Package ‘vivo’
September 7, 2020

Title Variable Importance via Oscillations
Version 0.2.1
Description Provides an easy to calculate local variable importance measure based on Ceteris Paribus profile and global variable importance measure based on Partial Dependence Profiles.
Depends R (>= 3.0)
License GPL-2
Encoding UTF-8
LazyData true
Imports ggplot2, DALEX
Suggests knitr, rmarkdown, mlbench, randomForest, gridExtra, grid, lattice, testthat, ingredients
VignetteBuilder knitr
RoxygenNote 7.1.0
URL https://github.com/ModelOriented/vivo
BugReports https://github.com/ModelOriented/vivo/issues
NeedsCompilation no
Author Anna Kozak [aut, cre], Przemyslaw Biecek [aut, ths]
Maintainer Anna Kozak <anna1993kozak@gmail.com>
Repository CRAN
Date/Publication 2020-09-07 11:00:02 UTC

R topics documented:
calculate_variable_split .. 2
calculate_weight .. 2
global_variable_importance ... 3
local_variable_importance .. 4
plot.global_importance .. 6
plot.local_importance .. 7
calculate_variable_split

Function for Split Points for Selected Variables

Description

This function calculates candidate splits for each selected variable. For numerical variables, splits are calculated as percentiles (in general uniform quantiles of the length `grid_points`). For all other variables, splits are calculated as unique values.

Usage

```r
calculate_variable_split(data, variables = colnames(data), grid_points = 101)
```

Arguments

- `data`: validation dataset. Is used to determine distribution of observations.
- `variables`: names of variables for which splits shall be calculated.
- `grid_points`: number of points used for response path.

Value

A named list with splits for selected variables.

Note

This function is a copy of `calculate_variable_split()` from ingredients package with small change.

Author(s)

Przemyslaw Biecek

calculate_weight

Calculated empirical density and weight based on variable split.

Description

This function calculates an empirical density of raw data based on variable split from Ceteris Paribus profiles. Then calculated weight for values generated by `DALEX::predict_profile()`, `DALEX::individual_profile()` or `ingredients::ceteris_paribus()`.

Usage

```r
calculate_weight(profiles, data, variable_split)
```
global_variable_importance

Arguments

profiles data.frame generated by DALEX::predict_profile(), DALEX::individual_profile() or ingredients::ceteris_paribus()
data data.frame with raw data to modelvariable_split list generated by vivo::calculate_variable_split()

Value

Return an weight based on empirical density.

Examples

library("DALEX", warn.conflicts = FALSE, quietly = TRUE)
data(apartments)

split <- vivo::calculate_variable_split(apartments,
 variables = colnames(apartments),
 grid_points = 101)

library("randomForest", warn.conflicts = FALSE, quietly = TRUE)
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
 floor + no.rooms, data = apartments)

explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
 y = apartmentsTest$m2.price)

new_apartment <- data.frame(construction.year = 1998, surface = 88, floor = 2L, no.rooms = 3)
profiles <- predict_profile(explainer_rf, new_apartment)

library("vivo")
calculate_weight(profiles, data = apartments[,2:5], variable_split = split)

global_variable_importance

Global Variable Importance measure based on Partial Dependence profiles.

Description

This function calculate global importance measure.

Usage

global_variable_importance(profiles)
Arguments
profiles data.frame generated by DALEX::model_profile() or DALEX::variable_profile()

Value
A data.frame of the class global_variable_importance. It’s a data.frame with calculated
global variable importance measure.

Examples

```
library("DALEX")
data(apartments)

library("randomForest")
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
                                     floor + no.rooms, data = apartments)

explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
                        y = apartmentsTest$m2.price)

profiles <- model_profile(explainer_rf)

library("vivo")
global_variable_importance(profiles)
```

Description
This function calculate local importance measure in eight variants. We obtain eight variants mea-
sure through the possible options of three parameters such as absolute_deviation, point and
density.

Usage
```
local_variable_importance(
    profiles,
    data,
    absolute_deviation = TRUE,
    point = TRUE,
    density = TRUE,
    grid_points = 101
)
```
Arguments

- **profiles**
 - data.frame generated by `DALEX::predict_profile()`, `DALEX::individual_profile()` or `ingredients::ceteris_paribus()`

- **data**
 - data.frame with raw data to model

- **absolute_deviation**
 - logical parameter, if `absolute_deviation = TRUE` then measure is calculated as absolute deviation, else is calculated as a root from average squares

- **point**
 - logical parameter, if `point = TRUE` then measure is calculated as a distance from f(x), else measure is calculated as a distance from average profiles

- **density**
 - logical parameter, if `density = TRUE` then measure is weighted based on the density of variable, else is not weighted

- **grid_points**
 - maximum number of points for profile calculations, the default values is 101, the same as in `ingredients::ceteris_paribus()`, if you use a different on, you should also change here

Value

A data.frame of the class `local_variable_importance`. It's a data.frame with calculated local variable importance measure.

Examples

```r
library("DALEX")
data(apartments)

library("randomForest")
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
  floor + no.rooms, data = apartments)

explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
  y = apartmentsTest$m2.price)

new_apartment <- data.frame(construction.year = 1998, surface = 88, floor = 2L, no.rooms = 3)

profiles <- predict_profile(explainer_rf, new_apartment)

library("vivo")
local_variable_importance(profiles, apartments[,2:5],
  absolute_deviation = TRUE, point = TRUE, density = TRUE)

local_variable_importance(profiles, apartments[,2:5],
  absolute_deviation = TRUE, point = TRUE, density = FALSE)

local_variable_importance(profiles, apartments[,2:5],
  absolute_deviation = TRUE, point = FALSE, density = TRUE)
```
plot.global_importance

Plot Global Variable Importance measure

Description
Function plot.global_importance plots global importance measure based on Partial Dependence profiles.

Usage
S3 method for class 'global_importance'
plot(x, ..., variables = NULL, type = NULL, title = "Variable importance")

Arguments
x object returned from global_variable_importance() function
... other object returned from global_variable_importance() function that shall be plotted together
variables if not NULL then only variables will be presented
type a character. How variables shall be plotted? Either "bars" (default) or "lines".
title the plot’s title, by default 'Variable importance'

Value
a ggplot2 object

Examples
library("DALEX")
data(apartments)

library("randomForest")
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
 floor + no.rooms, data = apartments)

explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
 y = apartmentsTest$m2.price)

profiles <- model_profile(explainer_rf)

library("vivo")
measure <- global_variable_importance(profiles)
plot.local_importance

plot(measure)

plot.localization Plot Local Variable Importance measure

Description
Function plot.local_importance plots local importance measure based on Ceteris Paribus profiles.

Usage
S3 method for class 'local_importance'
plot(
 x,
 ...,
 variables = NULL,
 color = NULL,
 type = NULL,
 title = "Local variable importance"
)

Arguments
x object returned from local_variable_importance() function
... other object returned from local_variable_importance() function that shall
 be plotted together
variables if not NULL then only variables will be presented
color a character. How to aggregated measure? Either "_label_method_" or "_la-
 bel_model_".
type a character. How variables shall be plotted? Either "bars" (default) or "lines".
title the plot's title, by default 'Local variable importance'

Value
a ggplot2 object

Examples

library("DALEX")
data(apartments)

library("randomForest")
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +
 floor + no.rooms, data = apartments)
explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],
 y = apartmentsTest$m2.price)

new_apartment <- data.frame(construction.year = 1998, surface = 88, floor = 2L, no.rooms = 3)

profiles <- predict_profile(explainer_rf, new_apartment)

library("vivo")
measure1 <- local_variable_importance(profiles, apartments[,2:5],
 absolute_deviation = TRUE, point = TRUE, density = FALSE)

plot(measure1)

measure2 <- local_variable_importance(profiles, apartments[,2:5],
 absolute_deviation = TRUE, point = TRUE, density = TRUE)

plot(measure1, measure2, color = "_label_method_", type = "lines")
Index

calculate_variable_split, 2
calculate_weight, 2

global_variable_importance, 3

local_variable_importance, 4

plot.global_importance, 6
plot.local_importance, 7