Package ‘volker’

May 11, 2024

Type Package
Title High-Level Functions for Tabulating, Charting and Reporting Survey Data
Version 2.0.1
Date 2024-05-07
Description Craft polished tables and plots in Markdown reports.
Simply choose whether to treat your data as counts or metrics,
and the package will automatically generate well-designed default tables and plots for you.
Boiled down to the basics, with labeling features and simple interactive reports.
All functions are 'tidyverse' compatible.

URL https://github.com/strohne/volker
BugReports https://github.com/strohne/volker/issues
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.1
LazyData true
Imports stats, rlang, lifecycle, tibble, dplyr, tidyr, tidyselect,
ggplot2 (>= 2.2.1), scales, base64enc, purrr, magrittr, skimr,
broom, knitr, kableExtra, rmarkdown, psych, effectsize, car
Depends R (>= 4.2)
Suggests tidyverse, remotes, usethis, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Jakob Jünger [aut, cre, cph] (<https://orcid.org/0000-0003-1860-6695>),
Henrieke Kotthoff [aut, ctb],
Chantal Gärtner [ctb] (<https://orcid.org/0000-0002-3653-6013>)
Maintainer Jakob Jünger <jakob.juenger@uni-muenster.de>
Repository CRAN
Date/Publication 2024-05-11 15:10:02 UTC
R topics documented:

chatgpt ... 2
codebook .. 3
effect_counts ... 4
effect_metrics .. 5
html_report ... 6
idx_add ... 6
labs_apply .. 7
labs_clear ... 8
labs_restore .. 9
labs_store ... 10
plot_counts .. 10
plot_metrics .. 11
report_counts .. 12
report_metrics ... 14
tab_counts .. 15
tab_metrics ... 16
theme_vlkr ... 17

Index 19

chatgpt ChatGPT Adoption Dataset CG-GE-APR22

Description

A small random subset of data from a survey about ChatGPT adoption. The survey was conducted in April 2023 within the population of German Internet users.

Usage

chatgpt

Format

chatgpt: A data frame with 101 rows and 19 columns:

case A running case number
adopter Adoption groups inspired by Roger’s innovator typology.
use_ Columns starting with use contain data about ChatGPT usage in different contexts.
cg_activities Text answers to the question, what the respondents do with ChatGPT.
cg_adoption_ A scale consisting of items about advantages, fears, and social aspects. The scales match theoretical constructs inspired by Roger’s diffusion model and Davis’ Technology Acceptance Model
sd_ Columns starting with sd contain sociodemographics of the respondents.
Details

Call codebook(volker::chatgpt) to see the items and answer options.

Source

Communication Department of the University of Münster (gehrau@uni-muenster.de).

| codebook | Get variable labels from their comment attributes |

Description

[Experimental]

Usage

codebook(data, cols)

Arguments

data A tibble.
cols A tidy variable selections to filter specific columns.

Value

A tibble with the columns: - item_name: The column name. - item_group: First part of the column name, up to an underscore. - item_class: The last class value of an item (e.g. numeric, factor). - item_label: The comment attribute of the column. - value_name: In case a column has numeric attributes, the attribute names - value_label: In case a column has numeric attributes or T/F-attributes, the attribute values. In case a column has a levels attribute, the levels.

Examples

volker::codebook(volker::chatgpt)
effect_counts

Output effect sizes for count data

Description

The type of effect size depends on the number of selected columns:

- One column: see `effect_counts_one` (not yet implemented)
- Multiple columns: see `effect_counts_items` (not yet implemented)
- One column and one grouping column: see `effect_counts_one_grouped`
- Multiple columns and one grouping column: see `effect_counts_items_grouped` (not yet implemented)

By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to TRUE will call the appropriate functions for correlation analysis:

- One column and one metric column: see `effect_counts_one_cor` (not yet implemented)
- Multiple columns and one metric column: see `effect_counts_items_cor` (not yet implemented)

[Experimental]

Usage

```r
effect_counts(data, cols, cross = NULL, metric = FALSE, clean = TRUE, ...)
```

Arguments

- `data`: A data frame.
- `cols`: A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as `starts_with()`.
- `cross`: Optional, a grouping column. The column name without quotes.
- `metric`: When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.
- `clean`: Prepare data by `data_clean`.
- `...`: Other parameters passed to the appropriate effect function.

Value

A volker tibble.

Examples

```r
library(volker)
data <- volker::chatgpt
effect_counts(data, sd_gender, adopter)
```
effect_metrics
Output effect sizes and regression model parameters

Description

The regression type depends on the number of selected columns:

- One column: see `effect_metrics_one` (not yet implemented)
- Multiple columns: see `effect_metrics_items`
- One column and one grouping column: see `effect_metrics_one_grouped`
- Multiple columns and one grouping column: see `effect_metrics_items_grouped` (not yet implemented)

By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to TRUE will call the appropriate functions for correlation analysis:

- Two metric columns: see `effect_metrics_one_cor`
- Multiple columns: see `effect_metrics_items_cor`

[Experimental]

Usage

```r
effect_metrics(data, cols, cross = NULL, metric = FALSE, clean = TRUE, ...)
```

Arguments

- `data`
 A data frame.
- `cols`
 A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as `starts_with()`.
- `cross`
 Optional, a grouping column (without quotes).
- `metric`
 When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.
- `clean`
 Prepare data by `data_clean`.
- `...`
 Other parameters passed to the appropriate effect function.

Value

A volker tibble.

Examples

```r
library(volker)
data <- volker::chatgpt
effect_metrics(data, sd_age, sd_gender)
```
html_report

Volker style HTML document format

Description

Based on the standard theme, tweaks the pill navigation to switch between tables and plots. To use the format, in the header of your Markdown document, set `output: volker::html_report`.

Usage

```r
html_report(...)```

**Arguments**

`...` Additional arguments passed to `html_document`.

**Value**

R Markdown output format.

**Examples**

```r
Not run:
Add `volker::html_report` to the output options of your Markdown document:
#
````

title: "How to create reports?"
output: volker::html_report

````
#
End(Not run)
```

### idx_add

**Calculate the mean value of multiple items**

**Description**

[Experimental]

**Usage**

```r
idx_add(data, cols, newcol = NULL, negative = FALSE, clean = TRUE)```
labs_apply

Set variable labels by setting their comment attributes

Description

[Experimental]

Usage

`labs_apply(data, codes, cols = NULL, values = TRUE)`

Arguments

- **data**: A tibble.
- **codes**: A tibble in codebook format. To set column labels, use item_name and item_label columns.
- **cols**: A tidy column selection. Set to NULL (default) to apply to all columns found in the codebook. Restricting the columns is helpful when you want to set value labels. In this case, provide a tibble with value_name and value_label columns and specify the columns that should be modified.
- **values**: If TRUE (default), sets value labels. - For factors: Factor levels and order are retrieved from the value_label column. - For item values: they are retrieved from both the columns value_name and value_label in your codebook.

Value

A tibble with new labels.
Examples

```r
library(tibble)
library(volker)

newlabels <- tribble(
  ~item_name, ~item_label,
  "cg_adoption_advantage_01", "Allgemeine Vorteile",
  "cg_adoption_advantage_02", "Finanzielle Vorteile",
  "cg_adoption_advantage_03", "Vorteile bei der Arbeit",
  "cg_adoption_advantage_04", "Macht mehr Spaß"
)

volker::chatgpt %>%
  labs_apply(newlabels) %>%
  tab_metrics(starts_with("cg_adoption_advantage_"))
```

Description

[Experimental]

Usage

```r
labs_clear(data, cols, labels = NULL)
```

Arguments

- `data` A tibble.
- `cols` Tidyselect columns.
- `labels` The attributes to remove. NULL to remove all attributes except levels and class.

Value

A tibble with comments removed.

Examples

```r
library(volker)
volker::chatgpt |> labs_clear()
```
labs_restore

Description

[Experimental]

Usage

```r
labs_restore(data, cols = NULL, values = TRUE)
```

Arguments

- `data` A data frame.
- `cols` A tidyselect column selection.
- `values` If TRUE (default), restores value labels in addition to item labels. Item labels correspond to columns, value labels to values in the columns.

Details

You can store labels before mutate operations by calling `labs_store`.

Value

A data frame.

Examples

```r
library(dplyr)
library(volker)

volker::chatgpt |> 
labs_store() |> 
mutate(sd_age = 2024 - sd_age) |> 
labs_restore() |> 
tab_metrics(sd_age)
```
labs_store

Get the current codebook and store it in the codebook attribute.

Description

You can restore the labels after mutate operations by calling labs_restore.

Usage

labs_store(data)

Arguments

data A data frame.

Details

[Experimental]

Value

A data frame.

Examples

library(dplyr)
library(volker)

volker::chatgpt |>
labs_store() |>
mutate(sd_age = 2024 - sd_age) |>
labs_restore() |>
tab_metrics(sd_age)

plot_counts

Output a frequency plot

Description

The type of frequency plot depends on the number of selected columns:

- One column: see plot_counts_one
- Multiple columns: see plot_counts_items
- One column and one grouping column: see plot_counts_one_grouped
- Multiple columns and one grouping column: see plot_counts_items_grouped (not yet implemented)
By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to TRUE will call the appropriate functions for correlation analysis:

- One column and one metric column: see `plot_counts_one_cor` (not yet implemented)
- Multiple columns and one metric column: see `plot_counts_items_cor` (not yet implemented)

[Experimental]

Usage

```r
plot_counts(data, cols, cross = NULL, metric = FALSE, clean = TRUE, ...)
```

Arguments

- `data` A data frame.
- `cols` A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as `starts_with()`.
- `cross` Optional, a grouping column. The column name without quotes.
- `metric` When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.
- `clean` Prepare data by `data_clean`.
- `...` Other parameters passed to the appropriate plot function.

Value

A `ggplot2` plot object.

Examples

```r
library(volker)
data <- volker::chatgpt
plot_counts(data, sd_gender)
```

Description

The plot type depends on the number of selected columns:

- One column: see `plot_metrics_one`
- Multiple columns: see `plot_metrics_items`
- One column and one grouping column: see `plot_metrics_one_grouped`
• Multiple columns and one grouping column: see `plot_metrics_items_grouped`

By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to TRUE will call the appropriate functions for correlation analysis:

• Two metric columns: see `plot_metrics_one_cor`
• Multiple columns: see `plot_metrics_items_cor` (not yet implemented)

[Experimental]

Usage

```
plot_metrics(data, cols, cross = NULL, metric = FALSE, clean = TRUE, ...)
```

Arguments

- `data` A data frame.
- `cols` A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as `starts_with()`.
- `cross` Optional, a grouping column (without quotes).
- `metric` When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.
- `clean` Prepare data by `data_clean`.
- `...` Other parameters passed to the appropriate plot function.

Value

A ggplot object.

Examples

```
library(volker)
data <- volker::chatgpt

plot_metrics(data, sd_age)
```

report_counts

Create table and plot for categorical variables

Description

Depending on your column selection, different types of plots and tables are generated. See `plot_counts` and `tab_counts`.
report_counts

Usage

report_counts(
 data,
 cols,
 cross = NULL,
 metric = FALSE,
 index = FALSE,
 effect = FALSE,
 numbers = NULL,
 title = TRUE,
 close = TRUE,
 clean = TRUE,
 ...
)

Arguments

data A data frame.
cols A tidy column selection, e.g. a single column (without quotes) or multiple
columns selected by methods such as starts_with().
cross Optional, a grouping column (without quotes).
metric When crossing variables, the cross column parameter can contain categorical or
metric values. By default, the cross column selection is treated as categorical
data. Set metric to TRUE, to treat it as metric and calculate correlations.
index When the cols contain items on a metric scale (as determined by get_direction),
an index will be calculated using the 'psych' package. Set to FALSE to suppress
index generation.
effect Whether to report statistical tests and effect sizes. See effect_counts for further
parameters.
numbers The numbers to print on the bars: "n" (frequency), "p" (percentage) or both. Set
to NULL to remove numbers.
title A character providing the heading or TRUE (default) to output a heading. Classes
for tabset pills will be added.
close Whether to close the last tab (default value TRUE) or to keep it open. Keep it
open to add further custom tabs by adding headers on the fifth level in Markdown
(e.g. #### Method).
clean Prepare data by data_clean.
... Parameters passed to the plot_counts and tab_counts and effect_counts func-
tions.

Details

For item batteries, an index is calculated and reported. When used in combination with the Markdown-
template "html_report", the different parts of the report are grouped under a tabsheet selector.

[Experimental]
Value

A volker report object.

Examples

```r
library(volker)
data <- volker::chatgpt

report_counts(data, sd_gender)
```

report_metrics

Create table and plot for metric variables

Description

Depending on your column selection, different types of plots and tables are generated. See `plot_metrics` and `tab_metrics`.

Usage

```r
report_metrics(
  data,
  cols,
  cross = NULL,
  metric = FALSE,
  ...,
  index = FALSE,
  effect = FALSE,
  title = TRUE,
  close = TRUE,
  clean = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>A data frame.</td>
</tr>
<tr>
<td><code>cols</code></td>
<td>A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as <code>starts_with()</code>.</td>
</tr>
<tr>
<td><code>cross</code></td>
<td>Optional, a grouping or correlation column (without quotes).</td>
</tr>
<tr>
<td><code>metric</code></td>
<td>When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.</td>
</tr>
<tr>
<td><code>...</code></td>
<td>Parameters passed to the <code>plot_metrics</code> and <code>tab_metrics</code> and <code>effect_metrics</code> functions.</td>
</tr>
</tbody>
</table>
index

When the cols contain items on a metric scale (as determined by `get_direction`), an index will be calculated using the `psych` package. Set to FALSE to suppress index generation.

effect

Whether to report statistical tests and effect sizes. See `effect_counts` for further parameters.

title

A character providing the heading or TRUE (default) to output a heading. Classes for tabset pills will be added.

close

Whether to close the last tab (default value TRUE) or to keep it open. Keep it open to add further custom tabs by adding headers on the fifth level in Markdown (e.g. #### Method).

clean

Prepare data by `data_clean`.

Details

For item batteries, an index is calculated and reported. When used in combination with the Markdown-template "html_report", the different parts of the report are grouped under a tabsheet selector.

[Experimental]

Value

A volker report object.

Examples

```r
library(volker)
data <- volker::chatgpt

report_metrics(data, sd_age)
```

`tab_counts`
Output a frequency table

Description

The type of frequency table depends on the number of selected columns:

- One column: see `tab_counts_one`
- Multiple columns: see `tab_counts_items`
- One column and one grouping column: see `tab_counts_one_grouped`
- Multiple columns and one grouping column: see `tab_counts_items_grouped`

By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to TRUE will call the appropriate functions for correlation analysis:

- One column and one metric column: see `tab_counts_one_cor` (not yet implemented)
- Multiple columns and one metric column: see `tab_counts_items_cor` (not yet implemented)

[Experimental]
Usage

```r
tab_counts(data, cols, cross = NULL, metric = FALSE, clean = TRUE, ...)
```

Arguments

- **data**: A data frame.
- **cols**: A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as `starts_with()`.
- **cross**: Optional, a grouping column. The column name without quotes.
- **metric**: When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to `TRUE`, to treat it as metric and calculate correlations.
- **clean**: Prepare data by `data_clean`.
- **...**: Other parameters passed to the appropriate table function.

Value

A volker tibble.

Examples

```r
library(volker)
data <- volker::chatgpt
tab_counts(data, sd_gender)
```

Description

The table type depends on the number of selected columns:

- One column: see `tab_metrics_one`
- Multiple columns: see `tab_metrics_items`
- One column and one grouping column: see `tab_metrics_one_grouped`
- Multiple columns and one grouping column: see `tab_metrics_items_grouped`

By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to `TRUE` will call the appropriate functions for correlation analysis:

- Two metric columns: see `tab_metrics_one_cor`
- Multiple columns: see `tab_metrics_items_cor` (experimental)

[Experimental]
theme_vlkr

Usage

 tab_metrics(data, cols, cross = NULL, metric = FALSE, clean = TRUE, ...)

Arguments

data A data frame.
cols A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as starts_with().
cross Optional, a grouping column (without quotes).
metric When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.
clean Prepare data by data_clean.
... Other parameters passed to the appropriate table function.

Value

A volker tibble.

Examples

 library(volker)
 data <- volker::chatgpt

 tab_metrics(data, sd_age)

theme_vlkr

Define a default theme for volker plots

Description

 Set ggplot colors, sizes and layout parameters.

Usage

 theme_vlkr(
 base_size = 11,
 base_color = "black",
 base_fill = VLKR_FILLDISCRETE,
 base_gradient = VLKR_FILLLGRADIENT
)
Arguments

- **base_size**: Base font size.
- **base_color**: Base font color.
- **base_fill**: A list of fill color sets or at least one fill color set. Example: `list(c("red"), c("red", "blue", "green"))`. Each set can contain different numbers of colors. Depending on the number of colors needed, the set with at least the number of required colors is used. The first color is always used for simple bar charts.
- **base_gradient**: A color vector used for creating gradient fill colors, e.g. in stacked bar plots.

Details

[Experimental]

Value

A theme function.

Examples

```r
library(volker)
library(ggplot2)
data <- volker::chatgpt

theme_set(theme_vlkr(base_size=15, base_fill = list("red")))
plot_counts(data, sd_gender)
```
Index

* datasets
 - chatgpt, 2
 - codebook, 3, 7

- data_clean, 4, 5, 7, 11–13, 15–17
- effect_counts, 4, 13, 15
- effect_counts_items, 4
- effect_counts_items_cor, 4
- effect_counts_items_grouped, 4
- effect_counts_one, 4
- effect_counts_one_cor, 4
- effect_counts_one_grouped, 4
- effect_metrics, 5, 14
- effect_metrics_items, 5
- effect_metrics_items_cor, 5
- effect_metrics_items_grouped, 5
- effect_metrics_one, 5
- effect_metrics_one_cor, 5
- effect_metrics_one_grouped, 5

- get_direction, 13, 15

- html_report, 6

- idx_add, 6

- labs_apply, 7
- labs_clear, 8
- labs_restore, 9, 10
- labs_store, 9, 10

- plot_counts, 10, 12, 13
- plot_counts_items, 10
- plot_counts_items_cor, 11
- plot_counts_items_grouped, 10
- plot_counts_one, 10
- plot_counts_one_cor, 11
- plot_counts_one_grouped, 10

- plot_metrics, 11, 14
- plot_metrics_items, 11
- plot_metrics_items_cor, 12
- plot_metrics_items_grouped, 12
- plot_metrics_one, 11
- plot_metrics_one_cor, 12
- plot_metrics_one_grouped, 11

- report_counts, 12
- report_metrics, 14

- tab_counts, 12, 13, 15
- tab_counts_items, 15
- tab_counts_items_cor, 15
- tab_counts_items_grouped, 15
- tab_counts_one, 15
- tab_counts_one_cor, 15
- tab_counts_one_grouped, 15
- tab_metrics, 14, 16
- tab_metrics_items, 16
- tab_metrics_items_cor, 16
- tab_metrics_items_grouped, 16
- tab_metrics_one, 16
- tab_metrics_one_cor, 16
- tab_metrics_one_grouped, 16
- theme_vlkr, 17