id, left)
```

Arguments

- **newtree**: Decision tree
- **node_id**: Node id
- **left**: Splits to the left

ptree_left
Left split

Description

Identifies a node that corresponds to the left split.

Usage

```
ptree_left(newtree, start_id)
```

Arguments

- **newtree**: Decision tree generated as a party object
- **start_id**: Character vector
ptree_right

Description
Identifies a node that corresponds to the right split.

Usage
\[
\text{ptree_right}(\text{newtree}, \text{start_id})
\]

Arguments
- **newtree**: Decision tree generated as a party object
- **start_id**: Character vector

ptree_y

Function for determining a pathway

Description
Identifies the predicted outcome value for the relevant node.

Usage
\[
\text{ptree_y}(\text{newtree}, \text{node_id})
\]

Arguments
- **newtree**: Decision tree generated as a party object
- **node_id**: Node ID

trim

Function for determining a pathway

Description
Parsing function

Usage
\[
\text{trim}(x)
\]

Arguments
- **x**: String
Description

This visualization characterizes subgroups defined by a decision tree structure and identifies the range of covariate values associated with outcome values in each subgroup.

Usage

```r
visTree(cond.tree, rng = NULL, interval = FALSE, color.type = 1,
alpha = 0.5, add.h.axis = TRUE, add.p.axis = TRUE,
text.round = 1, text.main = 1.5, text.bar = 1.5,
text.title = 1.5, text.label = 1.5, text.axis = 1.5,
text.percentile = 0.7, density.line = TRUE)
```

Arguments

- **cond.tree**: Decision tree generated as a party object.
- **rng**: Restrict plotting to a particular set of nodes. Default value is set as NULL.
- **interval**: logical. Continuous outcome (interval = FALSE) and Categorical outcome (interval = TRUE).
- **color.type**: Color palettes (rainbow_hcl = 1; heat_hcl = 2; terrain_hcl = 3; sequential_hcl = 4; diverge_hcl = 5)
- **alpha**: Transparency for horizontal colored bars in each subplot. Values between 0 to 1.
- **add.h.axis**: logical. Add axis for the outcome distribution (add.h.axis = TRUE), remove axis for the outcome (add.h.axis = FALSE).
- **add.p.axis**: logical. Add axis for the percentiles (add.p.axis = TRUE) computed over covariate values, remove axis for the percentiles (add.p.axis = FALSE).
- **text.round**: Round the threshold displayed on the horizontal bar
- **text.main**: Change the size of the main titles
- **text.bar**: Change the size of the text in the horizontal bar
- **text.title**: Change the size of the text in the title
- **text.label**: Change the size of the axis annotation
- **text.axis**: Change the size of the text of axis labels
- **text.percentile**: Change the size of the percentile title
- **density.line**: logical. Draw a density line. (density.line = TRUE).

Author(s)

Ashwini Venkatasubramaniam and Julian Wolfson
Examples

data(blsdata)
newblsdata <- blsdata[, c(7, 21, 22, 23, 24, 25, 26)]

Continuous response
ptree1 <- partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree1, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.5)

Repeated covariates in the splits of the decision tree
ptree2 <- partykit::ctree(kcal24h0 ~ skcal + rrvfood + resteating + age, data = blsdata)
visTree(ptree2, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.5)

Categorical response
blsdataedit <- blsdata[, -7]
blsdataedit$bin <- 0
blsdataedit$bin <- cut(blsdata$kcal24h0, unique(quantile(blsdata$kcal24h0)),
 include.lowest = TRUE, dig.lab = 4)
names(blsdataedit)[26] <- "kcal24h0"
ptree3 <- partykit::ctree(kcal24h0 ~ hunger + rrvfood + resteating + liking, data = blsdataedit)
visTree(ptree3, interval = TRUE, color.type = 1, alpha = 0.6,
 text.percentile = 1.2, text.bar = 1.8)

Other decision trees (e.g., rpart)
ptree4 <- rpart::rpart(kcal24h0 ~ wanting + liking + rrvfood, data = newblsdata,
 control = rpart::rpart.control(cp = 0.029))
visTree(ptree4, text.bar = 1.8, text.label = 1.4, text.round = 1,
 density.line = TRUE, text.percentile = 1.3)

Change the color scheme and transparency of the horizontal bars
ptree1 <- partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree1, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.65,
 color.type = 3)

Remove the axes corresponding to the percentiles and the response values.
ptree1 <- partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree1, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.65,
 color.type = 3, add.p.axis = FALSE, add.h.axis = FALSE)

Remove the density line over the histograms
ptree1 <- partykit::ctree(kcal24h0 ~ ., data = newblsdata)
visTree(ptree1, text.axis = 1.3, text.label = 1.2, text.bar = 1.2, alpha = 0.65,
 color.type = 3, density.line = FALSE)
Index

* datasets
 blsdata, 2
* decision
 l_node, 3
 makeTransparent, 3
 minmax_mat, 4
 path_node, 4
 plot_minmax, 5
 ptree_criteria, 6
 ptree_left, 6
 ptree_right, 7
 ptree_y, 7
 trim, 7
 visTree, 8
* matrix
 plot_minmax, 5
* pathway
 l_node, 3
 makeTransparent, 3
 minmax_mat, 4
 path_node, 4
 plot_minmax, 5
 ptree_criteria, 6
 ptree_left, 6
 ptree_right, 7
 ptree_y, 7
 trim, 7
 visTree, 8
* tree
 l_node, 3
 makeTransparent, 3
 minmax_mat, 4
 path_node, 4
 plot_minmax, 5
 ptree_criteria, 6
 ptree_left, 6
 ptree_right, 7
 ptree_y, 7
 trim, 7
* visualization
 minmax_mat, 4
 visTree, 8
 blsdata, 2
 l_node, 3
 makeTransparent, 3
 minmax_mat, 4
 path_node, 4
 plot_minmax, 5
 ptree_criteria, 6
 ptree_left, 6
 ptree_right, 7
 ptree_y, 7
 trim, 7
 visTree, 8