Package ‘visualize’

January 8, 2020

Type Package
Title Graph Probability Distributions with User Supplied Parameters and Statistics
Version 4.4.0
Depends R (>= 3.0.0)
Description Graphs the pdf or pmf and highlights what area or probability is present in user defined locations. Visualize is able to provide lower tail, bounded, upper tail, and two tail calculations. Supports strict and equal to inequalities. Also provided on the graph is the mean and variance of the distribution.
License MIT + file LICENSE
BugReports https://github.com/coatless/visualize/issues
Encoding UTF-8
RoxygenNote 6.1.1
NeedsCompilation no
Author James Balamuta [aut, cph, cre]
 (<https://orcid.org/0000-0003-2826-8458>)
Maintainer James Balamuta <james.balamuta@gmail.com>
Repository CRAN
Date/Publication 2020-01-08 22:20:02 UTC

R topics documented:

 visualize-package ... 2
 visualize.beta ... 3
 visualize.binom ... 4
 visualize.cauchy .. 5
 visualize.chisq .. 6
visualize-package

visualize.continuous ... 7
visualize.discrete ... 8
visualize.exp .. 9
visualize.f ... 10
visualize.gamma ... 11
visualize.geom .. 12
visualize.hyper .. 13
visualize.it .. 14
visualize.lnorm .. 15
visualize.logis ... 16
visualize.nbinom ... 17
visualize.norm ... 18
visualize.pois ... 19
visualize.t ... 20
visualize.unif ... 21
visualize.wilcox ... 22

Index 24

visualize-package visualize: Graph Probability Distributions with User Supplied Parameters and Statistics

Description

Graphs the pdf or pmf and highlights what area or probability is present in user defined locations. Visualize is able to provide lower tail, bounded, upper tail, and two tail calculations. Supports strict and equal to inequalities. Also provided on the graph is the mean and variance of the distribution.

Author(s)

Maintainer: James Balamuta <james.balamuta@gmail.com> (0000-0003-2826-8458) [copyright holder]

See Also

Useful links:

- https://github.com/coatless/visualize
- Report bugs at https://github.com/coatless/visualize/issues
visualize.it

Examples

```r
## visualize.it acts as the general wrapper.
## For guided application of visualize, see the visualize.distr_name list.
# Binomial distribution evaluated at lower tail.
visualize.it(dist = 'binom', stat = 2, params = list(size = 4, prob = .5),
             section = "lower", strict = TRUE)
visualize.binom(stat = 2, size = 4, prob = .5, section = "lower", strict = TRUE)

# Set to shade inbetween a bounded region.
visualize.it(dist = 'norm', stat = c(-1, 1), list(mu = 0, sd = 1), section = "bounded")
visualize.norm(stat = c(-1, 1), mu = 0, sd = 1, section = "bounded")

# Gamma distribution evaluated at upper tail.
visualize.it(dist = 'gamma', stat = 2, params = list(alpha = 2, theta = 1), section = "upper")
visualize.gamma(stat = 2, alpha = 2, theta = 1, section = "upper")
```

visualize.beta

Visualize Beta Distribution

Description

Generates a plot of the Beta distribution with user specified parameters.

Usage

```r
visualize.beta(stat = 1, alpha = 3, beta = 2, section = "lower")
```

Arguments

- `stat`: a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.
- `alpha`: alpha is considered to be `shape1` by R’s implementation of the beta distribution. alpha must be greater than 0.
- `beta`: beta is considered to be `shape2` by R’s implementation of the beta distribution. beta must be greater than 0.
- `section`: Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

Value

Returns a plot of the distribution according to the conditions supplied.
visualize.binom

Author(s)
James Balamuta

See Also
visualize.it(), dbeta().

Examples

Evaluates lower tail.
visualize.beta(stat = 1, alpha = 2, beta = 3, section = "lower")

Evaluates bounded region.
visualize.beta(stat = c(.5,1), alpha = 4, beta = 3, section = "bounded")

Evaluates upper tail.
visualize.beta(stat = 1, alpha = 2, beta = 3, section = "upper")

visualize.binom

Visualize Binomial Distribution

Description
Generates a plot of the Binomial distribution with user specified parameters.

Usage
visualize.binom(stat = 1, size = 3, prob = 0.5, section = "lower",
strict = FALSE)

Arguments
stat a statistic to obtain the probability from. When using the "bounded" condition,
you must supply the parameter as stat = c(lower_bound, upper_bound). Other-
wise, a simple stat = desired_point will suffice.
size size of sample.
prob probability of picking object.
section Select how you want the statistic(s) evaluated via section= either "lower", "bounded",
"upper", or "tails".
strict Determines whether the probability will be generated as a strict (<, >) or equal to
(<=, >=) inequality. strict= requires either values = 0 or =FALSE for equal to
OR values =1 or =TRUE for strict. For bounded condition use: strict=c(0,1)
or strict=c(FALSE,TRUE).
visualize.cauchy

Author(s)
James Balamuta

See Also
visualize.it(), dbinom().

Examples

Evaluates lower tail with equal to inequality.
visualize.binom(stat = 1, size = 3, prob = 0.5, section = "lower", strict = FALSE)

Evaluates bounded region with lower bound equal to and upper bound strict inequality.
visualize.binom(stat = c(1,2), size = 5, prob = 0.35, section = "bounded", strict = c(0,1))

Evaluates upper tail with strict inequality.
visualize.binom(stat = 1, size = 3, prob = 0.5, section = "upper", strict = TRUE)

visualize.cauchy

Visualize Cauchy Distribution

Description
Generates a plot of the Cauchy distribution with user specified parameters.

Usage
visualize.cauchy(stat = 1, location = 2, scale = 1, section = "lower")

Arguments
stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.
location location parameter
scale scale parameter
section Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

Value
Returns a plot of the distribution according to the conditions supplied.
visualize.chisq

Author(s)
James Balamuta

See Also
visualize.it(), dcauchy().

Examples

Evaluates lower tail.
visualize.cauchy(stat = 1, location = 4, scale = 2, section = "lower")

Evaluates bounded region.
visualize.cauchy(stat = c(3,5), location = 5, scale = 3, section = "bounded")

Evaluates upper tail.
visualize.cauchy(stat = 1, location = 4, scale = 2, section = "upper")

 visualize.chisq
Visualize Chi-squared Distribution

Description
Generates a plot of the Chi-squared distribution with user specified parameters.

Usage
visualize.chisq(stat = 1, df = 3, section = "lower")

Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

df degrees of freedom of Chi-squared distribution.

section Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

Value
Returns a plot of the distribution according to the conditions supplied.

Author(s)
James Balamuta
visualize.continuous

See Also

visualize.it(), dchisq.

Examples

Evaluates lower tail.
visualize.chisq(stat = 1, df = 3, section = "lower")
Evaluates bounded region.
visualize.chisq(stat = c(1,2), df = 6, section = "bounded")
Evaluates upper tail.
visualize.chisq(stat = 1, df = 3, section = "upper")

visualize.continuous Graphing function for Continuous Distributions.

Description

Handles how continuous distributions are graphed. Users should not use this function. Instead, users should use visualize.it().

Usage

visualize.continuous(dist, stat = c(0, 1), params, section = "lower")

Arguments

dist contains the distribution from visualize.distributions().

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

params A list that must contain the necessary parameters for each distribution. For example, params = list(mu = 1, sd = 1) would be for a normal distribution with mean 1 and standard deviation 1. If you are not aware of the parameters for the distribution, consider using the visualize.dist_name functions listed under the "See Also" section.

section Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

Author(s)

James Balamuta
visualize.discrete

See Also

visualize.it(), visualize.beta(), visualize.chisq(), visualize.exp(), visualize.gamma(),
visualize.norm(), visualize.unif(), visualize.cauchy(), visualize.f(), visualize.lnorm(),
visualize.t(), visualize.wilcox(), visualize.logis.*.

* = added in v2.0.

Examples

Function does not have dist look up, must go through visualize.it
visualize.it(dist="norm", stat = c(0,1), params = list(mu = 1, sd = 1), section = "bounded")

visualize.discrete Graphing function for Discrete Distributions.

Description

Handles how discrete distributions are graphed. Users should not use this function. Instead, users
should use link{visualize.it}.

Usage

visualize.discrete(dist, stat = c(0, 1), params, section = "lower",
strict)

Arguments

dist contains the distribution from link{visualize.distributions}.
stat a statistic to obtain the probability from. When using the "bounded" condition,
you must supply the parameter as stat = c(lower_bound, upper_bound). Other-
wise, a simple stat = desired_point will suffice.
params A list that must contain the necessary parameters for each distribution. For ex-
ample, params = list(n = 5, prob = .25) would be for a binomial distribution
with size 5 and probability .75. If you are not aware of the parameters for the
distribution, consider using the visualize.dist_name functions listed under the
"See Also" section.
section Select how you want the statistic(s) evaluated via section= either "lower", "bounded",
"upper", or "tails".
strict Determines whether the probability will be generated as a strict (<, >) or equal to
(<=, >=) inequality. strict= requires either values = 0 or =FALSE for equal to
OR values =1 or =TRUE for strict. For bounded condition use: strict=c(0,1)
or strict=c(FALSE,TRUE).

Author(s)

James Balamuta
visualize.exp

See Also

visualize.it(), visualize.binom(), visualize.geom(), visualize.hyper(), visualize.nbinom(), visualize.pois().

Examples

Function does not have dist look up, must go through visualize.it
visualize.it(dist='geom', stat = c(2,4), params = list(prob = .75), section = "bounded",
 strict = c(0,1))

visualize.exp Visualize Exponential Distribution

Description

Generates a plot of the Exponential distribution with user specified parameters.

Usage

visualize.exp(stat = 1, theta = 1, section = "lower")

Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition,
you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise,
a simple stat = desired_point will suffice.
theta vector of rates
section Select how you want the statistic(s) evaluated via section = either "lower", "bounded",
 "upper", or "tails".

Value

Returns a plot of the distribution according to the conditions supplied.

Author(s)

James Balamuta

See Also

visualize.it(), dexp().
Examples

```r
# Evaluates lower tail.
visualize.exp(stat = .5, theta = 3, section = "lower")

# Evaluates bounded region.
visualize.exp(stat = c(1,2), theta = 3, section = "bounded")

# Evaluates upper tail.
visualize.exp(stat = .5, theta = 3, section = "upper")
```

visualize.f

Visualize F distribution

Description

Generates a plot of the F distribution with user specified parameters.

Usage

```r
visualize.f(stat = 1, df1 = 5, df2 = 4, section = "lower")
```

Arguments

- **stat**
 - a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.
- **df1**
 - First Degrees of Freedom
- **df2**
 - Second Degrees of Freedom
- **section**
 - Select how you want the statistic(s) evaluated via `section=` either "lower", "bounded", "upper", or "tails".

Value

Returns a plot of the distribution according to the conditions supplied.

Author(s)

James Balamuta

See Also

`visualize.it()`, `df()`
Examples

Evaluates lower tail.
visualize.gamma(stat = 1, df1 = 5, df2 = 4, section = "lower")

Evaluates bounded region.
visualize.gamma(stat = c(3,5), df1 = 6, df2 = 3, section = "bounded")

Evaluates upper tail.
visualize.gamma(stat = 1, df1 = 5, df2 = 4, section = "upper")

visualize.gamma

Visualize Gamma Distribution

Description

Generates a plot of the Gamma distribution with user specified parameters.

Usage

visualize.gamma(stat = 1, alpha = 1, theta = 1, section = "lower")

Arguments

- **stat**: a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.
- **alpha**: alpha is considered to be shape by R’s implementation of the gamma distribution. alpha must be greater than 0.
- **theta**: theta is considered to be rate by R’s implementation of the gamma distribution. theta must be greater than 0.
- **section**: Select how you want the statistic(s) evaluated via `section = either "lower", "bounded", "upper", or "tails"`.

Author(s)

James Balamuta

See Also

visualize.it(), dgamma().
Examples

Evaluate lower tail.
visualize.gamma(stat = 1, alpha = 3, theta = 1, section = "lower")

Evaluate bounded section.
visualize.gamma(stat = c(0.75,1), alpha = 3, theta = 1, section = "bounded")

Evaluate upper tail.
visualize.gamma(stat = 1, alpha = 3, theta = 1, section = "upper")

visualize.geom Visualize Geometric Distribution

Description

Generates a plot of the Geometric distribution with user specified parameters.

Usage

visualize.geom(stat = 1, prob = 0.3, section = "lower",
strict = FALSE)

Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

prob probability of picking object.

section Select how you want the statistic(s) evaluated via section= either "lower","bounded", "upper", or "tails".

strict Determines whether the probability will be generated as a strict (<, >) or equal to (<=, >=) inequality. strict= requires either values = 0 or =FALSE for equal to OR values =1 or =TRUE for strict. For bounded condition use: strict=c(0,1) or strict=c(FALSE,TRUE).

Author(s)

James Balamuta

See Also

visualize.it(), dgeom().
Examples

Evaluates lower tail.
visualize.geom(stat = 1, prob = 0.5, section = "lower", strict = FALSE)

Evaluates bounded region.
visualize.geom(stat = c(1,3), prob = 0.35, section = "bounded", strict = c(0,1))

Evaluates upper tail.
visualize.geom(stat = 1, prob = 0.5, section = "upper", strict = 1)

visualize.hyper

Visualize Hypergeometric Distribution

Description

Generates a plot of the Hypergeometric distribution with user specified parameters.

Usage

visualize.hyper(stat = 1, m = 5, n = 4, k = 2, section = "lower", strict = FALSE)

Arguments

stat
a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

m
m white balls. m must be greater than 0.

n
n black balls. n must be greater than 0.

k
draw k balls without replacement.

section
Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

strict
Determines whether the probability will be generated as a strict (<, >) or equal to (<=, >=) inequality. strict= requires either values = 0 or =FALSE for equal to OR values =1 or =TRUE for strict. For bounded condition use: strict=c(0,1) or strict=c(FALSE,TRUE).

Author(s)

James Balamuta

See Also

visualize.it(), dhyper().
Examples

Evaluates lower tail.
visualize.hyper(stat = 1, m=4, n=5, k=3, section = "lower", strict = 0)

Evaluates bounded region.
visualize.hyper(stat = c(2,4), m=14, n=5, k=2, section = "bounded", strict = c(0,1))

Evaluates upper tail.
visualize.hyper(stat = 1, m=4, n=5, k=3, section = "upper", strict = 1)

visualize.it Visualize's Processing Function

Description

Acts as a director of traffic and first line of error handling regarding submitted visualization requests. This function should only be used by advanced users.

Usage

visualize.it(dist = "norm", stat = c(0, 1), params = list(mu = 0, sd = 1), section = "lower", strict = c(0, 1))

Arguments

dist a string that should be contain a supported probability distributions name in R. Supported continuous distributions: "beta", "chisq", "exp", "gamma", "norm", and "unif". Supported discrete distributions: "binom", "geom", "hyper", "nbinom", and "pois".

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

params A list that must contain the necessary parameters for each distribution. For example, params = list(mu = 1, sd = 1) would be for a normal distribution with mean 1 and standard deviation 1. If you are not aware of the parameters for the distribution, consider using the visualize.dist functions listed under the "See Also" section.

section Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

strict Determines whether the probability will be generated as a strict (<, >) or equal to (<=, >=) inequality. strict= requires either values = 0 or =FALSE for strict OR values =1 or =TRUE for equal to. For bounded condition use: strict=c(0,1) or strict=c(FALSE,TRUE).
Visualse.lnorm

Value

Returns a plot of the distribution according to the conditions supplied.

Author(s)

James Balamuta

References

http://cran.r-project.org/web/views/Distributions.html

See Also

visualize.beta(), visualize.chisq(), visualize.exp(), visualize.gamma(), visualize.norm(), visualize.unif(), visualize.binom(), visualize.geom(), visualize.hyper(), visualize.nbinom(), visualize.pois().

Examples

Defaults to lower tail evaluation
visualize.it(dist = 'norm', stat = 1, list(mu = 3, sd = 2), section = "lower")

Set to evaluate the upper tail.
visualize.it(dist = 'norm', stat = 1, list(mu=3,sd=2),section="upper")

Set to shade inbetween a bounded region.
visualize.it(dist = 'norm', stat = c(-1,1), list(mu=0,sd=1), section="bounded")

Gamma distribution evaluated at upper tail.
visualize.it(dist = 'gamma', stat = 2, params = list(alpha=2,beta=1),section="upper")

Binomial distribution evaluated at lower tail.
visualize.it('binom', stat = 2, params = list(n=4,p=.5))

visualize.lnorm (Visualize Log Normal Distribution)

Description

Generates a plot of the Log Normal distribution with user specified parameters.

Usage

visualize.lnorm(stat = 1, meanlog = 3, sdlog = 1, section = "lower")
Arguments

- **stat**: a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.
- **meanlog**: Mean of the distribution
- **sdlog**: Standard deviation of the distribution
- **section**: Select how you want the statistic(s) evaluated via `section = either "lower", "bounded", "upper", or "tails"`.

Value

Returns a plot of the distribution according to the conditions supplied.

Author(s)

James Balamuta

See Also

visualize.it(), dlnorm().

Examples

```r
# Evaluates lower tail.
visualize.lnorm(stat = 1, meanlog = 3, sdlog = 1, section = "lower")

# Evaluates bounded region.
visualize.lnorm(stat = c(3,5), meanlog = 3, sdlog = 3, section = "bounded")

# Evaluates upper tail.
visualize.lnorm(stat = 1, meanlog = 3, sdlog = 1, section = "upper")
```

visualize.logis Visualize Logistic distribution

Description

Generates a plot of the Logistic distribution with user specified parameters.

Usage

```r
visualize.logis(stat = 1, location = 3, scale = 1, section = "lower")
```
visualize.nbinom

Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

location Location of the distribution.

scale Scale of the distribution.

section Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

Value

Returns a plot of the distribution according to the conditions supplied.

Author(s)

James Balamuta

See Also

visualize.it(), dlogis().

Examples

Evaluates lower tail.
visualize.logis(stat = 1, location = 4, scale = 2, section = "lower")

Evaluates bounded region.
visualize.logis(stat = c(3,5), location = 4, scale = 2, section = "bounded")

Evaluates upper tail.
visualize.logis(stat = 1, location = 4, scale = 2, section = "upper")
Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as \(\text{stat} = \text{c}(\text{lower_bound}, \text{upper_bound}) \). Otherwise, a simple \(\text{stat} = \text{desired_point} \) will suffice.

size number of objects.

prob probability of picking object.

section Select how you want the statistic(s) evaluated via \(\text{section}= \) either "lower", "bounded", "upper", or "tails".

strict Determines whether the probability will be generated as a strict \(<, >\) or equal to \(\leq, \geq\) inequality. \(\text{strict}=\) requires either values = 0 or = FALSE for equal to OR values =1 or =TRUE for strict. For bounded condition use: \(\text{strict}=\text{c}(0,1)\) or \(\text{strict}=\text{c}(\text{FALSE, TRUE})\).

Author(s)

James Balamuta

See Also

visualize.it(), dnbinom().

Examples

Evaluates lower tail.
visualize.nbinom(stat = 1, size = 5, prob = 0.5, section = "lower", strict = 0)

Evaluates bounded region.
visualize.nbinom(stat = c(1,3), size = 10, prob = 0.35, section = "bounded",
strict = c(TRUE, FALSE))

Evaluates upper tail.
visualize.nbinom(stat = 1, size = 5, prob = 0.5, section = "upper", strict = 1)
Arguments

- **stat**: a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.

- **mu**: mean of the Normal Distribution.

- **sd**: standard deviation of the Normal Distribution.

- **section**: Select how you want the statistic(s) evaluated via `section`= either "lower","bounded", "upper", or "tails".

See Also

- `visualize.it()`, `dnorm()`.

Examples

```r
# Evaluates lower tail.
visualize.norm(stat = 1, mu = 4, sd = 5, section = "lower")

# Evaluates bounded region.
visualize.norm(stat = c(3,6), mu = 5, sd = 3, section = "bounded")

# Evaluates upper tail.
visualize.norm(stat = 1, mu = 3, sd = 2, section = "upper")
```

visualize.pois

Visualize Poisson Distribution

Description

Generates a plot of the Poisson distribution with user specified parameters.

Usage

```r
visualize.pois(stat = 1, lambda = 3.5, section = "lower",
strict = FALSE)
```

Arguments

- **stat**: a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.

- **lambda**: lambda value of the Poisson Distribution.

- **section**: Select how you want the statistic(s) evaluated via `section`= either "lower", "bounded", "upper", or "tails".
visualize.t

Visualize Student’s t distribution

Description
Generates a plot of the Student’s t distribution with user specified parameters.

Usage
visualize.t(stat = 1, df = 3, section = "lower")

Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as stat = c(lower_bound, upper_bound). Otherwise, a simple stat = desired_point will suffice.

df Degrees of freedom

section Select how you want the statistic(s) evaluated via section= either "lower", "bounded", "upper", or "tails".

Value
Returns a plot of the distribution according to the conditions supplied.
visualize.unif

Author(s)

James Balamuta

See Also

`visualize.it()`, `dt()`.

Examples

```r
# Evaluates lower tail.
visualize.t(stat = 1, df = 4, section = "lower")

# Evaluates bounded region.
visualize.t(stat = c(3,5), df = 6, section = "bounded")

# Evaluates upper tail.
visualize.t(stat = 1, df = 4, section = "upper")
```

visualize.unif
Visualize Uniform Distribution

Description

Generates a plot of the Uniform distribution with user specified parameters.

Usage

```r
visualize.unif(stat = 1, a = 0, b = 1, section = "lower")
```

Arguments

- **stat**: a statistic to obtain the probability from. When using the "bounded" condition, you must supply the parameter as `stat = c(lower_bound, upper_bound)`. Otherwise, a simple `stat = desired_point` will suffice.
- **a**: starting point. Note: `a<b`
- **b**: end point. Note: `b>a`
- **section**: Select how you want the statistic(s) evaluated via `section=` either "lower", "bounded", "upper", or "tails".

Author(s)

James Balamuta

See Also

`visualize.it()`, `dunif()`.
Examples

Evaluates lower tail.
visualize.unif(stat = 8.75, a = 7, b = 10, section = "lower")

Evaluates bounded region.
visualize.unif(stat = c(3,6), a = 1, b = 7, section = "bounded")

Evaluates upper tail.
visualize.unif(stat = 2, a = 1, b = 5, section = "upper")

visualize.wilcox Visualize Cauchy Distribution

Description
Generates a plot of the Wilcoxon Rank Sum distribution with user specified parameters.

Usage
visualize.wilcox(stat = 1, m = 7, n = 3, section = "lower")

Arguments

stat a statistic to obtain the probability from. When using the "bounded" condition,
you must supply the parameter as stat = c(lower_bound, upper_bound). Oth-
erwise, a simple stat = desired_point will suffice.

m Sample size from group 1.

n Sample size from group 2.

section Select how you want the statistic(s) evaluated via section= either "lower","bounded",
"upper", or "tails".

Value
Returns a plot of the distribution according to the conditions supplied.

Author(s)
James Balamuta

See Also
visualize.it(), dwilcox().
Examples

Evaluates lower tail.
visualize.wilcox(stat = 1, m = 7, n = 3, section = "lower")

Evaluates bounded region.
visualize.wilcox(stat = c(2,3), m = 5, n = 4, section = "bounded")

Evaluates upper tail.
visualize.wilcox(stat = 1, m = 7, n = 3, section = "upper")
Index

*Topic **visualize**
 visualize.beta, 3
 visualize.binom, 4
 visualize.cauchy, 5
 visualize.chisq, 6
 visualize.continuous, 7
 visualize.discrete, 8
 visualize.exp, 9
 visualize.f, 10
 visualize.gamma, 11
 visualize.geom, 12
 visualize.hyper, 13
 visualize.it, 14
 visualize.lnorm, 15
 visualize.logis, 16
 visualize.nbinom, 17
 visualize.norm, 18
 visualize.pois, 19
 visualize.t, 20
 visualize.unif, 21
 visualize.wilcox, 22

 dbeta(), 4
 dbinom(), 5
 dcauchy(), 6
 dchisq(), 7
 dexp(), 9
 df(), 10
 dgamma(), 11
 dgeom(), 12
 dhyper(), 13
 dlnorm(), 16
 dlogis(), 17
 dnbinom(), 18
 dnorm(), 19
 dpois(), 20
 dt(), 21
 duniform(), 21
 dwilcox(), 22
 visualize(visualize-package), 2
 visualize-package, 2
 visualize.beta, 3
 visualize.beta(), 8, 15
 visualize.binom, 4
 visualize.binom(), 9, 15
 visualize.cauchy, 5
 visualize.cauchy(), 8
 visualize.chisq, 6
 visualize.chisq(), 8, 15
 visualize.continuous, 7
 visualize.discrete, 8
 visualize.distributions(), 7
 visualize.exp, 9
 visualize.exp(), 8, 15
 visualize.f, 10
 visualize.f(), 8
 visualize.gamma, 11
 visualize.gamma(), 8, 15
 visualize.geom, 12
 visualize.geom(), 9, 15
 visualize.hyper, 13
 visualize.hyper(), 9, 15
 visualize.it, 14
 visualize.it(), 4–13, 16–22
 visualize.lnorm, 15
 visualize.lnorm(), 8
 visualize.logis, 16
 visualize.logis(), 8
 visualize.nbinom, 17
 visualize.nbinom(), 9, 15
 visualize.norm, 18
 visualize.norm(), 8, 15
 visualize.pois, 19
 visualize.pois(), 9, 15
 visualize.t, 20
 visualize.t(), 8
 visualize.uniform, 21
 visualize.uniform(), 8, 15

24
INDEX

visualize.wilcox, 22
visualize.wilcox(), 8