Package ‘vivaldi’

March 21, 2023

Type Package
Title Viral Variant Location and Diversity
Version 1.0.1
Description Analysis of minor alleles in Illumina sequencing data of viral genomes. Functions in ‘vivaldi’ primarily operate on vcf files.
License MIT + file LICENSE
URL https://github.com/GreshamLab/vivaldi
BugReports https://github.com/GreshamLab/vivaldi/issues
Imports dplyr (>= 1.0.2), ggplot2 (>= 3.3.2), glue (>= 1.4.2), magrittr (>= 2.0.1), plotly (>= 4.10.0), seqinr (>= 4.2-8), tidyr (>= 1.1.2), tidyselect (>= 1.1.2), vcfR (>= 1.12.0)
Suggests kableExtra, knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Config/testthat.edition 3
Depends R (>= 2.10)
NeedsCompilation no
Author Marissa Knoll [aut], Katherine Johnson [aut], Megan Hockman [aut], Eric Borenstein [aut], Mohammed Khalfan [aut], Elodie Ghedin [aut], David Gresham [aut, cre, cph]
Maintainer David Gresham <dg107@nyu.edu>
Repository CRAN
Date/Publication 2023-03-21 20:10:02 UTC
R topics documented:

- add_metadata .. 2
- af_distribution .. 3
- arrange_data .. 4
- dNdS_segment .. 5
- example_filtered_SNV_df 5
- filter_variants ... 6
- merge_replicates .. 7
- plot_shannon .. 8
- position_allele_freq 9
- prepare_annotations 10
- read_reference_fasta_dna 10
- shannon_entropy ... 11
- shared_snv_plot .. 12
- shared_snv_table 13
- snpeff_info ... 14
- snv_genome .. 14
- snv_location .. 15
- snv_segment .. 16
- tally_it .. 17
- tstv_plot .. 18
- tstv_ratio .. 18

Index 20

Description

Add metadata information to the vcf dataframe

Usage

add_metadata(df, metadf, by_vcf, by_meta)

Arguments

df A rearranged vcf dataframe (arrange_data)
metadf A metadata dataframe
by_vcf A vector of column names in the vcf dataframe that should be used to merge the vcf data with the metadata
by_meta A vector of column names in the metadata dataframe that should be used to merge the metadata with the vcf data
Value

A vcf dataframe with metadata included

Examples

```r
df <- data.frame(CHROM = c("A", "B"),
                 POS = c(234, 240),
                 REF = c("G", "A"),
                 ALT = c("A", "G")
)
sizes <- data.frame(segment = c("A", "B"),
                    SegmentSize = c(2280, 2274)
)
df
sizes

# Add a new column of sizes of the segments which are necessary for
# downstream calculations such as transition:transversion (tstv) and dNdS.
add_metadata(df, sizes, c("CHROM"), c("segment"))
```

Description

Plots distribution of all minor variants

Usage

```r
af_distribution(df)
```

Arguments

- `df` A dataframe that has been arranged (arrange_data) and filtered (filter_variants)

Value

plots with the distribution of all minor variants
Examples

```r
# Example 1:
df <- data.frame(sample = c("m1", "m2", "m1", "m2", "m1"),
                 CHROM = c("PB1", "PB1", "PB2", "PB2", "NP"),
                 POS = c(234, 234, 240, 240, 254),
                 REF = c("G", "G", "A", "A", "C"),
                 ALT = c("A", "A", "G", "G", "T"),
                 minorfreq = c(0.010, 0.022, 0.043, 0.055, 0.011),
                 majorfreq = c(0.990, 0.978, 0.957, 0.945, 0.989),
                 minorcount = c(7, 15, 26, 32, 7),
                 majorcount = c(709, 661, 574, 547, 610),
                 gt_DP = c(716, 676, 600, 579, 617))

af_distribution(df)
```

```r
# Example 2:
af_distribution(example_filtered_SNV_df)
```

Description

Reads in a directory of VCF files and converts them into a single dataframe

Usage

```r
arrange_data(
  vardir,
  reference_fasta,
  annotated = "yes",
  ntlist = c("A", "G", "T", "C", "-"),
  verbose = FALSE
)
```

Arguments

- **vardir**: Directory path containing vcf files
- **reference_fasta**: Reference fasta file used for alignment
- **annotated**: Whether the VCF files are annotated using snpeff "yes" or "no" (default "yes")
- **ntlist**: Nucleotides (default A, T, G, C) used for finding multiple alt alleles
- **verbose**: set verbosity of the vcfR commands

Value

A large dataframe containing information from all input VCF files
Description

Reads in a dataframe that has been arranged (arrange_data), filtered (filter_variants), and annotated (prepare_annotations), calculates dNdS, and outputs plots.

Usage

dNdS_segment(annotation_df, SPLICEFORMS)

Arguments

annotation_df A rearranged, filtered, and annotated vcf dataframe - must be for amino-acid specific calculations, cannot be the same as the dataframe used for SNP calculations

SPLICEFORMS A character vector of isoform names

Value

A plot showing the dN/dS ratio for each splice form (rather than segment) for each sample

Examples

Sample Data
head(example_filtered_SNV_df)
dim(example_filtered_SNV_df)

Plot showing the dN/dS ratio for each splice form
SPLICEFORMS = c("H1N1_PB2.1", "H1N1_PB1.1", "H1N1_NS.2")
dNdS_segment(example_filtered_SNV_df, SPLICEFORMS)

Description

Example Dataframe The DF_filt_SNVs dataframe created in the vignette

Usage

eample_filtered_SNV_df
filter_variants

Format

`example_filtered_SNV_df` A data frame with 735 rows and 57 columns:

<table>
<thead>
<tr>
<th>filter_variants</th>
<th>filter_variants</th>
</tr>
</thead>
</table>

Description

Filters single-nucleotide variants using a coverage and frequency cutoff

Usage

```
filter_variants(df, coverage_cutoff = 200, frequency_cutoff = 0.03)
```

Arguments

- `df` A rearranged VCF dataframe (rearranged using the arrange_data function)
- `coverage_cutoff` The coverage cutoff for calling a SNV (default: 200x)
- `frequency_cutoff` Frequency cutoff for calling a SNV (default: 3%)

Value

A filtered VCF dataframe

Examples

```r
df <- data.frame(CHROM = c("A", "B", "C"),
                 POS = c(234, 240, 255),
                 ALT_FREQ = c(0.016, 0.049, 0.031),
                 gt_DP = c(716, 600, 187))

df
```

Default: filter by 3% frequency threshold and 200 coverage cutoff
filter_variants(df)

Example 1: A 1% allele frequency threshold and 200 coverage cutoff
filter_variants(df, coverage_cutoff = 200, frequency_cutoff = 0.01)

Example 2: A 2% allele frequency threshold and 100 coverage cutoff
filter_variants(df, coverage_cutoff = 100, frequency_cutoff = 0.02)
Description
Merges replicate VCF files into a single dataframe

Usage
merge_replicates(vardf, repdata, nameofrep1, nameofrep2, commoncols)

Arguments
vardf Data frame of variants
repdata Data frame of replicate information
nameofrep1 Name of variable representing the first replicate, must be written with quotes
nameofrep2 Name of variable representing the second replicate
commoncols List of columns to merge the replicates by

Value
a data frame containing replicate information

Examples
df <- data.frame(sample = c("m1", "m2", "m1", "m2", "m1"),
 CHROM = c("PB1", "PB1", "PB2", "PB2", "NP"),
 POS = c(234, 234, 240, 240, 254),
 REF = c("G", "G", "A", "A", "C"),
 ALT = c("A", "A", "G", "G", "T"),
 minorfreq = c(0.010, 0.022, 0.043, 0.055, 0.011),
 majorfreq = c(0.990, 0.978, 0.957, 0.945, 0.989),
 minorcount = c(7, 15, 26, 32, 7),
 majorcount = c(716, 661, 574, 547, 610),
 gt_DP = c(716, 676, 600, 579, 617)
)
Dataframe shows a pair of replicates and their variants at 3 positions.
df

replicates <- data.frame(filename = c("m1","m2"),
 replicate = c("rep1","rep2"),
 sample = c("a_2_iv","a_2_iiiv")
)
Dataframe showing relationship between filename, replicate, and sample name replicates
Merge by the following columns
cols = c("sample", "CHROM", "POS", "REF", "ALT")

merge_replicates(df, replicates, "rep1", "rep2", cols)
The dataframe now contains the 2 variants at positions 234 & 240 that were
detected in both sequencing replicates whereas the variant at position 254
was only in a single replicate so it was removed during the merge.

Description

Reads in a dataframe that has been arranged (arrange_data), filtered (filter_variants), and piped through the Shannon calculations (shannon_entropy) and outputs plots

Usage

plot_shannon(shannon_df)

Arguments

- **shannon_df**: A dataframe that has been arranged (arrange_data), filtered (filter_variants), and piped through the Shannon calculations (shannon_entropy)

Details

The `plot_shannon()` function takes the variant dataframe and generates three plots. 1. The Shannon entropy, or amount of diversity, at each position in the genome at which a variant was found. 2. The Shannon entropy summed over each segment 3. The Shannon entropy summed over each genome

A higher value indicates more diversity.

Value

Three plots showing the nt Shannon, chrom Shannon, and full genome Shannon calculations

Examples

```r
# Sample data.frame
df <- data.frame(sample = c("m1", "m2", "m1", "m2", "m1"),
                 CHROM = c("PB1", "PB1", "PB2", "PB2", "NP"),
                 POS = c(234, 234, 240, 240, 254),
                 minorfreq = c(0.010, 0.022, 0.043, 0.055, 0.011),
                 majorfreq = c(0.990, 0.978, 0.957, 0.945, 0.989),
                 SegmentSize = c(2280, 2280, 2274, 2274, 1809))

df
```
genome_size = 13133

Modify the dataframe to add 5 new columns of shannon entropy data:
1. shannon_ntpos
2. chrom_shannon
3. genome_shannon
4. shannon_chrom_perkb
5. genome_shannon_perkb
shannon_df = shannon_entropy(df, genome_size)

Plot
plot_shannon(shannon_df)

Description

Reads in a dataframe that has been arranged (`arrange_data`) and filtered (`filter_variants`) and outputs plots.

Usage

`position_allele_freq(vardf, segment, nt)`

Arguments

- **vardf**: A rearranged (`arrange_data`) and filtered (`filter_variants`) vcf dataframe.
- **segment**: Name of segment (must be in quotes).
- **nt**: Position on segment (must be in quotes).

Value

A plot showing the frequencies of the major and minor allele at the given position across all samples.

Examples

`position_allele_freq(example_filtered_SNV_df, "H1N1_NP", "1247")`
Description

Separates the SNPeff annotations found in an annotated and rearranged VCF dataframe (arranged using arrange_data)

Usage

prepare_annotations(df)

Arguments

df: A rearranged and annotated VCF dataframe

Value

A dataframe containing each annotation on a separate column

Examples

Example: Shows the separation of the ANN column based on | delimiter.
test <- data.frame(ANN = c("A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P"))

The ANN column will be split based on the strings in `snpeff_info()` and
an additional "error" column.
snpeff_info()

Split the SNPeff annotations in "ANN" column and save to dataframe `df`
df <- prepare_annotations(df)

The one "ANN" column is split into 16 columns
dim(test)
dim(df)

Description

Imports reference fasta, generates a dataframe with chroms and chrom lengths

Usage

read_reference_fasta_dna(reference_fasta)
Arguments

reference_fasta

The name and location of the reference fasta file used for alignment

Value

A dataframe containing the chroms and chrom lengths of a reference fasta

Description

Takes a rearranged vcf dataframe and calculates the Shannon entropy

Usage

```r
shannon_entropy(df, genome_size)
```

Arguments

- **df**: A rearranged vcf dataframe (arrange_data)
- **genome_size**: Size of whole genome being used

Details

Shannon entropy is a commonly used metric to describe the amount of genetic diversity in sequencing data. It is calculated by considering the frequency of the ALT and REF allele at every position and then summing those values over 1) a segment or 2) the entire genome. These values can then be normalized by sequence length (kb) in order to compare across different segments or samples.

Value

A dataframe with Shannon entropy/kb calculations for the chroms and entire genome

Examples

```r
# Sample dataframe
df <- data.frame(sample = c("m1", "m2", "m1", "m2", "m1"),
                 CHROM = c("PB1", "PB1", "PB2", "PB2", "NP"),
                 minorfreq = c(0.010, 0.022, 0.043, 0.055, 0.011),
                 majorfreq = c(0.990, 0.978, 0.957, 0.945, 0.989),
                 SegmentSize = c(2280, 2280, 2274, 2274, 1809))
```

```
shannon_entropy(df, genome_size = 13133)  # Example calculation with 13133 kb genome size
```
Modify the dataframe to add 5 new columns of shannon entropy data:
1. shannon_ntpos
2. chrom_shannon
3. genome_shannon
4. Shannon_chrom_perkb
5. genome_shannon_perkb
shannon_entropy(df, genome_size)

shared_snv_plot
shared_snv_plot

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

Usage

shared_snv_plot(vardf, samples = unique(DF_filt$sample))

Arguments

- **vardf**
 A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

- **samples**
 A vector of samples to be compared (default: all samples in DF_filt)

Value

A plot showing the location of variants and the number of samples that contain each variant

Examples

```r
samples = c("a_1_fb", "a_1_iv", "a_2_fb", "a_2_iv", "a_3_fb", "a_3_iv", "b_1_fb", "b_1_iv")
shared_snv_plot(example_filtered_SNV_df, samples)
```
shared_snv_table

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs a table.

Usage

shared_snv_table(vardf)

Arguments

vardf A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

Details

The ‘shared_snv_table()’ function takes the variant dataframe and creates a new table, listing the variants in descending order of frequency how many samples they are found in. This function is meant to simplify further investigation of visual patterns in the previous plot.

Value

A table listing variants in order by how many samples they are found in.

Examples

Sample dataframe has 57 columns
dim(example_filtered_SNV_df)

Simplify sample dataframe
df <- shared_snv_table(example_filtered_SNV_df)

Dataframe created has 15 columns
df
dim(df)
\textbf{Description}

Returns vector containing information in snpeff annotations

\textbf{Usage}

\begin{verbatim}
snpeff_info()
\end{verbatim}

\textbf{Value}

Returns vector containing information in snpeff annotations

\textbf{Examples}

\begin{verbatim}
snpeff_info()
\end{verbatim}

\begin{longtable}{ll}
\textbf{snv Genome} & \textbf{snv Genome} \\
\hline
\end{longtable}

\textbf{Description}

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

\textbf{Usage}

\begin{verbatim}
svn_genome(vardf)
\end{verbatim}

\textbf{Arguments}

\begin{verbatim}
vardf A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe
\end{verbatim}

\textbf{Value}

A bar plot showing the number of variants per sample colored by their SNPEff annotation
Examples

Example 1: Simple dataframe
df <- data.frame(sample = c("m1", "m1", "m1", "m1", "m1", "m1", "m2", "m2", "m2", "m2"),
 annotation = c("downstream_gene_variant", "synonymous_variant", "synonymous_variant", "stop_gained", "missense_variant", "downstream_gene_variant", "downstream_gene_variant", "synonymous_variant", "stop_gained", "missense_variant"))

df

snv_genome(df)

Example 2: Sample dataframe
snv_genome(example_filtered_SNV_df)

Description

Reads in the vcf dataframe and generates a plot showing the frequency and location of SNVs

Usage

snv_location(df)

Arguments

df A rearranged dataframe

Value

A plot showing the location and frequency of SNVs found across samples

Examples

Example 1:
df <- data.frame(sample = c("m1", "m1", "m1", "m1", "m1", "m1", "m2", "m2", "m2", "m2"),
 CHROM = c("PB1", "PB1", "PB2", "PB2", "PB2", "PB2", "PB1", "PB1", "PB2", "PB2"),
 POS = c(234, 266, 117, 134, 180, 234, 266, 199, 88, 180),
snv_segment

ALT_TYPE = c("minor", "minor", "minor", "minor", "minor", "minor", "minor", "minor", "major", "minor"),
minorfreq = c(0.010, 0.022, 0.043, 0.055, 0.011, 0.010, 0.022, 0.043, 0.055, 0.011),
majorfreq = c(0.990, 0.978, 0.957, 0.945, 0.989, 0.990, 0.978, 0.957, 0.945, 0.989)
)

df

snv_location(df)

Example 2:

snv_location(example_filtered_SNV_df)

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

Usage

snv_segment(vardf)

Arguments

vardf A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

Value

A bar plot showing the number of variants colored by their SNPEff annotation

Examples

Example 1: Simple data
df <- data.frame(sample = c("m1", "m1", "m1", "m1", "m1", "m2", "m2", "m2", "m2", "m2"),
CHROM = c("PB1", "PB1", "PB2", "PB2", "PB2", "PB1", "PB1", "PB2", "PB2", "PB2"),
annotation = c("downstrean_gene_variant", "synonymous_variant", "synonymous_variant", "stop_gained", "missense_variant", "downstrean_gene_variant", "downstrean_gene_variant", "synonymous_variant", "stop_gained", "missense_variant")

snv_segment

snv_segment
tally_it

)

df

snv_segment(df)

Example 2: Sample data
snv_segment(example_filtered_SNV_df)

tally_it

Description

Groups the input vcf data frame using a list of variables and tallies the number of occurrences

Usage

tally_it(df, groupit, new_colname)

Arguments

 df A rearranged vcf dataframe (arrange_data)
 groupit A vector containing column names that data should be grouped by
 new_colname The name of the count column

Value

A dataframe with columns from the 'groupit' vector and the number of times each unique grouping occurs in the data

Examples

Sample dataframe of 7 variants across 2 samples
df <- data.frame(
 sample = c("sample1", "sample1", "sample1", "sample2",
 "sample2", "sample2", "sample2"),
 CHROM = c("PB1", "PB2", "PB2", "LEO", "LEO", "LEO", "ALE"),
 SegmentSize = c(2280, 2274, 2274, 1701, 1701, 1701, 1888),
 minorfreq = c(0.04422785, 0.03738175, 0.01390202, 0.02927786,
 0.03071955, 0.02626025, 0.02875321)
)

Example 1: to get the sum of variants on every segment:
groupit = c('sample','CHROM', "SegmentSize")
tally_it(df, groupit, "snv_count")

Example 2: to get the count across genomes:
tstv_ratio

groupit = c('sample')
tally_it(df, groupit, "snv_count")

tstv_plot

description
plots Ts/Tv ratios

usage
tstv_plot(df)

arguments
 df TsTv dataframe generated using the tstv_ratio function

value
 two plots showing the K2P and simple Ts/Tv ratios

examples
 df <- tstv_ratio(example_filtered_SNV_df,1300)
tstv_plot(df)

tstv_ratio

description
 inputs a filtered and rearranged vcf dataframe and calculates the transition/transversion ratio

usage
 tstv_ratio(df, genome_size)

arguments
 df the filtered and rearranged variant dataframe
 genome_size size of whole genome being used

value
 a dataframe containing the calculated transition/transversion ratio (R or basic_tstv)
tstv_ratio

Examples

tstv_ratio(example_filtered_SNV_df, 13000)
Index

* datasets

 example_filtered_SNV_df, 5

add_metadata, 2
af_distribution, 3
arrange_data, 4
dNdS_segment, 5
example_filtered_SNV_df, 5
filter_variants, 6
merge_replicates, 7
plot_shannon, 8
position_allele_freq, 9
prepare_annotations, 10
read_reference_fasta_dna, 10

shannon_entropy, 11
shared_snv_plot, 12
shared_snv_table, 13
snpeff_info, 14
snv_genome, 14
snv_location, 15
snv_segment, 16

tally_it, 17
tstv_plot, 18
tstv_ratio, 18