Package ‘vivainsights’

June 6, 2024

Type Package

Title Analyze and Visualize Data from 'Microsoft Viva Insights'

Version 0.5.3

Maintainer Martin Chan <martin.chan@microsoft.com>

Description Provides a versatile range of functions, including exploratory data analysis, time-series analysis, organizational network analysis, and data validation, whilst at the same time implements a set of best practices in analyzing and visualizing data specific to 'Microsoft Viva Insights'.

RoxygenNote 7.3.1

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Language en-US

Depends R (>= 3.1.2)

Imports dplyr, stats, utils, tidyr, tidyselect (>= 1.0.0), magrittr, ggplot2, reshape2, scales, ggrepel, purrr, data.table, methods, htmltools, markdown, networkD3, rmarkdown, wpa, ggraph, igraph, tidytext, ggwordcloud, lifecycle

Suggests flexdashboard, testthat (>= 3.0.0)

URL https://microsoft.github.io/vivainsights/

BugReports https://github.com/microsoft/vivainsights/issues/

Config/testthat/edition 3

NeedsCompilation no

Author Martin Chan [aut, cre],
Carlos Morales [aut]

Repository CRAN

Date/Publication 2024-06-06 16:00:02 UTC
Contents

afterhours_dist 4
afterhours_fizz 6
afterhours_line 7
afterhours_rank 9
afterhours_summary 10
afterhours_trend 12
anonymise 13
any_idate 14
camel_clean 15
check_inputs 15
check_query 16
collaboration_area 18
collaboration_dist 19
collaboration_fizz 21
collaboration_line 22
collaboration_rank 24
collaboration_sum 26
collaboration_trend 27
comma .. 29
copy_df 29
create_bar 30
create_bar_asis 32
create_boxplot 34
create_bubble 36
create_density 37
create_dist 39
create_dt 41
create_fizz 42
create_hist 43
create_inc 45
create_IV 47
create_line 49
create_line_asis 51
create_period_scatter 52
create_rank 54
create_rank_combine 57
create_sankey 58
create_scatter 59
create_stacked 61
create_tracking 63
create_trend 64
cut_hour 66
eMail_dist 67
eMail_fizz 68
eMail_line 69
eMail_rank 71
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>email_summary</td>
<td>72</td>
</tr>
<tr>
<td>email_trend</td>
<td>74</td>
</tr>
<tr>
<td>export</td>
<td>75</td>
</tr>
<tr>
<td>external_dist</td>
<td>76</td>
</tr>
<tr>
<td>external_fizz</td>
<td>78</td>
</tr>
<tr>
<td>external_line</td>
<td>79</td>
</tr>
<tr>
<td>external_rank</td>
<td>80</td>
</tr>
<tr>
<td>external_sum</td>
<td>82</td>
</tr>
<tr>
<td>extract_date_range</td>
<td>83</td>
</tr>
<tr>
<td>extract_hr</td>
<td>84</td>
</tr>
<tr>
<td>flag_ch_ratio</td>
<td>85</td>
</tr>
<tr>
<td>flag_em_ratio</td>
<td>86</td>
</tr>
<tr>
<td>flag_extreme</td>
<td>87</td>
</tr>
<tr>
<td>flag_outlooktime</td>
<td>89</td>
</tr>
<tr>
<td>g2g_data</td>
<td>90</td>
</tr>
<tr>
<td>generate_report</td>
<td>91</td>
</tr>
<tr>
<td>generate_report2</td>
<td>92</td>
</tr>
<tr>
<td>heat_colours</td>
<td>93</td>
</tr>
<tr>
<td>hrvvar_count</td>
<td>94</td>
</tr>
<tr>
<td>hrvvar_count_all</td>
<td>95</td>
</tr>
<tr>
<td>hrvvar_trend</td>
<td>97</td>
</tr>
<tr>
<td>hr_trend</td>
<td>98</td>
</tr>
<tr>
<td>identify_churn</td>
<td>99</td>
</tr>
<tr>
<td>identify_datefreq</td>
<td>101</td>
</tr>
<tr>
<td>identify_holidayweeks</td>
<td>102</td>
</tr>
<tr>
<td>identify_inactiveweeks</td>
<td>104</td>
</tr>
<tr>
<td>identify_nkw</td>
<td>105</td>
</tr>
<tr>
<td>identify_outlier</td>
<td>106</td>
</tr>
<tr>
<td>identify_privacythreshold</td>
<td>107</td>
</tr>
<tr>
<td>identify_shifts</td>
<td>108</td>
</tr>
<tr>
<td>identify_tenure</td>
<td>109</td>
</tr>
<tr>
<td>import_query</td>
<td>111</td>
</tr>
<tr>
<td>is_date_format</td>
<td>112</td>
</tr>
<tr>
<td>IV_report</td>
<td>112</td>
</tr>
<tr>
<td>jitter_metrics</td>
<td>114</td>
</tr>
<tr>
<td>keymetrics_scan</td>
<td>115</td>
</tr>
<tr>
<td>keymetrics_scan_asis</td>
<td>116</td>
</tr>
<tr>
<td>maxmin</td>
<td>118</td>
</tr>
<tr>
<td>meeting_dist</td>
<td>119</td>
</tr>
<tr>
<td>meeting_fizz</td>
<td>121</td>
</tr>
<tr>
<td>meeting_line</td>
<td>122</td>
</tr>
<tr>
<td>meeting_rank</td>
<td>123</td>
</tr>
<tr>
<td>meeting_summary</td>
<td>125</td>
</tr>
<tr>
<td>meeting_tm_report</td>
<td>126</td>
</tr>
<tr>
<td>meeting_trend</td>
<td>127</td>
</tr>
<tr>
<td>mt_data</td>
<td>129</td>
</tr>
<tr>
<td>network_g2g</td>
<td>130</td>
</tr>
<tr>
<td>network_p2p</td>
<td>133</td>
</tr>
</tbody>
</table>
afterhours_dist

Distribution of After-hours Collaboration Hours as a 100% stacked bar

Description

Analyse the distribution of weekly after-hours collaboration time. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
afterhours_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
)```
afterhours_dist

cut = c(1, 2, 3)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.

return String specifying what to return. This must be one of the following strings:

  • "plot"
  • "table"

See Value for more information.

cut A vector specifying the cuts to use for the data, accepting "default" or "range-
cut" as character vector, or a numeric value of length three to specify the exact
breaks to use. e.g. c(1, 3, 5)

Details

Uses the metric After_hours_collaboration_hours. See create_dist() for applying the same
analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A stacked bar plot for the metric.
  • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(),
afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(),
collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(),
create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(),
create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
email_trend(), external_dist(), external_fizz(), external_line(), external_rank(),
external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(),
meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(),
one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(),
one2one_trend()

Other After-hours Collaboration: afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), external_rank()
Examples

# Return plot
afterhours_dist(pq_data, hrvar = "Organization")

# Return summary table
afterhours_dist(pq_data, hrvar = "Organization", return = "table")

# Return result with a custom specified breaks
afterhours_dist(pq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))

dataframe: 6

afterhours_fizz Distribution of After-hours Collaboration Hours (Fizzy Drink plot)

Description

Analyze weekly after-hours collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

afterhours_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:

  * "plot"
  * "table"

See Value for more information.

Details

Uses the metric After_hours_collaboration_hours. See create_fizz() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

  * "plot": 'ggplot' object. A jittered scatter plot for the metric.
  * "table": data frame. A summary table for the metric.
afterhours_line

See Also

Other Visualization: `afterhours_dist()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other After-hours Collaboration: `afterhours_dist()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `external_rank()`

Examples

```r
Return plot
afterhours_fizz(pq_data, hrvar = "LevelDesignation", return = "plot")

Return summary table
afterhours_fizz(pq_data, hrvar = "Organization", return = "table")
```

---

### afterhours_line

**After-hours Collaboration Time Trend - Line Chart**

#### Description

Provides a week by week view of after-hours collaboration time, visualized as line charts. By default returns a line chart for after-hours collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

#### Usage

```r
afterhours_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

#### Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
afterhours_line

- "plot"
- "table"

See Value for more information.

Details

Uses the metric After_hours_collaboration_hours.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

create_line() for applying the same analysis to a different metric.

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_rank(), afterhours_summary(), afterhours_trend(), external_rank()

Examples

# Return a line plot
afterhours_line(pq_data, hrvar = "LevelDesignation")

# Return summary table
afterhours_line(pq_data, hrvar = "LevelDesignation", return = "table")
afterhours_rank

Rank groups with high After-Hours Collaboration Hours

Description

This function scans a Standard Person Query for groups with high levels of After-Hours Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of After-Hours Collaboration Hours.

Usage

```
afterhours_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "plot"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode String to specify calculation mode. Must be either:

  - "simple"
  - "combine"

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".

  - 1: Top and bottom five groups across the data population are highlighted
  - 2: Top and bottom groups per organizational attribute are highlighted

return String specifying what to return. This must be one of the following strings:

  - "plot" (default)
  - "table"

See Value for more information.

Details

Uses the metric After_hours_collaboration_hours. See create_rank() for applying the same analysis to a different metric.
afterhours_summary

Value

When 'table' is passed in return, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_summary(), afterhours_trend(), external_rank()

Examples

```r
Return plot
afterhours_rank(pq_data, return = "plot")

Return summary table
afterhours_rank(pq_data, return = "table")
```

---

**afterhours_summary**  
**Summary of After-Hours Collaboration Hours**

Description

Provides an overview analysis of after-hours collaboration time. Returns a bar plot showing average weekly after-hours collaboration hours by default. Additional options available to return a summary table.

Usage

```r
afterhours_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

afterhours_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
Arguments

data  A Standard Person Query dataset in the form of a data frame.
hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return  String specifying what to return. This must be one of the following strings:
• "plot"
• "table"
See Value for more information.

Details

Uses the metric After-hours_collaboration_hours.

Value

A different output is returned depending on the value passed to the return argument:
• "plot": 'ggplot' object. A bar plot for the metric.
• "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_trend(), external_rank()

Examples

# Return a ggplot bar chart
afterhours_summary(pq_data, hrvar = "LevelDesignation")

# Return a summary table
afterhours_summary(pq_data, hrvar = "LevelDesignation", return = "table")
afterhours_trend

**After-Hours Time Trend**

**Description**

Provides a week by week view of after-hours collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

**Usage**

```r
afterhours_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

**Arguments**

- `data`: A Standard Person Query dataset in the form of a data frame.
- `hrvar`: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply `NULL` (without quotes).
- `mingroup`: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return`: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

**Details**

Uses the metric `After_hours_collaboration_hours`.

**Value**

Returns a `ggplot` object by default, where 'plot' is passed in `return`. When 'table' is passed, a summary table is returned as a data frame.

**See Also**

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`
anonymise

Other After-hours Collaboration: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `external_rank()`

Examples

# Run plot
afterhours_trend(pq_data)

# Run table
afterhours_trend(pq_data, hrvar = "LevelDesignation", return = "table")

______________________________
anonymise Anonymise a categorical variable by replacing values
______________________________

Description

Anonymize categorical variables such as HR variables by replacing values with dummy team names such as 'Team A'. The behaviour is to make 1 to 1 replacements by default, but there is an option to completely randomise values in the categorical variable.

Usage

anonymise(x, scramble = FALSE, replacement = NULL)
anonymize(x, scramble = FALSE, replacement = NULL)

Arguments

x Character vector to be passed through.
scramble Logical value determining whether to randomise values in the categorical variable.
replacement Character vector containing the values to replace original values in the categorical variable. The length of the vector must be at least as great as the number of unique values in the original variable. Defaults to NULL, where the replacement would consist of "Team A", "Team B", etc.

Value

Character vector with the same length as input x, replaced with values provided in replacement.

See Also

jitter
any_idate

Examples

```r
unique(anonymise(pq_data$Organization))

rep <- c("Manager+", "Manager", "IC")
unique(anonymise(pq_data$Layer), replacement = rep)
```

---

**any_idate**

*Identify whether variable is an IDate class.*

**Description**

This function checks whether the variable is an IDate class.

**Usage**

```r
any_idate(x)
```

**Arguments**

- `x` Variable to test whether an IDate class.

**Value**

logical value indicating whether the string is of an IDate class.

**See Also**

Other Support: `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `tstamp()`, `us_to_space()`, `wrap()`

**Examples**

```r
any_idate("2023-12-15")
```
**camel_clean**

*Convert "CamelCase" to "Camel Case"*

**Description**

Convert a text string from the format "CamelCase" to "Camel Case". This is used for converting variable names such as "LevelDesignation" to "Level Designation" for the purpose of prettifying plot labels.

**Usage**

camel_clean(string)

**Arguments**

string A string vector in 'CamelCase' format to format

**Value**

Returns a formatted string.

**See Also**

Other Support: any_idate(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

**Examples**

camel_clean("NoteHowTheStringIsFormatted")

---

**check_inputs**

*Check whether a data frame contains all the required variable*

**Description**

Checks whether a data frame contains all the required variables. Matching works via variable names, and used to support individual functions in the package. Not used directly.

**Usage**

check_inputs(input, requirements, return = "stop")
Arguments

input    Pass a data frame for checking
requirements A character vector specifying the required variable names
return   A character string specifying what to return. The default value is "stop". Also accepts "names" and "warning".

Value

The default behaviour is to return an error message, informing the user what variables are not included. When return is set to "names", a character vector containing the unmatched variable names is returned.

See Also

Other Support: any_idate(), camel_clean(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

# Return error message
## Not run:
check_inputs(iris, c("Sepal.Length", "mpg"))
## End(Not run)

#' # Return warning message
check_inputs(iris, c("Sepal.Length", "mpg"), return = "warning")

# Return variable names
check_inputs(iris, c("Sepal.Length", "Sepal.Width", "RandomVariable"), return = "names")

check_query  Check a query to ensure that it is suitable for analysis

Description

Prints diagnostic data about the data query to the R console, with information such as date range, number of employees, HR attributes identified, etc.

Usage

check_query(data, return = "message", validation = FALSE)
check_query

Arguments

data A person-level query in the form of a data frame. This includes:
   • Standard Person Query
   • Ways of Working Assessment Query
   • Hourly Collaboration Query

All person-level queries have a PersonId column and a MetricDate column.

return String specifying what to return. This must be one of the following strings:
   • "message" (default)
   • "text"

See Value for more information.

validation Logical value to specify whether to show summarized version. Defaults to FALSE. To hide checks on variable names, set validation to TRUE.

Details

This can be used with any person-level query, such as the standard person query, Ways of Working assessment query, and the hourly collaboration query. When run, this prints diagnostic data to the R console.

Value

A different output is returned depending on the value passed to the return argument:

   • "message": a message is returned to the console.
   • "text": string containing the diagnostic message.

See Also

Other Data Validation: extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

check_query(pq_data)
collaboration_area  

**Collaboration - Stacked Area Plot**

**Description**

Provides an overview analysis of Weekly Digital Collaboration. Returns a stacked area plot of Email and Meeting Hours by default. Additional options available to return a summary table.

**Usage**

```r
collaboration_area(data, hrvar = NULL, mingroup = 5, return = "plot")

collab_area(data, hrvar = NULL, mingroup = 5, return = "plot")
```

**Arguments**

- `data`:
  A Standard Person Query dataset in the form of a data frame. A Ways of Working assessment dataset may also be provided, in which Unscheduled call hours would be included in the output.

- `hrvar`:
  HR Variable by which to split metrics, defaults to `NULL`, but accepts any character vector, e.g. "LevelDesignation". If `NULL` is passed, the organizational attribute is automatically populated as "Total".

- `mingroup`:
  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- `return`:
  String specifying what to return. This must be one of the following strings:
  - "plot" 
  - "table"
  
  See Value for more information.

**Details**

Uses the metrics `Meeting_hours`, `Email_hours`, `Unscheduled_Call_hours`, and `Instant_Message_hours`.

**Value**

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A stacked area plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend()

Examples

# Return plot with total (default)
collaboration_area(pq_data)

# Return plot with hrvar split
collaboration_area(pq_data, hrvar = "Organization")

# Return summary table
collaboration_area(pq_data, return = "table")

collaboration_dist

Distribution of Collaboration Hours as a 100% stacked bar

Description

Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

collaboration_dist(  
data,  
hrvar = "Organization",  
mimgroup = 5,  
return = "plot",  
cut = c(15, 20, 25)  )

collab_dist(  
data,  
hrvar = "Organization",  
mimgroup = 5,  
return = "plot",  
cut = c(15, 20, 25)  )
data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:

  • "plot"
  • "table"

See Value for more information.
cut A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:

  • "plot": 'ggplot' object. A stacked bar plot for the metric.
  • "table": data frame. A summary table for the metric.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
Other Collaboration: `collaboration_area()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`

### Examples

```r
Return plot
collaboration_dist(pq_data, hrvar = "Organization")

Return summary table
collaboration_dist(pq_data, hrvar = "Organization", return = "table")
```

### collaboration_fizz Distribution of Collaboration Hours (Fizzy Drink plot)

### Description

Analyze weekly collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

### Usage

```r
collaboration_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

### Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"
  - "table"
  
  See Value for more information.

### Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.
Metrics used

The metric `Collaboration_hours` is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Collaboration: `collaboration_area()`, `collaboration_dist()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`

Examples

```r
Return plot
collaboration_fizz(pq_data, hrvar = "Organization", return = "plot")

Return summary table
collaboration_fizz(pq_data, hrvar = "Organization", return = "table")
```

**collaboration_line**

**Collaboration Time Trend - Line Chart**

Description

Provides a week by week view of collaboration time, visualised as line charts. By default returns a line chart for collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

```r
collaboration_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
collab_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
  - "plot"  
  - "table"  
  See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

Metrics used

The metric `Collaboration_hours` is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Collaboration: `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`

Examples

```r
Return a line plot
collaboration_line(pq_data, hrvar = "LevelDesignation")

Return summary table
```
collaboration_rank

**Description**

This function scans a standard query output for groups with high levels of 'Weekly Digital Collaboration'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

**Usage**

```r
collaboration_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "plot"
)
```

```r
collab_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "plot"
)
```

**Arguments**

- **data** A Standard Person Query dataset in the form of a data frame.
- **hrvar** String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup** Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **mode** String to specify calculation mode. Must be either:
  - "simple"
  - "combine"
- **plot_mode** Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`. 
collaboration_rank

- 1: Top and bottom five groups across the data population are highlighted
- 2: Top and bottom groups per organizational attribute are highlighted

return

String specifying what to return. This must be one of the following strings:

- "plot" (default)
- "table"

See Value for more information.

Details

Uses the metric Collaboration_hours. See create_rank() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_sum(), collaboration_trend()

Examples

# Return rank table
collaboration_rank(
    data = pq_data,
    return = "table"
)

# Return plot
collaboration_rank(
    data = pq_data,
collaboration_sum

Description
Provides an overview analysis of 'Weekly Digital Collaboration'. Returns a stacked bar plot of Email and Meeting Hours by default. Additional options available to return a summary table.

Usage

collaboration_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

collab_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

collaboration_summary(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot"
)

collab_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details
Uses the metrics Meeting_hours, Email_hours, Unscheduled_Call_hours, and Instant_Message_hours.

Value
Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.
collaboration_trend

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_trend()

Examples

# Return a ggplot bar chart
collaboration_sum(pq_data, hrvar = "LevelDesignation")

# Return a summary table
collaboration_sum(pq_data, hrvar = "LevelDesignation", return = "table")

collaboration_trend  Collaboration Time Trend

Description

Provides a week by week view of collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

collaboration_trend(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot"
)
Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Value

Returns a ’ggplot’ object by default, where ’plot’ is passed in return. When ’table’ is passed, a summary table is returned as a data frame.

Metrics used

The metric Collaboration_hours is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stack(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Collaboration: collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum()

Examples

# Run plot
collaboration_trend(pq_data)

# Run table
collaboration_trend(pq_data, hrvar = "LevelDesignation", return = "table")
comma  

Add comma separator for thousands

Description
Takes a numeric value and returns a character value which is rounded to the whole number, and adds a comma separator at the thousands. A convenient wrapper function around `round()` and `format()`.

Usage
```r
comma(x)
```

Arguments
- `x`: A numeric value

Value
Returns a formatted string.

copy_df  

Copy a data frame to clipboard for pasting in Excel

Description
This is a pipe-optimised function, that feeds into `vivainsights::export()`, but can be used as a stand-alone function.
Based on the original function from https://github.com/martinctc/surveytoolbox.

Usage
```r
copy_df(x, row.names = FALSE, col.names = TRUE, quietly = FALSE, ...)
```

Arguments
- `x`: Data frame to be passed through. Cannot contain list-columns or nested data frames.
- `row.names`: A logical vector for specifying whether to allow row names. Defaults to FALSE.
- `col.names`: A logical vector for specifying whether to allow column names. Defaults to FALSE.
- `quietly`: Set this to TRUE to not print data frame on console
- `...`: Additional arguments for `write.table()`.
Value

Copies a data frame to the clipboard with no return value.

See Also

Other Import and Export: create_dt(), export(), import_query()

create_bar  

Mean Bar Plot for any metric

Description

Provides an overview analysis of a selected metric by calculating a mean per metric. Returns a bar plot showing the average of a selected metric by default. Additional options available to return a summary table.

Usage

create_bar(
  data,
  metric,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  bar_colour = "default",
  na.rm = FALSE,
  percent = FALSE,
  plot_title = us_to_space(metric),
  plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))),
  legend_lab = NULL,
  rank = "descending",
  xlim = NULL,
  text_just = 0.5,
  text_colour =="#FFFFFF"
)

Arguments

data  A Standard Person Query dataset in the form of a data frame.
metric  Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar  String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup  Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return  String specifying what to return. This must be one of the following strings:
create_bar

- "plot"
- "table"

See Value for more information.

**bar_colour**

String to specify colour to use for bars. In-built accepted values include "default" (default), "alert" (red), and "darkblue". Otherwise, hex codes are also accepted. You can also supply RGB values via rgb2hex().

**na.rm**

A logical value indicating whether NA should be stripped before the computation proceeds. Defaults to FALSE.

**percent**

Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

**plot_title**

An option to override plot title.

**plot_subtitle**

An option to override plot subtitle.

**legend_lab**

String. Option to override legend title/label. Defaults to NULL, where the metric name will be populated instead.

**rank**

String specifying how to rank the bars. Valid inputs are:

- "descending" - ranked highest to lowest from top to bottom (default).
- "ascending" - ranked lowest to highest from top to bottom.
- NULL - uses the original levels of the HR attribute.

**xlim**

An option to set max value in x axis.

**text_just**

[Experimental] A numeric value controlling for the horizontal position of the text labels. Defaults to 0.5.

**text_colour**

[Experimental] String to specify colour to use for the text labels. Defaults to "#FFFFFF".

**Value**

A different output is returned depending on the value passed to the return argument:

- "plot": `ggplot` object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

**See Also**

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
Other Flexible: `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`

Examples

```r
Return a ggplot bar chart
create_bar(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation")

Change bar colour
create_bar(pq_data,
 metric = "After_hours_collaboration_hours",
 bar_colour = "alert")

Custom data label positions and formatting
pq_data %>%
create_bar(
 metric = "Meetings",
 text_just = 1.1,
 text_colour = "black",
 xlim = 20)

Return a summary table
create_bar(pq_data,
 metric = "Collaboration_hours",
 hrvar = "LevelDesignation",
 return = "table")
```

---

`create_bar_asis` Create a bar chart without aggregation for any metric

Description

This function creates a bar chart directly from the aggregated/summarised data. Unlike `create_bar()` which performs a person-level aggregation, there is no calculation for `create_bar_asis()` and the values are rendered as they are passed into the function.

Usage

```r
create_bar_asis(
 data,
 group_var,
 bar_var,
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 ylab = group_var,
 xlab = bar_var,
)```
create_bar(asis)

percent = FALSE,
bar_colour = "default",
rounding = 1
)

Arguments

data Plotting data as a data frame.
group_var String containing name of variable for the group.
bar_var String containing name of variable representing the value of the bars.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
ylab Y-axis label for the plot (group axis)
xlab X-axis label of the plot (bar axis).
percent Logical value to determine whether to show labels as percentage signs. Defaults
to FALSE.
bar_colour String to specify colour to use for bars. In-built accepted values include "default"
(default), "alert" (red), and "darkblue". Otherwise, hex codes are also accepted.
You can also supply RGB values via rgb2hex().
rounding Numeric value to specify number of digits to show in data labels

Value

'ggplot' object. A horizontal bar plot.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar(), create_boxplot(), create_bubble(), create_dist(),
create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
email_trend(), external_dist(), external_fizz(), external_line(), external_rank(),
external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(),
meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(),
one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(),
one2one_trend()

Other Flexible: create_bar(), create_boxplot(), create_bubble(), create_density(), create_dist(),
create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend()
Examples

```r
# Creating a custom bar plot without mean aggregation
library(dplyr)

pq_data %>%
  group_by(Organization) %>%
  summarise(across(.cols = Meeting_hours,
    .fns = ~sum(., na.rm = TRUE))) %>%
  create_bar_asis(group_var = "Organization",
  bar_var = "Meeting_hours",
  title = "Total Meeting Hours over period",
  subtitle = "By Organization",
  caption = extract_date_range(pq_data, return = "text"),
  bar_colour = "darkblue",
  rounding = 0)

library(dplyr)

# Summarise Non-person-average median `Emails_sent`
med_df <-
  pq_data %>%
  group_by(Organization) %>%
  summarise(Emails_sent_median = median(Emails_sent))

med_df %>%
  create_bar_asis(
    group_var = "Organization",
    bar_var = "Emails_sent_median",
    title = "Emails sent by organization",
    subtitle = "Median values",
    bar_colour = "darkblue",
    caption = extract_date_range(pq_data, return = "text")
  )
```

create_boxplot

Box Plot for any metric

Description

Analyzes a selected metric and returns a box plot by default. Additional options available to return a table with distribution elements.

Usage

```r
create_boxplot(
  data,
  metric,
```
create_boxplot

hrvar = "Organization",
mingroup = 5,
return = "plot"

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.

Details

This is a general purpose function that powers all the functions in the package that produce box plots.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A box plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend()
create_bubble

Examples

Create a box plot for Collaboration_hours by Level Designation
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")

Create a box plot for Collaboration_hours by Organization
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "plot")

Create a summary statistics table for Collaboration_hours by Organization
create_boxplot(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

create_bubble Create a bubble plot with two selected Viva Insights metrics (General Purpose), with size representing the number of employees in the group.

Description

Returns a bubble plot of two selected metrics, using size to map the number of employees.

Usage

create_bubble(
 data,
 metric_x,
 metric_y,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 bubble_size = c(1, 10)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric_x Character string containing the name of the metric, e.g. "Collaboration_hours"
metric_y Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts
any character vector, e.g. "LevelDesignation"
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.
return String specifying what to return. This must be one of the following strings: -
"plot" - "table"
bubble_size A numeric vector of length two to specify the size range of the bubbles
create_density

Details

This is a general purpose function that powers all the functions in the package that produce bubble plots.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bubble plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Examples

create_bubble(pq_data, "Collaboration_hours", "Multitasking_hours", hrvar ="Organization")
create_density

Usage

create_density(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 ncol = NULL,
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric String containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.
ncol Numeric value setting the number of columns on the plot. Defaults to NULL
(automatic).
return String specifying what to return. This must be one of the following strings:
• "plot"
• "table"
• "data"
• "frequency"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object. A faceted density plot for the metric.
• "table": data frame. A summary table for the metric.
• "data": data frame. Data with calculated person averages.
• "frequency": list of data frames. Each data frame contains the frequencies used in each panel
of the plotted histogram.

See Also

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(),
create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend()
Examples

Return plot for whole organization
create_density(pq_data, metric = "Collaboration_hours", hrvar = NULL)

Return plot
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization")

Return plot but coerce plot to three columns
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 3)

Return summary table
create_density(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

create_dist

Horizontal 100 percent stacked bar plot for any metric

Description

Provides an analysis of the distribution of a selected metric. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
create_dist(
  data, 
  metric, 
  hrvar = "Organization", 
  mingroup = 5, 
  return = "plot", 
  cut = c(15, 20, 25), 
  dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), 
  unit = "hours", 
  lbound = 0, 
  ubound = 200, 
  sort_by = NULL, 
  labels = NULL
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: String containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
create_dist

return String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

cut A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

dist_colours A character vector of length four to specify colour codes for the stacked bars.

unit String to specify what unit to use. This defaults to "hours" but can accept any custom string. See cut_hour() for more details.

lbound Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0.

ubound Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100.

sort_by String to specify the bucket label to sort by. Defaults to NULL (no sorting).

tables Character vector to override labels for the created categorical variables. Must be a named vector - see examples.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object. A stacked bar plot for the metric.
• "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(),
create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
email_trend(), external_dist(), external_fizz(), external_line(), external_rank(),
external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(),
meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(),
one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(),
one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(),
create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend()
create_dt

Create interactive tables in HTML with ‘download’ buttons.

Description

Usage

create_dt(x, rounding = 1, freeze = 2, percent = FALSE)

Arguments

x
Data frame to be passed through.

rounding
Numeric vector to specify the number of decimal points to display

freeze
Number of columns from the left to ‘freeze’. Defaults to 2, which includes the row number column.

percent
Logical value specifying whether to display numeric columns as percentages.

Details

This is exported from wpa::create_dt().

Value

Returns an HTML widget displaying rectangular data.
create_fizz

See Also

Other Import and Export: copy_df(), export(), import_query()

Examples

output <- hrvar_count(pq_data, return = "table")
create_dt(output)

data set I:

create_fizz(
data,
metric,
hrvar = "Organization",
migroup = 5,
return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
migroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
See Value for more information.

Details

This is a general purpose function that powers all the functions in the package that produce 'fizzy drink' / jittered scatter plots.
create_hist

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Flexible: `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_hist()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`

Examples

```r
# Create a fizzy plot for Collaboration hours by Level Designation
create_fizz(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")

# Create a summary statistics table for Collaboration hours by Organization
create_fizz(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
```

Description

Provides an analysis of the distribution of a selected metric. Returns a faceted histogram by default. Additional options available to return the underlying frequency table.
Usage

create_hist(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 binwidth = 1,
 ncol = NULL,
 return = "plot"
)

Arguments

data: A Standard Person Query dataset in the form of a data frame.
metric: String containing the name of the metric, e.g. "Collaboration_hours"
hrvar: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
binwidth: Numeric value for setting binwidth argument within ggplot2::geom_histogram(). Defaults to 1.
ncol: Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
return: String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 • "data"
 • "frequency"
 See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A faceted histogram for the metric.
 • "table": data frame. A summary table for the metric.
 • "data": data frame. Data with calculated person averages.
 • "frequency": list of data frames. Each data frame contains the frequencies used in each panel of the plotted histogram.

See Also

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend()
create_inc

Examples

Return plot for whole organization
create_hist(pq_data, metric = "Collaboration_hours", hrvar = NULL)

Return plot
create_hist(pq_data, metric = "Collaboration_hours", hrvar = "Organization")

Return plot but coerce plot to 3 columns
create_hist(pq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 3)

Return summary table
create_hist(pq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")

create_inc

Create an incidence analysis reflecting proportion of population scoring above or below a threshold for a metric

Description

An incidence analysis is generated, with each value in the table reflecting the proportion of the population that is above or below a threshold for a specified metric. There is an option to only provide a single hrvar in which a bar plot is generated, or two hrvar values where an incidence table (heatmap) is generated.

Usage

create_inc(
 data,
 metric,
 hrvar,
 mingroup = 5,
 threshold,
 position,
 return = "plot"
)

create_incidence(
 data,
 metric,
 hrvar,
 mingroup = 5,
 threshold,
 position,
 return = "plot"
)
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**: Character vector of at most length 2 containing the name of the HR Variable by which to split metrics.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **threshold**: Numeric value specifying the threshold.
- **position**: String containing the below valid values:
 - "above": show incidence of those equal to or above the threshold
 - "below": show incidence of those equal to or below the threshold
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A heat map.
- "table": data frame. A summary table.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Flexible: `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`
Examples

Only a single HR attribute
create_inc(
 data = pq_data,
 metric = "After_hours_collaboration_hours",
 hrvar = "Organization",
 threshold = 4,
 position = "above"
)

Two HR attributes
create_inc(
 data = pq_data,
 metric = "Collaboration_hours",
 hrvar = c("LevelDesignation", "Organization"),
 threshold = 20,
 position = "below"
)

create_IV

Compute Information Value for Predictive Variables

Description

This function calculates the Information Value (IV) for the selected numeric predictor variables in the dataset, given a specified outcome variable. The Information Value provides a measure of the predictive power of each variable in relation to the outcome variable, which can be useful in feature selection for predictive modeling.

Usage

create_IV(
 data,
 predictors = NULL,
 outcome,
 bins = 5,
 siglevel = 0.05,
 exc_sig = FALSE,
 return = "plot"
)

Arguments

data A Person Query dataset in the form of a data frame.
predictors A character vector specifying the columns to be used as predictors. Defaults to NULL, where all numeric vectors in the data will be used as predictors.
outcome String specifying the column name for a binary variable, containing only the values 1 or 0.
bins Number of bins to use, defaults to 5.
siglevel Significance level to use in comparing populations for the outcomes, defaults to 0.05
exc_sig Logical value determining whether to exclude values where the p-value lies below what is set at siglevel. Defaults to FALSE, where p-value calculation does not happen altogether.
return String specifying what to return. This must be one of the following strings:
• "plot"
• "summary"
• "list"
• "plot=WOE"
• "IV"
See Value for more information.

Details
This is a wrapper around wpa::create_IV().

Value
A different output is returned depending on the value passed to the return argument:
• "plot": 'ggplot' object. A bar plot showing the IV value of the top (maximum 12) variables.
• "summary": data frame. A summary table for the metric.
• "list": list. A list of outputs for all the input variables.
• "plot=WOE": A list of 'ggplot' objects that show the WOE for each predictor used in the model.
• "IV" returns a list object which mirrors the return in Information::create_infotables().

See Also
Other Variable Association: IV_report()
Other Information Value: IV_report()

Examples

Return a summary table of IV
pq_data %>%
 dplyr::mutate(X = ifelse(Internal_network_size > 40, 1, 0)) %>%
 create_IV(outcome = "X",
 predictors = c("Email_hours",
 "Meeting_hours",
 "Chat_hours"),
 return = "plot")
Return summary
pq_data %>%
dplyr::mutate(X = ifelse(Internal_network_size > 40, 1, 0)) %>%
create_IV(outcome = "X",
predictors = c("Email_hours", "Meeting_hours"),
return = "summary")

create_line

Time Trend - Line Chart for any metric

Description

Provides a week by week view of a selected metric, visualised as line charts. By default returns a line chart for the defined metric, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

create_line(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 ncol = NULL,
 return = "plot"
)

Arguments

- **data**
 - A Standard Person Query dataset in the form of a data frame.
- **metric**
 - Character string containing the name of the metric, e.g. "Collaboration_hours"
- **hrvar**
 - String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**
 - Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **ncol**
 - Numeric value setting the number of columns on the plot. Defaults to NULL (automatic).
- **return**
 - String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.
Details
This is a general purpose function that powers all the functions in the package that produce faceted line plots.

Value
A different output is returned depending on the value passed to the `return` argument:
- "plot": `ggplot` object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also
Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`
Other Flexible: `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`
Other Time-series: `create_line_asis()`, `create_period_scatter()`, `create_trend()`

Examples
```r
# Return plot of Email Hours
pq_data %> create_line(metric = "Email_hours", return = "plot")

# Return plot of Collaboration Hours
pq_data %> create_line(metric = "Collaboration_hours", return = "plot")

# Return plot but coerce plot to two columns
pq_data %> create_line(
    metric = "Collaboration_hours",
    hrvar = "Organization",
    ncol = 2
)

# Return plot of email hours and cut by `LevelDesignation`
pq_data %> create_line(metric = "Email_hours", hrvar = "LevelDesignation")
```
create_line_asis

Create a line chart without aggregation for any metric

Description

This function creates a line chart directly from the aggregated / summarised data. Unlike create_line() which performs a person-level aggregation, there is no calculation for create_line_asis() and the values are rendered as they are passed into the function. The only requirement is that a date_var is provided for the x-axis.

Usage

```r
create_line_asis(
  data,
  date_var = "MetricDate",
  metric,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ylab = date_var,
  xlab = metric,
  line_colour = rgb2hex(0, 120, 212)
)
```

Arguments

- `data`: Plotting data as a data frame.
- `date_var`: String containing name of variable for the horizontal axis.
- `metric`: String containing name of variable representing the line.
- `title`: Title of the plot.
- `subtitle`: Subtitle of the plot.
- `caption`: Caption of the plot.
- `ylab`: Y-axis label for the plot (group axis).
- `xlab`: X-axis label of the plot (bar axis).
- `line_colour`: String to specify colour to use for the line. Hex codes are accepted. You can also supply RGB values via `rgb2hex()`.

Value

Returns a `ggplot` object representing a line plot.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Other Time-series: create_line(), create_period_scatter(), create_trend()

Examples

library(dplyr)

Median `Emails_sent` grouped by `MetricDate`
Without Person Averaging
med_df <- pq_data %>%
 group_by(MetricDate) %>%
 summarise(Emails_sent_median = median(Emails_sent))

med_df %>%
 create_line_asis(
 date_var = "MetricDate",
 metric = "Emails_sent_median",
 title = "Median Emails Sent",
 subtitle = "Person Averaging Not Applied",
 caption = extract_date_range(pq_data, return = "text")
)

create_period_scatter Period comparison scatter plot for any two metrics

Description

Returns two side-by-side scatter plots representing two selected metrics, using colour to map an HR attribute and size to represent number of employees. Returns a faceted scatter plot by default, with additional options to return a summary table.
create_period_scatter

Usage

create_period_scatter(
 data,
 hrvar = "Organization",
 metric_x = "Large_and_long_meeting_hours",
 metric_y = "Meeting_hours",
 before_start = min(as.Date(data$MetricDate, "%m/%d/%Y")),
 before_end = max(as.Date(data$MetricDate, "%m/%d/%Y")),
 after_start = as.Date(before_end) + 1,
 after_end = max(as.Date(data$MetricDate, "%m/%d/%Y")),
 before_label = "Period 1",
 after_label = "Period 2",
 mingroup = 5,
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
metric_x Character string containing the name of the metric, e.g. "Collaboration_hours"
metric_y Character string containing the name of the metric, e.g. "Collaboration_hours"
before_start Start date of "before" time period in YYYY-MM-DD
before_end End date of "before" time period in YYYY-MM-DD
after_start Start date of "after" time period in YYYY-MM-DD
after_end End date of "after" time period in YYYY-MM-DD
before_label String to specify a label for the "before" period. Defaults to "Period 1".
after_label String to specify a label for the "after" period. Defaults to "Period 2".
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

This is a general purpose function that powers all the functions in the package that produce faceted scatter plots.

Value

Returns a `ggplot` object showing two scatter plots side by side representing the two periods.
create_rank

Rank all groups across HR attributes on a selected Viva Insights metric

Description

This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.

Usage

create_rank(
 data,
 metric,
hrvar = extract_hr(data, exclude_constants = TRUE),
mingroup = 5,
return = "table",
mode = "simple",
plot_mode = 1
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
• "plot" (default)
• "table"

See Value for more information.
mode String to specify calculation mode. Must be either:
• "simple"
• "combine"
plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
• 1: Top and bottom five groups across the data population are highlighted
• 2: Top and bottom groups per organizational attribute are highlighted

Value

A different output is returned depending on the value passed to the return argument:

• "plot": `ggplot` object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".
• "table": data frame. A summary table for the metric.

Author(s)

Carlos Morales Torrado carlos.morales@microsoft.com
Martin Chan martin.chan@microsoft.com
create_rank

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend()

Examples

pq_data_small <- dplyr::slice_sample(pq_data, prop = 0.1)

Plot mode 1 - show top and bottom five groups
create_rank(
 data = pq_data_small,
 hrvar = c("FunctionType", "LevelDesignation"),
 metric = "Emails_sent",
 return = "plot",
 plot_mode = 1
)

Plot mode 2 - show top and bottom groups per HR variable
create_rank(
 data = pq_data_small,
 hrvar = c("FunctionType", "LevelDesignation"),
 metric = "Emails_sent",
 return = "plot",
 plot_mode = 2
)

Return a table
create_rank(
 data = pq_data_small,
 metric = "Emails_sent",
 return = "table"
)

Return a table - combination mode
create_rank(
 data = pq_data_small,
create_rank_combine

```r
metric = "Emails_sent",
mode = "combine",
return = "table"
)
```

create_rank_combine
Create combination pairs of HR variables and run ‘create_rank()’

Description

Create pairwise combinations of HR variables and compute an average of a specified advanced insights metric.

Usage

```r
create_rank_combine(data, hrvar = extract_hr(data), metric, mingroup = 5)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours"
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

Details

This function is called when the mode argument in create_rank() is specified as "combine".

Value

Data frame containing the following variables:

- **hrvar**: placeholder column that denotes the output as "Combined".
- **group**: pairwise combinations of HR attributes with the HR attribute in square brackets followed by the value of the HR attribute.
- **Name of the metric (as passed to metric)**
- **n**
create_sankey

Examples

Use a small sample for faster runtime
pq_data_small <- dplyr::slice_sample(pq_data, prop = 0.1)

create_rank_combine(
 data = pq_data_small,
 metric = "Email_hours",
 hrvar = c("Organization", "FunctionType", "LevelDesignation")
)

create_sankey Create a sankey chart from a two-column count table

Description

Create a 'networkD3' style sankey chart based on a long count table with two variables. The input data should have three columns, where each row is a unique group:

1. Variable 1
2. Variable 2
3. Count

Usage

create_sankey(data, var1, var2, count = "n")

Arguments

data Data frame of the long count table.
var1 String containing the name of the variable to be shown on the left.
var2 String containing the name of the variable to be shown on the right.
count String containing the name of the count variable.

Value

A 'sankeyNetwork' and 'htmlwidget' object containing a two-tier sankey plot. The output can be saved locally with htmlwidgets::saveWidget().

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(), create_trend()
email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(),
external_dist(), external_fizz(), external_line(), external_rank(), external_sum(),
hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(),
meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(),
one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(),
create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(),
create_period_scatter(), create_rank(), create_scatter(), create_stacked(), create_tracking(),
create_trend()

Examples

pq_data %>%
dplyr::count(Organization, FunctionType) %>%
create_sankey(var1 = "Organization", var2 = "FunctionType")

create_scatter Create a Scatter plot with two selected Viva Insights metrics (General Purpose)

Description

Returns a scatter plot of two selected metrics, using colour to map an HR attribute. Returns a scatter plot by default, with additional options to return a summary table.

Usage

create_scatter(
 data,
 metric_x,
 metric_y,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric_x Character string containing the name of the metric, e.g. "Collaboration_hours"
metric_y Character string containing the name of the metric, e.g. "Collaboration_hours"
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
migroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
create_scatter

`return` Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

This is a general purpose function that powers all the functions in the package that produce scatter plots.

Value

Returns a `ggplot` object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Flexible: `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_density()`, `create_dist()`, `create_fizz()`, `create_hist()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_stacked()`, `create_tracking()`, `create_trend()`

Examples

```r
create_scatter(
pq_data,
metric_x = "Collaboration_hours",
metric_y = "Multitasking_hours",
hvvar = "Organization"
)

create_scatter(
pq_data,
metric_x = "Collaboration_hours",
metric_y = "Multitasking_hours",
hvvar = "Organization",
mimgroup = 100,
return = "plot"
)
```
create_stacked

Horizontal stacked bar plot for any metric

Description

Creates either a single bar plot, or a stacked bar using selected metrics (where the typical use case is to create different definitions of collaboration hours). Returns a plot by default. Additional options available to return a summary table.

Usage

create_stacked(
 data,
 hrvar = "Organization",
 metrics = c("Meeting_hours", "Email_hours"),
 mingroup = 5,
 return = "plot",
 stack_colours = c("#1d627e", "#34b1e2", "#b4d5dd", "#adc0cb"),
 percent = FALSE,
 plot_title = "Collaboration Hours",
 plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))),
 legend_lab = NULL,
 rank = "descending",
 xlim = NULL,
 text_just = 0.5,
 text_colour = "#FFFFFF"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
metrics A character vector to specify variables to be used in calculating the "Total" value, e.g. c("Meeting_hours", "Email_hours"). The order of the variable names supplied determine the order in which they appear on the stacked plot.
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
stack_colours A character vector to specify the colour codes for the stacked bar charts.
percent Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.
plot_title String. Option to override plot title.
plot_subtitle String. Option to override plot subtitle.
legend_lab String. Option to override legend title/label. Defaults to NULL, where the metric name will be populated instead.
rank String specifying how to rank the bars. Valid inputs are:
• "descending" - ranked highest to lowest from top to bottom (default).
• "ascending" - ranked lowest to highest from top to bottom.
• NULL - uses the original levels of the HR attribute.
xlim An option to set max value in x axis.
text_just [Experimental] A numeric value controlling for the horizontal position of the text labels. Defaults to 0.5.
text_colour [Experimental] String to specify colour to use for the text labels. Defaults to
"#FFFFFF".

Value

Returns a `ggplot` object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(),
create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_tracking(), create_trend(),
email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(),
external_dist(), external_fizz(), external_line(), external_rank(), external_sum(),
hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(),
meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(),
one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(),
create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(),
create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_tracking(),
create_trend()

Examples

```r
pq_data %>%
  create_stacked(hrvar = "LevelDesignation",
                 metrics = c("Meeting_hours", "Email_hours"),
                 return = "plot")

pq_data %>%
  create_stacked(hrvar = "FunctionType",
                 metrics = c("Meeting_hours", "Email_hours", "Call_hours"),
                 return = "plot")
```
create_tracking

```r
pq_data %>%
  create_stacked(hrvar = "FunctionType",
                 metrics = c("Meeting_hours",
                               "Email_hours",
                               "Call_hours",
                               "Chat_hours"),
                 return = "table")
```

create_tracking

Create a line chart that tracks metrics over time with a 4-week rolling average.

Description

[Experimental]

Create a two-series line chart that visualizes a set of metric over time for the selected population, with one of the series being a four-week rolling average.

Usage

```r
create_tracking(
  data, metric, plot_title = us_to_space(metric),
  plot_subtitle = "Measure over time", percent = FALSE)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours" percentage signs. Defaults to FALSE.
- **plot_title**: An option to override plot title.
- **plot_subtitle**: An option to override plot subtitle.
- **percent**: Logical value to determine whether to show labels as percentage signs. Defaults to FALSE.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A time-series plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_trend()

Examples

pq_data %>%
 create_tracking(
 metric = "Collaboration_hours",
 percent = FALSE
)

create_trend Heat mapped horizontal bar plot over time for any metric

Description

Provides a week by week view of a selected Viva Insights metric. By default returns a week by week heatmap bar plot, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

create_trend(
 data,
 metric,
 hrvar = "Organization",
 mingroup = 5,
 palette = c("steelblue4", "aliceblue", "white", "mistyrose1", "tomato1"),
 return = "plot",
 legend_title = "Hours"
)
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **metric**: Character string containing the name of the metric, e.g. "Collaboration_hours".
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **palette**: Character vector containing colour codes, ranked from the lowest value to the highest value. This is passed directly to ggplot2::scale_fill_gradientn().
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
- **legend_title**: String to be used as the title of the legend. Defaults to "Hours".

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_scatter(), create_scatter_asis(), create_tracking(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Flexible: create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_density(), create_dist(), create_fizz(), create_hist(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_scatter_asis(), create_tracking()

Other Time-series: create_line(), create_line_asis(), create_period_scatter()

Examples

create_trend(pq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation")

custom colours
create_trend(
pq_data,
metric = "Collaboration_hours",
hrvar = "LevelDesignation",

palette = c(
 "#FB6107",
 "#F3DE2C",
 "#7CB518",
 "#5C8001"
)
)

cut_hour

Convert a numeric variable for hours into categorical

Description
Supply a numeric variable, e.g. Collaboration_hours, and return a character vector.

Usage
cut_hour(metric, cuts, unit = "hours", lbound = 0, ubound = 100)

Arguments
metric A numeric variable representing hours.
cuts A numeric vector of minimum length 3 to represent the cut points required. The
 minimum and maximum values provided in the vector are inclusive.
unit String to specify the unit of the labels. Defaults to "hours".
lbound Numeric. Specifies the lower bound (inclusive) value for the minimum label.
 Defaults to 0.
ubound Numeric. Specifies the upper bound (inclusive) value for the maximum label.
 Defaults to 100.

Details
This is used within create_dist() for numeric to categorical conversion.

Value
Character vector representing a converted categorical variable, appended with the label of the unit.
See examples for more information.

See Also
Other Support: any_idate(), camel_clean(), check_inputs(), extract_date_range(), extract_hr(),
heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(),
totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()
Examples

Direct use
cut_hour(1:30, cuts = c(15, 20, 25))

Use on a query
cut_hour(pq_data$Collaboration_hours, cuts = c(10, 15, 20), ubound = 150)

email_dist

Distribution of Email Hours as a 100% stacked bar

Description

Analyze Email Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

email_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 return = "plot",
 cut = c(0.5, 1, 1.5)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
See Value for more information.
cut A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A stacked bar plot for the metric.
 • "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Emails: email_fizz(), email_line(), email_rank(), email_summary(), email_trend()

Examples

Return plot
e-mail_dist(pq_data, hrvar = "Organization")

Return summary table
e-mail_dist(pq_data, hrvar = "Organization", return = "table")

Return result with a custom specified breaks
e-mail_dist(pq_data, hrvar = "LevelDesignation", cut = c(1, 2, 3))

e-mail_fizz Distribution of Email Hours (Fizzy Drink plot)

Description

Analyze weekly email hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

e-mail_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return
String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Emails: `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`

Examples

```r
# Return plot
email_fizz(pq_data, hrvar = "Organization", return = "plot")

# Return summary table
email_fizz(pq_data, hrvar = "Organization", return = "table")
```

email_line
Email Time Trend - Line Chart

Description

Provides a week by week view of email time, visualised as line charts. By default returns a line chart for email hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

```r
email_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the **return** argument:

- "plot": `ggplot` object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Emails: `email_dist()`, `email_fizz()`, `email_rank()`, `email_summary()`, `email_trend()`

Examples

Return a line plot
email_line(pq_data, hrvar = "LevelDesignation")

Return summary table
email_line(pq_data, hrvar = "LevelDesignation", return = "table")
Description

This function scans a standard query output for groups with high levels of 'Weekly Email Collaboration'. Returns a plot by default, with an option to return a table with all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

Usage

```r
email_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)
```

Arguments

- `data` A Standard Person Query dataset in the form of a data frame.
- `hrvar` String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- `mingroup` Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `mode` String to specify calculation mode. Must be either:
 - "simple"
 - "combine"
- `plot_mode` Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`.
 - 1: Top and bottom five groups across the data population are highlighted
 - 2: Top and bottom groups per organizational attribute are highlighted
- `return` String specifying what to return. This must be one of the following strings:
 - "plot" (default)
 - "table"

See Value for more information.

Details

Uses the metric Email_hours. See `create_rank()` for applying the same analysis to a different metric.
Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if `mode` is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Emails: `email_dist()`, `email_fizz()`, `email_line()`, `email_summary()`, `email_trend()`

Examples

```r
# Return rank table
email_rank(
  data = pq_data,
  return = "table"
)

# Return plot
email_rank(
  data = pq_data,
  return = "plot"
)
```

email_summary

Email Summary

Description

Provides an overview analysis of weekly email hours. Returns a bar plot showing average weekly email hours by default. Additional options available to return a summary table.
email_summary

Usage

email_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

eemail_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. De-
defaults to "Organization". To run the analysis on the total instead of splitting
by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to
5.
return String specifying what to return. This must be one of the following strings:
• "plot"
• "table"
See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
• "plot": 'ggplot' object. A bar plot for the metric.
• "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(),afterhours_fizz(),afterhours_line(),afterhours_rank(),
afterhours_summary(),afterhours_trend(),collaboration_area(),collaboration_dist(),
collaboration_fizz(),collaboration_line(),collaboration_rank(),collaboration_sum(),
collaboration_trend(),create_bar(),create_bar_asis(),create_boxplot(),create_bubble(),
create_dist(),create_fizz(),create_inc(),create_line(),create_line_asis(),create_period_scatter(),
create_rank(),create_sankey(),create_scatter(),create_stacked(),create_tracking(),
create_trend(),email_dist(),email_fizz(),email_line(),email_rank(),email_trend(),
email_dist(),email_fizz(),email_line(),email_rank(),email_trend(),
email_dist(),email_fizz(),email_line(),email_rank(),email_trend(),
exrenal_dist(),external_fizz(),external_line(),external_rank(),external_sum(),
hh_trend(),hrvar_count(),hrvar_trend(),keymetrics_scan(),meeting_dist(),meeting_fizz(),
meeting_line(),meeting_rank(),meeting_summary(),meeting_trend(),one2one_dist(),
one2one_fizz(),one2one_freq(),one2one_line(),one2one_rank(),one2one_sum(),one2one_trend()

Other Emails: email_dist(),email_fizz(),email_line(),email_rank(),email_trend()

Examples

Return a ggplot bar chart
email_summary(pq_data, hrvar = "LevelDesignation")

Return a summary table
email_summary(pq_data, hrvar = "LevelDesignation", return = "table")
email_trend

Email Hours Time Trend

Description

Provides a week by week view of email time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

```r
eemail_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Email_hours.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Emails: email_dist(), email_fizz(), email_line(), email_rank(), email_summary()
Examples

Run plot
email_trend(pq_data)

Run table
email_trend(pq_data, hrvar = "LevelDesignation", return = "table")

export

Export 'vivainsights' outputs to CSV, clipboard, or save as images

Description

A general use function to export 'vivainsights' outputs to CSV, clipboard, or save as images. By default, `export()` copies a data frame to the clipboard. If the input is a 'ggplot' object, the default behaviour is to export a PNG.

Usage

```r
export(
  x,
  method = "clipboard",
  path = "insights export",
  timestamp = TRUE,
  width = 12,
  height = 9
)
```

Arguments

- **x**
 - Data frame or 'ggplot' object to be passed through.
- **method**
 - Character string specifying the method of export. Valid inputs include:
 - "clipboard" (default if input is data frame)
 - "csv"
 - "png" (default if input is 'ggplot' object)
 - "svg"
 - "jpeg"
 - "pdf"
- **path**
 - If exporting a file, enter the path and the desired file name, *excluding the file extension*. For example, "Analysis/SQ Overview".
- **timestamp**
 - Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.
- **width**
 - Width of the plot
- **height**
 - Height of the plot
A different output is returned depending on the value passed to the `method` argument:

- "clipboard": no return - data frame is saved to clipboard.
- "csv": CSV file containing data frame is saved to specified path.
- "png": PNG file containing 'ggplot' object is saved to specified path.
- "svg": SVG file containing 'ggplot' object is saved to specified path.
- "jpeg": JPEG file containing 'ggplot' object is saved to specified path.
- "pdf": PDF file containing 'ggplot' object is saved to specified path.

Author(s)

Martin Chan martin.chan@microsoft.com

See Also

Other Import and Export: `copy_df()`, `create_dt()`, `import_query()`

external_dist

Distribution of External Collaboration Hours as a 100% stacked bar

Description

Analyze the distribution of External Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
external_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(5, 10, 15)
)
```

Arguments

- `data`: A Standard Person Query dataset in the form of a data frame.
- `hrvar`: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply `NULL` (without quotes).
- `mingroup`: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- `return`: String specifying what to return. This must be one of the following strings:
external_dist

- "plot"
- "table"

See Value for more information.

cut

A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Details

Uses the metric External_collaboration_hours. See create_dist() for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
email_trend(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(),
hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(),
meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(),
one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other External Collaboration: external_fizz(), external_line(), external_sum()

Examples

Return plot
external_dist(pq_data, hrvar = "Organization")

Return summary table
external_dist(pq_data, hrvar = "Organization", return = "table")

Return result with a custom specified breaks
external_dist(pq_data, hrvar = "LevelDesignation", cut = c(2, 4, 6))
external_fizz

Distribution of External Collaboration Hours (Fizzy Drink plot)

Description
Analyze weekly External Collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage
external_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments
- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
See Value for more information.

Details
Uses the metric Collaboration_hours_external. See create_fizz() for applying the same analysis to a different metric.

Value
A different output is returned depending on the value passed to the return argument:
- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
Examples

Return plot
external_fizz(pq_data, hrvar = "LevelDesignation", return = "plot")

Return summary table
external_fizz(pq_data, hrvar = "Organization", return = "table")

external_line

External Collaboration Hours Time Trend - Line Chart

Description

Provides a week by week view of External collaboration time, visualized as line chart. By default returns a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

eexternal_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
migroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Details

Uses the metric Collaboration_hours_external.
Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

create_line() for applying the same analysis to a different metric.

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(),
afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(),
collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(),
collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(),
create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(),
create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(),
e-mail_trend(), external_dist(), external_fizz(), external_rank(), external_sum(), hr_trend(),
hvvar_count(), hvvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(),
meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(),
one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(),

Other External Collaboration: external_dist(), external_fizz(), external_sum()

Examples

Return a line plot
eexternal_line(pq_data, hrvar = "LevelDesignation")

Return summary table
eexternal_line(pq_data, hrvar = "LevelDesignation", return = "table")

external_rank Rank groups with high External Collaboration Hours

Description

This function scans a Standard Person Query for groups with high levels of External Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of External Collaboration.

Usage

eexternal_rank(
data,
hrvar = extract_hr(data),
ingroup = 5,
mode = "simple")
plot_mode = 1,
return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
mode String to specify calculation mode. Must be either:
• "simple"
• "combine"
plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
• 1: Top and bottom five groups across the data population are highlighted
• 2: Top and bottom groups per organizational attribute are highlighted
return String specifying what to return. This must be one of the following strings:
• "plot" (default)
• "table"
See Value for more information.

Details
Uses the metric Collaboration_hours_external. See create_rank() for applying the same analysis to a different metric.

Value
When 'table' is passed in return, a summary table is returned as a data frame.

See Also
Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stack(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other After-hours Collaboration: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend()
Examples

Return rank table
external_rank(data = pq_data, return = "table")

Return plot
external_rank(data = pq_data, return = "plot")

Description

Provides an overview analysis of 'External Collaboration'. Returns a stacked bar plot of internal and external collaboration. Additional options available to return a summary table.

Usage

external_sum(
 data,
 hrvar = "Organization",
 mingroup = 5,
 stack_colours = c("#1d327e", "#1d7e6a"),
 return = "plot"
)

external_summary(
 data,
 hrvar = "Organization",
 mingroup = 5,
 stack_colours = c("#1d327e", "#1d7e6a"),
 return = "plot"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

stack_colours A character vector to specify the colour codes for the stacked bar charts.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
Value

Returns a ‘ggplot’ object by default, where ‘plot’ is passed in return. When ‘table’ is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other External Collaboration: external_dist(), external_fizz(), external_line()

Examples

Return a plot
external_sum(pq_data, hrvar = "LevelDesignation")

Return summary table
external_sum(pq_data, hrvar = "LevelDesignation", return = "table")

extract_date_range Extract date period

Description

Return a data frame with the start and end date of the query data by default. There are options to return a descriptive string, which is used in the caption of plots in this package.

Usage

extract_date_range(data, return = "table")

Arguments

data Data frame containing a query to pass through. The data frame must contain a Date column. Accepts a Person query or a Meeting query.
return String specifying what output to return. Returns a table by default ("table"), but allows returning a descriptive string ("text").
extract_hr

Description

This function uses a combination of variable class, number of unique values, and regular expression matching to extract HR / organisational attributes from a data frame.

Usage

```r
extract_hr(data, max_unique = 50, exclude_constants = TRUE, return = "names")
```

Arguments

data: A data frame to be passed through.
max_unique: A numeric value representing the maximum number of unique values to accept for an HR attribute. Defaults to 50.
exclude_constants: Logical value to specify whether single-value HR attributes are to be excluded. Defaults to TRUE.
return: String specifying what to return. This must be one of the following strings:
 • "names"
 • "vars"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "names": character vector identifying all the names of HR variables present in the data.
• "vars": data frame containing all the columns of HR variables present in the data.

See Also

Other Support: any_idate(), camel_clean(), check_inputs(), cut_hour(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()
See Also

Other Support: any_idate(), camel_clean(), check_inputs(), cut_hour(), extract_date_range(),
heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(),
totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Other Data Validation: check_query(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(),
flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(),
identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(),
identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(),
validation_report()

Examples

pq_data %>% extract_hr(return = "names")

pq_data %>% extract_hr(return = "vars")

flag_ch_ratio
Flag unusual high collaboration hours to after-hours collaboration hours ratio

Description

This function flags persons who have an unusual ratio of collaboration hours to after-hours collaboration hours. Returns a character string by default.

Usage

flag_ch_ratio(data, threshold = c(1, 30), return = "message")

Arguments

data A data frame containing a Person Query.
threshold Numeric value specifying the threshold for flagging. Defaults to 30.
return String to specify what to return. Options include:
 • "message"
 • "text"
 • "data"

Value

A different output is returned depending on the value passed to the return argument:
 • "message": message in the console containing diagnostic summary
 • "text": string containing diagnostic summary
 • "data": data frame. Person-level data with flags on unusually high or low ratios
Metrics used

The metric `Collaboration_hours` is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

flag_ch_ratio(pq_data)

data.frame(PersonId = c("Alice", "Bob"),
 Collaboration_hours = c(30, 0.5),
 After_hours_collaboration_hours = c(0.5, 30)) %>%
flag_ch_ratio()

flag_em_ratio
Flag Persons with unusually high Email Hours to Emails Sent ratio

Description

This function flags persons who have an unusual ratio of email hours to emails sent. If the ratio between Email Hours and Emails Sent is greater than the threshold, then observations tied to a `PersonId` is flagged as unusual.

Usage

`flag_em_ratio(data, threshold = 1, return = "text")`

Arguments

data A data frame containing a Person Query.
threshold Numeric value specifying the threshold for flagging. Defaults to 1.
return String specifying what to return. This must be one of the following strings:
 • "text"
 • "data"

See Value for more information.
Value
A different output is returned depending on the value passed to the `return` argument:

- "text": string. A diagnostic message.
- "data": data frame. Person-level data with those flagged with unusual ratios.

See Also
Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

```r
flag_em_ratio(pq_data)
```

flag_extreme Warn for extreme values by checking against a threshold

Description
This is used as part of data validation to check if there are extreme values in the dataset.

Usage

```r
flag_extreme(
  data,
  metric,
  person = TRUE,
  threshold,
  mode = "above",
  return = "message"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.
metric A character string specifying the metric to test.
person A logical value to specify whether to calculate person-averages. Defaults to TRUE (person-averages calculated).
threshold Numeric value specifying the threshold for flagging.
mode String determining mode to use for identifying extreme values.
 • "above": checks whether value is greater than the threshold (default)
• "equal": checks whether value is equal to the threshold
• "below": checks whether value is below the threshold

return String specifying what to return. This must be one of the following strings:
• "text"
• "message"
• "table"

See Value for more information.

Value
A different output is returned depending on the value passed to the return argument:
• "text": string. A diagnostic message.
• "message": message on console. A diagnostic message.
• "table": data frame. A person-level table with PersonId and the extreme values of the selected metric.

See Also
Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples
The threshold values are intentionally set low to trigger messages.
flag_extreme(pq_data, "Email_hours", threshold = 15)

Return a summary table
flag_extreme(pq_data, "Email_hours", threshold = 15, return = "table")

Person-week level
flag_extreme(pq_data, "Email_hours", person = FALSE, threshold = 15)

Check for values equal to threshold
flag_extreme(pq_data, "Email_hours", person = TRUE, mode = "equal", threshold = 0)

Check for values below threshold
flag_extreme(pq_data, "Email_hours", person = TRUE, mode = "below", threshold = 5)
flag_outlooktime

Flag unusual outlook time settings for work day start and end time

Description
This function flags unusual outlook calendar settings for start and end time of work day.

Usage
flag_outlooktime(data, threshold = c(4, 15), return = "message")

Arguments
data A data frame containing a Person Query.
threshold A numeric vector of length two, specifying the hour threshold for flagging. Defaults to c(4, 15).
return String specifying what to return. This must be one of the following strings:
• "text" (default)
• "message"
• "data"

Value
A different output is returned depending on the value passed to the return argument:
• "text": string. A diagnostic message.
• "message": message on console. A diagnostic message.
• "data": data frame. Data where flag is present.

See Value for more information.

See Also
Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples
Demo with 'pq_data' example where Outlook Start and End times are imputed
spq_df <- pq_data

spq_df$WorkingStartTimeSetInOutlook <- "6:30"

spq_df$WorkingEndTimeSetInOutlook <- "23:30"
Return a message
flag_outlooktime(spq_df, threshold = c(5, 13))

Return data
flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")

g2g_data
Sample Group-to-Group dataset

Description

A demo dataset representing a Group-to-Group Query. The grouping organizational attribute used here is Organization, where the variable have been prefixed with `PrimaryCollaborator_` and `SecondaryCollaborator_` to represent the direction of collaboration.

Usage

g2g_data

Format

A data frame with 150 rows and 11 variables:

- `PrimaryCollaborator_Organization`
- `PrimaryCollaborator_GroupSize`
- `SecondaryCollaborator_Organization`
- `SecondaryCollaborator_GroupSize`
- `MetricDate`
- `Percent_Group_collaboration_time_invested`
- `Group_collaboration_time_invested`
- `Group_email_sent_count`
- `Group_email_time_invested`
- `Group_meeting_count`
- `Group_meeting_time_invested` ...

Value

data frame.

Source

https://analysis.insights.viva.office.com/analyst/analysis/
generate_report

Generate HTML report with list inputs

Description

This is a support function using a list-pmap workflow to create a HTML document, using RMarkdown as the engine.

Usage

```r
generate_report(
  title = "My minimal HTML generator",
  filename = "minimal_html",
  outputs = output_list,
  titles, 
  subheaders,
  echos,
  levels,
  theme = "united",
  preamble = ""
)
```

Arguments

- `title` Character string to specify the title of the chunk.
- `filename` File name to be used in the exported HTML.
- `outputs` A list of outputs to be added to the HTML report. Note that outputs, titles, echos, and levels must have the same length.
- `titles` A list/vector of character strings to specify the title of the chunks.
- `subheaders` A list/vector of character strings to specify the subheaders for each chunk.
- `echos` A list/vector of logical values to specify whether to display code.
- `levels` A list/vector of numeric value to specify the header level of the chunk.
- `theme` Character vector to specify theme to be used for the report. E.g. "united", "default".
- `preamble` A preamble to appear at the beginning of the report, passed as a text string.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Creating a custom report

Below is an example on how to set up a custom report.
The first step is to define the content that will go into a report and assign the outputs to a list.

```r
# Step 1: Define Content
output_list <-
  list(pq_data %>% workloads_summary(return = "plot"),
       pq_data %>% workloads_summary(return = "table")) %>%
  purrr::map_if(is.data.frame, create_dt)
```

The next step is to add a list of titles for each of the objects on the list:

```r
# Step 2: Add Corresponding Titles
title_list <- c("Workloads Summary - Plot", "Workloads Summary - Table")
n_title <- length(title_list)
```

The final step is to run `generate_report()`. This can all be wrapped within a function such that the function can be used to generate a HTML report.

```r
# Step 3: Generate Report
generate_report(title = "My First Report",
                filename = "My First Report",
                outputs = output_list, 
                titles = title_list, 
                subheaders = rep("", n_title),
                echos = rep(FALSE, n_title)
```

Author(s)

Martin Chan martin.chan@microsoft.com

See Also

Other Reports: `IV_report()`, `meeting_tm_report()`, `read_preamble()`, `validation_report()`

generate_report2

Generate HTML report based on existing RMarkdown documents

Description

This is a support function that accepts parameters and creates a HTML document based on an RMarkdown template. This is an alternative to `generate_report()` which instead creates an RMarkdown document from scratch using individual code chunks.
heat_colours

Generate a vector of \(n \) contiguous colours, as a red-yellow-green palette.

Description

Takes a numeric value \(n \) and returns a character vector of colour HEX codes corresponding to the heat map palette.

Usage

```r
heat_colours(n, alpha, rev = FALSE)
heat_colors(n, alpha, rev = FALSE)
```
Arguments

- **n**: the number of colors (>= 1) to be in the palette.
- **alpha**: an alpha-transparency level in the range of 0 to 1 (0 means transparent and 1 means opaque)
- **rev**: logical indicating whether the ordering of the colors should be reversed.

Value

A character vector containing the HEX codes and the same length as `n` is returned.

See Also

Other Support: `any_idate()`, `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `tstamp()`, `us_to_space()`, `wrap()`

Examples

```r
barplot(rep(10, 50), col = heat_colours(n = 50), border = NA)
barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE),
        border = NA)
```

hrvar_count

Create a count of distinct people in a specified HR variable

Description

This function enables you to create a count of the distinct people by the specified HR attribute. The default behaviour is to return a bar chart as typically seen in 'Analysis Scope'.

Usage

```r
hrvar_count(data, hrvar = "Organization", return = "plot")
analysis_scope(data, hrvar = "Organization", return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
See Value for more information.
hrvar_count_all

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object containing a bar plot.
- "table": data frame containing a count table.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

```r
# Return a bar plot
hrvar_count(pq_data, hrvar = "LevelDesignation")

# Return a summary table
hrvar_count(pq_data, hrvar = "LevelDesignation", return = "table")
```

hrvar_count_all

Create count of distinct fields and percentage of employees with missing values for all HR variables

Description

[Experimental]

This function enables you to create a summary table to validate organizational data. This table will provide a summary of the data found in the Viva Insights Data sources page. This function will return a summary table with the count of distinct fields per HR attribute and the percentage of employees with missing values for that attribute. See `hrvar_count()` function for more detail on the specific HR attribute of interest.
hrvar_count_all

Usage

hrvar_count_all(
 data,
 n_var = 50,
 return = "message",
 threshold = 100,
 maxna = 20
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
n_var number of HR variables to include in report as rows. Default is set to 50 HR variables.
return String to specify what to return
threshold The max number of unique values allowed for any attribute. Default is 100.
maxna The max percentage of NAs allowable for any column. Default is 20.

Value

Returns an error message by default, where 'text' is passed in return.

- 'table': data frame. A summary table listing the number of distinct fields and percentage of missing values for the specified number of HR attributes will be returned.
- 'message': outputs a message indicating which values are beyond the specified thresholds.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

Return a summary table of all HR attributes
hrvar_count_all(pq_data, return = "table")
hrvar_trend

Track count of distinct people over time in a specified HR variable

Description

This function provides a week by week view of the count of the distinct people by the specified HR attribute. The default behaviour is to return a week by week heatmap bar plot.

Usage

hrvar_trend(data, hrvar = "Organization", return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated.

return String specifying what to return. This must be one of the following strings:

• "plot"
• "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "plot": 'ggplot' object containing a bar plot.
• "table": data frame containing a count table.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
hr_trend

identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

Return a bar plot
hrvar_trend(pq_data, hrvar = "LevelDesignation")

Return a summary table
hrvar_trend(pq_data, hrvar = "LevelDesignation", return = "table")

hr_trend Employee count over time

Description

Returns a line chart showing the change in employee count over time. Part of a data validation process to check for unusual license growth / declines over time.

Usage

hr_trend(data, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": ggplot object. A line plot showing employee count over time.
 • "table": data frame containing a summary table.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(),
identify_churn

create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

Return plot
hr_trend(pq_data)

Return summary table
hr_trend(pq_data, return = "table")

identify_churn
Identify employees who have churned from the dataset

Description

This function identifies and counts the number of employees who have churned from the dataset by measuring whether an employee who is present in the first n (n1) weeks of the data is present in the last n (n2) weeks of the data.

Usage

identify_churn(data, n1 = 6, n2 = 6, return = "message", flip = FALSE)

Arguments

- **data**
 A Person Query as a data frame. Must contain a PersonId.

- **n1**
 A numeric value specifying the number of weeks at the beginning of the period that defines the measured employee set. Defaults to 6.

- **n2**
 A numeric value specifying the number of weeks at the end of the period to calculate whether employees have churned from the data. Defaults to 6.

- **return**
 String specifying what to return. This must be one of the following strings:
 - "message" (default)
 - "text"
 - "data"

See Value for more information.
flip

Logical, defaults to FALSE. This determines whether to reverse the logic of identifying the non-overlapping set. If set to TRUE, this effectively identifies new-joiners, or those who were not present in the first n weeks of the data but were present in the final n weeks.

Details

An additional use case of this function is the ability to identify "new-joiners" by using the argument flip.

If an employee is present in the first n weeks of the data but not present in the last n weeks of the data, the function considers the employee as churned. As the measurement period is defined by the number of weeks from the start and the end of the passed data frame, you may consider filtering the dates accordingly before running this function.

Another assumption that is in place is that any employee whose PersonId is not available in the data has churned. Note that there may be other reasons why an employee's PersonId may not be present, e.g. maternity/paternity leave, Viva Insights license has been removed, shift to a low-collaboration role (to the extent that he/she becomes inactive).

Value

A different output is returned depending on the value passed to the return argument:

- "message": Message on console. A diagnostic message.
- "text": String. A diagnostic message.
- "data": Character vector containing the the PersonId of employees who have been identified as churned.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()

Examples

pq_data %>% identify_churn(n1 = 3, n2 = 3, return = "message")
identify_datefreq

Identify date frequency based on a series of dates

Description

[Experimental]

Takes a vector of dates and identify whether the frequency is 'daily', 'weekly', or 'monthly'. The primary use case for this function is to provide an accurate description of the query type used and for raising errors should a wrong date grouping be used in the data input.

Usage

identify_datefreq(x)

Arguments

x

Vector containing a series of dates.

Details

Date frequency detection works as follows:

• If at least three days of the week are present (e.g., Monday, Wednesday, Thursday) in the series, then the series is classified as 'daily'
• If the total number of months in the series is equal to the length, then the series is classified as 'monthly'
• If the total number of sundays in the series is equal to the length of the series, then the series is classified as 'weekly'

Value

String describing the detected date frequency, i.e.:

• 'daily'
• 'weekly'
• 'monthly'

Limitations

One of the assumptions made behind the classification is that weeks are denoted with Sundays, hence the count of sundays to measure the number of weeks. In this case, weeks where a Sunday is missing would result in an 'unable to classify' error.

Another assumption made is that dates are evenly distributed, i.e. that the gap between dates are equal. If dates are unevenly distributed, e.g. only two days of the week are available for a given week, then the algorithm will fail to identify the frequency as 'daily'.
Examples

```r
start_date <- as.Date("2022/06/26")
end_date <- as.Date("2022/11/27")

# Daily
day_seq <-
  seq.Date(
    from = start_date,
    to = end_date,
    by = "day"
  )

identify_datefreq(day_seq)

# Weekly
week_seq <-
  seq.Date(
    from = start_date,
    to = end_date,
    by = "week"
  )

identify_datefreq(week_seq)

# Monthly
month_seq <-
  seq.Date(
    from = start_date,
    to = end_date,
    by = "month"
  )

identify_datefreq(month_seq)
```

identify_holidayweeks
Identify Holiday Weeks based on outliers

Description

This function scans a standard query output for weeks where collaboration hours is far outside the mean. Returns a list of weeks that appear to be holiday weeks and optionally an edited dataframe with outliers removed. By default, missing values are excluded.

As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.

Usage

```r
identify_holidayweeks(data, sd = 1, return = "message")
```
 identify_holidayweeks

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A Standard Person Query dataset in the form of a data frame.</td>
</tr>
<tr>
<td>sd</td>
<td>The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.</td>
</tr>
<tr>
<td>return</td>
<td>String specifying what to return. This must be one of the following strings:</td>
</tr>
<tr>
<td></td>
<td>• "message" (default)</td>
</tr>
<tr>
<td></td>
<td>• "data"</td>
</tr>
<tr>
<td></td>
<td>• "data_cleaned"</td>
</tr>
<tr>
<td></td>
<td>• "data_dirty"</td>
</tr>
<tr>
<td></td>
<td>• "plot"</td>
</tr>
</tbody>
</table>

Value

A different output is returned depending on the value passed to the `return` argument:

- "message": message on console. A message is printed identifying holiday weeks.
- "data": data frame. A dataset with outlier weeks flagged in a new column is returned as a dataframe.
- "data_cleaned": data frame. A dataset with outlier weeks removed is returned.
- "data_dirty": data frame. A dataset with only outlier weeks is returned.
- "plot": ggplot object. A line plot of Collaboration Hours with holiday weeks highlighted.

Metrics used

The metric `Collaboration_hours` is used in the calculations. Please ensure that your query contains a metric with the exact same name.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

Return a message by default
identify_holidayweeks(pq_data)

Return plot
identify_holidayweeks(pq_data, return = "plot")
identify_inactiveweeks

Identify Inactive Weeks

Description

This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset. Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.

As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.

Usage

identify_inactiveweeks(data, sd = 2, return = "text")

Arguments

data A Standard Person Query dataset in the form of a data frame.
sd The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
return String specifying what to return. This must be one of the following strings:
 • "text"
 • "data_cleaned"
 • "data_dirty"

See Value for more information.

Value

Returns an error message by default, where 'text' is returned. When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe. When 'data_dirty' is passed, a dataset with outlier weeks is returned as a dataframe.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(), track_HR_change(), validation_report()
identify_nkw

Identify Non-Knowledge workers in a Person Query using Collaboration Hours

Description

This function scans a standard query output to identify employees with consistently low collaboration signals. Returns the % of non-knowledge workers identified by Organization, and optionally an edited data frame with non-knowledge workers removed, or the full data frame with the kw/nkw flag added.

Usage

```r
identify_nkw(data, collab_threshold = 5, return = "data_summary")
```

Arguments

- `data`: A Standard Person Query dataset in the form of a data frame.
- `collab_threshold`: Positive numeric value representing the collaboration hours threshold that should be exceeded as an average for the entire analysis period for the employee to be categorized as a knowledge worker ("kw"). Default is set to 5 collaboration hours. Any versions after v1.4.3, this uses a "greater than or equal to" logic (>=), in which case persons with exactly 5 collaboration hours will pass.
- `return`: String specifying what to return. This must be one of the following strings:
 - "text" (string): Returns a diagnostic message.
 - "data_with_flag" (data frame): Original input data with an additional column containing the kw/nkw flag.
 - "data_clean" (data frame): Data frame with non-knowledge workers excluded.
 - "data_summary" (data frame): A summary table by organization listing the number and % of non-knowledge workers.

Value

A different output is returned depending on the value passed to the `return` argument:

- "text": string. Returns a diagnostic message.
- "data_with_flag": data frame. Original input data with an additional column containing the kw/nkw flag.
- "data_clean": data frame. Data frame with non-knowledge workers excluded.
- "data_summary": data frame. A summary table by organization listing the number and % of non-knowledge workers.
identify_outlier

Identify metric outliers over a date interval

Description

This function takes in a selected metric and uses z-score (number of standard deviations) to identify outliers across time. There are applications in this for identifying weeks with abnormally low collaboration activity, e.g. holidays. Time as a grouping variable can be overridden with the `group_var` argument.

Usage

```r
identify_outlier(
  data,
  group_var = "MetricDate",
  metric = "Collaboration_hours"
)
```

Arguments

- `data`: A Standard Person Query dataset in the form of a data frame.
- `group_var`: A string with the name of the grouping variable. Defaults to `Date`.
- `metric`: Character string containing the name of the metric, e.g. "Collaboration_hours"

Value

Returns a data frame with `MetricDate` (if grouping variable is not set), the metric, and the corresponding z-score.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`

Examples

```r
identify_outlier(pq_data, metric = "Collaboration_hours")
```
identify_privacythreshold

Identify groups under privacy threshold

Description

This function scans a standard query output for groups with of employees under the privacy threshold. The method consists in reviewing each individual HR attribute, and count the distinct people within each group.

Usage

```r
identify_privacythreshold(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  return = "table"
)
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: A list of HR Variables to consider in the scan. Defaults to all HR attributes identified.
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "table"
 - "text"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "table": data frame. A summary table of groups that fall below the privacy threshold.
- "text": string. A diagnostic message.

Returns a ggplot object by default, where 'plot' is passed in `return`. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_shifts()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`
Examples

```r
# Return a summary table
pq_data %>% identify_privacythreshold(return = "table")

# Return a diagnostic message
pq_data %>% identify_privacythreshold(return = "text")
```

identify_shifts
Identify shifts based on outlook time settings for work day start and end time

Description

This function uses outlook calendar settings for start and end time of work day to identify work shifts. The relevant variables are `WorkingStartTimeSetInOutlook` and `WorkingEndTimeSetInOutlook`.

Usage

```r
identify_shifts(data, return = "plot")
```

Arguments

- `data` A data frame containing data from the Hourly Collaboration query.
- `return` String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
 - "data"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": ggplot object. A bar plot for the weekly count of shifts.
- "table": data frame. A summary table for the count of shifts.
- "data": data frame. Input data appended with the `Shifts` columns.

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_tenure()`, `track_HR_change()`, `validation_report()`
Examples

Demo with `pq_data` example where Outlook Start and End times are imputed
spq_df <- pq_data

spq_df$WorkingStartTimeSetInOutlook <- "6:30"
spq_df$WorkingEndTimeSetInOutlook <- "23:30"

Return plot
spq_df %>% identify_shifts()

Return summary table
spq_df %>% identify_shifts(return = "table")

identify_tenure

Tenure calculation based on different input dates, returns data summary table or histogram

Description

This function calculates employee tenure based on different input dates. `identify_tenure` uses the latest Date available if user selects "MetricDate", but also have flexibility to select a specific date, e.g. "1/1/2020".

Usage

identify_tenure(
 data,
 end_date = "MetricDate",
 beg_date = "HireDate",
 maxten = 40,
 return = "message"
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
end_date A string specifying the name of the date variable representing the latest date. Defaults to "MetricDate".
beg_date A string specifying the name of the date variable representing the hire date. Defaults to "HireDate".
maxten A numeric value representing the maximum tenure. If the tenure exceeds this threshold, it would be accounted for in the flag message.
return String specifying what to return. This must be one of the following strings:
 • "message"
• "text"
• "plot"
• "data_cleaned"
• "data_dirty"
• "data"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

• "message": message on console with a diagnostic message.
• "text": string containing a diagnostic message.
• "plot": 'ggplot' object. A line plot showing tenure.
• "data_cleaned": data frame filtered only by rows with tenure values lying within the threshold.
• "data_dirty": data frame filtered only by rows with tenure values lying outside the threshold.
• "data": data frame with the PersonId and a calculated variable called TenureYear is returned.

See Also

Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(), flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(), identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(), identify_outlier(), identify_privacythreshold(), identify_shifts(), track_HR_change(), validation_report()

Examples

library(dplyr)
Add HireDate to `pq_data`
pq_data2 <-
pq_data %>%
 mutate(HireDate = as.Date("1/1/2015", format = "%m/%d/%Y"))

identify_tenure(pq_data2)
import_query

Description

Import a Viva Insights Query from a .csv file, with variable classifications optimised for other functions in the package.

Usage

```r
import_query(
  x,
  pid = NULL,
  dateid = NULL,
  date_format = "%m/%d/%Y",
  convert_date = TRUE,
  encoding = "UTF-8"
)
```

Arguments

- `x` String containing the path to the Viva Insights query to be imported. The input file must be a .csv file, and the file extension must be explicitly entered, e.g. "/files/standard query.csv"
- `pid` String specifying the unique person or individual identifier variable. `import_query` renames this to `PersonId` so that this is compatible with other functions in the package. Defaults to `NULL`, where no action is taken.
- `dateid` String specifying the date variable. `import_query` renames this to `MetricDate` so that this is compatible with other functions in the package. Defaults to `NULL`, where no action is taken.
- `date_format` String specifying the date format for converting any variable that may be a date to a Date variable. Defaults to "%m/%d/%Y".
- `convert_date` Logical. Defaults to `TRUE`. When set to `TRUE`, any variable that matches true with `is_date_format()` gets converted to a Date variable. When set to `FALSE`, this step is skipped.
- `encoding` String to specify encoding to be used within `data.table::fread()`. See `data.table::fread()` documentation for more information. Defaults to 'UTF-8'.

Details

`import_query()` uses `data.table::fread()` to import .csv files for speed, and by default `stringsAsFactors` is set to `FALSE`. A data frame is returned by the function (not a `data.table`). Column names are automatically cleaned, replacing spaces and special characters with underscores.

Value

A tibble is returned.
See Also

Other Import and Export: copy_df(), create_dt(), export()

is_date_format Identify whether string is a date format

Description

This function uses regular expression to determine whether a string is of the format "mdy", separated by ",", "/", or ".", returning a logical vector.

Usage

is_date_format(string)

Arguments

string Character string to test whether is a date format.

Value

logical value indicating whether the string is a date format.

See Also

Other Support: any_idate(), camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

is_date_format("1/5/2020")

IV_report Generate a Information Value HTML Report

Description

The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a full Information Value analysis, a data exploration technique that helps determine which columns in a data set have predictive power or influence on the value of a specified dependent variable.
IV_report

Usage

IV_report(
 data,
 predictors = NULL,
 outcome,
 bins = 5,
 max_var = 9,
 path = "IV report",
 timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
predictors A character vector specifying the columns to be used as predictors. Defaults to NULL, where all numeric vectors in the data will be used as predictors.
outcome A string specifying a binary variable, i.e. can only contain the values 1 or 0.
bins Number of bins to use in Information::create_infotables(), defaults to 10.
max_var Numeric value to represent the maximum number of variables to show on plots.
path Pass the file path and the desired file name, excluding the file extension. For example, "IV report".
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Creating a report

Below is an example on how to run the report.

library(dplyr)

pq_data %>%
 mutate(CH_binary = ifelse(Collaboration_hours > 12, 1, 0)) %>% # Simulate binary variable
 IV_report(outcome = "CH_binary",
 predictors = c("Email_hours", "Meeting_hours"))

See Also

Other Reports: generate_report(), meeting_tm_report(), read_preamble(), validation_report()
Other Variable Association: create_IV()
Other Information Value: create_IV()
Description

Convenience wrapper around `jitter()` to add a layer of anonymity to a query. This can be used in combination with `anonymise()` to produce a demo dataset from real data.

Usage

```
jitter_metrics(data, cols = NULL, ...)
```

Arguments

- `data`: Data frame containing a query.
- `cols`: Character vector containing the metrics to jitter. When set to `NULL` (default), all numeric columns in the data frame are jittered.
- `...`: Additional arguments to pass to `jitter()`.

Value

Data frame where numeric columns specified by `cols` are jittered using the function `jitter()`.

See Also

`anonymise`

Examples

```
jittered <- jitter_metrics(pq_data, cols = "Collaboration_hours")

# compare jittered vs original results of top rows
head(data.frame(
  original = pq_data$Collaboration_hours,
  jittered = jittered$Collaboration_hours
))
```
keymetrics_scan Run a summary of Key Metrics from the Standard Person Query data

Description

Returns a heatmapped table by default, with options to return a table.

Usage

keymetrics_scan(
 data,
 hrvar = "Organization",
 mingroup = 5,
 metrics = c("Workweek_span", "Collaboration_hours", "After_hours_collaboration_hours",
 "Meetings", "Meeting_hours", "After_hours_meeting_hours",
 "Low_quality_meeting_hours", "Meeting_hours_with_manager_1_on_1",
 "Meeting_hours_with_manager", "Emails_sent", "Email_hours",
 "After_hours_email_hours", "Generated_workload_email_hours", "Total_focus_hours",
 "Internal_network_size", "Networking_outside_organization", "External_network_size",
 "Networking_outside_company"),
 return = "plot",
 low = rgb2hex(7, 111, 161),
 mid = rgb2hex(241, 204, 158),
 high = rgb2hex(216, 24, 42),
 textsize = 2
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
metrics A character vector containing the variable names to calculate averages of.
return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
low String specifying colour code to use for low-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().
mid String specifying colour code to use for mid-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().
high String specifying colour code to use for high-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().
textsize A numeric value specifying the text size to show in the plot.
keymetrics_scan_asis

Run a summary of Key Metrics without aggregation

Description

Return a heatmapped table directly from the aggregated/summarised data. Unlike keymetrics_scan(), which performs a person-level aggregation, there is no calculation for keymetrics_scan_asis() and the values are rendered as they are passed into the function.

Usage

keymetrics_scan_asis(
 data,
 row_var,
 col_var,
 group_var = col_var,
 value_var = "value",
 title = NULL,
)
subtle = NULL,
caption = NULL,
ylab = row_var,
xlab = "Metrics",
rounding = 1,
low = rgb2hex(7, 111, 161),
mid = rgb2hex(241, 204, 158),
high = rgb2hex(216, 24, 42),
textsize = 2
)

Arguments

data data frame containing data to plot. It is recommended to provide data in a 'long' table format where one grouping column forms the rows, a second column forms the columns, and a third numeric column forms the

row_var String containing name of the grouping variable that will form the rows of the heatmapped table.

col_var String containing name of the grouping variable that will form the columns of the heatmapped table.

group_var String containing name of the grouping variable by which heatmapping would apply. Defaults to col_var.

value_var String containing name of the value variable that will form the values of the heatmapped table. Defaults to "value".

title Title of the plot.

subtitle Subtitle of the plot.

caption Caption of the plot.

ylab Y-axis label for the plot (group axis)

xlab X-axis label of the plot (bar axis).

rounding Numeric value to specify number of digits to show in data labels

low String specifying colour code to use for low-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().

mid String specifying colour code to use for mid-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().

high String specifying colour code to use for high-value metrics. Arguments are passed directly to ggplot2::scale_fill_gradient2().

textsize A numeric value specifying the text size to show in the plot.

Value

ggplot object for a heatmap table.
Examples

```r
library(dplyr)

# Compute summary table
out_df <- pq_data %>%
group_by(Organization) %>%
summarise(
  across(
    .cols = c(Email_hours, Collaboration_hours),
    .fns = ~median(., na.rm = TRUE)
  ),
  .groups = "drop"
)%>%
tidyr::pivot_longer(
  cols = c("Email_hours", "Collaboration_hours"),
  names_to = "metrics"
)

keymetrics_scan_asis(
  data = out_df,
  col_var = "metrics",
  row_var = "Organization"
)

# Show data the other way round
keymetrics_scan_asis(
  data = out_df,
  col_var = "Organization",
  row_var = "metrics",
  group_var = "metrics"
)
```

maxmin

Max-Min Scaling Function

Description

This function allows you to scale vectors or an entire data frame using the max-min scaling method. A numeric vector is always returned.

Usage

`maxmin(x)`
Arguments

- Pass a vector or the required columns of a data frame through this argument.

Details

This is used within keymetrics_scan() to enable row-wise heatmapping. Originally implemented in https://github.com/martinctc/surveytoolbox.

Value

Returns a numeric vector with the input rescaled.

See Also

Other Support: any_idate(), camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), pairwise_count(), read_preamble(), rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

```r
numbers <- c(15, 40, 10, 2)
maxmin(numbers)
```

meeting_dist

Distribution of Meeting Hours as a 100% stacked bar

Description

Analyze Meeting Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.

Usage

```r
meeting_dist(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  cut = c(5, 10, 15)
)
```
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

- **cut**: A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Meetings: `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_tm_report()`, `meeting_trend()`

Examples

- # Return plot
  ```r
  meeting_dist(pq_data, hrvar = "Organization")
  ```

- # Return summary table
  ```r
  meeting_dist(pq_data, hrvar = "Organization", return = "table")
  ```

- # Return result with a custom specified breaks
  ```r
  meeting_dist(pq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
  ```
Description

Analyze weekly meeting hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

`meeting_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")`

Arguments

data: A Standard Person Query dataset in the form of a data frame.
hrvar: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

Details

Uses the metric Meeting_hours.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stack(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(),...
meeting_line

```r
external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(),
meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(),
one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
```

Other Meetings: `meeting_dist()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_tm_report()`,
`meeting_trend()`

Examples

```r
# Return plot
meeting_fizz(pq_data, hrvar = "Organization", return = "plot")

# Return summary table
meeting_fizz(pq_data, hrvar = "Organization", return = "table")
```

Description

Provides a week by week view of meeting time, visualised as line charts. By default returns a line chart for meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

```r
meeting_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_dist(), meeting_fizz(), meeting_rank(), meeting_summary(), meeting_tm_report(), meeting_trend()

Examples

Return a line plot
meeting_line(pq_data, hrvar = "LevelDesignation")

Return summary table
meeting_line(pq_data, hrvar = "LevelDesignation", return = "table")

meeting_rank

Meeting Hours Ranking

Description

This function scans a standard query output for groups with high levels of Weekly Meeting Collaboration. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.

Usage

meeting_rank(
 data,
 hrvar = extract_hr(data),
 mingroup = 5,
 mode = "simple",
 plot_mode = 1,
 return = "plot"
)
Arguments

- **data**
 A Standard Person Query dataset in the form of a data frame.

- **hrvar**
 String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

- **mingroup**
 Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- **mode**
 String to specify calculation mode. Must be either:
 - "simple"
 - "combine"

- **plot_mode**
 Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when `return = "plot"`.
 - 1: Top and bottom five groups across the data population are highlighted
 - 2: Top and bottom groups per organizational attribute are highlighted

- **return**
 String specifying what to return. This must be one of the following strings:
 - "plot" (default)
 - "table"

 See Value for more information.

Details

Uses the metric `Meeting_hours`. See `create_rank()` for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if `mode` is set to "combine".
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`
Other Meetings: `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_summary()`, `meeting_tm_report()`, `meeting_trend()`

Examples

```r
# Return rank table
meeting_rank(data = pq_data, return = "table")

# Return plot
meeting_rank(data = pq_data, return = "plot")
```

meeting_summary
Meeting Summary

Description

Provides an overview analysis of weekly meeting hours. Returns a bar plot showing average weekly meeting hours by default. Additional options available to return a summary table.

Usage

```r
meeting_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

meeting_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- `data`
 A Standard Person Query dataset in the form of a data frame.

- `hrvar`
 String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

- `mingroup`
 Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

- `return`
 String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
 See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_tm_report(), meeting_trend()

Examples

Return a ggplot bar chart
meeting_summary(pq_data, hrvar = "LevelDesignation")

Return a summary table
meeting_summary(pq_data, hrvar = "LevelDesignation", return = "table")

meeting_tm_report
Generate a Meeting Text Mining report in HTML

Description

Create a text mining report in HTML based on Meeting Subject Lines

Usage

```r
meeting_tm_report(
    data, 
    path = "meeting text mining report", 
    stopwords = NULL, 
    timestamp = TRUE, 
    keep = 100, 
    seed = 100
)
```

Arguments

- `data`: A Meeting Query dataset in the form of a data frame.
- `path`: Pass the file path and the desired file name, *excluding the file extension*. For example, "meeting text mining report".
meeting_trend

stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.

timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

keep A numeric vector specifying maximum number of words to keep.

seed A numeric vector to set seed for random generation.

Details

Note that the column Subject must be available within the input data frame in order to run.d

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

How to run

```r
meeting_tm_report(mt_data)
```

This will generate a HTML report as specified in path.

See Also

Other Reports: `IV_report()`, `generate_report()`, `read_preamble()`, `validation_report()`

Other Meetings: `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`

Other Text-mining: `pairwise_count()`, `tm_clean()`, `tm_cooc()`, `tm_freq()`, `tm_wordcloud()`

meeting_trend

Meeting Hours Time Trend

Description

Provides a week by week view of meeting time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.

Usage

```r
meeting_trend(data, hvar = "Organization", mingroup = 5, return = "plot")
```
meeting_trend

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Meeting_hours.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()

Other Meetings: meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_tm_report()

Examples

Run plot
meeting_trend(pq_data)

Run table
meeting_trend(pq_data, hrvar = "LevelDesignation", return = "table")
Description

A dataset generated from a Meeting Query from Viva Insights.

Usage

mt_data

Format

A data frame with 612 rows and 41 variables:

MeetingId
Attendee_meeting_hours
Number_of_attendees
Number_of_attendees_multitasking
Number_of_attendees_who_didn_t_end_the_meeting_on_time
Number_of_attendees_who_didn_t_join_the_meeting_on_time
Number_of_attendees_who Ended_the_meeting_on_time
Number_of_attendees_who_joined_the_meeting_on_time
Number_of_chats_sent_during_the_meeting
Number_of_emails_sent_during_the_meeting
Number_of_redundant_attendees
Subject
All_Day_Meeting
Cancelled
Recurring
Accept_count
No_response_count
Decline_count
Tentatively_accepted_count
Intended_participant_count
Collaboration_start_time
Organizer
zId
attainment
TimeZone
network_g2g

SupervisorIndicator
Region
Population_Type
Organization
OnsiteDays
Number_of_directs
LevelDesignation
Layer
HireDate
GroupNum
GroupName
FunctionType
Domain
ADO_PersonSK
ADO_PersonIndicator
Duration

Value
data frame.

Source

See Also
Other Data: `g2g_data`, `p2p_data`, `p2p_data_sim()`, `pq_data`

Description

Pass a data frame containing a group-to-group query and return a network plot. Automatically handles "Within Group" and "Other_collaborators" values within query data.
Usage

network_g2g(
 data,
 primary = NULL,
 secondary = NULL,
 metric = "Group_collaboration_time_invested",
 algorithm = "fr",
 node_colour = "lightblue",
 exc_threshold = 0.1,
 org_count = NULL,
 subtitle = "Collaboration Across Organizations",
 return = "plot"
)

Arguments

data Data frame containing a group-to-group query.
primary String containing the variable name for the Primary Collaborator column.
secondary String containing the variable name for the Secondary Collaborator column.
metric String containing the variable name for metric. Defaults to "Group_collaboration_time_invested".
algorithm String to specify the node placement algorithm to be used. Defaults to "fr" for the force-directed algorithm of Fruchterman and Reingold. See https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html for a full list of options.
node_colour String or named vector to specify the colour to be used for displaying nodes. Defaults to "lightblue".
 • If "vary" is supplied, a different colour is shown for each node at random.
 • If a named vector is supplied, the names must match the values of the variable provided for the primary and secondary columns. See example section for details.
exc_threshold Numeric value between 0 and 1 specifying the exclusion threshold to apply. Defaults to 0.1, which means that the plot will only display collaboration above 10% of a node’s total collaboration. This argument has no impact on "data" or "table" return.
org_count Optional data frame to provide the size of each organization in the secondary attribute. The data frame should contain only two columns:
 • Name of the secondary attribute excluding any prefixes, e.g. "Organization". Must be of character or factor type.
 • "n". Must be of numeric type. Defaults to NULL, where node sizes will be fixed.
subtitle String to override default plot subtitle.
return String specifying what to return. This must be one of the following strings:
Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A group-to-group network plot.
- "table": data frame. An interactive matrix of the network.
- "network": 'igraph' object used for creating the network plot.
- "data": data frame. A long table of the underlying data.

See Also

Other Network: `g2g_data`, `network_p2p()`, `network_summary()`, `p2p_data`, `p2p_data_sim()`

Examples

Return a network plot
`g2g_data` %>% network_g2g()

Return a network plot - Meeting hours and 5% threshold
`network_g2g`
 data = `g2g_data`,
 primary = "PrimaryCollaborator_Organization",
 secondary = "SecondaryCollaborator_Organization",
 exc_threshold = 0.05
)

Return a network plot - custom-specific colours
Get labels of orgs and assign random colours
org_str <- unique(`g2g_data`$"PrimaryCollaborator_Organization")

col_str <-
 sample(
 x = heat_colours(n = length(org_str)), # generate colour codes for each one
 size = length(org_str),
 replace = TRUE
)

Create and supply a named vector to `node_colour`
names(col_str) <- org_str

`g2g_data` %>%
 `network_g2g`(node_colour = col_str)

Return a network plot with circle layout
Vary node colours and add org sizes
org_tb <-
network_p2p

Perform network analysis with the person-to-person query

Description

[Experimental]

Analyse a person-to-person (P2P) network query, with multiple visualisation and analysis output options. Pass a data frame containing a person-to-person query and return a network visualization. Options are available for community detection using either the Louvain or the Leiden algorithms.

Usage

network_p2p(
 data,
 hrvar = "Organization",
 return = "plot",
 centrality = NULL,
 community = NULL,
 weight = NULL,
 comm_args = NULL,
 layout = "mds",
 path = paste("p2p", community, sep = " "),
 style = "igraph",
 bg_fill = "#FFFFFF",
 font_col = "grey20",
)
```r
legend_pos = "right",
palette = "rainbow",
node_alpha = 0.7,
edge_alpha = 1,
edge_col = "#777777",
node_sizes = c(1, 20),
seed = 1
)
```

Arguments

- **data**: Data frame containing a person-to-person query.
- **hrvar**: String containing the label for the HR attribute.
- **return**: A different output is returned depending on the value passed to the `return` argument:
 - 'plot' (default)
 - 'plot-pdf'
 - 'sankey'
 - 'table'
 - 'data'
 - 'network'
- **centrality**: String to determine which centrality measure is used to scale the size of the nodes. All centrality measures are automatically calculated when it is set to one of the below values, and reflected in the ‘network’ and ‘data’ outputs. Measures include:
 - betweenness
 - closeness
 - degree
 - eigenvector
 - pagerank

 When `centrality` is set to `NULL`, no centrality is calculated in the outputs and all the nodes would have the same size.

- **community**: String determining which community detection algorithms to apply. Valid values include:
 - NULL (default): compute analysis or visuals without computing communities.
 - "louvain"
 - "leiden"
 - "edge_betweenness"
 - "fast_greedy"
 - "fluid_communities"
 - "infomap"
 - "label_prop"
 - "leading_eigen"
These values map to the community detection algorithms offered by igraph. For instance, "leiden" is based on igraph::cluster_leiden(). Please see the bottom of https://igraph.org/r/html/1.3.0/cluster_leiden.html for all applications and parameters of these algorithms.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>String to specify which column to use as weights for the network. To create a graph without weights, supply NULL to this argument.</td>
</tr>
<tr>
<td>comm_args</td>
<td>list containing the arguments to be passed through to igraph’s clustering algorithms. Arguments must be named. See examples section on how to supply arguments in a named list.</td>
</tr>
<tr>
<td>layout</td>
<td>String to specify the node placement algorithm to be used. Defaults to "mds" for the deterministic multi-dimensional scaling of nodes. See https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html for a full list of options.</td>
</tr>
<tr>
<td>path</td>
<td>File path for saving the PDF output. Defaults to a timestamped path based on current parameters.</td>
</tr>
<tr>
<td>style</td>
<td>String to specify which plotting style to use for the network plot. Valid values include:</td>
</tr>
<tr>
<td></td>
<td>• "igraph"</td>
</tr>
<tr>
<td></td>
<td>• "ggraph"</td>
</tr>
<tr>
<td>bg_fill</td>
<td>String to specify background fill colour.</td>
</tr>
<tr>
<td>font_col</td>
<td>String to specify font colour.</td>
</tr>
<tr>
<td>legend_pos</td>
<td>String to specify position of legend. Defaults to "right". See ggplot2::theme(). This is applicable for both the 'ggraph' and the fast plotting method. Valid inputs include:</td>
</tr>
<tr>
<td></td>
<td>• "bottom"</td>
</tr>
<tr>
<td></td>
<td>• "top"</td>
</tr>
<tr>
<td></td>
<td>• "left" - "right"</td>
</tr>
<tr>
<td>palette</td>
<td>String specifying the function to generate a colour palette with a single argument n. Uses "rainbow" by default.</td>
</tr>
<tr>
<td>node_alpha</td>
<td>A numeric value between 0 and 1 to specify the transparency of the nodes. Defaults to 0.7.</td>
</tr>
<tr>
<td>edge_alpha</td>
<td>A numeric value between 0 and 1 to specify the transparency of the edges (only for 'ggraph' mode). Defaults to 1.</td>
</tr>
<tr>
<td>edge_col</td>
<td>String to specify edge link colour.</td>
</tr>
<tr>
<td>node_sizes</td>
<td>Numeric vector of length two to specify the range of node sizes to rescale to, when centrality is set to a non-null value.</td>
</tr>
<tr>
<td>seed</td>
<td>Seed for the random number generator passed to either set.seed() when the louvain or leiden community detection algorithm is used, to ensure consistency. Only applicable when community is set to one of the valid non-null values.</td>
</tr>
</tbody>
</table>
Value

A different output is returned depending on the value passed to the `return` argument:

- **'plot'**: return a network plot, interactively within R.
- **'plot-pdf'**: save a network plot as PDF. This option is recommended when the graph is large, which may take a long time to run if `return = 'plot'` is selected. Use this together with `path` to control the save location.
- **'sankey'**: return a sankey plot combining communities and HR attribute. This is only valid if a community detection method is selected at `community`.
- **'table'**: return a vertex summary table with counts in communities and HR attribute. When `centrality` is non-NULL, the average centrality values are calculated per group.
- **'data'**: return a vertex data file that matches vertices with communities and HR attributes.
- **'network'**: return 'igraph' object.

See Also

Other Network: `g2g_data`, `network_g2g()`, `network_summary()`, `p2p_data`, `p2p_data_sim()`

Examples

```r
p2p_df <- p2p_data_sim(dim = 1, size = 100)

# default - ggraph visual
network_p2p(data = p2p_df, style = "ggraph")

# return vertex table
network_p2p(data = p2p_df, return = "table")

# return vertex table with community detection
network_p2p(data = p2p_df, community = "leiden", return = "table")

# leiden - igraph style with custom resolution parameters
network_p2p(data = p2p_df, community = "leiden", comm_args = list("resolution" = 0.1))

# louvain - ggraph style, using custom palette
network_p2p(
  data = p2p_df,
  style = "ggraph",
  community = "louvain",
  palette = "heat_colors"
)

# leiden - return a sankey visual with custom resolution parameters
network_p2p(
  data = p2p_df,
  community = "leiden",
  return = "sankey",
  comm_args = list("resolution" = 0.1)
)
```

using `fluid_communities` algorithm with custom parameters
network_p2p(
 data = p2p_df,
 community = "fluid_communities",
 comm_args = list("no.of.communities" = 5)
)

Calculate centrality measures and leiden communities, return at node level
network_p2p(
 data = p2p_df,
 centrality = "betweenness",
 community = "leiden",
 return = "data"
) %>%
dplyr::glimpse()

network_summary

Summarise node centrality statistics with an igraph object

Description

Pass an igraph object to the function and obtain centrality statistics for each node in the object as a data frame. This function works as a wrapper of the centralization functions in 'igraph'.

Usage

```r
network_summary(graph, hrvar = NULL, return = "table")
```

Arguments

- **graph**
 - 'igraph' object that can be returned from network_g2g() or network_p2p() when the return argument is set to "network".

- **hrvar**
 - String containing the name of the HR Variable by which to split metrics. Defaults to NULL.

- **return**
 - String specifying what output to return. Valid inputs include:
 - "table"
 - "network"
 - "plot"

 See Value for more information.
Value

By default, a data frame containing centrality statistics. Available statistics include:

- betweenness: number of shortest paths going through a node.
- closeness: number of steps required to access every other node from a given node.
- degree: number of connections linked to a node.
- eigenvector: a measure of the influence a node has on a network.
- pagerank: calculates the PageRank for the specified vertices. Please refer to the igraph package documentation for the detailed technical definition.

When "network" is passed to "return", an 'igraph' object is returned with additional node attributes containing centrality scores.

When "plot" is passed to "return", a summary table is returned showing the average centrality scores by HR attribute. This is currently available if there is a valid HR attribute.

See Also

Other Network: g2g_data, network_g2g(), network_p2p(), p2p_data, p2p_data_sim()

Examples

```r
# Simulate a p2p network
p2p_data <- p2p_data_sim(size = 100)
g <- network_p2p(data = p2p_data, return = "network")

# Return summary table
network_summary(graph = g, return = "table")

# Return network with node centrality statistics
network_summary(graph = g, return = "network")

# Return summary plot
network_summary(graph = g, return = "plot", hrvar = "Organization")

# Simulate a g2g network and return table
g2 <- g2g_data %>% network_g2g(return = "network")
network_summary(graph = g2, return = "table")
```

Description

Analyze Manager 1:1 Time distribution. Returns a stacked bar plot of different buckets of 1:1 time. Additional options available to return a table with distribution elements.
Usage

one2one_dist(
 data,
 hrvar = "Organization",
 mingroup = 5,
 dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"),
 return = "plot",
 cut = c(5, 15, 30)
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Default to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
dist_colours A character vector of length four to specify colour codes for the stacked bars.
return String specifying what to return. This must be one of the following strings:
 • "plot"
 • "table"
 See Value for more information.
cut A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20)

Value

A different output is returned depending on the value passed to the return argument:
 • "plot": 'ggplot' object. A stacked bar plot for the metric.
 • "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend()
Other Managerial Relations: `one2one_fizz()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Examples

```r
# Return plot
one2one_dist(pq_data, hrvar = "Organization", return = "plot")

# Return summary table
one2one_dist(pq_data, hrvar = "Organization", return = "table")
```

one2one_fizz

Distribution of Manager 1:1 Time (Fizzy Drink plot)

Description

Analyze weekly Manager 1:1 Time distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.

Usage

```r
one2one_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
```

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply `NULL` (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A jittered scatter plot for the metric.
- "table": data frame. A summary table for the metric.
See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`.

Other Managerial Relations: `one2one_dist()`, `one2one_freq()`, `one2one_line()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`.

Examples

```r
# Return plot
one2one_fizz(pq_data, hrvar = "Organization", return = "plot")

# Return a summary table
one2one_fizz(pq_data, hrvar = "Organization", return = "table")
```

one2one_freq
Frequency of Manager 1:1 Meetings as bar or 100% stacked bar chart

Description

[Experimental]

This function calculates the average number of weeks (cadence) between of 1:1 meetings between an employee and their manager. Returns a distribution plot for typical cadence of 1:1 meetings. Additional options available to return a bar plot, tables, or a data frame with a cadence of 1 on 1 meetings metric.

Usage

```r
one2one_freq(
  data,
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  mode = "dist",
  sort_by = NULL
)
```
Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
- **mode**: String specifying what method to use. This must be one of the following strings:
 - "dist"
 - "sum"
- **sort_by**: String to specify the bucket label to sort by. Defaults to NULL (no sorting).

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A stacked bar plot for the metric.
- "table": data frame. A summary table for the metric.

Distribution view

For this view, there are four categories of cadence:

- Weekly (once per week)
- Twice monthly or more (up to 3 weeks)
- Monthly (3 - 6 weeks)
- Every two months (6 - 10 weeks)
- Quarterly or less (> 10 weeks)

In the occasion there are zero 1:1 meetings with managers, this is included into the last category, i.e. 'Quarterly or less'. Note that when mode is set to "sum", these rows are simply excluded from the calculation.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`,
Examples

Return plot, mode dist
one2one_freq(pq_data, hrvar = "Organization", return = "plot", mode = "dist")

Return plot, mode sum
one2one_freq(pq_data, hrvar = "Organization", return = "plot", mode = "sum")

Return summary table
one2one_freq(pq_data, hrvar = "Organization", return = "table")

Description

Provides a week by week view of 1:1 time with managers, visualised as line charts. By default returns a line chart for 1:1 meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.

Usage

one2one_line(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data A Standard Person Query dataset in the form of a data frame.
hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return String specifying what to return. This must be one of the following strings:
- "plot"
- "table"

See Value for more information.
Details

Uses the metric `Meeting_hours_with_manager_1_1`.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' object. A faceted line plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: `afterhours_dist()`, `afterhours_fizz()`, `afterhours_line()`, `afterhours_rank()`, `afterhours_summary()`, `afterhours_trend()`, `collaboration_area()`, `collaboration_dist()`, `collaboration_fizz()`, `collaboration_line()`, `collaboration_rank()`, `collaboration_sum()`, `collaboration_trend()`, `create_bar()`, `create_bar_asis()`, `create_boxplot()`, `create_bubble()`, `create_dist()`, `create_fizz()`, `create_inc()`, `create_line()`, `create_line_asis()`, `create_period_scatter()`, `create_rank()`, `create_sankey()`, `create_scatter()`, `create_stacked()`, `create_tracking()`, `create_trend()`, `email_dist()`, `email_fizz()`, `email_line()`, `email_rank()`, `email_summary()`, `email_trend()`, `external_dist()`, `external_fizz()`, `external_line()`, `external_rank()`, `external_sum()`, `hr_trend()`, `hrvar_count()`, `hrvar_trend()`, `keymetrics_scan()`, `meeting_dist()`, `meeting_fizz()`, `meeting_line()`, `meeting_rank()`, `meeting_summary()`, `meeting_trend()`, `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Other Managerial Relations: `one2one_dist()`, `one2one_fizz()`, `one2one_freq()`, `one2one_rank()`, `one2one_sum()`, `one2one_trend()`

Examples

```r
# Return a line plot
one2one_line(pq_data, hrvar = "LevelDesignation")

# Return summary table
one2one_line(pq_data, hrvar = "LevelDesignation", return = "table")
```

Description

This function scans a standard query output for groups with high levels of 'Manager 1:1 Time'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by manager 1:1 time.
Usage

```r
one2one_rank(
  data,
  hrvar = extract_hr(data),
  mingroup = 5,
  mode = "simple",
  plot_mode = 1,
  return = "plot"
)
```

Arguments

data A Standard Person Query dataset in the form of a data frame.

hrvar String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

mode String to specify calculation mode. Must be either:
 • "simple"
 • "combine"

plot_mode Numeric vector to determine which plot mode to return. Must be either 1 or 2, and is only used when return = "plot".
 • 1: Top and bottom five groups across the data population are highlighted
 • 2: Top and bottom groups per organizational attribute are highlighted

return String specifying what to return. This must be one of the following strings:
 • "plot" (default)
 • "table"

See Value for more information.

Details

Uses the metric `Meeting_hours_with_manager_1_1`. See `create_rank()` for applying the same analysis to a different metric.

Value

A different output is returned depending on the value passed to the return argument:

 • "plot": `ggplot` object. A bubble plot where the x-axis represents the metric, the y-axis represents the HR attributes, and the size of the bubbles represent the size of the organizations. Note that there is no plot output if mode is set to "combine".

 • "table": data frame. A summary table for the metric.
one2one_sum

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_sum(), one2one_trend()

Other Managerial Relations: one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_sum(), one2one_trend()

Examples

Return rank table
one2one_rank(data = pq_data, return = "table")

Return plot
one2one_rank(data = pq_data, return = "plot")

Manager 1:1 Time Summary

Description

Provides an overview analysis of Manager 1:1 Time. Returns a bar plot showing average weekly minutes of Manager 1:1 Time by default. Additional options available to return a summary table.

Usage

one2one_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")

one2one_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

- **data**: A Standard Person Query dataset in the form of a data frame.
- **hrvar**: String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
return

String specifying what to return. This must be one of the following strings:

- "plot"
- "table"

See Value for more information.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": 'ggplot' object. A bar plot for the metric.
- "table": data frame. A summary table for the metric.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_trend()

Other Managerial Relations: one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_trend()

Examples

Return a ggplot bar chart
one2one_sum(pq_data, hrvar = "LevelDesignation")

Return a summary table
one2one_sum(pq_data, hrvar = "LevelDesignation", return = "table")

Description

Provides a week by week view of scheduled manager 1:1 Time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
one2one_trend

Usage

one2one_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")

Arguments

data
A Standard Person Query dataset in the form of a data frame.

hrvar
String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

mingroup
Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

Details

Uses the metric Meeting_hours_with_manager_1_1.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar(), create_bar_asis(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_inc(), create_line(), create_line_asis(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_stacked(), create_tracking(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_dist(), external_fizz(), external_line(), external_rank(), external_sum(), hr_trend(), hrvar_count(), hrvar_trend(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_rank(), meeting_summary(), meeting_trend(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum()

Other Managerial Relations: one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum()

Examples

Run plot
one2one_trend(pq_data)

Run table
one2one_trend(pq_data, hrvar = "LevelDesignation", return = "table")
Description

A demo dataset representing a person-to-person query, structured as an edgelist. The identifier variable for each person is PersonId, where the variables have been prefixed with PrimaryCollaborator_ and SecondaryCollaborator_ to represent the direction of collaboration.

Usage

```r
p2p_data
```

Format

A data frame with 11550 rows and 13 variables:

- `PrimaryCollaborator_PersonId`
- `SecondaryCollaborator_PersonId`
- `MetricDate`
- `Diverse_tie_score`
- `Diverse_tie_type`
- `Strong_tie_score`
- `Strong_tie_type`
- `PrimaryCollaborator_Organization`
- `SecondaryCollaborator_Organization`
- `PrimaryCollaborator_LevelDesignation`
- `SecondaryCollaborator_LevelDesignation`
- `PrimaryCollaborator_FunctionType`
- `SecondaryCollaborator_FunctionType`

Value

data frame.

Source

https://analysis.insights.viva.office.com/analyst/analysis/

See Also

Other Data: `g2g_data, mt_data, p2p_data_sim(), pq_data`

Other Network: `g2g_data, network_g2g(), network_p2p(), network_summary(), p2p_data_sim()`
p2p_data_sim

Simulate a person-to-person query using a Watts-Strogatz model

Description

Generate an person-to-person query / edgelist based on the graph according to the Watts-Strogatz small-world network model. Organizational data fields are also simulated for Organization, LevelDesignation, and City.

Usage

p2p_data_sim(dim = 1, size = 300, nei = 5, p = 0.05)

Arguments

dim Integer constant, the dimension of the starting lattice.
size Integer constant, the size of the lattice along each dimension.
nei Integer constant, the neighborhood within which the vertices of the lattice will be connected.
p Real constant between zero and one, the rewiring probability.

Details

This is a wrapper around igraph::watts.strogatz.game(). See igraph documentation for details on methodology. Loop edges and multiple edges are disabled. Size of the network can be changing the arguments size and nei.

Value

data frame with the same column structure as a person-to-person flexible query. This has an edgelist structure and can be used directly as an input to network_p2p().

See Also

Other Data: g2g_data, mt_data, p2p_data, pq_data
Other Network: g2g_data, network_g2g(), network_p2p(), network_summary(), p2p_data

Examples

Simulate a p2p dataset with 800 edges
p2p_data_sim(size = 200, nei = 4)
Create the two-digit zero-padded format

Description
Create the two-digit zero-padded format

Usage
```r
pad2(x)
```

Arguments
- `x` numeric value or vector with maximum two characters.

Value
Numeric value containing two-digit zero-padded values.

Perform a pairwise count of words by id

Description
This is a 'data.table' implementation that mimics the output of `pairwise_count()` from 'widyr' to reduce package dependency. This is used internally within `tm_cooc()`.

Usage
```r
pairwise_count(data, id = "line", word = "word")
```

Arguments
- `data` Data frame output from `tm_clean()`.
- `id` String to represent the id variable. Defaults to "line".
- `word` String to represent the word variable. Defaults to "word".

Value
data frame with the following columns representing a pairwise count:
- "item1"
- "item2"
- "n"
pq_data

See Also

Other Support: `any_idate()`, `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `tstamp()`, `us_to_space()`, `wrap()`

Other Text-mining: `meeting_tm_report()`, `tm_clean()`, `tm_cooc()`, `tm_freq()`, `tm_wordcloud()`

Examples

```r
td <- data.frame(line = c(1, 1, 2, 2),
                  word = c("work", "meeting", "catch", "up"))

pairwise_count(td, id = "line", word = "word")
```

pq_data

Sample Person Query dataset

Description

A dataset generated from a Person Query from Viva Insights.

Usage

`pq_data`

Format

A data frame with 1000 rows and 154 variables:

- `PersonId`
- `MetricDate`
- `After_hours_call_hours`
- `After_hours_chat_hours`
- `After_hours_collaboration_hours`
- `After_hours_email_hours`
- `After_hours_meeting_hours`
- `After_hours_scheduled_call_hours`
- `After_hours_unscheduled_call_hours`
- `Call_hours`
- `Calls`
- `Chat_hours`
- `Chats_sent`
- `Collaboration_hours`
Email_hours
Emails_sent
Meeting_and_call_hours
Meeting_hours
Meetings
Multitasking_hours
Scheduled_call_hours
Unscheduled_call_hours
Urgent_email_hours
Urgent_meeting_hours
Collaboration_hours_on_Friday
Collaboration_hours_on_Monday
Collaboration_hours_on_Saturday
Collaboration_hours_on_Sunday
Collaboration_hours_on_Thursday
Collaboration_hours_on_Tuesday
Collaboration_hours_on_Wednesday
Meeting_hours_on_Friday
Meeting_hours_on_Monday
Meeting_hours_on_Saturday
Meeting_hours_on_Sunday
Meeting_hours_on_Thursday
Meeting_hours_on_Tuesday
Meeting_hours_on_Wednesday
Unscheduled_weekend_calls
Weekend_chats_sent
Weekend_emails_sent
Weekend_meetings
Chats_sent_00_01
Chats_sent_01_02
Chats_sent_02_03
Chats_sent_03_04
Chats_sent_04_05
Chats_sent_05_06
Chats_sent_06_07
Chats_sent_07_08
Chats_sent_08_09
<table>
<thead>
<tr>
<th>Chats_sent_09_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chats_sent_10_11</td>
</tr>
<tr>
<td>Chats_sent_11_12</td>
</tr>
<tr>
<td>Chats_sent_12_13</td>
</tr>
<tr>
<td>Chats_sent_13_14</td>
</tr>
<tr>
<td>Chats_sent_14_15</td>
</tr>
<tr>
<td>Chats_sent_15_16</td>
</tr>
<tr>
<td>Chats_sent_16_17</td>
</tr>
<tr>
<td>Chats_sent_17_18</td>
</tr>
<tr>
<td>Chats_sent_18_19</td>
</tr>
<tr>
<td>Chats_sent_19_20</td>
</tr>
<tr>
<td>Chats_sent_20_21</td>
</tr>
<tr>
<td>Chats_sent_21_22</td>
</tr>
<tr>
<td>Chats_sent_22_23</td>
</tr>
<tr>
<td>Chats_sent_23_24</td>
</tr>
<tr>
<td>Emails_sent_00_01</td>
</tr>
<tr>
<td>Emails_sent_01_02</td>
</tr>
<tr>
<td>Emails_sent_02_03</td>
</tr>
<tr>
<td>Emails_sent_03_04</td>
</tr>
<tr>
<td>Emails_sent_04_05</td>
</tr>
<tr>
<td>Emails_sent_05_06</td>
</tr>
<tr>
<td>Emails_sent_06_07</td>
</tr>
<tr>
<td>Emails_sent_07_08</td>
</tr>
<tr>
<td>Emails_sent_08_09</td>
</tr>
<tr>
<td>Emails_sent_09_10</td>
</tr>
<tr>
<td>Emails_sent_10_11</td>
</tr>
<tr>
<td>Emails_sent_11_12</td>
</tr>
<tr>
<td>Emails_sent_12_13</td>
</tr>
<tr>
<td>Emails_sent_13_14</td>
</tr>
<tr>
<td>Emails_sent_14_15</td>
</tr>
<tr>
<td>Emails_sent_15_16</td>
</tr>
<tr>
<td>Emails_sent_16_17</td>
</tr>
<tr>
<td>Emails_sent_17_18</td>
</tr>
<tr>
<td>Emails_sent_18_19</td>
</tr>
<tr>
<td>Emails_sent_19_20</td>
</tr>
<tr>
<td>Emails_sent_20_21</td>
</tr>
<tr>
<td>Emails_sent_21_22</td>
</tr>
</tbody>
</table>
Emails_sent_22_23
Emails_sent_23_24
Meetings_00_01
Meetings_01_02
Internal_meeting_hours_with_3_to_8_attendees
Internal_meeting_hours_without_manager_1_1
Small_group_chats_sent__excluding_manager
Small_group_emails_sent__excluding_manager
Small_group_meeting__call__and_chat_hours
Collaboration_hours_with_direct_reports
Manager_coaching_hours_1_1
Meeting_and_call_hours_with_manager
Meeting_and_call_hours_with_manager_1_1
Meeting_and_call_hours_with_skip_level
Meeting_hours_with_manager
Meeting_hours_with_manager_1_1
Meeting_hours_with_skip_level
Meetings_with_manager
Meetings_with_manager_1_1
Meetings_with_skip_level
Small_group_chats_sent__including_manager
Small_group_emails_sent__including_manager
Unscheduled_call_hours_with_manager
Unscheduled_call_hours_with_manager_1_1
Unscheduled_call_hours_with_skip_level
Internal_network_size
Conflicting_meeting_hours
Large_and_long_meeting_hours
Large_and_long_recurring_meeting_hours
Large_and_short_meeting_hours
Large_and_short_recurring_meeting_hours
Meeting_hours Ended on time
Meeting_hours Joined on time
Meeting_hours Not ended on time
Meeting_hours Not joined on time
Meeting_hours with 12 to 24 hours of advanced notice
Meeting_hours with 24 or more hours of advanced notice
Meeting_hours_with_six_or_fewer_hours_of_advanced_notice
Meeting_hours_with_six_to_12_hours_of_advanced_notice
Recurring_meeting_hours
Small_and_long_meeting_hours
Small_and_long_recurring_meeting_hours
Small_and_short_meeting_hours
Small_and_short_recurring_meeting_hours
Available_to_focus_hours
Interrupted_hours
Uninterrupted_hours
External_chat_hours
External_collaboration_hours
External_email_hours
External_meeting_hours
External_unscheduled_call_hours
Working_hours_call_hours
Working_hours_chat_hours
Working_hours_collaboration_hours
Working_hours_email_hours
Working_hours_meeting_hours
Working_hours_scheduled_call_hours
Working_hours_unscheduled_call_hours
LevelDesignation
Layer
SupervisorIndicator
Organization
FunctionType
WeekendDays
IsActive

Value
data frame.

Source

See Also
Other Data: g2g_data, mt_data, p2p_data, p2p_data_sim()
Description

Read in a preamble to be used within each individual reporting function. Reads from the Markdown file installed with the package.

Usage

```r
read_preamble(path)
```

Arguments

- `path`
 Text string containing the path for the appropriate Markdown file.

Value

String containing the text read in from the specified Markdown file.

See Also

Other Support: `any_idate()`, `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `tstamp()`, `us_to_space()`, `wrap()`

Other Reports: `IV_report()`, `generate_report()`, `meeting_tm_report()`, `validation_report()`

rgb2hex
Convert rgb to HEX code

Description

Convert rgb to HEX code

Usage

```r
gb2hex(r, g, b)
```

Arguments

- `r`, `g`, `b`
 Values that correspond to the three RGB parameters

Value

Returns a string containing a HEX code.
theme_wpa

Main theme for 'vivainsights' visualisations

Description

A theme function applied to 'ggplot' visualisations in 'vivainsights'. Install and load 'extrafont' to use custom fonts for plotting.

Usage

theme_wpa(font_size = 12, font_family = "Segoe UI")

Arguments

- font_size: Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12.
- font_family: Character value specifying the font family to be used in the plot. The default value is "Segoe UI". To ensure you can use this font, install and load 'extrafont' prior to plotting. There is an initialisation process that is described by: https://stackoverflow.com/questions/34522732/changing-fonts-in-ggplot2

Value

Returns a ggplot object with the applied theme.

See Also

Other Themes: theme_wpa_basic()

theme_wpa_basic

Basic theme for 'vivainsights' visualisations

Description

A theme function applied to 'ggplot' visualisations in 'vivainsights'. Based on theme_wpa() but has no font requirements.

Usage

theme_wpa_basic(font_size = 12)
tm_clean

Arguments

font_size Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12.

Value

Returns a ggplot object with the applied theme.

See Also

Other Themes: theme_wpa()

tm_clean Clean subject line text prior to analysis

Description

This function processes the Subject column in a Meeting Query by applying tokenisation using tidytext::unnest_tokens(), and removing any stopwords supplied in a data frame (using the argument stopwords). This is a sub-function that feeds into tm_freq(), tm_cooc(), and tm_wordcloud(). The default is to return a data frame with tokenised counts of words or ngrams.

Usage

tm_clean(data, token = "words", stopwords = NULL, ...)

Arguments

data A Meeting Query dataset in the form of a data frame.
token A character vector accepting either "words" or "ngrams", determining type of tokenisation to return.
stopwords A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
... Additional parameters to pass to tidytext::unnest_tokens().

Value

data frame with two columns:

- line
- word

See Also

Other Text-mining: meeting_tm_report(), pairwise_count(), tm_cooc(), tm_freq(), tm_wordcloud()
Examples

words
tm_clean(mt_data)

ngrams
tm_clean(mt_data, token = "ngrams")

tm_cooc

Analyse word co-occurrence in subject lines and return a network plot

Description

This function generates a word co-occurrence network plot, with options to return a table. This function is used within `meeting_tm_report()`.

Usage

```
tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05)
```

Arguments

- **data**: A Meeting Query dataset in the form of a data frame.
- **stopwords**: A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- **seed**: A numeric vector to set seed for random generation.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See **Value** for more information.
- **lmult**: A multiplier to adjust the line width in the output plot. Defaults to 0.05.

Details

This function uses `tm_clean()` as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the `stopwords` argument.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": 'ggplot' and 'ggraph' object. A network plot.
- "table": data frame. A summary table.
tm_freq

Example

The function can be run with subject lines from `mt_data`, as per below.

```r
mt_data %>%
  tm_cooc(lmult = 0.01)
```

Author(s)

Carlos Morales carlos.morales@microsoft.com

See Also

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `tm_clean()`, `tm_freq()`, `tm_wordcloud()`

Examples

```r
# Demo using a subset of `mt_data`
```

Description

Generate a circular bar plot with frequency of words / ngrams. This function is used within `meeting_tm_report()`.

Usage

```r
tm_freq(data, token = "words", stopwords = NULL, keep = 100, return = "plot")
```

Arguments

- `data`
 A Meeting Query dataset in the form of a data frame.
- `token`
 A character vector accepting either "words" or "ngram", determining type of tokenisation to return.
- `stopwords`
 A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- `keep`
 A numeric vector specifying maximum number of words to keep.
- `return`
 String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"
 See Value for more information.
tm_wordcloud

Generate a wordcloud with meeting subject lines

Description

Generate a wordcloud with the meeting query. This is a sub-function that feeds into meeting_tm_report().

Usage

```r
tm_wordcloud(  
data,  
stopwords = NULL,  
seed = 100,  
keep = 100,  
return = "plot",  
...  
)
```

Details

This function uses `tm_clean()` as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the `stopwords` argument.

Value

A different output is returned depending on the value passed to the `return` argument:

- "plot": `ggplot` object. A circular bar plot.
- "table": data frame. A summary table.

See Also

Other Text-mining: `meeting_tm_report()`, `pairwise_count()`, `tm_clean()`, `tm_cooc()`, `tm_wordcloud()`

Examples

```r
# circular network plot with words
tm_freq(mt_data, token = "words")

# circular network plot with ngrams
tm_freq(mt_data, token = "ngrams")

# summary table of text frequency
tm_freq(mt_data, token = "words", return = "table")
```
Arguments

- **data**: A Meeting Query dataset in the form of a data frame.
- **stopwords**: A character vector OR a single-column data frame labelled 'word' containing custom stopwords to remove.
- **seed**: A numeric vector to set seed for random generation.
- **keep**: A numeric vector specifying maximum number of words to keep.
- **return**: String specifying what to return. This must be one of the following strings:
 - "plot"
 - "table"

 See Value for more information.

... Additional parameters to be passed to ggwordcloud::geom_text_wordcloud()

Details

Uses the 'ggwordcloud' package for the underlying implementation, thus returning a 'ggplot' object. Additional layers can be added onto the plot using a ggplot + syntax. The recommendation is not to return over 100 words in a word cloud.

This function uses tm_clean() as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the stopwords argument.

Value

A different output is returned depending on the value passed to the return argument:

- "plot": ggplot object containing a word cloud.
- "table": data frame returning the data used to generate the word cloud.

See Also

Other Text-mining: meeting_tm_report(), pairwise_count(), tm_clean(), tm_cooc(), tm_freq()

Examples

tm_wordcloud(mt_data, keep = 30)

Removing stopwords
tm_wordcloud(mt_data, keep = 30, stopwords = c("weekly", "update"))
Row-bind an identical data frame for computing grouped totals

Description

Row-bind an identical data frame and impute a specific column with the target_value, which defaults as "Total". The purpose of this is to enable to creation of summary tables with a calculated "Total" row. See example below on usage.

Usage

totals_bind(data, target_col, target_value = "Total")

Arguments

data data frame

target_col Character value of the column in which to impute "Total". This is usually the intended grouping column.

target_value Character value to impute in the new data frame to row-bind. Defaults to "Total".

Value

data frame with twice the number of rows of the input data frame, where half of those rows will have the target_col column imputed with the value from target_value.

See Also

Other Support: any_idate(), camel_clean(), check_inputs(), cut_hour(), extract_date_range(), extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(), rgb2hex(), totals_col(), tstamp(), us_to_space(), wrap()

Examples

pq_data %>%
totals_bind(target_col = "LevelDesignation", target_value = "Total") %>%
create_bar(hrvar = "LevelDesignation", metric = "Email_hours", return = "table")
totals_col

Fabricate a 'Total' HR variable

Description

Create a 'Total' column of character type comprising exactly of one unique value. This is a convenience function for returning a no-HR attribute view when NULL is supplied to the hrvar argument in functions.

Usage

```r
totals_col(data, total_value = "Total")
```

Arguments

- `data` : data frame
- `total_value` : Character value defining the name and the value of the "Total" column. Defaults to "Total". An error is returned if an existing variable has the same name as the supplied value.

Value

data frame containing an additional 'Total' column on top of the input data frame.

See Also

Other Support: `any_idate()`, `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `tstamp()`, `us_to_space()`, `wrap()`

Examples

```r
# Create a visual without HR attribute breaks
pq_data %>%
  totals_col() %>%
  create_fizz(hrvar = "Total", metric = "Email_hours")
```
track_HR_change

Sankey chart of organizational movement between HR attributes and missing values (outside company move) (Data Overview)

Description

Creates a list of everyone at a specified start date and a specified end date then aggregates up people who have moved between organizations between this to points of time and visualizes the move through a sankey chart.

Through this chart you can see:

- The HR attribute/orgs that have the highest move out
- The HR attribute/orgs that have the highest move in
- The number of people that do not have that HR attribute or if they are no longer in the system

Usage

```r
track_HR_change(
  data,
  start_date = min(data$MetricDate),
  end_date = max(data$MetricDate),
  hrvar = "Organization",
  mingroup = 5,
  return = "plot",
  NA_replacement = "Out of Company"
)
```

Arguments

- **data**: A Person Query dataset in the form of a data frame.
- **start_date**: A start date to compare changes. See end_date.
- **end_date**: An end date to compare changes. See start_date.
- **hrvar**: HR Variable by which to compare changes between, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation"
- **mingroup**: Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
- **return**: Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".
- **NA_replacement**: Character replacement for NA defaults to "out of company"

Value

Returns a 'NetworkD3' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.
tstamp

Author(s)

Tannaz Sattari Tabrizi Tannaz.Sattari@microsoft.com

See Also

Other Data Validation: `check_query()`, `extract_hr()`, `flag_ch_ratio()`, `flag_em_ratio()`, `flag_extreme()`, `flag_outlooktime()`, `hr_trend()`, `hrvar_count()`, `hrvar_count_all()`, `hrvar_trend()`, `identify_churn()`, `identify_holidayweeks()`, `identify_inactiveweeks()`, `identify_nkw()`, `identify_outlier()`, `identify_privacythreshold()`, `identify_shifts()`, `identify_tenure()`, `validation_report()`

Examples

pq_data %>% track_HR_change()

tstamp
Generate a time stamp

Description

This function generates a time stamp of the format 'yymmd_hhmmss'. This is a support function and is not intended for direct use.

Usage

`tstamp()`

Value

String containing the timestamp in the format 'yymmd_hhmmss'.

See Also

Other Support: `any_idate()`, `camel_clean()`, `check_inputs()`, `cut_hour()`, `extract_date_range()`, `extract_hr()`, `heat_colours()`, `is_date_format()`, `maxmin()`, `pairwise_count()`, `read_preamble()`, `rgb2hex()`, `totals_bind()`, `totals_col()`, `us_to_space()`, `wrap()`
validation_report

us_to_space
Replace underscore with space

Description

Convenience function to convert underscores to space

Usage

```r
us_to_space(x)
```

Arguments

- **x**
 String to replace all occurrences of `_` with a single space

Value

Character vector containing the modified string.

See Also

Other Support:
- `any_idate()`
- `camel_clean()`
- `check_inputs()`
- `cut_hour()`
- `extract_date_range()`
- `extract_hr()`
- `heat_colours()`
- `is_date_format()`
- `maxmin()`
- `pairwise_count()`
- `read_preamble()`
- `rgb2hex()`
- `totals_bind()`
- `totals_col()`
- `tstamp()`
- `wrap()`

Examples

```r
us_to_space("Meeting_hours_with_manager_1_on_1")
```

validation_report
Generate a Data Validation report in HTML

Description

The function generates an interactive HTML report using Standard Person Query data as an input.
The report contains checks on Viva Insights query outputs to provide diagnostic information for the Analyst prior to analysis.

An additional Standard Meeting Query can be provided to perform meeting subject line related checks. This is optional and the validation report can be run without it.
validation_report

Usage

validation_report(
 data,
 meeting_data = NULL,
 hrvar = "Organization",
 path = "validation report",
 hrvar_threshold = 150,
 timestamp = TRUE
)

Arguments

data A Standard Person Query dataset in the form of a data frame.
meeting_data An optional Meeting Query dataset in the form of a data frame.
hrvar HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "Organization"
path Pass the file path and the desired file name, excluding the file extension.
hrvar_threshold Numeric value determining the maximum number of unique values to be allowed to qualify as a HR variable. This is passed directly to the threshold argument within hrvar_count_all().
timestamp Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE.

Details

For your input to data or meeting_data, please use the function vivaimsights::import_query() to import your csv query files into R. This function will standardize format and prepare the data as input for this report.

For most variables, a note is returned in-line instead of an error if the variable is not available.

Value

An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.

Checking functions within validation_report()

• check_query()
• flag_ch_ratio()
• hrvar_count_all()
• identify_privacythreshold()
• identify_nkw()
• identify_holidayweeks()
• subject_validate() (available in 'wpa')
• identify_tenure()
• flag_outlooktime()
• identify_shifts()
• track_HR_change()

You can browse each individual function for details on calculations.

Creating a report

Below is an example on how to run the report.

validation_report(pq_data,
 hrvar = "Organization")

See Also

Other Reports: IV_report(), generate_report(), meeting_tm_report(), read_preamble()
Other Data Validation: check_query(), extract_hr(), flag_ch_ratio(), flag_em_ratio(),
 flag_extreme(), flag_outlooktime(), hr_trend(), hrvar_count(), hrvar_count_all(), hrvar_trend(),
 identify_churn(), identify_holidayweeks(), identify_inactiveweeks(), identify_nkw(),
 identify_outlier(), identify_privacythreshold(), identify_shifts(), identify_tenure(),
 track_HR_change()

wrap

Add a character at the start and end of a character string

Description

This function adds a character at the start and end of a character string, where the default behaviour
is to add a double quote.

Usage

wrap(string, wrapper = "\"")

Arguments

string Character string to be wrapped around
wrapper Character to wrap around string

Value

Character vector containing the modified string.

See Also

Other Support: any_idate(), camel_clean(), check_inputs(), cut_hour(), extract_date_range(),
 extract_hr(), heat_colours(), is_date_format(), maxmin(), pairwise_count(), read_preamble(),
 rgb2hex(), totals_bind(), totals_col(), tstamp(), us_to_space()
Description

Wrap text in visualizations according to a preset character threshold. The next space in the string is replaced with \n, which will render as next line in plots and messages.

Usage

wrap_text(x, threshold = 15)

Arguments

 x String to wrap text
 threshold Numeric, defaults to 15. Number of character units by which the next space would be replaced with \n to move text to next line.

Value

String output representing a processed version of x, with spaces replaced by \n.

Examples

 wrapped <- wrap_text(
 "The total entropy of an isolated system can never decrease."
)
 message(wrapped)
Index

* After-hours Collaboration
 afterhours_dist, 4
 afterhours_fizz, 6
 afterhours_line, 7
 afterhours_rank, 9
 afterhours_summary, 10
 afterhours_trend, 12
 external_rank, 80

* Collaboration
 collaboration_area, 18
 collaboration_dist, 19
 collaboration_fizz, 21
 collaboration_line, 22
 collaboration_rank, 24
 collaboration_sum, 26
 collaboration_trend, 27

* Data Validation
 check_query, 16
 extract_hr, 84
 flag_ch_ratio, 85
 flag_em_ratio, 86
 flag_extreme, 87
 flag_outlooktime, 89
 hr_trend, 98
 hrvar_count, 94
 hrvar_count_all, 95
 hrvar_trend, 97
 identify_churn, 99
 identify_holidayweeks, 102
 identify_inactiveweeks, 104
 identify_nkw, 105
 identify_outlier, 106
 identify_privacythreshold, 107
 identify_shifts, 108
 identify_tenure, 109
 track_HR_change, 166
 validation_report, 168

* Data
 g2g_data, 90
 mt_data, 129
 p2p_data, 149
 p2p_data_sim, 150
 pq_data, 152

* Emails
 email_dist, 67
 email_fizz, 68
 email_line, 69
 email_rank, 71
 email_summary, 72
 email_trend, 74

* External Collaboration
 external_dist, 76
 external_fizz, 78
 external_line, 79
 external_sum, 82

* Flexible
 create_bar, 30
 create_bar_asis, 32
 create_boxplot, 34
 create_bubble, 36
 create_density, 37
 create_dist, 39
 create_fizz, 42
 create_hist, 43
 create_inc, 45
 create_line, 49
 create_line_asis, 51
 create_period_scatter, 52
 create_rank, 54
 create_sankey, 58
 create_scatter, 59
 create_stacked, 61
 create_tracking, 63
 create_trend, 64

* Import and Export
 copy_df, 29
 create_dt, 41
 export, 75
INDEX

import_query, 111

* Information Value
 create_IV, 47
 IV_report, 112

* Managerial Relations
 one2one_dist, 138
 one2one_fizz, 140
 one2one_freq, 141
 one2one_line, 143
 one2one_rank, 144
 one2one_sum, 146
 one2one_trend, 147

* Meetings
 meeting_dist, 119
 meeting_fizz, 121
 meeting_line, 122
 meeting_rank, 123
 meeting_summary, 125
 meeting_tm_report, 126
 meeting_trend, 127

* Network
 g2g_data, 90
 network_g2g, 130
 network_p2p, 133
 network_summary, 137
 p2p_data, 149
 p2p_data_sim, 150

* Reports
 generate_report, 91
 IV_report, 112
 meeting_tm_report, 126
 read_preamble, 157
 validation_report, 168

* Support
 any_idate, 14
 camel_clean, 15
 check_inputs, 15
 cut_hour, 66
 extract_date_range, 83
 extract_hr, 84
 heat_colours, 93
 is_date_format, 112
 maxmin, 118
 pairwise_count, 151
 read_preamble, 157
 rgb2hex, 157
 totals_bind, 164
 totals_col, 165
 tstamp, 167
 us_to_space, 168
 wrap, 170

* Text-mining
 meeting_tm_report, 126
 pairwise_count, 151
 tm_clean, 159
 tm_cooc, 160
 tm_freq, 161
 tm_wordcloud, 162

* Themes
 theme_wpa, 158
 theme_wpa_basic, 158

* Time-series
 create_line, 49
 create_line_asis, 51
 create_period_scatter, 52
 create_trend, 64

* Variable Association
 create_IV, 47
 IV_report, 112

* Visualization
 afterhours_dist, 4
 afterhours_fizz, 6
 afterhours_line, 7
 afterhours_rank, 9
 afterhours_summary, 10
 afterhours_trend, 12
 collaboration_area, 18
 collaboration_dist, 19
 collaboration_fizz, 21
 collaboration_line, 22
 collaboration_rank, 24
 collaboration_sum, 26
 collaboration_trend, 27
 create_bar, 30
 create_bar_asis, 32
 create_boxplot, 34
 create_bubble, 36
 create_dist, 39
 create_fizz, 42
 create_inc, 45
 create_line, 49
 create_line_asis, 51
 create_period_scatter, 52
 create_rank, 54
 create_sankey, 58
 create_scatter, 59
create_stacked, 61
create_tracking, 63
create_trend, 64
e-mail_dist, 67
e-mail_fizz, 68
e-mail_line, 69
e-mail_rank, 71
e-mail_summary, 72
e-mail_trend, 74
external_dist, 76
external_fizz, 78
external_line, 79
external_rank, 80
external_sum, 82
hr_trend, 98
hrvar_count, 94
hrvar_trend, 97
keymetrics_scan, 115
meeting_dist, 119
meeting_fizz, 121
meeting_line, 122
meeting_rank, 123
meeting_summary, 125
meeting_trend, 127
onezone_dist, 138
onezone_fizz, 140
onezone_freq, 141
onezone_line, 143
onezone_rank, 144
onezone_sum, 146
onezone_trend, 147

* Working Patterns
 identify_shifts, 108

* datasets
 g2g_data, 90
 mt_data, 129
 p2p_data, 149
 pq_data, 152

* max-min
 maxmin, 118

afterhours_dist, 4, 7, 8, 10–13, 19, 20, 22,
 23, 25, 27, 28, 31, 33, 35, 37, 40, 43,
 46, 50, 52, 54, 56, 58, 60, 62, 64, 65,
 68–70, 72–74, 77, 78, 80, 81, 83, 95,
 97, 98, 116, 120, 121, 123, 124, 126,
 128, 139, 141, 142, 144, 146–148
afterhours_line, 5, 7, 10–13, 19, 20, 22,
 23, 25, 27, 28, 31, 33, 35, 37, 40, 43,
 46, 50, 52, 54, 56, 58, 60, 62, 64, 65,
 68–70, 72–74, 77, 78, 80, 81, 83, 95,
 97, 98, 116, 120, 121, 123, 124, 126,
 128, 139, 141, 142, 144, 146–148
afterhours_rank, 5, 7, 8, 9, 11–13, 19, 20,
 22, 23, 25, 27, 28, 31, 33, 35, 37, 40,
 43, 46, 50, 52, 54, 56, 58, 60, 62, 64,
 63, 68–70, 72–74, 77, 78, 80, 81, 83,
 95, 97, 98, 116, 120, 121, 123, 124,
 126, 128, 139, 141, 142, 144, 146–148
afterhours_sum(afterhours_summary), 10
afterhours_summary, 5, 7, 8, 10, 12, 13,
 19, 20, 22, 23, 25, 27, 28, 31, 33, 35,
 37, 40, 43, 46, 50, 52, 54, 56, 58, 60,
 62, 64, 65, 68–70, 72–74, 77, 78, 80,
 81, 83, 95, 97, 98, 116, 120, 121, 123,
 124, 126, 128, 139, 141, 142, 144,
 146–148
afterhours_trend, 5, 7, 8, 10, 11, 12, 19, 20,
 22, 23, 25, 27, 28, 31, 33, 35, 37, 40,
 43, 46, 50, 52, 54, 56, 58, 60, 62, 64,
 63, 68–70, 72–74, 77, 78, 80, 81, 83,
 95, 97, 98, 116, 120, 121, 123, 124,
 126, 128, 139, 141, 142, 144, 146–148
analysis_scope(hrvar_count), 94
anonymise, 13
anonymize(anonymise), 13
any_idate, 14, 15, 16, 66, 84, 85, 94, 112,
 119, 152, 157, 158, 164, 165, 167,
 168, 170
camel_clean, 14, 15, 16, 66, 84, 85, 94, 112,
 119, 152, 157, 158, 164, 165, 167,
 168, 170
check_inputs, 14, 15, 16, 66, 84, 85, 94, 112,
 119, 152, 157, 158, 164, 165, 167,
 168, 170
check_query, 16, 85–89, 95–97, 99, 100, 103,
 104, 106–108, 110, 167, 170
collab_area(collaboration_area), 18
collab_dist(collaboration_dist), 19
email_rank, 5, 7, 8, 10–12, 19, 20, 22, 23, 25, 27, 28, 31, 33, 35, 37, 40, 43, 46, 50, 52, 54, 56, 59, 60, 62, 64, 65, 68–70, 71, 73, 74, 77, 78, 80, 81, 83, 95, 97, 99, 116, 120, 121, 123, 124, 126, 128, 139, 141, 142, 144, 146–148

email_summary, 5, 7, 8, 10–12, 19, 20, 22, 23, 25, 27, 28, 31, 33, 35, 37, 40, 43, 46, 50, 52, 54, 56, 59, 60, 62, 64, 65, 68–70, 72, 72, 74, 77, 78, 80, 81, 83, 95, 97, 99, 116, 120, 121, 123, 124, 126, 128, 139, 141, 142, 144, 146–148

external_rank, 5, 7, 8, 10–12, 19, 20, 22, 23, 25, 27, 28, 31, 33, 35, 37, 40, 43, 46, 50, 52, 54, 56, 59, 60, 62, 64, 65, 68–70, 72–74, 77, 79–81, 82, 95, 97, 99, 116, 120, 122–124, 126, 128, 139, 141, 143, 144, 146–148

external_summary (email_summary), 72

extract_date_range, 14–16, 66, 83, 85, 94, 112, 119, 152, 157, 158, 164, 165, 167, 168, 170

g2g_data, 90, 130, 132, 136, 138, 149, 150, 156

generate_report, 91, 113, 127, 157, 170

generate_report2, 92

heat_colors (heat_colours), 93

heat_colours, 14–16, 66, 84, 85, 93, 112, 119, 152, 157, 158, 164, 165, 167, 168, 170

hrvar_count, 5, 7, 8, 10–12, 17, 19, 20, 22, 23, 25, 27, 28, 31, 33, 35, 37, 40, 43, 46, 50, 52, 54, 56, 59, 60, 62, 64, 65, 68–70, 72–74, 77, 79–81, 83, 85–89,