Package ‘vivainsights’

May 22, 2023

Type Package
Title Analyze and Visualize Data from ‘Microsoft Viva Insights’
Version 0.3.1
Maintainer Martin Chan <martin.chan@microsoft.com>
Description Provides a versatile range of functions, including exploratory data analysis, time-series analysis, and data validation, whilst at the same time implements a set of best practices in analyzing and visualizing data specific to 'Microsoft Viva Insights'.
RoxygenNote 7.2.3
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Language en-US
Depends R (>= 3.1.2)
Imports dplyr, stats, utils, tidyselect (>= 1.0.0), magrittr, ggplot2, DT, reshape2, scales, ggrepel, purrr, data.table, methods, htmltools, markdown, networkD3, rmarkdown, wpa, ggraph, igraph, tidytext, ggwordcloud
Suggests flexdashboard
URL https://microsoft.github.io/vivainsights/
NeedsCompilation no
Author Martin Chan [aut, cre], Carlos Morales [aut]
Repository CRAN
Date/Publication 2023-05-22 13:10:02 UTC

R topics documented:

 afterhours_dist .. 4
 afterhours_fizz .. 6
 afterhours_line .. 7
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>afterhours_rank</td>
<td>8</td>
</tr>
<tr>
<td>afterhours_summary</td>
<td>10</td>
</tr>
<tr>
<td>afterhours_trend</td>
<td>11</td>
</tr>
<tr>
<td>anonymise</td>
<td>13</td>
</tr>
<tr>
<td>camel_clean</td>
<td>14</td>
</tr>
<tr>
<td>check_inputs</td>
<td>14</td>
</tr>
<tr>
<td>check_query</td>
<td>15</td>
</tr>
<tr>
<td>collaboration_area</td>
<td>17</td>
</tr>
<tr>
<td>collaboration_dist</td>
<td>18</td>
</tr>
<tr>
<td>collaboration_fizz</td>
<td>20</td>
</tr>
<tr>
<td>collaboration_line</td>
<td>21</td>
</tr>
<tr>
<td>collaboration_rank</td>
<td>23</td>
</tr>
<tr>
<td>collaboration_sum</td>
<td>25</td>
</tr>
<tr>
<td>collaboration_trend</td>
<td>26</td>
</tr>
<tr>
<td>comma</td>
<td>28</td>
</tr>
<tr>
<td>copy_df</td>
<td>28</td>
</tr>
<tr>
<td>create_bar</td>
<td>29</td>
</tr>
<tr>
<td>create_bar_asis</td>
<td>31</td>
</tr>
<tr>
<td>create_boxplot</td>
<td>33</td>
</tr>
<tr>
<td>create_bubble</td>
<td>35</td>
</tr>
<tr>
<td>create_density</td>
<td>36</td>
</tr>
<tr>
<td>create_dist</td>
<td>38</td>
</tr>
<tr>
<td>create_dt</td>
<td>40</td>
</tr>
<tr>
<td>create_fizz</td>
<td>41</td>
</tr>
<tr>
<td>create_hist</td>
<td>42</td>
</tr>
<tr>
<td>create_inc</td>
<td>44</td>
</tr>
<tr>
<td>create_line</td>
<td>46</td>
</tr>
<tr>
<td>create_line_asis</td>
<td>47</td>
</tr>
<tr>
<td>create_period_scatter</td>
<td>49</td>
</tr>
<tr>
<td>create_rank</td>
<td>51</td>
</tr>
<tr>
<td>create_rank_combine</td>
<td>53</td>
</tr>
<tr>
<td>create_scatter</td>
<td>54</td>
</tr>
<tr>
<td>create_stacked</td>
<td>56</td>
</tr>
<tr>
<td>create_tracking</td>
<td>58</td>
</tr>
<tr>
<td>create_trend</td>
<td>60</td>
</tr>
<tr>
<td>cut_hour</td>
<td>61</td>
</tr>
<tr>
<td>email_dist</td>
<td>62</td>
</tr>
<tr>
<td>email_fizz</td>
<td>64</td>
</tr>
<tr>
<td>email_line</td>
<td>65</td>
</tr>
<tr>
<td>email_rank</td>
<td>66</td>
</tr>
<tr>
<td>email_summary</td>
<td>68</td>
</tr>
<tr>
<td>email_trend</td>
<td>70</td>
</tr>
<tr>
<td>export</td>
<td>71</td>
</tr>
<tr>
<td>external_dist</td>
<td>72</td>
</tr>
<tr>
<td>external_fizz</td>
<td>74</td>
</tr>
<tr>
<td>external_line</td>
<td>75</td>
</tr>
<tr>
<td>external_rank</td>
<td>76</td>
</tr>
<tr>
<td>external_sum</td>
<td>78</td>
</tr>
</tbody>
</table>
R topics documented:

extract_date_range .. 79
extract_hr ... 80
flag_ch_ratio ... 81
flag_em_ratio ... 82
flag_extreme .. 83
flag_outlooktime ... 85
generate_report .. 86
generate_report2 ... 88
heat_colours ... 89
hrvar_count .. 90
hrvar_count_all ... 91
hrvar_trend ... 92
hr_trend .. 93
identify_churn .. 94
identify_datefreq .. 96
identify_holidayweeks ... 98
identify_inactiveweeks ... 99
identify_nkw ... 100
identify_outlier ... 101
identify_privacythreshold 102
identify_shifts ... 103
identify_tenure .. 104
import_query .. 106
is_date_format .. 106
jitter_metrics ... 107
keymetrics_scan ... 108
keymetrics_scan_asis .. 110
maxmin .. 112
meeting_dist ... 113
meeting_fizz ... 114
meeting_line .. 116
meeting_rank .. 117
meeting_summary ... 119
meeting_tm_report ... 120
meeting_trend ... 121
mt_data .. 122
one2one_dist .. 124
one2one_fizz ... 125
one2one_freq .. 127
one2one_line ... 129
one2one_rank ... 130
one2one_sum ... 132
one2one_trend ... 133
pad2 ... 134
pairwise_count .. 135
pq_data .. 136
read_preamble .. 140
rgb2hex .. 141
afterhours_dist

Distribution of After-hours Collaboration Hours as a 100% stacked bar

Description

Analyse the distribution of weekly after-hours collaboration time. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
afterhours_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(1, 2, 3)
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"
See Value for more information.

cut A vector specifying the cuts to use for the data, accepting "default" or "range-cut" as character vector, or a numeric value of length three to specify the exact breaks to use. e.g. c(1, 3, 5)

Details

Uses the metric After_hours_collaboration_hours. See create_dist() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": `ggplot` object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), external_rank()

Examples

Return plot
afterhours_dist(pq_data, hrvar = "Organization")

Return summary table
afterhours_dist(pq_data, hrvar = "Organization", return = "table")

Return result with a custom specified breaks
afterhours_dist(pq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
afterhours_fizz Distribution of After-hours Collaboration Hours (Fizzy Drink plot)

Description
Analyze weekly after-hours collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage
afterhours_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments
data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 See Value for more information.

Details
Uses the metric After_hours_collaboration_hours. See create_fizz() for applying the same analysis to a different metric.

Value
A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A jittered scatter plot for the metric.
 • "table": data frame. A summary table for the metric.

See Also
Other Visualization: afterhours_dist(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend()
afterhours_line

- `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`,
- `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`,
- `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`,
- `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other After-hours Collaboration: `afterhours_dist()`, `afterhours_line()`, `afterhours_rank()`,
`afterhours_summary()`, `afterhours_trend()`, `external_rank()`

Examples

Return plot
afterhours_fizz(pq_data, hrvar = "LevelDesignation", return = "plot")

Return summary table
afterhours_fizz(pq_data, hrvar = "Organization", return = "table")

After-hours Collaboration Time Trend - Line Chart

Description

Provides a week by week view of after-hours collaboration time, visualized as line charts. By default returns a line chart for after-hours collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

afterhours_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data: A Standard Person Query dataset in the form of a data frame.

hrvar: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return: String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Details

Uses the metric `After_hours_collaboration_hours`.
afterhours_rank

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

create_line() for applying the same analysis to a different metric.

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_rank(), afterhours_summary(), afterhours_trend(), external_rank()

Examples

Return a line plot
afterhours_line(pq_data, hrvar = "LevelDesignation")

Return summary table
afterhours_line(pq_data, hrvar = "LevelDesignation", return = "table")

Description

This function scans a Standard Person Query for groups with high levels of After-Hours Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of After-Hours Collaboration Hours.

Usage

afterhours_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **mode**: String to specify calculation mode. Must be either:
 - "simple"
 - "combine"
- **plot_mode**: Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`. Must be either
 - 1: Top and bottom five groups across the data population are highlighted
 - 2: Top and bottom groups per organizational attribute are highlighted
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot" (default)
 - "table"
 See Value for more information.

Details

Uses the metric `After_hours_collaboration_hours`. See `create_rank()` for applying the same analysis to a different metric.

Value

When 'table' is passed in `return`, a summary table is returned as a data frame.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`.
afterhours_summary

Description

Provides an overview analysis of after-hours collaboration time. Returns a bar plot showing average weekly after-hours collaboration hours by default. Additional options available to return a summary table.

Usage

afterhours_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 See Value for more information.

Details

Uses the metric After_hours_collaboration_hours.
afterhours_trend

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_trend(), external_rank()

Examples

Return a ggplot bar chart
afterhours_summary(pq_data, hrvar = "LevelDesignation")

Return a summary table
afterhours_summary(pq_data, hrvar = "LevelDesignation", return = "table")

afterhours_trend After-Hours Time Trend

Description

Provides a week by week view of after-hours collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

afterhours_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric After_hours_collaboration_hours.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), external_rank()

Examples

Run plot
afterhours_trend(pq_data)

Run table
afterhours_trend(pq_data, hrvar = "LevelDesignation", return = "table")
Anonymise categorical variables such as HR variables by replacing values with dummy team names such as 'Team A'. The behaviour is to make 1 to 1 replacements by default, but there is an option to completely randomise values in the categorical variable.

Arguments

- **x**: Character vector to be passed through.
- **scramble**: Logical value determining whether to randomise values in the categorical variable.
- **replacement**: Character vector containing the values to replace original values in the categorical variable. The length of the vector must be at least as great as the number of unique values in the original variable. Defaults to NULL, where the replacement would consist of "Team A", "Team B", etc.

Value

Character vector with the same length as input x, replaced with values provided in replacement.

Examples

```r
unique(anonymise(pq_data$Organization))
rep <- c("Manager+", "Manager", "IC")
unique(anonymise(pq_data$Layer), replacement = rep)
```
camel_clean

Convert "CamelCase" to "Camel Case"

Description

Convert a text string from the format "CamelCase" to "Camel Case". This is used for converting variable names such as "LevelDesignation" to "Level Designation" for the purpose of prettifying plot labels.

Usage

camel_clean(string)

Arguments

string
A string vector in 'CamelCase' format to format

Value

Returns a formatted string.

See Also

Other Support: check_inputs(). cut_hour(). extract_date_range(). extract_hr(). heat_colours(). is_date_format(). maxmin(). pairwise_count(). read_preamble(). rgb2hex(). totals_bind(). totals_col(). tstamp(). us_to_space(). wrap()

Examples

camel_clean("NoteHowTheStringIsFormatted")

check_inputs

Check whether a data frame contains all the required variable

Description

Checks whether a data frame contains all the required variables. Matching works via variable names, and used to support individual functions in the package. Not used directly.

Usage

check_inputs(input, requirements, return = "stop")
check_query

Arguments

 input Pass a data frame for checking
 requirements A character vector specifying the required variable names
 return A character string specifying what to return. The default value is "stop". Also accepts "names" and "warning".

Value

 The default behaviour is to return an error message, informing the user what variables are not included. When return is set to "names", a character vector containing the unmatched variable names is returned.

See Also

 Other Support: camel_clean(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

 # Return error message
 ## Not run:
 check_inputs(iris, c("Sepal.Length", "mpg"))
 ## End(Not run)

 #' # Return warning message
 check_inputs(iris, c("Sepal.Length", "mpg"), return = "warning")

 # Return variable names
 check_inputs(iris, c("Sepal.Length", "Sepal.Width", "RandomVariable"), return = "names")

check_query Check a query to ensure that it is suitable for analysis

Description

 Prints diagnostic data about the data query to the R console, with information such as date range, number of employees, HR attributes identified, etc.

Usage

 check_query(data, return = "message", validation = FALSE)
Arguments

data A person-level query in the form of a data frame. This includes:
 • Standard Person Query
 • Ways of Working Assessment Query
 • Hourly Collaboration Query

All person-level queries have a PersonId column and a MetricDate column.

return String specifying what to return. This must be one of the following strings:
 • "message" (default)
 • "text"

See Value for more information.

validation Logical value to specify whether to show summarized version. Defaults to FALSE. To hide checks on variable names, set validation to TRUE.

Details

This can be used with any person-level query, such as the standard person query, Ways of Working assessment query, and the hourly collaboration query. When run, this prints diagnostic data to the R console.

Value

A different output is returned depending on the value passed to the return argument:

 • "message": a message is returned to the console.
 • "text": string containing the diagnostic message.

See Also

Other Data Validation: extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

class.check_query(pq_data)
collaboration_area

Description

Provides an overview analysis of Weekly Digital Collaboration. Returns an stacked area plot of Email and Meeting Hours by default. Additional options available to return a summary table.

Usage

collaboration_area(data, hrvar = NULL, mingroup = 5, return = "plot")

collab_area(data, hrvar = NULL, mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame. A Ways of Working assessment dataset may also be provided, in which Unscheduled call hours would be included in the output.

hrvar HR Variable by which to split metrics, defaults to NULL, but accepts any character vector, e.g. "LevelDesignation". If NULL is passed, the organizational attribute is automatically populated as "Total".

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

Details

Uses the metrics Meeting_hours, Email_hours, Unscheduled_Call_hours, and Instant_Message_hours.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": `ggplot` object. A stacked area plot for the metric.
• "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend()

Examples

Return plot with total (default)
collaboration_area(pq_data)

Return plot with hrvar split
collaboration_area(pq_data, hrvar = "Organization")

Return summary table
collaboration_area(pq_data, return = "table")

collaboration_dist

Distribution of Collaboration Hours as a 100% stacked bar

Description

Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

collaboration_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(15, 20, 25)
)

collab_dist(
 data,
hrvar = "Organization",
mingroup = 5,
return = "plot",
cut = c(15, 20, 25)
)

Arguments

data
A Standard Person Query dataset in the form of a data frame.

hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return
String specifying what to return. This must be one of the following strings:
- "plot"
- "table"
See Value for more information.

cut
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:
- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend()
Examples

Return plot
collaboration_dist(pq_data, hrvar = "Organization")

Return summary table
collaboration_dist(pq_data, hrvar = "Organization", return = "table")

collaboration_fizz Distribution of Collaboration Hours (Fizzy Drink plot)

Description

Analyze weekly collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

collaboration_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A jittered scatter plot for the metric.
 • "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.
collaboration_line

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend()

Examples

Return plot
collaboration_fizz(pq_data, hrvar = "Organization", return = "plot")

Return summary table
collaboration_fizz(pq_data, hrvar = "Organization", return = "table")

collaboration_line Collaboration Time Trend - Line Chart

Description

Provides a week by week view of collaboration time, visualised as line charts. By default returns a line chart for collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

collaboration_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
migroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
• "plot"
• "table"
See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
• "plot": ‘ggplot’ object. A faceted line plot for the metric.
• "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_rank(), collaboration_sum(), collaboration_trend()

Examples

Return a line plot
collaboration_line(pq_data, hrvar = "LevelDesignation")

Return summary table
collaboration_line(pq_data, hrvar = "LevelDesignation", return = "table")
collaboration_rank

Collaboration Ranking

Description
This function scans a standard query output for groups with high levels of 'Weekly Digital Collaboration'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

Usage
collaboration_rank(
data,
hrvar = extract_hr(data),
mingroup = 5,
mode = "simple",
plot_mode = 1,
return = "plot"
)
collab_rank(
data,
hrvar = extract_hr(data),
mingroup = 5,
mode = "simple",
plot_mode = 1,
return = "plot"
)

Arguments
data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
mode String to specify calculation mode. Must be either:
 • "simple"
 • "combine"
plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
 • 1: Top and bottom five groups across the data population are highlighted
 • 2: Top and bottom groups per organizational attribute are highlighted
return String specifying what to return. This must be one of the following strings:
collaboration_rank

- "plot" (default)
- "table"

See Value for more information.

Details

Uses the metric Collaboration_hours. See create_rank() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(),create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_sum(), collaboration_trend()

Examples

```r
# Return rank table
collaboration_rank(
  data = pq_data,
  return = "table"
)

# Return plot
collaboration_rank(
  data = pq_data,
  return = "plot"
)```
collaboration_sum

Collaboration Summary

Description

Provides an overview analysis of 'Weekly Digital Collaboration'. Returns a stacked bar plot of Email and Meeting Hours by default. Additional options available to return a summary table.

Usage

```r
collaboration_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
collaboration_summary(
data,
hrvar = "Organization",
mingroup = 5,
return = "plot"
)
collab_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metrics `Meeting_hours`, `Email_hours`, `Unscheduled_Call_hours`, and `Instant_Message_hours`.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in `return`. When 'table' is passed, a summary table is returned as a data frame.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_trend()

Examples

# Return a ggplot bar chart
```
collaboration_sum(pq_data, hrvar = "LevelDesignation")
```

# Return a summary table
```
collaboration_sum(pq_data, hrvar = "LevelDesignation", return = "table")
```

---

**collaboration_trend**  
*Collaboration Time Trend*

Description

Provides a week by week view of collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

```
collaboration_trend(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot"
)
```

Arguments

data  
A Standard Person Query dataset in the form of a data frame.
collaboration_trend

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

ingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum()

Examples

# Run plot
collaboration_trend(pq_data)

# Run table
collaboration_trend(pq_data, hrvar = "LevelDesignation", return = "table")
### comma

*Add comma separator for thousands*

**Description**

Takes a numeric value and returns a character value which is rounded to the whole number, and adds a comma separator at the thousands. A convenient wrapper function around `round()` and `format()`.

**Usage**

```r
c comma(x)
```

**Arguments**

- **x**: A numeric value

**Value**

Returns a formatted string.

---

### copy_df

*Copy a data frame to clipboard for pasting in Excel*

**Description**

This is a pipe-optimised function, that feeds into `vivainsights::export()`, but can be used as a stand-alone function.

Based on the original function from [https://github.com/martinctc/surveytoolbox](https://github.com/martinctc/surveytoolbox).

**Usage**

```r
copy_df(x, row.names = FALSE, col.names = TRUE, quietly = FALSE, ...)
```

**Arguments**

- **x**: Data frame to be passed through. Cannot contain list-columns or nested data frames.
- **row.names**: A logical vector for specifying whether to allow row names. Defaults to FALSE.
- **col.names**: A logical vector for specifying whether to allow column names. Defaults to FALSE.
- **quietly**: Set this to TRUE to not print data frame on console
- **...**: Additional arguments for `write.table()`.
create_bar

Mean Bar Plot for any metric

Description
Provides an overview analysis of a selected metric by calculating a mean per metric. Returns a bar plot showing the average of a selected metric by default. Additional options available to return a summary table.

Usage
create_bar(
  data,
  metric,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  bar_colour = "default",
  na.rm = FALSE,
  percent = FALSE,
  plot_title = us_to_space(metric),
  plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))),
  legend_lab = NULL,
  rank = "descending",
  xlim = NULL,
  text_just = 0.5,
  text_colour = "#FFFFFF"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A Standard Person Query dataset in the form of a data frame.</td>
</tr>
<tr>
<td>metric</td>
<td>Character string containing the name of the metric, e.g. &quot;Collaboration_hours&quot;</td>
</tr>
<tr>
<td>hrvar</td>
<td>String containing the name of the HR Variable by which to split metrics. Defaults to &quot;Organization&quot;. To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).</td>
</tr>
<tr>
<td>mingroup</td>
<td>Numeric value setting the privacy threshold / minimum group size. Defaults to 5.</td>
</tr>
<tr>
<td>return</td>
<td>String specifying what to return. This must be one of the following strings:</td>
</tr>
</tbody>
</table>

See Also
Other Import and Export: create_dt(), export(), import_query()
create_bar

- "plot"
- "table"

See Value for more information.

bar_colour String to specify colour to use for bars. In-built accepted values include "default" (default), "alert" (red), and "darkblue". Otherwise, hex codes are also accepted. You can also supply RGB values via rgb2hex().

na.rm A logical value indicating whether NA should be stripped before the computation proceeds. Defaults to FALSE.

percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

plot_title An option to override plot title.

plot_subtitle An option to override plot subtitle.

legend_lab String. Option to override legend title/label. Defaults to NULL, where the metric name will be populated instead.

rank String specifying how to rank the bars. Valid inputs are:
  - "descending" - ranked highest to lowest from top to bottom (default).
  - "ascending" - ranked lowest to highest from top to bottom.
  - NULL - uses the original levels of the HR attribute.

xlim An option to set max value in x axis.

text_just [Experimental] A numeric value controlling for the horizontal position of the text labels. Defaults to 0.5.

text_colour [Experimental] String to specify colour to use for the text labels. Defaults to "#FFFFFF".

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_perperiod_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
Other Flexible: `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`

Examples

# Return a ggplot bar chart
create_bar(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation")

# Change bar colour
create_bar(pq_data,
metric = "After_hours_collaboration_hours",
bar_colour = "alert")

# Custom data label positions and formatting
pq_data %>%
create_bar(
metric = "Meetings",
text_just = 1.1,
text_colour = "black",
xlim = 20)

# Return a summary table
create_bar(pq_data,
metric = "Collaboration_hours",
hrvar = "LevelDesignation",
return = "table")

---

create_bar_asis

Create a bar chart without aggregation for any metric

Description

This function creates a bar chart directly from the aggregated / summarised data. Unlike `create_bar()` which performs a person-level aggregation, there is no calculation for `create_bar_asis()` and the values are rendered as they are passed into the function.

Usage

create_bar_asis(
data,
group_var,
bar_var,
title = NULL,
subtitle = NULL,
caption = NULL,
ylab = group_var,
xlab = bar_var,
percent = FALSE,
bar_colour = "default",
rounding = 1
)

Arguments

- **data**: Plotting data as a data frame.
- **group_var**: String containing name of variable for the group.
- **bar_var**: String containing name of variable representing the value of the bars.
- **title**: Title of the plot.
- **subtitle**: Subtitle of the plot.
- **caption**: Caption of the plot.
- **ylab**: Y-axis label for the plot (group axis)
- **xlab**: X-axis label of the plot (bar axis).
- **percent**: Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.
- **bar_colour**: String to specify colour to use for bars. In-built accepted values include "default" (default), "alert" (red), and "darkblue". Otherwise, hex codes are also accepted. You can also supply RGB values via rgb2hex().
- **rounding**: Numeric value to specify number of digits to show in data labels

Value

- 'ggplot' object. A horizontal bar plot.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()
Examples

# Creating a custom bar plot without mean aggregation
library(dplyr)

pq_data %>%
  group_by(Organization) %>%
  summarise(across(.cols = Meeting_hours, .fns = ~sum(.), na.rm = TRUE)) %>%
create_bar_asis(group_var = "Organization",
                bar_var = "Meeting_hours",
                title = "Total Meeting Hours over period",
                subtitle = "By Organization",
                caption = extract_date_range(pq_data, return = "text"),
                bar_colour = "darkblue",
                rounding = 0)

library(dplyr)

# Summarise Non-person-average median 'Emails_sent'
m ed_df <-
  pq_data %>%
  group_by(Organization) %>%
  summarise(Emails_sent_median = median(Emails_sent))

med_df %>%
create_bar_asis(
  group_var = "Organization",
  bar_var = "Emails_sent_median",
  title = "Emails sent by organization",
  subtitle = "Median values",
  bar_colour = "darkblue",
  caption = extract_date_range(pq_data, return = "text")
)

create_boxplot

Box Plot for any metric

Description

Analyzes a selected metric and returns a box plot by default. Additional options available to return a table with distribution elements.

Usage

create_boxplot(
  data,
  metric,
hrvar = "Organization",
mingroup = 5,
return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"
  See Value for more information.

Details

This is a general purpose function that powers all the functions in the package that produce box plots.

Value

A different output is returned depending on the value passed to the return argument:
  • "plot": ‘ggplot’ object. A box plot for the metric.
  • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar_asis(), create_bar(), create_bubble(), create_dist(),
create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(),
create_rank(), create_scatter(), create_stacked(), create_tracking(). create_trend(),
email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(),
external_dist(), external_fizz(), external_line(), external_rank(), external_sum(),
hvvar_trend(), hvvar_count(), hvvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(),
meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(),
one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_bubble(), create_density(), create_dist(),
create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(),
create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()
create_bubble

Examples

# Create a box plot for Collaboration_hours by Level Designation
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")

# Create a box plot for Collaboration_hours by Organization
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "plot")

# Create a summary statistics table for Collaboration_hours by Organization
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

---

create_bubble

Create a bubble plot with two selected Viva Insights metrics (General Purpose), with size representing the number of employees in the group.

Description

Returns a bubble plot of two selected metrics, using size to map the number of employees.

Usage

create_bubble(
  data,
  metric_x,  # Character string containing the name of the metric, e.g. "Collaboration_hours"
  metric_y,  # Character string containing the name of the metric, e.g. "Collaboration_hours"
  hrvar = "Organization",  # HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
  mingroup = 5,  # Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
  return = "plot",  # String specifying what to return. This must be one of the following strings: - "plot" - "table"
  bubble_size = c(1, 10)  # A numeric vector of length two to specify the size range of the bubbles
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric_x Character string containing the name of the metric, e.g. "Collaboration_hours"
metric_y Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings: - "plot" - "table"
bubble_size A numeric vector of length two to specify the size range of the bubbles
Details

This is a general purpose function that powers all the functions in the package that produce bubble plots.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Examples

create_bubble(pq_data, "Collaboration_hours", "Multitasking_hours", hrvar ="Organization")

create_density

Create a density plot for any metric

Description

Provides an analysis of the distribution of a selected metric. Returns a faceted density plot by default. Additional options available to return the underlying frequency table.
create_density

Usage

create_density(
  data,
  metric,
  hrvar = "Organization",
  mingroup = 5,
  ncol = NULL,
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric String containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
ncol Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"
  • "data"
  • "frequency"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": `ggplot` object. A faceted density plot for the metric.
  • "table": data frame. A summary table for the metric.
  • "data": data frame. Data with calculated person averages.
  • "frequency": list of data frames. Each data frame contains the frequencies used in each panel of the plotted histogram.

See Also

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()
Examples

# Return plot for whole organization
create_density(pq_data, metric = "Collaboration_hours", hrvar = NULL)

# Return plot
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization")

# Return plot but coerce plot to three columns
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 3)

# Return summary table
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

create_dist  

Horizontal 100 percent stacked bar plot for any metric

Description

Provides an analysis of the distribution of a selected metric. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

create_dist(
data, 
metric, 
hrvar = "Organization", 
mingroup = 5, 
return = "plot", 
cut = c(15, 20, 25), 
dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), 
unit = "hours", 
lbound = 0, 
ubound = 200, 
sort_by = NULL, 
labels = NULL
)

Arguments

data  
A Standard Person Query dataset in the form of a data frame.

metric  
String containing the name of the metric, e.g. "Collaboration_hours"

hrvar  
String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup  
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
create_dist

return
String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

cut
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

dist_colours
A character vector of length four to specify colour codes for the stacked bars.

unit
String to specify what unit to use. This defaults to "hours" but can accept any custom string. See cut_hour() for more details.

lbound
Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0.

ubound
Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100.

sort_by
String to specify the bucket label to sort by. Defaults to NULL (no sorting).

labels
Character vector to override labels for the created categorical variables. Must be a named vector - see examples.

Value
A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Examples
# Return plot
create_dist(pq_data, metric = "Collaboration_hours", hrvar = "Organization")
# Return summary table
create_dist(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

# Use custom labels by providing a label vector
eh_labels <- c(
  "Fewer than fifteen" = "< 15 hours",
  "Between fifteen and twenty" = "15 - 20 hours",
  "Between twenty and twenty-five" = "20 - 25 hours",
  "More than twenty-five" = "25+ hours"
)
pq_data %>% create_dist(metric = "Meeting_hours", labels = eh_labels, return = "plot")

# Sort by a category
pq_data %>% create_dist(metric = "Collaboration_hours", sort_by = "25+ hours")

---

**create_dt**

Create interactive tables in HTML with 'download' buttons.

**Description**


**Usage**

create_dt(x, rounding = 1, freeze = 2, percent = FALSE)

**Arguments**

- **x**: Data frame to be passed through.
- **rounding**: Numeric vector to specify the number of decimal points to display
- **freeze**: Number of columns from the left to 'freeze'. Defaults to 2, which includes the row number column.
- **percent**: Logical value specifying whether to display numeric columns as percentages.

**Value**

Returns an HTML widget displaying rectangular data.

**See Also**

Other Import and Export: `copy_df()`, `export()`, `import_query()`
### Description

Analyzes a selected metric and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

### Usage

```r
create_fizz(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot"
)
```

### Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.

### Details

This is a general purpose function that powers all the functions in the package that produce 'fizzy drink' / jittered scatter plots.

### Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Examples

# Create a fizzy plot for Collaboration hours by Level Designation
create_fizz(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")

# Create a summary statistics table for Collaboration hours by Organization
create_fizz(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

create_hist

Create a histogram plot for any metric

Description

Provides an analysis of the distribution of a selected metric. Returns a faceted histogram by default. Additional options available to return the underlying frequency table.

Usage

create_hist(
  data,
  metric,
  hrvar = "Organization",
  mingroup = 5,
  binwidth = 1,
  ncol = NULL,
  return = "plot"
)
**Arguments**

- **data**
  A Standard Person Query dataset in the form of a data frame.

- **metric**
  String containing the name of the metric, e.g. "Collaboration_hours"

- **hrvar**
  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

- **mingroup**
  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- **binwidth**
  Numeric value for setting binwidth argument within ggplot2::geom_histogram(). Defaults to 1.

- **ncol**
  Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).

- **return**
  String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  - "data"
  - "frequency"
  See `Value` for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A faceted histogram for the metric.
- "table": data frame. A summary table for the metric.
- "data": data frame. Data with calculated person averages.
- "frequency": list of data frames. Each data frame contains the frequencies used in each panel of the plotted histogram.

**See Also**

Other Flexible: `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`

**Examples**

```r
Return plot for whole organization
create_hist(pq_data, metric = "Collaboration_hours", hrvar = NULL)

Return plot
create_hist(pq_data, metric = "Collaboration_hours", hrvar = "Organization")

Return plot but coerce plot to 3 columns
create_hist(pq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 3)

Return summary table
create_hist(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
```
create_inc

Create an incidence analysis reflecting proportion of population scoring above or below a threshold for a metric

Description

An incidence analysis is generated, with each value in the table reflecting the proportion of the population that is above or below a threshold for a specified metric. There is an option to only provide a single hrvar in which a bar plot is generated, or two hrvar values where an incidence table (heatmap) is generated.

Usage

create_inc(
  data,
  metric,
  hrvar,
  mingroup = 5,
  threshold,
  position,
  return = "plot"
)

create_incidence(
  data,
  metric,
  hrvar,
  mingroup = 5,
  threshold,
  position,
  return = "plot"
)

Arguments

data
metric
hrvar
mingroup
threshold
position

A Standard Person Query dataset in the form of a data frame.
Character string containing the name of the metric, e.g. "Collaboration_hours"
Character vector of at most length 2 containing the name of the HR Variable by which to split metrics.
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
Numeric value specifying the threshold.
String containing the below valid values:
  • "above": show incidence of those equal to or above the threshold
  • "below": show incidence of those equal to or below the threshold
create_inc

return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A heat map.
- "table": data frame. A summary table.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Examples

# Only a single HR attribute
create_inc(
  data = pq_data,
  metric = "After_hours_collaboration_hours",
  hrvar = "Organization",
  threshold = 4,
  position = "above"
)

# Two HR attributes
create_inc(
  data = pq_data,
  metric = "Collaboration_hours",
  hrvar = c("LevelDesignation", "Organization"),
  threshold = 20,
  position = "below"
)
Description

Provides a week by week view of a selected metric, visualised as line charts. By default returns a line chart for the defined metric, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

```r
create_line(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 ncol = NULL,
 return = "plot"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
col Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"

See Value for more information.

Details

This is a general purpose function that powers all the functions in the package that produce faceted line plots.

Value

A different output is returned depending on the value passed to the return argument:
  • "plot": 'ggplot' object. A faceted line plot for the metric.
  • "table": data frame. A summary table for the metric.
Create a line chart without aggregation for any metric

Description

This function creates a line chart directly from the aggregated / summarised data. Unlike `create_line()` which performs a person-level aggregation, there is no calculation for `create_line_asis()` and the values are rendered as they are passed into the function. The only requirement is that a date_var is provided for the x-axis.
Usage

```r
create_line_asis(
 data,
 date_var = "MetricDate",
 metric,
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 ylab = date_var,
 xlab = metric,
 line_colour = rgb2hex(0, 120, 212)
)
```

Arguments

- **data**: Plotting data as a data frame.
- **date_var**: String containing name of variable for the horizontal axis.
- **metric**: String containing name of variable representing the line.
- **title**: Title of the plot.
- **subtitle**: Subtitle of the plot.
- **caption**: Caption of the plot.
- **ylab**: Y-axis label for the plot (group axis).
- **xlab**: X-axis label of the plot (bar axis).
- **line_colour**: String to specify colour to use for the line. Hex codes are accepted. You can also supply RGB values via `rgb2hex()`.

Value

Returns a `ggplot` object representing a line plot.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Flexible: `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`

Other Time-series: `create_line()`, `create_period_scatter()`, `create_trend()`
create_period_scatter

Examples

library(dplyr)

# Median `Emails_sent` grouped by `MetricDate`
# Without Person Averaging
med_df <-
  pq_data %>%
  group_by(MetricDate) %>%
  summarise(Emails_sent_median = median(Emails_sent))

med_df %>%
  create_line_asis(
    date_var = "MetricDate",
    metric = "Emails_sent_median",
    title = "Median Emails Sent",
    subtitle = "Person Averaging Not Applied",
    caption = extract_date_range(pq_data, return = "text")
  )

create_period_scatter  Period comparison scatter plot for any two metrics

Description

Returns two side-by-side scatter plots representing two selected metrics, using colour to map an HR attribute and size to represent number of employees. Returns a faceted scatter plot by default, with additional options to return a summary table.

Usage

create_period_scatter(
  data,
  hrvar = "Organization",
  metric_x = "Large_and_long_meeting_hours",
  metric_y = "Meeting_hours",
  before_start = min(as.Date(data$MetricDate, "%m/%d/%Y")),
  before_end,
  after_start = as.Date(before_end) + 1,
  after_end = max(as.Date(data$MetricDate, "%m/%d/%Y")),
  before_label = "Period 1",
  after_label = "Period 2",
  mingroup = 5,
  return = "plot"
)
create_period_scatter

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- **metric_x**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **metric_y**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **before_start**: Start date of "before" time period in YYYY-MM-DD
- **before_end**: End date of "before" time period in YYYY-MM-DD
- **after_start**: Start date of "after" time period in YYYY-MM-DD
- **after_end**: End date of "after" time period in YYYY-MM-DD
- **before_label**: String to specify a label for the "before" period. Defaults to "Period 1".
- **after_label**: String to specify a label for the "after" period. Defaults to "Period 2".
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

This is a general purpose function that powers all the functions in the package that produce faceted scatter plots.

Value

Returns a ‘ggplot’ object showing two scatter plots side by side representing the two periods.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Other Time-series: create_line_asis(), create_line(), create_trend()
create_rank

Examples

# Return plot
create_period_scatter(pq_data,
    hrvar = "LevelDesignation",
    before_start = "2022-05-01",
    before_end = "2022-05-31",
    after_start = "2022-06-01",
    after_end = "2022-07-03")

# Return a summary table
create_period_scatter(pq_data, before_end = "2022-05-31", return = "table")

create_rank

Rank all groups across HR attributes on a selected Viva Insights metric

Description

This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.

Usage

create_rank(
    data,
    metric,
    hrvar = extract_hr(data, exclude_constants = TRUE),
    mingroup = 5,
    return = "table",
    mode = "simple",
    plot_mode = 1
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
  • "plot" (default)
create_rank

- "table"
  See Value for more information.

mode String to specify calculation mode. Must be either:
  - "simple"
  - "combine"

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
  - 1: Top and bottom five groups across the data population are highlighted
  - 2: Top and bottom groups per organizational attribute are highlighted

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
- "table": data frame. A summary table for the metric.

Author(s)

Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_scatter(), create_tracking(), create_trend()

Examples

pq_data_small <- dplyr::slice_sample(pq_data, prop = 0.1)

# Plot mode 1 - show top and bottom five groups
create_rank(
create_rank_combine

Create combination pairs of HR variables and run 'create_rank()'.

Description
Create pairwise combinations of HR variables and compute an average of a specified advanced insights metric.

Usage
create_rank_combine(data, hrvar = extract_hr(data), metric, mingroup = 5)

Arguments

data A Standard Person Query dataset in the form of a data frame.
**create_scatter**

Create a Scatter plot with two selected Viva Insights metrics (General Purpose)

**Description**

Returns a scatter plot of two selected metrics, using colour to map an HR attribute. Returns a scatter plot by default, with additional options to return a summary table.

**Arguments**

- **hrvar** String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **metric** Character string containing the name of the metric, e.g. "Collaboration_hours"
- **mingroup** Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

**Details**

This function is called when the `mode` argument in `create_rank()` is specified as "combine".

**Value**

Data frame containing the following variables:

- **hrvar**: placeholder column that denotes the output as "Combined".
- **group**: pairwise combinations of HR attributes with the HR attribute in square brackets followed by the value of the HR attribute.
- Name of the metric (as passed to `metric`)
- **n**

**Examples**

```r
Use a small sample for faster runtime
pq_data_small <- dplyr::slice_sample(pq_data, prop = 0.1)
create_rank_combine(
 data = pq_data_small,
 metric = "Email_hours",
 hrvar = c("Organization", "FunctionType", "LevelDesignation")
)
```

---

**create_scatter**

Create a Scatter plot with two selected Viva Insights metrics (General Purpose)

**Description**

Returns a scatter plot of two selected metrics, using colour to map an HR attribute. Returns a scatter plot by default, with additional options to return a summary table.
create_scatter

Usage

create_scatter(
  data,
  metric_x,
  metric_y,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot"
)

Arguments

data      A Standard Person Query dataset in the form of a data frame.
metric_x  Character string containing the name of the metric, e.g. "Collaboration_hours"
metric_y  Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar     HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
mimgroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return    Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

This is a general purpose function that powers all the functions in the package that produce scatter plots.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_line(), email_fizz(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_stacked(), create_tracking(), create_trend()
Examples

```r
create_scatter(
 pq_data,
 metric_x = "Collaboration_hours",
 metric_y = "Multitasking_hours",
 hrvar = "Organization"
)

create_scatter(
 pq_data,
 metric_x = "Collaboration_hours",
 metric_y = "Multitasking_hours",
 hrvar = "Organization",
 mingroup = 100,
 return = "plot"
)
```

create_stacked

**Horizontal stacked bar plot for any metric**

Description

Creates either a single bar plot, of a stacked bar using selected metrics (where the typical use case is to create different definitions of collaboration hours). Returns a plot by default. Additional options available to return a summary table.

Usage

```r
create_stacked(
 data,
 hrvar = "Organization",
 metrics = c("Meeting_hours", "Email_hours"),
 mingroup = 5,
 return = "plot",
 stack_colours = c("#1d627e", "#34b1e2", "#b4d5dd", "#adc0cb"),
 percent = FALSE,
 plot_title = "Collaboration Hours",
 plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))),
 legend_lab = NULL,
 rank = "descending",
 xlim = NULL,
 text_just = 0.5,
 text_colour = "#FFFFFF"
)
```
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **metrics**: A character vector to specify variables to be used in calculating the "Total" value, e.g. c("Meeting_hours", "Email_hours"). The order of the variable names supplied determine the order in which they appear on the stacked plot.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
- **stack_colours**: A character vector to specify the colour codes for the stacked bar charts.
- **percent**: Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.
- **plot_title**: String. Option to override plot title.
- **plot_subtitle**: String. Option to override plot subtitle.
- **legend_lab**: String. Option to override legend title/label. Defaults to NULL, where the metric name will be populated instead.
- **rank**: String specifying how to rank the bars. Valid inputs are:
  - "descending" - ranked highest to lowest from top to bottom (default).
  - "ascending" - ranked lowest to highest from top to bottom.
  - NULL - uses the original levels of the HR attribute.
- **xlim**: An option to set max value in x axis.
- **text_just**: [Experimental] A numeric value controlling for the horizontal position of the text labels. Defaults to 0.
- **text_colour**: [Experimental] String to specify colour to use for the text labels. Defaults to "#FFFFFF".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend()
keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(),
meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(),
one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(),
create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(),
create_period_scatter(), create_rank(), create_scatter(), create_tracking(), create_trend()

Examples

pq_data %>%
  create_stacked(hrvar = "LevelDesignation",
    metrics = c("Meeting_hours", "Email_hours"),
    return = "plot")

pq_data %>%
  create_stacked(hrvar = "FunctionType",
    metrics = c("Meeting_hours", "Email_hours",
    "Call_hours", "Chat_hours"),
    return = "plot",
    rank = "ascending")

pq_data %>%
  create_stacked(hrvar = "FunctionType",
    metrics = c("Meeting_hours", "Email_hours",
    "Call_hours", "Chat_hours"),
    return = "table")

create_tracking

Create a line chart that tracks metrics over time with a 4-week rolling average

Description

[Experimental]
Create a two-series line chart that visualizes a set of metric over time for the selected population,
with one of the series being a four-week rolling average.

Usage

create_tracking(
  data,
  metric,
  plot_title = us_to_space(metric),
)
create_tracking

plot_subtitle = "Measure over time",
percent = FALSE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours" percentage signs. Defaults to FALSE.
plot_title An option to override plot title.
plot_subtitle An option to override plot subtitle.
percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A time-series plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend() Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_trend()

Examples

pq_data %>%
create_tracking(
    metric = "Collaboration_hours",
    percent = FALSE
)
Heat mapped horizontal bar plot over time for any metric

Description

Provides a week by week view of a selected Viva Insights metric. By default returns a week by week heatmap bar plot, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

```r
create_trend(
 data, metric,
 hrvar = "Organization",
 mingroup = 5,
 palette = c("steelblue4", "aliceblue", "white", "mistyrose1", "tomato1"),
 return = "plot",
 legend_title = "Hours"
)
```

Arguments

- **data** A Standard Person Query dataset in the form of a data frame.
- **metric** Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar** String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup** Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **palette** Character vector containing colour codes, ranked from the lowest value to the highest value. This is passed directly to ggplot2::scale_fill_gradientn().
- **return** Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
- **legend_title** String to be used as the title of the legend. Defaults to "Hours".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hrvar_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking()

Other Time-series: create_line_asis(), create_line(), create_period_scatter()

Examples

create_trend(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation")

# custom colours
create_trend(
  pq_data,
  metric = "Collaboration_hours",
  hrvar = "LevelDesignation",
  palette = c(
    "#FB6107",
    "#F3DE2C",
    "#7CB518",
    "#5C8001"
  )
)

---

cut_hour  
  Convert a numeric variable for hours into categorical

Description

Supply a numeric variable, e.g. Collaboration_hours, and return a character vector.

Usage

cut_hour(metric, cuts, unit = "hours", lbound = 0, ubound = 100)
email_dist

Arguments

metric A numeric variable representing hours.
cuts A numeric vector of minimum length 3 to represent the cut points required. The minimum and maximum values provided in the vector are inclusive.
unit String to specify the unit of the labels. Defaults to "hours".
lbound Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0.
ubound Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100.

Details

This is used within create_dist() for numeric to categorical conversion.

Value

Character vector representing a converted categorical variable, appended with the label of the unit. See examples for more information.

See Also

Other Support: camel_clean(), check_inputs(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

# Direct use
cut_hour(1:30, cuts = c(15, 20, 25))

# Use on a query
cut_hour(pq_data$Collaboration_hours, cuts = c(10, 15, 20))

email_dist Distribution of Email Hours as a 100% stacked bar

Description

Analyze Email Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
email_dist

Usage

e-mail_dist(
data,
    hrvar = "Organization",
    mingroup = 5,
    return = "plot",
    cut = c(0.5, 1, 1.5)
)

Arguments

data  A Standard Person Query dataset in the form of a data frame.
hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mimgroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return  String specifying what to return. This must be one of the following strings:
   • "plot"
   • "table"

See Value for more information.
cut  A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:
   • "plot": 'ggplot' object. A stacked bar plot for the metric.
   • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Emails: email_fizz(), email_line(), email_rank(), email_summary(), email_trend()
Examples

# Return plot
email_dist(pq_data, hrvar = "Organization")

# Return summary table
email_dist(pq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
email_dist(pq_data, hrvar = "LevelDesignation", cut = c(1, 2, 3))

description

email_fizz Distribution of Email Hours (Fizzy Drink plot)

Description

Analyze weekly email hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

email_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A jittered scatter plot for the metric.
  • "table": data frame. A summary table for the metric.
email_line

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
Other Emails: email_dist(), email_line(), email_rank(), email_summary(), email_trend()

Examples

# Return plot
email_fizz(pq_data, hrvar = "Organization", return = "plot")

# Return summary table
email_fizz(pq_data, hrvar = "Organization", return = "table")

description

Provides a week by week view of email time, visualised as line charts. By default returns a line chart for email hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

email_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
• "plot"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object. A faceted line plot for the metric.
• "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Emails: email_dist(), email_fizz(), email_rank(), email_summary(), email_trend()

Examples

# Return a line plot
eemail_line(pq_data, hrvar = "LevelDesignation")

# Return summary table
eemail_line(pq_data, hrvar = "LevelDesignation", return = "table")

----

email_rank          Email Hours Ranking

Description

This function scans a standard query output for groups with high levels of 'Weekly Email Collaboration'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.
email_rank

Usage

email_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode String to specify calculation mode. Must be either:
  • "simple"
  • "combine"

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
  • 1: Top and bottom five groups across the data population are highlighted
  • 2: Top and bottom groups per organizational attribute are highlighted

return String specifying what to return. This must be one of the following strings:
  • "plot" (default)
  • "table"

See Value for more information.

Details

Uses the metric Email_hours. See create_rank() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
  • "table": data frame. A summary table for the metric.
See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()

Other Emails: `email_dist()`, `email_fizz()`, `email_line()`, `email_summary()`, `email_trend()`

Examples

```r
Return rank table
email_rank(
 data = pq_data,
 return = "table"
)

Return plot
email_rank(
 data = pq_data,
 return = "plot"
)
```

## email_summary

**Email Summary**

### Description

Provides an overview analysis of weekly email hours. Returns a bar plot showing average weekly email hours by default. Additional options available to return a summary table.

### Usage

```r
email_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
email_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

### Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Emails: `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_trend()`

Examples

# Return a ggplot bar chart
email_summary(pq_data, hrvar = "LevelDesignation")

# Return a summary table
email_summary(pq_data, hrvar = "LevelDesignation", return = "table")
email_trend

Email Hours Time Trend

Description

Provides a week by week view of email time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

email_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Email_hours.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr的趋势(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Emails: email_dist(), email_fizz(), email_line(), email_rank(), email_summary()


**Examples**

```r
Run plot
e-mail_trend(pq_data)

Run table
e-mail_trend(pq_data, hrvar = "LevelDesignation", return = "table")
```

---

**export**  
*Export 'vivainsights' outputs to CSV, clipboard, or save as images*

**Description**

A general use function to export 'vivainsights' outputs to CSV, clipboard, or save as images. By default, `export()` copies a data frame to the clipboard. If the input is a 'ggplot' object, the default behaviour is to export a PNG.

**Usage**

```r
export(
 x,
 method = "clipboard",
 path = "insights export",
 timestamp = TRUE,
 width = 12,
 height = 9
)
```

**Arguments**

- `x`  
  Data frame or 'ggplot' object to be passed through.

- `method`  
  Character string specifying the method of export. Valid inputs include:
  - "clipboard" (default if input is data frame)
  - "csv"
  - "png" (default if input is 'ggplot' object)
  - "svg"
  - "jpeg"
  - "pdf"

- `path`  
  If exporting a file, enter the path and the desired file name, *excluding the file extension*. For example, "Analysis/SQ Overview".

- `timestamp`  
  Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

- `width`  
  Width of the plot

- `height`  
  Height of the plot
Value

A different output is returned depending on the value passed to the `method` argument:

- "clipboard": no return - data frame is saved to clipboard.
- "csv": CSV file containing data frame is saved to specified path.
- "png": PNG file containing 'ggplot' object is saved to specified path.
- "svg": SVG file containing 'ggplot' object is saved to specified path.
- "jpeg": JPEG file containing 'ggplot' object is saved to specified path.
- "pdf": PDF file containing 'ggplot' object is saved to specified path.

Author(s)

Martin Chan martin.chan@microsoft.com

See Also

Other Import and Export: `copy_df()`, `create_dt()`, `import_query()`

---

external_dist  

**Distribution of External Collaboration Hours as a 100% stacked bar**

Description

Analyze the distribution of External Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
external_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(5, 10, 15)
)
```

Arguments

- **data** A Standard Person Query dataset in the form of a data frame.
- **hrvar** String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup** Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return** String specifying what to return. This must be one of the following strings:
• "plot"
• "table"

See Value for more information.

cut
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Details

Uses the metric External_collaboration_hours. See create_dist() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

• "plot" : 'ggplot' object. A stacked bar plot for the metric.
• "table" : data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Examples

# Return plot
external_dist(pq_data, hrvar = "Organization")

# Return summary table
external_dist(pq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
external_dist(pq_data, hrvar = "LevelDesignation", cut = c(2, 4, 6))
**external_fizz**

*Distribution of External Collaboration Hours (Fizzy Drink plot)*

**Description**

Analyze weekly External Collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

**Usage**

```r
external_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

**Arguments**

- `data` A Standard Person Query dataset in the form of a data frame.
- `hrvar` String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup` Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return` String specifying what to return. This must be one of the following strings:
  - "plot" 
  - "table"
  
  See Value for more information.

**Details**

Uses the metric `Collaboration_hours_external`. See `create_fizz()` for applying the same analysis to a different metric.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`,
**external_line**

```r
external_dist(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
```

Other External Collaboration: `external_dist()`, `external_line()`, `external_sum()`

**Examples**

```r
Return plot
e external_fizz(pq_data, hrvar = "LevelDesignation", return = "plot")

Return summary table
e external_fizz(pq_data, hrvar = "Organization", return = "table")
```

**Description**

Provides a week by week view of External collaboration time, visualized as line chart. By default returns a separate panel per value in the HR attribute. Additional options available to return a summary table.

**Usage**

```r
e external_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

**Arguments**

- `data` A Standard Person Query dataset in the form of a data frame.
- `hrvar` String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup` Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return` String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  
  See Value for more information.

**Details**

Uses the metric `Collaboration_hours_external`.
Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

create_line() for applying the same analysis to a different metric.

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other External Collaboration: external_dist(), external_fizz(), external_sum()

Examples

# Return a line plot
external_line(pq_data, hrvar = "LevelDesignation")

# Return summary table
external_line(pq_data, hrvar = "LevelDesignation", return = "table")
external_rank

```r
plot_mode = 1,
return = "plot"
)
```

### Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply `NULL` (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **mode**: String to specify calculation mode. Must be either:
  - "simple"
  - "combine"
- **plot_mode**: Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`. Must be either 1 or 2, and is only used when `return = "plot"`. Must be either 1 or 2, and is only used when
  - 1: Top and bottom five groups across the data population are highlighted
  - 2: Top and bottom groups per organizational attribute are highlighted
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot" (default)
  - "table"

See Value for more information.

### Details

Uses the metric `Collaboration_hours_external`. See `create_rank()` for applying the same analysis to a different metric.

### Value

When 'table' is passed in `return`, a summary table is returned as a data frame.

### See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other After-hours Collaboration: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`
Examples

# Return rank table
external_rank(data = pq_data, return = "table")

# Return plot
external_rank(data = pq_data, return = "plot")

description

Provides an overview analysis of 'External Collaboration'. Returns a stacked bar plot of internal and external collaboration. Additional options available to return a summary table.

Usage

external_sum(
  data,
  hrvar = "Organization",
  mingroup = 5,
  stack_colours = c("#1d327e", "#1d7e6a"),
  return = "plot"
)

external_summary(
  data,
  hrvar = "Organization",
  mingroup = 5,
  stack_colours = c("#1d327e", "#1d7e6a"),
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
stack_colours A character vector to specify the colour codes for the stacked bar charts.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
extract_date_range 79

Value
Returns a ‘ggplot’ object by default, where ‘plot’ is passed in return. When ‘table’ is passed, a summary table is returned as a data frame.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other External Collaboration: external_dist(), external_fizz(), external_line()

Examples
# Return a plot
external_sum(pq_data, hrvar = "LevelDesignation")

# Return summary table
external_sum(pq_data, hrvar = "LevelDesignation", return = "table")

extract_date_range Extract date period

Description
Return a data frame with the start and end date of the query data by default. There are options to return a descriptive string, which is used in the caption of plots in this package.

Usage
extract_date_range(data, return = "table")

Arguments
data  Data frame containing a query to pass through. The data frame must contain a Date column. Accepts a Person query or a Meeting query.
return  String specifying what output to return. Returns a table by default ("table"), but allows returning a descriptive string ("text").
extract_hr

### Description

This function uses a combination of variable class, number of unique values, and regular expression matching to extract HR / organisational attributes from a data frame.

### Usage

```r
extract_hr(data, max_unique = 50, exclude_constants = TRUE, return = "names")
```

### Arguments

- **data**: A data frame to be passed through.
- **max_unique**: A numeric value representing the maximum number of unique values to accept for an HR attribute. Defaults to 50.
- **exclude_constants**: Logical value to specify whether single-value HR attributes are to be excluded. Defaults to TRUE.
- **return**: String specifying what to return. This must be one of the following strings:
  - "names"
  - "vars"

### Value

A different output is returned depending on the value passed to the `return` argument:

- "names": character vector identifying all the names of HR variables present in the data.
- "vars": data frame containing all the columns of HR variables present in the data.

### See Also

Other Support: `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `tstamp()`, `us_to_space()`, `wrap()`
flag_ch_ratio

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Other Data Validation: check_query(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

pq_data %>% extract_hr(return = "names")

pq_data %>% extract_hr(return = "vars")

flag_ch_ratio Flag unusual high collaboration hours to after-hours collaboration hours ratio

Description

This function flags persons who have an unusual ratio of collaboration hours to after-hours collaboration hours. Returns a character string by default.

Usage

flag_ch_ratio(data, threshold = c(1, 30), return = "message")

Arguments

data A data frame containing a Person Query.
threshold Numeric value specifying the threshold for flagging. Defaults to 30.
return String to specify what to return. Options include:
  * "message"
  * "text"
  * "data"

Value

A different output is returned depending on the value passed to the return argument:
  * "message": message in the console containing diagnostic summary
  * "text": string containing diagnostic summary
  * "data": data frame. Person-level data with flags on unusually high or low ratios
flag_em_ratio

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Data Validation: check_query(), extract_hr(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

flag_ch_ratio(pq_data)

data.frame(PersonId = c("Alice", "Bob"),
           Collaboration_hours = c(30, 0.5),
           After_hours_collaboration_hours = c(0.5, 30)) %>%
  flag_ch_ratio()  

flag_em_ratio

Flag Persons with unusually high Email Hours to Emails Sent ratio

Description

This function flags persons who have an unusual ratio of email hours to emails sent. If the ratio between Email Hours and Emails Sent is greater than the threshold, then observations tied to a PersonId is flagged as unusual.

Usage

flag_em_ratio(data, threshold = 1, return = "text")

Arguments

data
threshold
return

A data frame containing a Person Query.
Numeric value specifying the threshold for flagging. Defaults to 1.
String specifying what to return. This must be one of the following strings:
• "text"
• "data"

See Value for more information.
flag_extreme

Value

A different output is returned depending on the value passed to the return argument:

• "text": string. A diagnostic message.
• "data": data frame. Person-level data with those flagged with unusual ratios.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

flag_em_ratio(pq_data)

flag_extreme

Warn for extreme values by checking against a threshold

Description

This is used as part of data validation to check if there are extreme values in the dataset.

Usage

flag_extreme(
  data,
  metric,
  person = TRUE,
  threshold,
  mode = "above",
  return = "message"
)

Arguments

  data A Standard Person Query dataset in the form of a data frame.
  metric A character string specifying the metric to test.
  person A logical value to specify whether to calculate person-averages. Defaults to TRUE (person-averages calculated).
  threshold Numeric value specifying the threshold for flagging.
  mode String determining mode to use for identifying extreme values.
    • "above": checks whether value is great than the threshold (default)
• "equal": checks whether value is equal to the threshold
• "below": checks whether value is below the threshold

**return**

String specifying what to return. This must be one of the following strings:

• "text"
• "message"
• "table"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

• "text": string. A diagnostic message.
• "message": message on console. A diagnostic message.
• "table": data frame. A person-level table with PersonId and the extreme values of the selected metric.

**See Also**

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

**Examples**

# The threshold values are intentionally set low to trigger messages.
flag_extreme(pq_data, "Email_hours", threshold = 15)

# Return a summary table
flag_extreme(pq_data, "Email_hours", threshold = 15, return = "table")

# Person-week level
flag_extreme(pq_data, "Email_hours", person = FALSE, threshold = 15)

# Check for values equal to threshold
flag_extreme(pq_data, "Email_hours", person = TRUE, mode = "equal", threshold = 0)

# Check for values below threshold
flag_extreme(pq_data, "Email_hours", person = TRUE, mode = "below", threshold = 5)
Flag unusual outlook time settings for work day start and end time

Description

This function flags unusual outlook calendar settings for start and end time of work day.

Usage

flag_outlooktime(data, threshold = c(4, 15), return = "message")

Arguments

data A data frame containing a Person Query.
threshold A numeric vector of length two, specifying the hour threshold for flagging. Defaults to c(4, 15).
return String specifying what to return. This must be one of the following strings:
- "text" (default)
- "message"
- "data"

Value

A different output is returned depending on the value passed to the return argument:
- "text": string. A diagnostic message.
- "message": message on console. A diagnostic message.
- "data": data frame. Data where flag is present.

See Value for more information.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

# Demo with 'pq_data' example where Outlook Start and End times are imputed
spq_df <- pq_data

spq_df$WorkingStartTimeSetInOutlook <- "6:30"

spq_df$WorkingEndTimeSetInOutlook <- "23:30"
# Return a message
flag_outlooktime(spq_df, threshold = c(5, 13))

# Return data
flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")

generate_report  Generate HTML report with list inputs

Description

This is a support function using a list-pmap workflow to create a HTML document, using RMarkdown as the engine.

Usage

generate_report(
  title = "My minimal HTML generator",
  filename = "minimal_html",
  outputs = output_list,
  titles,  
  subheaders,
  echos,
  levels,
  theme = "united",
  preamble = ""
)

Arguments

title  Character string to specify the title of the chunk.
filename  File name to be used in the exported HTML.
outputs  A list of outputs to be added to the HTML report. Note that outputs, titles, echos, and levels must have the same length.
titles  A list/vector of character strings to specify the title of the chunks.
subheaders  A list/vector of character strings to specify the subheaders for each chunk.
echos  A list/vector of logical values to specify whether to display code.
levels  A list/vector of numeric value to specify the header level of the chunk.
theme  Character vector to specify theme to be used for the report. E.g. "united", "default".
preamble  A preamble to appear at the beginning of the report, passed as a text string.
generate_report

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Creating a custom report

Below is an example on how to set up a custom report.

The first step is to define the content that will go into a report and assign the outputs to a list.

```r
Step 1: Define Content
output_list <-
 list(pq_data %>% workloads_summary(return = "plot"),
 pq_data %>% workloads_summary(return = "table")) %>%
 purrr::map_if(is.data.frame, create_dt)
```

The next step is to add a list of titles for each of the objects on the list:

```r
Step 2: Add Corresponding Titles
title_list <- c("Workloads Summary - Plot", "Workloads Summary - Table")
n_title <- length(title_list)
```

The final step is to run `generate_report()`. This can all be wrapped within a function such that the function can be used to generate a HTML report.

```r
Step 3: Generate Report
generate_report(title = "My First Report",
 filename = "My First Report",
 outputs = output_list,
 titles = title_list,
 subheaders = rep("", n_title),
 echos = rep(FALSE, n_title)
```

Author(s)

Martin Chan martin.chan@microsoft.com

See Also

Other Reports: `meeting_tm_report()`, `read_preamble()`, `validation_report()`
generate_report2

Generate HTML report based on existing RMarkdown documents

Description

This is a support function that accepts parameters and creates a HTML document based on an RMarkdown template. This is an alternative to `generate_report()` which instead creates an RMarkdown document from scratch using individual code chunks.

Usage

```r
generate_report2(
 output_format = rmarkdown::html_document(toc = TRUE, toc_depth = 6, theme = "cosmo"),
 output_file = "report.html",
 output_dir = getwd(),
 report_title = "Report",
 rmd_dir = system.file("rmd_template/minimal.rmd", package = "vivainsights"),
 ...
)
```

Arguments

- `output_format`: output format in `rmarkdown::render()`. Default is `rmarkdown::html_document(toc = TRUE, toc_depth = 6, theme = "cosmo")`.
- `output_file`: output file name in `rmarkdown::render()`. Default is "report.html".
- `output_dir`: output directory for report in `rmarkdown::render()`. Default is user’s current directory.
- `report_title`: report title. Default is "Report".
- `rmd_dir`: string specifying the path to the directory containing the RMarkdown template files.
- `...`: other arguments to be passed to `params`. For instance, pass `hrvar` if the RMarkdown document requires a 'hrvar' parameter.

Note

The implementation of this function was inspired by the 'DataExplorer' package by boxuancui, with credits due to the original author.
heat_colours

Generate a vector of \( n \) contiguous colours, as a red-yellow-green palette.

Description

Takes a numeric value \( n \) and returns a character vector of colour HEX codes corresponding to the heat map palette.

Usage

heat_colours(n, alpha, rev = FALSE)
heat_colors(n, alpha, rev = FALSE)

Arguments

- **n**: the number of colors \((\geq 1)\) to be in the palette.
- **alpha**: an alpha-transparency level in the range of 0 to 1 (0 means transparent and 1 means opaque)
- **rev**: logical indicating whether the ordering of the colors should be reversed.

Value

A character vector containing the HEX codes and the same length as \( n \) is returned.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

```r
barplot(rep(10, 50), col = heat_colours(n = 50), border = NA)
barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE), border = NA)
```
Create a count of distinct people in a specified HR variable

Description

This function enables you to create a count of the distinct people by the specified HR attribute. The default behaviour is to return a bar chart as typically seen in 'Analysis Scope'.

Usage

hrvar_count(data, hrvar = "Organization", return = "plot")

analysis_scope(data, hrvar = "Organization", return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.

return String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object containing a bar plot.
• "table": data frame containing a count table.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), oneZone_dist(), oneZone_fizz(), oneZone_freq(), oneZone_line(), oneZone_rank(), oneZone_sum(), oneZone_trend()
hrvar_count_all

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

# Return a bar plot
hrvar_count(pq_data, hrvar = "LevelDesignation")

# Return a summary table
hrvar_count(pq_data, hrvar = "LevelDesignation", return = "table")

hrvar_count_all

Create count of distinct fields and percentage of employees with missing values for all HR variables

Description

[Experimental]

This function enables you to create a summary table to validate organizational data. This table will provide a summary of the data found in the Viva Insights Data sources page. This function will return a summary table with the count of distinct fields per HR attribute and the percentage of employees with missing values for that attribute. See hrvar_count() function for more detail on the specific HR attribute of interest.

Usage

hrvar_count_all(
    data,
    n_var = 50,
    return = "message",
    threshold = 100,
    maxna = 20
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
n_var number of HR variables to include in report as rows. Default is set to 50 HR variables.
return String to specify what to return
threshold The max number of unique values allowed for any attribute. Default is 100.
maxna The max percentage of NAs allowable for any column. Default is 20.
hrvar_trend

Value

Returns an error message by default, where 'text' is passed in return.

- 'table': data frame. A summary table listing the number of distinct fields and percentage of missing values for the specified number of HR attributes will be returned.
- 'message': outputs a message indicating which values are beyond the specified thresholds.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

# Return a summary table of all HR attributes
hrvar_count_all(pq_data, return = "table")

hrvar_trend
Track count of distinct people over time in a specified HR variable

Description

This function provides a week by week view of the count of the distinct people by the specified HR attribute. The default behaviour is to return a week by week heatmap bar plot.

Usage

hrvar_trend(data, hrvar = "Organization", return = "plot")

Arguments

data  A Standard Person Query dataset in the form of a data frame.
hrvar  HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.
return String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object containing a bar plot.
- "table": data frame containing a count table.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

```
Return a bar plot
hr_trend(pq_data, hrvar = "LevelDesignation")

Return a summary table
hr_trend(pq_data, hrvar = "LevelDesignation", return = "table")
```

---

**hr_trend**

*Employee count over time*

---

Description

Returns a line chart showing the change in employee count over time. Part of a data validation process to check for unusual license growth / declines over time.

Usage

```
hr_trend(data, return = "plot")
```
Arguments

data A Standard Person Query dataset in the form of a data frame.

return String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": ggplot object. A line plot showing employee count over time.
• "table": data frame containing a summary table.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

# Return plot
hr_trend(pq_data)

# Return summary table
hr_trend(pq_data, return = "table")
**identify_churn**

**Identify employees who have churned from the dataset**

**Description**

This function identifies and counts the number of employees who have churned from the dataset by measuring whether an employee who is present in the first \( n \) (\( n_1 \)) weeks of the data is present in the last \( n \) (\( n_2 \)) weeks of the data.

**Usage**

```r
identify_churn(data, n1 = 6, n2 = 6, return = "message", flip = FALSE)
```

**Arguments**

- `data` A Person Query as a data frame. Must contain a `PersonId`.
- `n1` A numeric value specifying the number of weeks at the beginning of the period that defines the measured employee set. Defaults to 6.
- `n2` A numeric value specifying the number of weeks at the end of the period to calculate whether employees have churned from the data. Defaults to 6.
- `return` String specifying what to return. This must be one of the following strings:
  - "message" (default)
  - "text"
  - "data"
  See Value for more information.
- `flip` Logical, defaults to FALSE. This determines whether to reverse the logic of identifying the non-overlapping set. If set to TRUE, this effectively identifies new-joiners, or those who were not present in the first \( n \) weeks of the data but were present in the final \( n \) weeks.

**Details**

An additional use case of this function is the ability to identify "new-joiners" by using the argument `flip`.

If an employee is present in the first \( n \) weeks of the data but not present in the last \( n \) weeks of the data, the function considers the employee as churned. As the measurement period is defined by the number of weeks from the start and the end of the passed data frame, you may consider filtering the dates accordingly before running this function.

Another assumption that is in place is that any employee whose `PersonId` is not available in the data has churned. Note that there may be other reasons why an employee’s `PersonId` may not be present, e.g. maternity/paternity leave, Viva Insights license has been removed, shift to a low-collaboration role (to the extent that he/she becomes inactive).
Value

A different output is returned depending on the value passed to the `return` argument:

- "message": Message on console. A diagnostic message.
- "text": String. A diagnostic message.
- "data": Character vector containing the PersonId of employees who have been identified as churned.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

```r
pq_data %>% identify_churn(n1 = 3, n2 = 3, return = "message")
```

Identification of date frequency based on a series of dates

Description

[Experimental]

Takes a vector of dates and identifies whether the frequency is 'daily', 'weekly', or 'monthly'. The primary use case for this function is to provide an accurate description of the query type used and raise errors should a wrong date grouping be used in the data input.

Usage

`identify_datefreq(x)`

Arguments

- `x`: Vector containing a series of dates.

Details

Date frequency detection works as follows:

- If at least three days of the week are present (e.g., Monday, Wednesday, Thursday) in the series, then the series is classified as 'daily'
- If the total number of months in the series is equal to the length, then the series is classified as 'monthly'
- If the total number of sundays in the series is equal to the length of the series, then the series is classified as 'weekly'
**Value**

String describing the detected date frequency, i.e.:

- 'daily'
- 'weekly'
- 'monthly'

**Limitations**

One of the assumptions made behind the classification is that weeks are denoted with Sundays, hence the count of sundays to measure the number of weeks. In this case, weeks where a Sunday is missing would result in an 'unable to classify' error.

Another assumption made is that dates are evenly distributed, i.e. that the gap between dates are equal. If dates are unevenly distributed, e.g. only two days of the week are available for a given week, then the algorithm will fail to identify the frequency as 'daily'.

**Examples**

```r
start_date <- as.Date("2022/06/26")
end_date <- as.Date("2022/11/27")

Daily
day_seq <-
 seq.Date(
 from = start_date,
 to = end_date,
 by = "day"
)

identify_datefreq(day_seq)

Weekly
week_seq <-
 seq.Date(
 from = start_date,
 to = end_date,
 by = "week"
)

identify_datefreq(week_seq)

Monthly
month_seq <-
 seq.Date(
 from = start_date,
 to = end_date,
 by = "month"
)

identify_datefreq(month_seq)
```
**identify_holidayweeks**  
*Identify Holiday Weeks based on outliers*

**Description**

This function scans a standard query output for weeks where collaboration hours is far outside the mean. Returns a list of weeks that appear to be holiday weeks and optionally an edited dataframe with outliers removed. By default, missing values are excluded.

As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.

**Usage**

```r
identify_holidayweeks(data, sd = 1, return = "message")
```

**Arguments**

- **data**: A Standard Person Query dataset in the form of a data frame.
- **sd**: The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
- **return**: String specifying what to return. This must be one of the following strings:
  - "message" (default)
  - "data"
  - "data_cleaned"
  - "data_dirty"
  - "plot"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "message": message on console. a message is printed identifying holiday weeks.
- "data": data frame. A dataset with outlier weeks flagged in a new column is returned as a dataframe.
- "data_cleaned": data frame. A dataset with outlier weeks removed is returned.
- "data_dirty": data frame. A dataset with only outlier weeks is returned.
- "plot": ggplot object. A line plot of Collaboration Hours with holiday weeks highlighted.

**Metrics used**

The metric `Collaboration_hours` is used in the calculations. Please ensure that your query contains a metric with the exact same name.
identify_inactiveweeks

Identify Inactive Weeks

Description

This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset. Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.

As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.

Usage

identify_inactiveweeks(data, sd = 2, return = "text")

Arguments

data A Standard Person Query dataset in the form of a data frame.
sd The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
return String specifying what to return. This must be one of the following strings:
  • "text"
  • "data_cleaned"
  • "data_dirty"

See Value for more information.

Value

Returns an error message by default, where 'text' is returned. When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe. When 'data_dirty' is passed, a dataset with outlier weeks is returned as a dataframe.

Examples

# Return a message by default
identify_holidayweeks(pq_data)

# Return plot
identify_holidayweeks(pq_data, return = "plot")
**identify_nkw**

Identify Non-Knowledge workers in a Person Query using Collaboration Hours

**Description**

This function scans a standard query output to identify employees with consistently low collaboration signals. Returns the % of non-knowledge workers identified by Organization, and optionally an edited data frame with non-knowledge workers removed, or the full data frame with the kw/nkw flag added.

**Usage**

```r
identify_nkw(data, collab_threshold = 5, return = "data_summary")
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>A Standard Person Query dataset in the form of a data frame.</td>
</tr>
<tr>
<td><code>collab_threshold</code></td>
<td>Positive numeric value representing the collaboration hours threshold that should be exceeded as an average for the entire analysis period for the employee to be categorized as a knowledge worker (&quot;kw&quot;). Default is set to 5 collaboration hours. Any versions after v1.4.3, this uses a &quot;greater than or equal to&quot; logic (&gt;=), in which case persons with exactly 5 collaboration hours will pass.</td>
</tr>
<tr>
<td><code>return</code></td>
<td>String specifying what to return. This must be one of the following strings:</td>
</tr>
<tr>
<td></td>
<td>• &quot;text&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;data_with_flag&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;data_clean&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;data_summary&quot;</td>
</tr>
</tbody>
</table>

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "text": string. Returns a diagnostic message.
- "data_with_flag": data frame. Original input data with an additional column containing the kw/nkw flag.
- "data_clean": data frame. Data frame with non-knowledge workers excluded.
- "data_summary": data frame. A summary table by organization listing the number and % of non-knowledge workers.

**See Also**

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count().hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`
**identify_outlier**

*Identify metric outliers over a date interval*

**Description**

This function takes in a selected metric and uses z-score (number of standard deviations) to identify outliers across time. There are applications in this for identifying weeks with abnormally low collaboration activity, e.g. holidays. Time as a grouping variable can be overridden with the `group_var` argument.

**Usage**

```r
identify_outlier(
 data,
 group_var = "MetricDate",
 metric = "Collaboration_hours"
)
```

**Arguments**

- `data` A Standard Person Query dataset in the form of a data frame.
- `group_var` A string with the name of the grouping variable. Defaults to Date.
- `metric` Character string containing the name of the metric, e.g. "Collaboration_hours"

**Value**

Returns a data frame with `MetricDate` (if grouping variable is not set), the metric, and the corresponding z-score.

**See Also**

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

**Examples**

```r
identify_outlier(pq_data, metric = "Collaboration_hours")
```
identify_privacythreshold

Identify groups under privacy threshold

Description

This function scans a standard query output for groups with of employees under the privacy threshold. The method consists in reviewing each individual HR attribute, and count the distinct people within each group.

Usage

```
identify_privacythreshold(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 return = "table"
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: A list of HR Variables to consider in the scan. Defaults to all HR attributes identified.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "table"
  - "text"
  See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "table": data frame. A summary table of groups that fall below the privacy threshold.
- "text": string. A diagnostic message.

Returns a ggplot object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`
**identify_shifts**

**Examples**

# Return a summary table
```r
pq_data %>% identify_privacythreshold(return = "table")
```

# Return a diagnostic message
```r
pq_data %>% identify_privacythreshold(return = "text")
```

**identify_shifts**  Identify shifts based on outlook time settings for work day start and end time

**Description**

This function uses outlook calendar settings for start and end time of work day to identify work shifts. The relevant variables are `WorkingStartTimeSetInOutlook` and `WorkingEndTimeSetInOutlook`.

**Usage**

```r
identify_shifts(data, return = "plot")
```

**Arguments**

- `data` A data frame containing data from the Hourly Collaboration query.
- `return` String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  - "data"
  
  See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. A bar plot for the weekly count of shifts.
- "table": data frame. A summary table for the count of shifts.
- "data": data frame. Input data appended with the Shifts columns.

**See Also**

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`
**identify_tenure**

Tenure calculation based on different input dates, returns data summary table or histogram

**Description**

This function calculates employee tenure based on different input dates. `identify_tenure` uses the latest Date available if user selects "MetricDate", but also have flexibility to select a specific date, e.g. "1/1/2020".

**Usage**

```r
identify_tenure(
 data,
 end_date = "MetricDate",
 beg_date = "HireDate",
 maxten = 40,
 return = "message"
)
```

**Arguments**

- **data**
  A Standard Person Query dataset in the form of a data frame.
- **end_date**
  A string specifying the name of the date variable representing the latest date. Defaults to "MetricDate".
- **beg_date**
  A string specifying the name of the date variable representing the hire date. Defaults to "HireDate".
- **maxten**
  A numeric value representing the maximum tenure. If the tenure exceeds this threshold, it would be accounted for in the flag message.
- **return**
  String specifying what to return. This must be one of the following strings:
  - "message"

**Examples**

```r
Demo with `pq_data` example where Outlook Start and End times are imputed
spq_df <- pq_data

spq_df$WorkingStartTimeSetInOutlook <- "6:30"
spq_df$WorkingEndTimeSetInOutlook <- "23:30"

Return plot
spq_df %>% identify_shifts()

Return summary table
spq_df %>% identify_shifts(return = "table")
```
• "text"
• "plot"
• "data_cleaned"
• "data_dirty"
• "data"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

• "message": message on console with a diagnostic message.
• "text": string containing a diagnostic message.
• "plot": 'ggplot' object. A line plot showing tenure.
• "data_cleaned": data frame filtered only by rows with tenure values lying within the threshold.
• "data_dirty": data frame filtered only by rows with tenure values lying outside the threshold.
• "data": data frame with the `PersonId` and a calculated variable called `TenureYear` is returned.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_count()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `track_HR_change()`, `validation_report()`

Examples

```r
library(dplyr)
Add HireDate to `pq_data`
pq_data2 <-
pq_data %>%
 mutate(HireDate = as.Date("1/1/2015", format = "%m/%d/%Y"))

identify_tenure(pq_data2)
```
Import a query from Viva Insights Analyst Experience

Description

Import a Viva Insights Query from a .csv file, with variable classifications optimised for other functions in the package.

Usage

import_query(x, encoding = "UTF-8")

Arguments

x  String containing the path to the Viva Insights query to be imported. The input file must be a .csv file, and the file extension must be explicitly entered, e.g. "/files/standard query.csv"

encoding  String to specify encoding to be used within data.table::fread(). See data.table::fread() documentation for more information. Defaults to 'UTF-8'.

Details

import_query() uses data.table::fread() to import .csv files for speed, and by default stringsAsFactors is set to FALSE. A data frame is returned by the function (not a data.table). Column names are automatically cleaned, replacing spaces and special characters with underscores.

Value

A tibble is returned.

See Also

Other Import and Export: copy_df(), create_dt(), export()

Identify whether string is a date format

Description

This function uses regular expression to determine whether a string is of the format "mdy", separated by "-", "/", or ".", returning a logical vector.

Usage

is_date_format(string)
Arguments

string Character string to test whether is a date format.

Value

logical value indicating whether the string is a date format.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

is_date_format("1/5/2020")

jitter_metrics Jitter metrics in a data frame

Description

Convenience wrapper around jitter() to add a layer of anonymity to a query. This can be used in combination with anonymise() to produce a demo dataset from real data.

Usage

jitter_metrics(data, cols = NULL, ...)

Arguments

data Data frame containing a query.

cols Character vector containing the metrics to jitter. When set to NULL (default), all numeric columns in the data frame are jittered.

... Additional arguments to pass to jitter().

Value

data frame where numeric columns specified by cols are jittered using the function jitter().

See Also

anonymise
Examples

```r
jittered <- jitter_metrics(pq_data, cols = "Collaboration_hours")

compare jittered vs original results of top rows
head(
 data.frame(
 original = pq_data$Collaboration_hours,
 jittered = jittered$Collaboration_hours
)
)
```

keymetrics_scan  
Run a summary of Key Metrics from the Standard Person Query data

Description

Returns a heatmapped table by default, with options to return a table.

Usage

```r
keymetrics_scan(
 data,
 hrvar = "Organization",
 mingroup = 5,
 metrics = c("Workweek_span", "Collaboration_hours", "After_hours_collaboration_hours", "Meetings", "Meeting_hours", "After_hours_meeting_hours", "Low_quality_meeting_hours", "Meeting_hours_with_manager_1_on_1", "Meeting_hours_with_manager", "Emails_sent", "Email_hours", "After_hours_email_hours", "Generated_workload_email_hours", "Total_focus_hours", "Internal_network_size", "Networking_outside_organization", "External_network_size", "Networking_outside_company"),
 return = "plot",
 low = rgb2hex(7, 111, 161),
 mid = rgb2hex(241, 204, 158),
 high = rgb2hex(216, 24, 42),
 textsize = 2
)
```

Arguments

data  
A Standard Person Query dataset in the form of a data frame.

hrvar  
String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup  
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
metrics               A character vector containing the variable names to calculate averages of.
return               Character vector specifying what to return, defaults to "plot". Valid inputs are
                      "plot" and "table".
low                  String specifying colour code to use for low-value metrics. Arguments are
                      passed directly to ggplot2::scale_fill_gradient2().
mid                   String specifying colour code to use for mid-value metrics. Arguments are
                      passed directly to ggplot2::scale_fill_gradient2().
high                  String specifying colour code to use for high-value metrics. Arguments are
                      passed directly to ggplot2::scale_fill_gradient2().
textsize             A numeric value specifying the text size to show in the plot.

Value

Returns a ggplot object by default, when 'plot' is passed in return. When 'table' is passed, a
summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(),
create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(),
create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(),
email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(),
external_dist(), external_fizz(), external_line(), external_rank(), external_sum(),
hr_trend(), hrvar_count(), hrvar_trend(), meeting_dist(), meeting_fizz(), meeting_line(),
meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(),
one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Examples

# Heatmap plot is returned by default
keymetrics_scan(pq_data)

# Heatmap plot with custom colours
keymetrics_scan(pq_data, low = "purple", high = "yellow")

# Return summary table
keymetrics_scan(pq_data, hrvar = "LevelDesignation", return = "table")
keymetrics_scan_asis  Run a summary of Key Metrics without aggregation

Description

Return a heatmapped table directly from the aggregated/summarised data. Unlike keymetrics_scan() which performs a person-level aggregation, there is no calculation for keymetrics_scan_asis() and the values are rendered as they are passed into the function.

Usage

keymetrics_scan_asis(
  data,
  row_var,
  col_var,
  group_var = col_var,
  value_var = "value",
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ylab = row_var,
  xlab = "Metrics",
  rounding = 1,
  low = rgb2hex(7, 111, 161),
  mid = rgb2hex(241, 204, 158),
  high = rgb2hex(216, 24, 42),
  textsize = 2
)

Arguments

data | data frame containing data to plot. It is recommended to provide data in a 'long' table format where one grouping column forms the rows, a second column forms the columns, and a third numeric columns forms the

row_var | String containing name of the grouping variable that will form the rows of the heatmapped table.

col_var | String containing name of the grouping variable that will form the columns of the heatmapped table.

group_var | String containing name of the grouping variable by which heatmapping would apply. Defaults to col_var.

value_var | String containing name of the value variable that will form the values of the heatmapped table. Defaults to "value".

title | Title of the plot.

subtitle | Subtitle of the plot.

caption | Caption of the plot.
keymetrics_scan_asis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ylab</td>
<td>Y-axis label for the plot (group axis)</td>
</tr>
<tr>
<td>xlab</td>
<td>X-axis label of the plot (bar axis).</td>
</tr>
<tr>
<td>rounding</td>
<td>Numeric value to specify number of digits to show in data labels</td>
</tr>
<tr>
<td>low</td>
<td>String specifying colour code to use for low-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().</td>
</tr>
<tr>
<td>mid</td>
<td>String specifying colour code to use for mid-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().</td>
</tr>
<tr>
<td>high</td>
<td>String specifying colour code to use for high-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().</td>
</tr>
<tr>
<td>textsize</td>
<td>A numeric value specifying the text size to show in the plot.</td>
</tr>
</tbody>
</table>

Value

ggplot object for a heatmap table.

Examples

library(dplyr)

# Compute summary table
out_df <- pq_data %>%
group_by(Organization) %>%
summarise(
  across(
    .cols = c(
      Email_hours,
      Collaboration_hours
    ),
    .fns = ~median(., na.rm = TRUE)
  ),
  .groups = "drop"
) %>%
tidyrr::pivot_longer(
  cols = c("Email_hours", "Collaboration_hours"),
  names_to = "metrics"
)

keymetrics_scan_asis(
  data = out_df,
  col_var = "metrics",
  row_var = "Organization"
)

# Show data the other way round
keymetrics_scan_asis(
  data = out_df,
  col_var = "Organization",
  row_var = "metrics"
maxmin

Max-Min Scaling Function

Description

This function allows you to scale vectors or an entire data frame using the max-min scaling method. A numeric vector is always returned.

Usage

maxmin(x)

Arguments

x Pass a vector or the required columns of a data frame through this argument.

Details

This is used within keymetrics_scan() to enable row-wise heatmapping. Originally implemented in https://github.com/martinctc/surveytoolbox.

Value

Returns a numeric vector with the input rescaled.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

numbers <- c(15, 40, 10, 2)
maxmin(numbers)
Description

Analyze Meeting Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
meeting_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(5, 10, 15)
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

  See Value for more information.
- **cut**: A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the **return** argument:

- "plot": `ggplot` object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_tm_report(), meeting_trend()

Examples

# Return plot
meeting_dist(pq_data, hrvar = "Organization")

# Return summary table
meeting_dist(pq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
meeting_dist(pq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))

---

**meeting_fizz**

*Distribution of Meeting Hours (Fizzy Drink plot)*

Description

Analyze weekly meeting hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

meeting_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
### meeting_fizz

**return** String specifying what to return. This must be one of the following strings:
- "plot"
- "table"

See Value for more information.

### Details

Uses the metric Meeting_hours.

### Value

A different output is returned depending on the value passed to the `return` argument:
- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

### See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_dist(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), meeting_tm_report()

### Examples

```r
Return plot
meeting_fizz(pq.data, hrvar = "Organization", return = "plot")

Return summary table
meeting_fizz(pq.data, hrvar = "Organization", return = "table")
```
**meeting_line**

**Meeting Time Trend - Line Chart**

**Description**

Provides a week by week view of meeting time, visualised as line charts. By default returns a line chart for meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

**Usage**

`meeting_line(data, hrvar = "Organization", mingroup = 5, return = "plot")`

**Arguments**

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`
meeting_rank

Other Meetings: meeting_dist(), meeting_fizz(), meeting_rank(), meeting_summary(), meeting_tm_report(), meeting_trend()

Examples

# Return a line plot
meeting_line(pq_data, hrvar = "LevelDesignation")

# Return summary table
meeting_line(pq_data, hrvar = "LevelDesignation", return = "table")

---

meeting_rank  Meeting Hours Ranking

Description

This function scans a standard query output for groups with high levels of Weekly Meeting Collaboration. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

Usage

meeting_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

data  A Standard Person Query dataset in the form of a data frame.

hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode  String to specify calculation mode. Must be either:
  • "simple"
  • "combine"

plot_mode  Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
  • 1: Top and bottom five groups across the data population are highlighted
• 2: Top and bottom groups per organizational attribute are highlighted

return String specifying what to return. This must be one of the following strings:

- "plot" (default)
- "table"

See Value for more information.

Details

Uses the metric Meeting_hours. See create_rank() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_dist(), meeting_fizz(), meeting_line(), meeting_summary(), meeting_tm_report(), meeting_trend()

Examples

# Return rank table
meeting_rank(data = pq_data, return = "table")

# Return plot
meeting_rank(data = pq_data, return = "plot")
Meeting Summary

Description

Provides an overview analysis of weekly meeting hours. Returns a bar plot showing average weekly meeting hours by default. Additional options available to return a summary table.

Usage

```r
meeting_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

```r
meeting_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- `data` : A Standard Person Query dataset in the form of a data frame.
- `hrvar` : String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup` : Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return` : String specifying what to return. This must be one of the following strings:
  - "plot": `ggplot` object. A bar plot for the metric.
  - "table": data frame. A summary table for the metric.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`.
meeting_tm_report

Generate a Meeting Text Mining report in HTML

Description

Create a text mining report in HTML based on Meeting Subject Lines

Usage

meeting_tm_report(
  data,
  path = "meeting text mining report",
  stopwords = NULL,
  timestamp = TRUE,
  keep = 100,
  seed = 100
)

Arguments

data A Meeting Query dataset in the form of a data frame.

path Pass the file path and the desired file name, excluding the file extension. For example, "meeting text mining report".

stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.

timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

keep A numeric vector specifying maximum number of words to keep.

seed A numeric vector to set seed for random generation.

Details

Note that the column Subject must be available within the input data frame in order to run.
Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

How to run

meeting_tm_report(mt_data)

This will generate a HTML report as specified in path.

See Also

Other Reports: generate_report(), read_preamble(), validation_report()

Other Meetings: meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend()

Other Text-mining: pairwise_count(), tm_clean(), tm_cooc(), tm_freq(), tm_wordcloud()

meeting_trend  Meeting Hours Time Trend

Description

Provides a week by week view of meeting time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

meeting_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data  A Standard Person Query dataset in the form of a data frame.

hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return  Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Meeting_hours.
mt_data

Value

Returns a ‘ggplot’ object by default, where ‘plot’ is passed in return. When ‘table’ is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_tm_report()

Examples

# Run plot
meeting_trend(pq_data)

# Run table
meeting_trend(pq_data, hrvar = "LevelDesignation", return = "table")

---

mt_data

Sample Meeting Query dataset

Description

A dataset generated from a Meeting Query from Viva Insights.

Usage

mt_data

Format

A data frame with 612 rows and 41 variables:

- MeetingId
- Attendee_meeting_hours
- Number_of_attendees
- Number_of_attendees_multitasking
Number_of_attendees_who_didn't_end_the_meeting_on_time
Number_of_attendees_who_didn't_join_the_meeting_on_time
Number_of_attendees_who Ended_the_meeting_on_time
Number_of_attendees_who_joined_the_meeting_on_time
Number_of_chats_sent_during_the_meeting
Number_of_emails_sent_during_the_meeting
Number_of_redundant_attendees
Subject
All_Day_Meeting
Cancelled
Recurring
Accept_count
No_response_count
Decline_count
Tentatively_accepted_count
Intended_participant_count
Collaboration_start_time
Organizer
zId
attainment
TimeZone
SupervisorIndicator
Region
Population_Type
Organization
OnsiteDays
Number_of_directs
LevelDesignation
Layer
HireDate
GroupNum
GroupName
FunctionType
Domain
ADO_PersonSK
ADO_PersonIndicator
Duration
Value
data frame.

Source

See Also
Other Data: pq_data

one2one_dist

Description
Analyze Manager 1:1 Time distribution. Returns a stacked bar plot of different buckets of 1:1 time. Additional options available to return a table with distribution elements.

Usage
one2one_dist(
  data, 
  hrvar = "Organization", 
  mingroup = 5, 
  dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), 
  return = "plot", 
  cut = c(5, 15, 30) 
)

Arguments
data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
dist_colours A character vector of length four to specify colour codes for the stacked bars.
return String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"
See Value for more information.
cut A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Managerial Relations: `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Examples

```r
Return plot
one2one_dist(pq_data, hrvar = "Organization", return = "plot")

Return summary table
one2one_dist(pq_data, hrvar = "Organization", return = "table")
```

Distribution of Manager 1:1 Time (Fizzy Drink plot)

Description

Analyze weekly Manager 1:1 Time distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

```r
one2one_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
**Arguments**

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply `NULL` (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Managerial Relations: `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

**Examples**

```r
Return plot
one2one_fizz(pq_data, hrvar = "Organization", return = "plot")

Return a summary table
one2one_fizz(pq_data, hrvar = "Organization", return = "table")
```
**Description**

[Experimental]

This function calculates the average number of weeks (cadence) between of 1:1 meetings between an employee and their manager. Returns a distribution plot for typical cadence of 1:1 meetings. Additional options available to return a bar plot, tables, or a data frame with a cadence of 1 on 1 meetings metric.

**Usage**

```r
one2one_freq(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 mode = "dist",
 sort_by = NULL
)
```

**Arguments**

- `data`: A Standard Person Query dataset in the form of a data frame.
- `hrvar`: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup`: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return`: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
- `mode`: String specifying what method to use. This must be one of the following strings:
  - "dist"
  - "sum"
- `sort_by`: String to specify the bucket label to sort by. Defaults to NULL (no sorting).

**Value**

A different output is returned depending on the value passed to the `return` argument:
- "plot": `ggplot` object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.
**Distribution view**

For this view, there are four categories of cadence:

- Weekly (once per week)
- Twice monthly or more (up to 3 weeks)
- Monthly (3 - 6 weeks)
- Every two months (6 - 10 weeks)
- Quarterly or less (> 10 weeks)

In the occasion there are zero 1:1 meetings with managers, this is included into the last category, i.e. 'Quarterly or less'. Note that when mode is set to "sum", these rows are simply excluded from the calculation.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Managerial Relations: `one2one_dist()`, `one2one_fizz()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

**Examples**

```r
Return plot, mode dist
one2one_freq(pq_data, hrvar = "Organization", return = "plot", mode = "dist")

Return plot, mode sum
one2one_freq(pq_data,
 hrvar = "Organization",
 return = "plot",
 mode = "sum")

Return summary table
one2one_freq(pq_data, hrvar = "Organization", return = "table")
```
Manager 1:1 Time Trend - Line Chart

Description

Provides a week by week view of 1:1 time with managers, visualised as line charts. By default returns a line chart for 1:1 meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

one2one_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"

See Value for more information.

Details

Uses the metric Meeting_hours_with_manager_1_1.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(),
Examples

# Return a line plot
one2one_line(pq_data, hrvar = "LevelDesignation")

# Return summary table
one2one_line(pq_data, hrvar = "LevelDesignation", return = "table")

one2one_rank

Manager 1:1 Time Ranking

Description

This function scans a standard query output for groups with high levels of 'Manager 1:1 Time'. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by manager 1:1 time.

Usage

one2one_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
mode String to specify calculation mode. Must be either:
  • "simple"
- "combine"

**plot_mode**  
Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`.  
- 1: Top and bottom five groups across the data population are highlighted  
- 2: Top and bottom groups per organizational attribute are highlighted

**return**  
String specifying what to return. This must be one of the following strings:  
- "plot" (default)  
- "table"  
See Value for more information.

**Details**

Uses the metric `Meeting_hours_with_manager_1_1`. See `create_rank()` for applying the same analysis to a different metric.

**Value**

A different output is returned depending on the value passed to the `return` argument:  
- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".  
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar_asis()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_line()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_sum()`, `one2one_trend()`

Other Managerial Relations: `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_sum()`, `one2one_trend()`

**Examples**

```r
Return rank table
one2one_rank(data = pq_data, return = "table")

Return plot
one2one_rank(data = pq_data, return = "plot")
```
one2one_sum

Manager 1:1 Time Summary

Description

Provides an overview analysis of Manager 1:1 Time. Returns a bar plot showing average weekly minutes of Manager 1:1 Time by default. Additional options available to return a summary table.

Usage

one2one_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

one2one_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data
  A Standard Person Query dataset in the form of a data frame.

hrvar
  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup
  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return
  String specifying what to return. This must be one of the following strings:
  • "plot"
  • "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object. A bar plot for the metric.
• "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(),
### Description

Provides a week by week view of scheduled manager 1:1 Time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

### Usage

```r
one2one_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

### Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

### Details

Uses the metric `Meeting_hours_with_manager_1_1`.

### Value

Returns a `ggplot` object by default, where 'plot' is passed in `return`. When 'table' is passed, a summary table is returned as a data frame.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum()

Other Managerial Relations: one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum()

Examples

# Run plot
one2one_trend(pq_data)

# Run table
one2one_trend(pq_data, hrvar = "LevelDesignation", return = "table")

---

**pad2**

Create the two-digit zero-padded format

**Description**

Create the two-digit zero-padded format

**Usage**

```r
pad2(x)
```

**Arguments**

- `x`: numeric value or vector with maximum two characters.

**Value**

Numeric value containing two-digit zero-padded values.
pairwise_count

Perform a pairwise count of words by id

Description
This is a 'data.table' implementation that mimics the output of pairwise_count() from 'widyr' to reduce package dependency. This is used internally within tm_cooc().

Usage
pairwise_count(data, id = "line", word = "word")

Arguments
data Data frame output from tm_clean().
id String to represent the id variable. Defaults to "line".
word String to represent the word variable. Defaults to "word".

Value
data frame with the following columns representing a pairwise count:

- "item1"
- "item2"
- "n"

See Also
Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Other Text-mining: meeting_tm_report(), tm_clean(), tm_cooc(), tm_freq(), tm_wordcloud()

Examples
td <- data.frame(line = c(1, 1, 2, 2),
                 word = c("work", "meeting", "catch", "up"))
pairwise_count(td, id = "line", word = "word")
**pq_data**  
*Sample Person Query dataset*

**Description**
A dataset generated from a Person Query from Viva Insights.

**Usage**

pq_data

**Format**
A data frame with 1000 rows and 154 variables:

- PersonId
- MetricDate
- After_hours_call_hours
- After_hours_chat_hours
- After_hours_collaboration_hours
- After_hours_email_hours
- After_hours_meeting_hours
- After_hours_scheduled_call_hours
- After_hours_unscheduled_call_hours
- Call_hours
- Calls
- Chat_hours
- Chats_sent
- Collaboration_hours
- Email_hours
- Emails_sent
- Meeting_and_call_hours
- Meeting_hours
- Meetings
- Multitasking_hours
- Scheduled_call_hours
- Unscheduled_call_hours
- Urgent_email_hours
- Urgent_meeting_hours
- Collaboration_hours_on_Friday
Collaboration_hours_on_Monday
Collaboration_hours_on_Saturday
Collaboration_hours_on_Sunday
Collaboration_hours_on_Thursday
Collaboration_hours_on_Tuesday
Collaboration_hours_on_Wednesday
Meeting_hours_on_Friday
Meeting_hours_on_Monday
Meeting_hours_on_Saturday
Meeting_hours_on_Sunday
Meeting_hours_on_Thursday
Meeting_hours_on_Tuesday
Meeting_hours_on_Wednesday
Unscheduled_weekend_calls
Weekend_chats_sent
Weekend_emails_sent
Weekend_meetings
Chats_sent_00_01
Chats_sent_01_02
Chats_sent_02_03
Chats_sent_03_04
Chats_sent_04_05
Chats_sent_05_06
Chats_sent_06_07
Chats_sent_07_08
Chats_sent_08_09
Chats_sent_09_10
Chats_sent_10_11
Chats_sent_11_12
Chats_sent_12_13
Chats_sent_13_14
Chats_sent_14_15
Chats_sent_15_16
Chats_sent_16_17
Chats_sent_17_18
Chats_sent_18_19
Chats_sent_19_20
Chats_sent_20_21
Chats_sent_21_22
Chats_sent_22_23
Chats_sent_23_24
Emails_sent_00_01
Emails_sent_01_02
Emails_sent_02_03
Emails_sent_03_04
Emails_sent_04_05
Emails_sent_05_06
Emails_sent_06_07
Emails_sent_07_08
Emails_sent_08_09
Emails_sent_09_10
Emails_sent_10_11
Emails_sent_11_12
Emails_sent_12_13
Emails_sent_13_14
Emails_sent_14_15
Emails_sent_15_16
Emails_sent_16_17
Emails_sent_17_18
Emails_sent_18_19
Emails_sent_19_20
Emails_sent_20_21
Emails_sent_21_22
Emails_sent_22_23
Emails_sent_23_24
Meetings_00_01
Meetings_01_02
Internal_meeting_hours_with_3_to_8_attendees
Internal_meeting_hours_without_manager_1_1
Small_group_chats_sent__excluding_manager
Small_group_emails_sent__excluding_manager
Small_group_meeting__call__and_chat_hours
Collaboration_hours_with_direct_reports
Manager_coaching_hours_1_1
Meeting_and_call_hours_with_manager
Meeting_and_call_hours_with_manager_1_1
Meeting_and_call_hours_with_skip_level
Meeting_hours_with_manager
Meeting_hours_with_manager_1_1
Meeting_hours_with_skip_level
Meetings_with_manager
Meetings_with_manager_1_1
Meetings_with_skip_level
Small_group_chats_sent__including_manager
Small_group_emails_sent__including_manager
Unscheduled_call_hours_with_manager
Unscheduled_call_hours_with_manager_1_1
Unscheduled_call_hours_with_skip_level
Internal_network_size
Conflicting_meeting_hours
Large_and_long_meeting_hours
Large_and_long_recurring_meeting_hours
Large_and_short_meeting_hours
Large_and_short_recurring_meeting_hours
Meeting_hours Ended_on_time
Meeting_hours_joined_on_time
Meeting_hours_not Ended_on_time
Meeting_hours_not_joined_on_time
Meeting_hours_with_12_to_24_hours_of_advanced_notice
Meeting_hours_with_24_or_more_hours_of_advanced_notice
Meeting_hours_with_six_or_fewer_hours_of_advanced_notice
Meeting_hours_with_six_to_12_hours_of_advanced_notice
Recurring_meeting_hours
Small_and_long_meeting_hours
Small_and_long_recurring_meeting_hours
Small_and_short_meeting_hours
Small_and_short_recurring_meeting_hours
Available_to_focus_hours
Interrupted_hours
Uninterrupted_hours
External_chat_hours
```
 External_collaboration_hours
 External_email_hours
 External_meeting_hours
 External_unscheduled_call_hours
 Working_hours_call_hours
 Working_hours_chat_hours
 Working_hours_collaboration_hours
 Working_hours_email_hours
 Working_hours_meeting_hours
 Working_hours_scheduled_call_hours
 Working_hours_unscheduled_call_hours
 LevelDesignation
 Layer
 SupervisorIndicator
 Organization
 FunctionType
 WeekendDays
 IsActive

Value

data frame.

Source

See Also

Other Data: mt_data
```

---

### read_preamble

**Read preamble**

#### Description

Read in a preamble to be used within each individual reporting function. Reads from the Markdown file installed with the package.

#### Usage

```
read_preamble(path)
```
rgb2hex

Arguments

path Text string containing the path for the appropriate Markdown file.

Value

String containing the text read in from the specified Markdown file.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Other Reports: generate_report(), meeting_tm_report(), validation_report()

________________________________________________________

rgb2hex  

Convert rgb to HEX code

________________________________________________________

Description

Convert rgb to HEX code

Usage

rgb2hex(r, g, b)

Arguments

r, g, b Values that correspond to the three RGB parameters

Value

Returns a string containing a HEX code.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()
**theme_wpa**  
*Main theme for 'vivainsights' visualisations*

**Description**

A theme function applied to 'ggplot' visualisations in 'vivainsights'. Install and load 'extrafont' to use custom fonts for plotting.

**Usage**

```r
theme_wpa(font_size = 12, font_family = "Segoe UI")
```

**Arguments**

- `font_size` Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12.
- `font_family` Character value specifying the font family to be used in the plot. The default value is "Segoe UI". To ensure you can use this font, install and load extrafont prior to plotting. There is an initialisation process that is described by: [https://stackoverflow.com/questions/34522732/changing-fonts-in-ggplot2](https://stackoverflow.com/questions/34522732/changing-fonts-in-ggplot2)

**Value**

Returns a ggplot object with the applied theme.

**See Also**

Other Themes: `theme_wpa_basic()`

---

**theme_wpa_basic**  
*Basic theme for 'vivainsights' visualisations*

**Description**

A theme function applied to 'ggplot' visualisations in 'vivainsights'. Based on `theme_wpa()` but has no font requirements.

**Usage**

```r
theme_wpa_basic(font_size = 12)
```

**Arguments**

- `font_size` Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12.
tm_clean

Value

Returns a ggplot object with the applied theme.

See Also

Other Themes: theme_wpa()

---

tm_clean

Clean subject line text prior to analysis

Description

This function processes the Subject column in a Meeting Query by applying tokenisation using tidytext::unnest_tokens(), and removing any stopwords supplied in a data frame (using the argument stopwords). This is a sub-function that feeds into tm_freq(), tm_cooc(), and tm_wordcloud(). The default is to return a data frame with tokenised counts of words or ngrams.

Usage

tm_clean(data, token = "words", stopwords = NULL, ...)

Arguments

data A Meeting Query dataset in the form of a data frame.

token A character vector accepting either "words" or "ngrams", determining type of tokenisation to return.

stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.

... Additional parameters to pass to tidytext::unnest_tokens().

Value

data frame with two columns:

- line
- word

See Also

Other Text-mining: meeting_tm_report(), pairwise_count(), tm_cooc(), tm_freq(), tm_wordcloud()

Examples

# words
tm_clean(mt_data)

# ngrams
tm_clean(mt_data, token = "ngrams")
tm_cooc

Analyse word co-occurrence in subject lines and return a network plot

Description

This function generates a word co-occurrence network plot, with options to return a table. This function is used within meeting_tm_report().

Usage

```r
tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05)
```

Arguments

- `data`: A Meeting Query dataset in the form of a data frame.
- `stopwords`: A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- `seed`: A numeric vector to set seed for random generation.
- `return`: String specifying what to return. This must be one of the following strings:
  - "plot"'
  - "table"
  
  See Value for more information.
- `lmult`: A multiplier to adjust the line width in the output plot. Defaults to 0.05.

Details

This function uses tm_clean() as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the stopwords argument.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": `ggplot` and `ggraph` object. A network plot.
- "table": data frame. A summary table.

Author(s)

Carlos Morales carlos.morales@microsoft.com

See Also

Other Text-mining: meeting_tm_report(), pairwise_count(), tm_clean(), tm_freq(), tm_wordcloud()
Examples

```r
Demo using a subset of `mt_data`
mt_data %>%
dplyr::slice(1:20) %>%
tm_cooc(1mult = 0.01)
```

---

**tm_freq**

*Perform a Word or Ngram Frequency Analysis and return a Circular Bar Plot*

Description

Generate a circular bar plot with frequency of words / ngrams. This function is used within `meeting_tm_report()`.

Usage

```r
tm_freq(data, token = "words", stopwords = NULL, keep = 100, return = "plot")
```

Arguments

- **data**: A Meeting Query dataset in the form of a data frame.
- **token**: A character vector accepting either "words" or "ngram", determining type of tokenisation to return.
- **stopwords**: A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- **keep**: A numeric vector specifying maximum number of words to keep.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"  
  - "table"

See Value for more information.

Details

This function uses `tm_clean()` as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the `stopwords` argument.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A circular bar plot.
- "table": data frame. A summary table.
See Also

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `tm_clean()`, `tm_cooc()`, `tm_wordcloud()`

Examples

```r
 tm_freq(mt_data, token = "words")
 tm_freq(mt_data, token = "ngrams")
```

Description

Generate a wordcloud with the meeting query. This is a sub-function that feeds into `meeting_tm_report()`.

Usage

```r
 tm_wordcloud(
 data,
 stopwords = NULL,
 seed = 100,
 keep = 100,
 return = "plot",
 ...
)
```

Arguments

- `data`: A Meeting Query dataset in the form of a data frame.
- `stopwords`: A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- `seed`: A numeric vector to set seed for random generation.
- `keep`: A numeric vector specifying maximum number of words to keep.
- `return`: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  See Value for more information.
- `...`: Additional parameters to be passed to `ggwordcloud::geom_text_wordcloud()`

Details

Uses the 'ggwordcloud' package for the underlying implementation, thus returning a 'ggplot' object. Additional layers can be added onto the plot using a ggplot + syntax. The recommendation is not to return over 100 words in a word cloud.

This function uses `tm_clean()` as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the `stopwords` argument.
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object containing a word cloud.
- "table": data frame returning the data used to generate the word cloud.

See Also

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `tm_clean()`, `tm_cooc()`, `tm_freq()`

Examples

tm_wordcloud(mt_data, keep = 30)

# Removing stopwords
tm_wordcloud(mt_data, keep = 30, stopwords = c("weekly", "update"))

totals_bind

Row-bind an identical data frame for computing grouped totals

Description

Row-bind an identical data frame and impute a specific column with the `target_value`, which defaults as "Total". The purpose of this is to enable to creation of summary tables with a calculated "Total" row. See example below on usage.

Usage

totals_bind(data, target_col, target_value = "Total")

Arguments

data data frame

target_col Character value of the column in which to impute "Total". This is usually the intended grouping column.

target_value Character value to impute in the new data frame to row-bind. Defaults to "Total".

Value

data frame with twice the number of rows of the input data frame, where half of those rows will have the `target_col` column imputed with the value from `target_value`.

See Also

Other Support: `camel_clean()`, `checkInputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `read_preamble()`, `rgb2hex()`, `totals_col()`, `tstamp()`, `us_to_space()`, `wrap()`
totals_col

Fabricate a 'Total' HR variable

Description

Create a 'Total' column of character type comprising exactly of one unique value. This is a convenience function for returning a no-HR attribute view when NULL is supplied to the hrvar argument in functions.

Usage

totals_col(data, total_value = "Total")

Arguments

data data frame

total_value Character value defining the name and the value of the “Total” column. Defaults to “Total”. An error is returned if an existing variable has the same name as the supplied value.

Value

data frame containing an additional ‘Total’ column on top of the input data frame.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), tstamp(), us_to_space(), wrap()

Examples

# Create a visual without HR attribute breaks
pq_data %>%
  totals_bind(target_col = "LevelDesignation", target_value = "Total") %>%
  create_bar(hrvar = "LevelDesignation", metric = "Email_hours", return = "table")
track_HR_change

Sankey chart of organizational movement between HR attributes and missing values (outside company move) (Data Overview)

Description

Creates a list of everyone at a specified start date and a specified end date then aggregates up people who have moved between organizations between this to points of time and visualizes the move through a sankey chart.

Through this chart you can see:

• The HR attribute/orgs that have the highest move out
• The HR attribute/orgs that have the highest move in
• The number of people that do not have that HR attribute or if they are no longer in the system

Usage

track_HR_change(
  data, 
  start_date = min(data$MetricDate), 
  end_date = max(data$MetricDate), 
  hrvar = "Organization", 
  mingroup = 5, 
  return = "plot", 
  NA_replacement = "Out of Company"
)

Arguments

data A Person Query dataset in the form of a data frame.
start_date A start date to compare changes. See end_date.
end_date An end date to compare changes. See start_date.
hrvar HR Variable by which to compare changes between, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
NA_replacement Character replacement for NA defaults to "out of company"

Value

Returns a ’NetworkD3’ object by default, where ’plot’ is passed in return. When ’table’ is passed, a summary table is returned as a data frame.
tstamp

Author(s)
Tannaz Sattari Tabrizi Tannaz.Sattari@microsoft.com

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), validation_report()

Examples

pq_data %>% track_HR_change()

---

**tstamp**

*Generate a time stamp*

**Description**

This function generates a time stamp of the format 'ymdmdd_hhmmss'. This is a support function and is not intended for direct use.

**Usage**

tstamp()

**Value**

String containing the timestamp in the format 'ymdmdd_hhmmss'.

**See Also**

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), us_to_space(), wrap()
us_to_space

Description
Convenience function to convert underscores to space

Usage
us_to_space(x)

Arguments
x  String to replace all occurrences of _ with a single space

Value
Character vector containing the modified string.

See Also
Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), wrap()

Examples
us_to_space("Meeting_hours_with_manager_1_on_1")

validation_report
Generate a Data Validation report in HTML

Description
The function generates an interactive HTML report using Standard Person Query data as an input. The report contains checks on Workplace Analytics query outputs to provide diagnostic information for the Analyst prior to analysis.

An additional Standard Meeting Query can be provided to perform meeting subject line related checks. This is optional and the validation report can be run without it.
Usage

validation_report(
  data,
  meeting_data = NULL,
  hrvar = "Organization",
  path = "validation report",
  hrvar_threshold = 150,
  timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
meeting_data An optional Meeting Query dataset in the form of a data frame.
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "Organization"
path Pass the file path and the desired file name, excluding the file extension.
hrvar_threshold Numeric value determining the maximum number of unique values to be allowed to qualify as a HR variable. This is passed directly to the threshold argument within hrvar_count_all().
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Details

For your input to data or meeting_data, please use the function vivainsights::import_query() to import your csv query files into R. This function will standardize format and prepare the data as input for this report.

For most variables, a note is returned in-line instead of an error if the variable is not available.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Checking functions within validation_report()

- check_query()
- flag_ch_ratio()
- hrvar_count_all()
- identify_privacythreshold()
- identify_nkw()
- identify_holidayweeks()
- subject_validate() (available in 'wpa')
• identify_tenure()
• flag_outlooktime()
• identify_shifts()
• track_HR_change()

You can browse each individual function for details on calculations.

Creating a report

Below is an example on how to run the report.

validation_report(pq_data,
    hrvar = "Organization")

See Also

Other Reports: generate_report(), meeting_tm_report(), read_preamble()
Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(),
flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count_all(), hrvar_count(), hrvar_trend(),
identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(),
identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(),
track_HR_change()

wrap

Add a character at the start and end of a character string

Description

This function adds a character at the start and end of a character string, where the default behaviour
is to add a double quote.

Usage

wrap(string, wrapper = "\"")

Arguments

string Character string to be wrapped around
wrapper Character to wrap around string

Value

Character vector containing the modified string.

See Also

Other Support: camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(),
heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(),
totals_bind(), totals_col(), tstamp(), us_to_space()
Description

Wrap text in visualizations according to a preset character threshold. The next space in the string is replaced with \\
, which will render as next line in plots and messages.

Usage

wrap_text(x, threshold = 15)

Arguments

x String to wrap text
threshold Numeric, defaults to 15. Number of character units by which the next space would be replaced with \\
to move text to next line.

Value

String output representing a processed version of x, with spaces replaced by \\
.

Examples

wrapped <- wrap_text(
    "The total entropy of an isolated system can never decrease."
)
message(wrapped)
Index

* After-hours Collaboration
  afterhours_dist, 4
  afterhours_fizz, 6
  afterhours_line, 7
  afterhours_rank, 8
  afterhours_summary, 10
  afterhours_trend, 11
  external_rank, 76
* Collaboration
  collaboration_area, 17
  collaboration_dist, 18
  collaboration_fizz, 20
  collaboration_line, 21
  collaboration_rank, 23
  collaboration_sum, 25
  collaboration_trend, 26
* Data Validation
  check_query, 15
  extract_hr, 80
  flag_ch_ratio, 81
  flag_em_ratio, 82
  flag_extreme, 83
  flag_outlooktime, 85
  hr_trend, 93
  hrvar_count, 90
  hrvar_count_all, 91
  hrvar_trend, 92
  identify_churn, 95
  identify_holidayweeks, 98
  identify_inactiveweeks, 99
  identify_nkw, 100
  identify_outlier, 101
  identify_privacythreshold, 102
  identify_shifts, 103
  identify_tenure, 104
  track_HR_change, 149
  validation_report, 151
* Data
  mt_data, 122
  pq_data, 136
* Emails
  email_dist, 62
  email_fizz, 64
  email_line, 65
  email_rank, 66
  email_summary, 68
  email_trend, 70
* External Collaboration
  external_dist, 72
  external_fizz, 74
  external_line, 75
  external_sum, 78
* Flexible
  create_bar, 29
  create_bar_asis, 31
  create_boxplot, 33
  create_bubble, 35
  create_density, 36
  create_dist, 38
  create_fizz, 41
  create_hist, 42
  create_inc, 44
  create_line, 46
  create_line_asis, 47
  create_period_scatter, 49
  create_rank, 51
  create_scatter, 54
  create_stacked, 56
  create_tracking, 58
  create_trend, 60
* Import and Export
  copy_df, 28
  create_dt, 40
  export, 71
  import_query, 106
* Managerial Relations
  one2one_dist, 124
  one2one_fizz, 125
one2one_freq, 127
one2one_line, 129
one2one_rank, 130
one2one_sum, 132
one2one_trend, 133

* Meetings
  meeting_dist, 113
  meeting_fizz, 114
  meeting_line, 116
  meeting_rank, 117
  meeting_summary, 119
  meeting_tm_report, 120
  meeting_trend, 121

* Reports
  generate_report, 86
  meeting_tm_report, 120
  read_preamble, 140
  validation_report, 151

* Support
  camel_clean, 14
  check_inputs, 14
  cut_hour, 61
  extract_date_range, 79
  extract_hr, 80
  heat_colours, 89
  is_date_format, 106
  maxmin, 112
  pairwise_count, 135
  read_preamble, 140
  rgb2hex, 141
  totals_bind, 147
  totals_col, 148
  tstamp, 150
  us_to_space, 151
  wrap, 153

* Text-mining
  meeting_tm_report, 120
  pairwise_count, 135
  tm_clean, 143
  tm_coo, 144
  tm_freq, 145
  tm_wordcloud, 146

* Themes
  theme_wpa, 142
  theme_wpa_basic, 142

* Time-series
  create_line, 46
  create_line_asis, 47
  create_period_scatter, 49
  create_trend, 60

* Visualization
  afterhours_dist, 4
  afterhours_fizz, 6
  afterhours_line, 7
  afterhours_rank, 8
  afterhours_summary, 10
  afterhours_trend, 11
  collaboration_area, 17
  collaboration_dist, 18
  collaboration_fizz, 20
  collaboration_line, 21
  collaboration_rank, 23
  collaboration_sum, 25
  collaboration_trend, 26
  create_bar, 29
  create_bar_asis, 31
  create_boxplot, 33
  create_bubble, 35
  create_dist, 38
  create_fizz, 41
  create_inc, 44
  create_line, 46
  create_line_asis, 47
  create_period_scatter, 49
  create_rank, 51
  create_scatter, 54
  create_stacked, 56
  create_tracking, 58
  create_trend, 60
  email_dist, 62
  email_fizz, 64
  email_line, 65
  email_rank, 66
  email_summary, 68
  email_trend, 70
  external_dist, 72
  external_fizz, 74
  external_line, 75
  external_rank, 76
  external_sum, 78
  hr_trend, 93
  hrvar_count, 90
  hrvar_trend, 92
  keymetrics_scan, 108
  meeting_dist, 113
  meeting_fizz, 114
INDEX

meeting_line, 116
meeting_rank, 117
meeting_summary, 119
meeting_trend, 121
onezone_dist, 124
onezone_fizz, 125
onezone_freq, 127
onezone_line, 129
onezone_rank, 130
onezone_sum, 132
onezone_trend, 133

* Working Patterns
  identify_shifts, 103

* datasets
  mt_data, 122
  pq_data, 136

* max-min
  maxmin, 112

afterhours_dist, 4–6–12, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 133

afterhours_fizz, 5, 6, 8–12, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

afterhours_line, 5–7, 7–9–12, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

afterhours_rank, 5–8, 8, 11, 12, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

afterhours_sum (afterhours_summary), 10

afterhours_summary, 5–10, 10, 12, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

analysis_trend, 5–11, 11, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

check_inputs, 14, 14, 62, 80, 81, 89, 90, 107, 112, 135, 141, 147, 148, 150, 151, 153


collab_area (collaboration_area), 17

collab_dist (collaboration_dist), 18

collab_fizz (collaboration_fizz), 20

collab_line (collaboration_line), 21

collab_rank (collaboration_rank), 23

collab_sum (collaboration_sum), 25

collab_summary (collaboration_summary), 25

collaboration_area, 5, 6, 8, 9, 11, 12, 17, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

collaboration_dist, 5, 6, 8, 9, 11, 12, 18, 18, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

collaboration_fizz, 5, 6, 8, 9, 11, 12, 18, 19, 20, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

collaboration_line, 5, 6, 8, 9, 11, 12, 18, 19, 21, 22, 24, 26, 27, 30, 32, 34, 36, 39, 42, 45, 47, 48, 50, 52, 55, 57, 59, 61, 63, 65, 66, 68–70, 73, 74, 76, 77, 79, 90, 93, 94, 109, 114–116, 118, 119, 122, 125, 126, 128, 129, 131, 132, 134

anonymise, 13

anonymize (anonymise), 13

camel_clean, 14, 15, 62, 80, 81, 89, 90, 107, 112, 135, 141, 147, 148, 150, 151, 153

hrvar_count, 89, 96, 99–103, 105, 150, 153

INDEX
read_preamble, 14, 15, 62, 80, 81, 87, 89, 107, 112, 121, 135, 140, 141, 147, 148, 150, 151, 153
rgb2hex, 14, 15, 62, 80, 81, 89, 107, 112, 135, 141, 147, 148, 150, 151, 153
theme_wpa, 142, 143
theme_wpa_basic, 142, 142
tm_clean, 121, 135, 143, 144, 146, 147
tm_cooc, 121, 135, 143, 144, 146, 147
tm_freq, 121, 135, 143, 144, 145, 147
tm_wordcloud, 121, 135, 143, 144, 146, 146
totals_bind, 14, 15, 62, 80, 81, 89, 107, 112, 135, 141, 147, 148, 150, 151, 153
totals_col, 14, 15, 62, 80, 81, 89, 107, 112, 135, 141, 147, 148, 150, 151, 153
track_HR_change, 16, 81–85, 91–94, 96, 99–103, 105, 149, 153
tstamp, 14, 15, 62, 80, 81, 89, 107, 112, 135, 141, 147, 148, 150, 151, 153
us_to_space, 14, 15, 62, 80, 81, 89, 107, 112, 135, 141, 147, 148, 150, 151, 153
wrap, 14, 15, 62, 80, 81, 89, 107, 112, 135, 141, 147, 148, 150, 151, 153
wrap_text, 154