Package ‘visualpred’

October 24, 2020

Title Visualization 2D of Binary Classification Models
Version 0.1.0
Description Visual 2D point and contour plots for binary classification modeling under algorithms such as glm(), randomForest(), gbm(), nnet() and svm(), presented over two dimensions generated by FAMD and MCA methods. Package 'FactoMineR' for multivariate reduction functions and package 'MBA' for interpolation functions are used. The package can be used to visualize the discriminant power of input variables and algorithmic modeling, explore outliers, compare algorithm behaviour, etc. It has been created initially for teaching purposes, but it has also many practical uses.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports gbm, randomForest, nnet (>= 7.3.12), e1071, MASS (>= 7.3.51.4), magrittr, FactoMineR (>= 2.3), ggplot2 (>= 3.3.0), mltools, dplyr, data.table, MBA, pROC, ggrepel
Suggests knitr, markdown, egg
VignetteBuilder knitr
Depends R (>= 3.5.0)
NeedsCompilation no
Author Javier Portela [aut, cre]
Maintainer Javier Portela <javipgm@gmail.com>
Repository CRAN
Date/Publication 2020-10-24 09:40:02 UTC

R topics documented:

 breastwisconsin1 .. 2
 famdcontour .. 2
 famdcontourlabel ... 5
 Hmda ... 6
Breast Cancer Wisconsin dataset

Description
Breast Cancer Wisconsin dataset

Usage
data(breastwisconsin1)

Format
An object of class data.frame with 699 rows and 10 columns.

Source
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

Contour plots and FAMD function for classification modeling

Description
This function presents visual graphics by means of FAMD. FAMD function is Factorial Analysis for Mixed Data (interval and categorical) Dependent classification variable is set as supplementary variable. Machine learning algorithm predictions are presented in a filled contour setting.

Usage
famdcontour(dataf=dataf,listconti,listclass,vardep,proba="", title="",title2="",depcol="",listacol="",alpha1=0.7,alpha2=0.7,alpha3=0.7, classvar=1,intergrid=0,selec=0,modelo="glm",nodos=3,maxit=200,decay=0.01, sampsize=400,mtry=2,nodesize=10,ntree=400,ntreegbm=500,shrink=0.01, bag.fraction=1,n.minobsinnode=10,C=100,gamma=10,Dime1="Dim.1",Dime2="Dim.2")
Arguments

- dataf: data frame.
- listconti: Interval variables to use, in format c("var1","var2",...).
- listclass: Class variables to use, in format c("var1","var2",...).
- vardep: Dependent binary classification variable.
- proba: vector of probability predictions obtained externally (optional)
- title: plot main title
- title2: plot subtitle
- depcol: vector of two colors for points
- listacol: vector of colors for labels
- alpha1: alpha transparency for majoritary class
- alpha2: alpha transparency for minoritary class
- alpha3: alpha transparency for fit probability plots
- classvar: 1 if dependent variable categories are plotted as supplementary
- intergrid: scale of grid for contour: 0 if automatic
- selec: 1 if stepwise logistic variable selection is required, 0 if not.
- modelo: name of model: "glm","gbm","rf","nnet","svm".
- nodos: nnet: nodes
- maxit: nnet: iterations
- decay: nnet: decay
- sampsize: rf: sampsize
- mtry: rf: mtry
- nodesize: rf: nodesize
- ntree: rf: ntree
- ntreegbm: gbm: ntree
- shrink: gbm: shrink
- bag.fraction: gbm: bag.fraction
- n.minobsinnode: gbm:n.minobsinnode
- C: svm Radial: C
- gamma: svm Radial: gamma
- Dime1, Dime2: FAMD Dimensions to consider. Dim.1 and Dim.2 by default.

Details

FAMD algorithm from FactoMineR package is used to compute point coordinates on dimensions (Dim.1 and Dim.2 by default). Minority class on dependent variable category is represented as red, majority category as green. Color scheme can be altered using depcol and listacol, as well as alpha transparency values.
Predictive modeling:
For predictive modeling, selec=1 selects variables with a simple stepwise logistic regression. By default selec=0. Logistic regression is used by default. Basic parameter setting is supported for algorithms nnet, rf, gbm and svm-RBF. A vector of fitted probabilities obtained externally from other algorithms can be imported in parameter proba=nameofvector. Contour curves are then computed based on this vector.

Contour curves:
Contour curves are build by the following process: i) the chosen algorithm model is trained and all observations are predicted-fitted. ii) A grid of points on the two chosen FAMD dimensions is built iii) package MBA is used to interpol probability estimates over the grid, based on previously fitted observations.

Variable representation:
In order to represent interval variables, categories of class variables, and points in the same plot, a proportional projection of interval variables coordinates over the two dimensions range is applied. Since space of input variables is frequently larger than two dimensions, sometimes overlapping of points is produced; a frequency variable is used, and alpha values may be adjusted to avoid wrong interpretations of the presence of dependent variable category/color.

Troubleshooting:
• Check missings. Missing values are not allowed.
• By default selec=0. Setting selec=1 may sometimes imply that no variables are selected; an error message is shown in this case.
• Models with only two input variables could lead to plot generation problems.
• Be sure that variables named in listconti are all numeric.
• If some numeric variable is constant at one single value, process is stopped since numeric Min-max standarization is performed, and NaN values are generated.

Value
A list with the following objects:

- **graph1** plot of points on FAMD first two dimensions
- **graph2** plot of points and contour curves
- **graph3** plot of points and variables
- **graph4** plot of points variable and contour curves
- **graph5** plot of points colored by fitted probability
- **graph6** plot of points colored by abs difference
- **df1** data frame used for graph1
- **df2** data frame used for contour curves
- **df3** data frame used for variable names
- **listconti** interval variables used-selected
- **listclass** class variables used-selected
famdcontourlabel

Outliers in Contour plots and FAMD function for classification modeling

Description
This function adds outlier marks to famdcontour using ggrepel package.

Usage
famdcontourlabel(
 dataf = dataf,
 Idt = "",
 inf = 0.1,
 sup = 0.9,
 cutprob = 0.5,
 ...
)

Arguments
dataf data frame.
Idt Identification variable, default ".", row number
inf, sup Quantiles for x,y outliers
cutprob cut point for outliers based on prob.estimation error
... options to be passed from famdcontour

Details
An identification variable can be set in Idt parameter. By default, number of row is used. There are two source of outliers: i) outliers in the two FAMD dimension space, where the cutpoints are set as quantiles given (inf=0.1 and sup=0.9 in both dimensions by default) and ii) outliers with respect to the fitted probability. The dependent variable is set to 1 for the mimority class, and 0 for the majority class. Points considered outliers are those for which abs(vardep-fittedprob) exceed parameter cutprob.

References

Examples
data(breastwisconsin)
dataf<-breastwisconsin1
listconti=c("clump_thickness","uniformity_of_cell_shape","mitosis")
listclass=c(""
vardep="classes"
result<-famdcontour(dataf=dataf,listconti,listclass,vardep)
Value

A list with the following objects:

- `graph1_graph6` plots for dimension outliers
- `graph7_graph12` plots for fit outliers

Examples

```r
data(breastwisconsin1)
dataf<-breastwisconsin1
listconti=c("clump_thickness","uniformity_of_cell_shape","mitosis")
listclass=c("")
vardep="classes"
result<-famdcontourlabel(dataf=dataf,listconti=listconti,
listclass=listclass,vardep=vardep)
```

Description

Home Mortgage Disclosure Act dataset

Usage

```r
data(Hmda)
```

Format

An object of class `data.frame` with 2380 rows and 13 columns.

Source

mccontour

Contour plots and MCA function for classification modeling

Description

This function presents visual graphics by means of Multiple correspondence Analysis projection. Interval variables are categorized to bins. Dependent classification variable is set as supplementary variable. Machine learning algorithm predictions are presented in a filled contour setting.

Usage

```r
mccontour(dataf, listconti, listclass, vardep, proba = "", bins = 8, Dime1 = "Dim.1", Dime2 = "Dim.2", classvar = 1, intergrid = 0, selec = 0, title = "", title2 = "", listacol = "", depcol = "", alpha1 = 0.8, alpha2 = 0.8, alpha3 = 0.7, modelo = "glm", nodos = 3, maxit = 200, decay = 0.01, sampsize = 400, mtry = 2, nodesize = 5, ntree = 400, ntreegbm = 500, shrink = 0.01, bag.fraction = 1, n.minobsinnode = 10, C = 100, gamma = 10)
```

Arguments

- **dataf**: data frame.
- **listconti**: Interval variables to use, in format c("var1","var2",....).
- **listclass**: Class variables to use, in format c("var1","var2",....).
- **vardep**: Dependent binary classification variable.
- **proba**: vector of probability predictions obtained externally (optional)
- **bins**: Number of bins for categorize interval variables.
- **Dime1**: FAMD Dimensions to consider. Dim.1 and Dim.2 by default.
- **Dime2**: FAMD Dimensions to consider. Dim.1 and Dim.2 by default.
- **classvar**: 1 if dependent variable categories are plotted as supplementary
- **intergrid**: scale of grid for contour:0 if automatic
- **selec**: 1 if stepwise logistic variable selection is required, 0 if not.
- **title**: plot main title
- **title2**: plot subtitle
- **listacol**: vector of colors for labels
- **depcol**: vector of two colors for points
- **alpha1**: alpha transparency for majoritary class
- **alpha2**: alpha transparency for minoritary class
- **alpha3**: alpha transparency for fit probability plots
- **modelo**: name of model: "glm","gbm","rf","nnet","svm".
- **nodos**: nnet: nodes
- **maxit**: nnet: iterations
decay nnet: decay
sampsize rf: sampsize
mtry rf: mtry
nodesize rf: nodesize
ntree rf: ntree
ntreegbm gbm: ntree
shrink gbm: shrink
bag.fraction gbm: bag.fraction
n.minobsinnode gbm:n.minobsinnode
C svm Radial: C
gamma svm Radial: gamma

Details

This function applies MCA (Multiple Correspondence Analysis) in order to project points and categories of class variables in the same plot. In addition, interval variables listed in listconti are categorized to the number given in bins parameter (by default 8 bins). Further explanation about machine learning classification and contour curves, see the famdcontour function documentation.

Value

A list with the following objects:

- graph1 plot of points on MCA two dimensions
- graph2 plot of points and variables
- graph3 plot of points and contour curves
- graph4 plot of points, contour curves and variables
- graph5 plot of points colored by fitted probability
- graph6 plot of points colored by abs difference
- df1 dataset used for graph1
- df2 dataset used for graph2
- df3 dataset used for graph3
- df4 dataset used for graph4
- listconti interval variables used
- listclass class variables used
- ... color schemes and other parameters

Examples

data(breastwisconsin1)
dataf<-breastwisconsin1
listconti=c("clump_thickness","uniformity_of_cell_shape","mitosis")
listclass=c("")
vardep="classes"
result<-mcacontour(dataf=dataf,listconti,listclass,vardep)
mcacontourjit

Contour plots and MCA function for classification modeling

Description

This function is similar to mcacontour but points are jittered in every plot

Usage

mcacontourjit(dataf=dataf,jit=0.1,alpha1=0.8,alpha2=0.8,alpha3=0.7,title="",...)""

Arguments

dataf data frame.
jit jit distance. Default 0.1.
alpha1 alpha transparency for majoritary class
alpha2 alpha transparency for minoritary class
alpha3 alpha transparency for fit probability plots
title plot main title
... options to be passed from mcacontour

Value

A list with the following objects:

graph1 plot of points on MCA two dimensions
graph2 plot of points and variables
graph3 plot of points and contour curves
graph4 plot of points, contour curves and variables
graph5 plot of points colored by fitted probability
graph6 plot of points colored by abs difference

Examples

data(breastwisconsin1)
dataf<-breastwisconsin1
listconti=c("clump_thickness","uniformity_of_cell_shape","mitosis")
listclass=c("")
vardep="classes"
result<-mcacontourjit(dataf=dataf,listconti=listconti,listclass=listclass,vardep=vardep,jit=0.1)
mcamodelobis

Basic MCA function for classification

Description
This function presents visual graphics by means of Multiple correspondence Analysis projection. Interval variables are categorized to bins. Dependent classification variable is set as supplementary variable. It is used as base for mcacontour function.

Usage
mcamodelobis(dataf=dataf, listconti, listclass, vardep, bins=8, selec=1, Dime1="Dim.1", Dime2="Dim.2")

Arguments
dataf data frame.
listconti Interval variables to use, in format c("var1","var2"...).
listclass Class variables to use, in format c("var1","var2"...).
vardep Dependent binary classification variable.
bins Number of bins for categorize interval variables.
selec 1 if stepwise logistic variable selection is required, 0 if not.
Dime1, Dime2 MCA Dimensions to consider. Dim.1 and Dim.2 by default.

Value
A list with the following objects:
df1 dataset used for graph1
df2 dataset used for graph2
df3 dataset used for graph2
listconti interval variables used
listclass class variables used
axisx axis definition in plot
axisy axis definition in plot

Examples
data(breastwisconsin1)
dataf<-breastwisconsin1
listconti=c("clump_thickness","uniformity_of_cell_shape","mitosis")
listclass=c("")
vardep="classes"
result<-mcacontour(dataf=dataf, listconti, listclass, vardep, bins=8, title="", selec=1)
nba dataset

Description
nba dataset

Usage
data(nba)

Format
An object of class data.frame with 1340 rows and 21 columns.

Source
https://data.world/exercises/logistic-regression-exercise-1

Pima indian diabetes dataset

Description
Pima indian diabetes dataset

Usage
data(pima)

Format
An object of class data.frame with 768 rows and 9 columns.

Source
https://sci2s.ugr.es/keel/dataset.php?cod=21
spiral sample data

Description
spiral sample data

Usage
data(spiral)

Format
An object of class data.frame with 803 rows and 3 columns.
Index

* **FAMD**
 famdcontour, 2
 famdcontourlabel, 5

* **MCA**
 mcacontour, 7
 mcacontourjit, 9
 mcamodelobis, 10

* **classification**
 famdcontour, 2
 famdcontourlabel, 5
 mcacontour, 7
 mcacontourjit, 9

* **contour_curves**
 famdcontour, 2
 famdcontourlabel, 5
 mcacontour, 7
 mcacontourjit, 9

* **datasets**
 breastwisconsin1, 2
 Hmda, 6
 nba, 11
 pima, 11
 spiral, 12

* **outliers**
 famdcontourlabel, 5

 breastwisconsin1, 2
 famdcontour, 2
 famdcontourlabel, 5

 Hmda, 6
 mcacontour, 7
 mcacontourjit, 9
 mcamodelobis, 10

 nba, 11
 pima, 11
 spiral, 12