Package ‘vsgoftest’

Type Package

Title Goodness-of-Fit Tests Based on Kullback-Leibler Divergence

Version 1.0-1

Date 2020-12-17

Author Justine Lequesne [aut], Philippe Regnault [aut, cre]

Maintainer Philippe Regnault <philipperegnault@hotmail.com>

Description An implementation of Vasicek and Song goodness-of-fit tests. Several functions are provided to estimate differential Shannon entropy, i.e., estimate Shannon entropy of real random variables with density, and test the goodness-of-fit of some family of distributions, including uniform, Gaussian, log-normal, exponential, gamma, Weibull, Pareto, Fisher, Laplace and beta distributions; see Lequesne and Regnault (2020) <doi:10.18637/jss.v096.c01>.

Depends stats, fitdistrplus

Imports Rcpp (>= 0.12.1)

Suggests knitr

VignetteBuilder knitr

LinkingTo Rcpp

Encoding UTF-8

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-12-17 16:30:02 UTC

R topics documented:

vsgoftest-package ... 2
contaminants .. 3
dlplace ... 4
dpareto ... 5
entropy.estimate ... 6
vs.test ... 7

Index 10
Description

An implementation of Vasicek and Song goodness-of-fit tests. Several functions are provided to estimate differential Shannon entropy, i.e., estimate Shannon entropy of real random variables with density, and test the goodness-of-fit of some family of distributions, including uniform, Gaussian, log-normal, exponential, gamma, Weibull, Pareto, Fisher, Laplace and beta distributions; see Lequesne and Regnault (2020) <doi:10.18637/jss.v096.c01>.

Details

The DESCRIPTION file:

Package: vsgoftest
Type: Package
Title: Goodness-of-Fit Tests Based on Kullback-Leibler Divergence
Version: 1.0-1
Date: 2020-12-17
Author: Justine Lequesne [aut], Philippe Regnault [aut, cre]
Maintainer: Philippe Regnault <philipperegnault@hotmail.com>
Description: An implementation of Vasicek and Song goodness-of-fit tests. Several functions are provided to estimate differential Shannon entropy of real random variables with density, and test the goodness-of-fit of some family of distributions, including uniform, Gaussian, log-normal, exponential, gamma, Weibull, Pareto, Fisher, Laplace and beta distributions; see Lequesne and Regnault (2020) <doi:10.18637/jss.v096.c01>.
Depends: stats, fitdistrplus
Imports: Rcpp (>= 0.12.1)
Suggests: knitr
VignetteBuilder: knitr
LinkingTo: Rcpp
Encoding: UTF-8
License: GPL (>=2)
Packaged: 2020-12-17 12:12:51 UTC; philippe

Index of help topics:

- contaminants
 - Organic and inorganic contaminant concentration data
- dlaplace
 - The Laplace distribution
- dpareto
 - The Pareto distribution
- entropy.estimate
 - Vasicek estimate of differential Shannon Entropy
- vs.test
 - Vasicek-Song goodness-of-fit test for various distributions
- vsgoftest-package
 - Goodness-of-Fit Tests Based on Kullback-Leibler Divergence

Further information is available in the following vignettes:
contaminants

vsgoftest_tutorial Tutorial (source, pdf)

Author(s)

Justine Lequesne [aut], Philippe Regnault [aut, cre]
Maintainer: Philippe Regnault <philipperegnault@hotmail.com>

References

Examples

```r
set.seed(1)
samp <- rnorm(50, mean = 2, s = 3)

##Estimating entropy
entropy.estimate(x = samp, window = 8)
log(2*pi*exp(1))/2 #true value of entropy of normal distribution

##Testing normality
vs.test(x = samp, densfun = quBeginInit.Var/dnorm.ExecuteReader, param = c(2,3), B = 500) #Simple null hypothesis
vs.test(x = samp, densfun='dnorm', B = 500) #Composite null hypothesis
```

contaminants Organic and inorganic contaminant concentration data

Description

Organic and inorganic contaminant concentration data from Superfund sites; see Singh *et al.* (1997).

Usage

data(contaminants)
Format

Four numeric vectors of respective lengths 17, 17, 23 and 23.

Details

aluminium1 and manganese are groundwater concentration measurements of aluminium and manganese from seventeen wells at the Naval Construction Battalion Center Superfound Site in Rhode Island.

aluminium2 and toluene are concentration measurements of aluminium and toluene compiled from two waste piles at Elmara School Superfound site in Washington County, PA.

Source

dlaplace

The Laplace distribution

dlaplace(x, mu, b, log = FALSE)

plaplace(q, mu, b, lower.tail = TRUE, log.p = FALSE)

qlaplace(p, mu, b, lower.tail = TRUE, log.p = FALSE)

rlaplace(n, mu, b)

Arguments

x, q (numeric, vector) a vector of quantiles.

p (numeric, vector) a vector of probabilities.

n (numeric, vector) sample size to be generated.

mu (numeric, single value) the location parameter.

b (numeric, single value) the scale parameter.

log, log.p (logical, single value) if TRUE, probabilities are given as log(p). Default is FALSE.

lower.tail (logical, single value) if TRUE (default), probabilities are \(P(X \leq x) \); otherwise \(P(X > x) \).
Details

The laplace distribution with shape parameter $\mu > 0$ and scale parameter $b > 0$ has density

$$f(x) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right), \quad x \in \mathbb{R}.$$

Value

dlaplace gives the density, plaplace gives the distribution function, qlaplace gives the quantile function, and rlaplace generates random deviates.

The length of the result is determined by n for rnorm, and is the maximum of the lengths of the numerical arguments for the other functions.

Author(s)

J. Lequesne <justine.lequesne@unicaen.fr>

Examples

```r
set.seed(1)
rlaplace(100, mu=2, b=1)
```

dpereo

The Pareto distribution

Description

Density, cumulative distribution function, quantile function and random generation for the Pareto distribution.

Usage

```r
dpareto(x, mu, c, log = FALSE)
pppareto(q, mu, c, lower.tail = TRUE, log.p = FALSE)
qpareto(p, mu, c, lower.tail = TRUE, log.p = FALSE)
rpareto(n, mu, c)
```

Arguments

- `x,q` (numeric, vector) a vector of quantiles.
- `p` (numeric, vector) a vector of probabilities.
- `n` (numeric, vector) sample size to be generated.
- `mu` (numeric, single value) the shape parameter.
- `c` (numeric, single value) the scale parameter.
- `log, log.p` (logical, single value) if TRUE, probabilities are given as $\log(p)$. Default is FALSE.
- `lower.tail` (logical, single value) if TRUE (default), probabilities are $P(X \leq x)$; otherwise $P(X > x)$.

Details

The pareto distribution with shape parameter $\mu > 0$ and scale parameter $c > 0$ has density

$$f(x) = \mu c^\mu x^{-1-\mu},$$

for $x \geq 0$.

Value

dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile function, and rpareto generates random deviates.

The length of the result is determined by n for rnorm, and is the maximum of the lengths of the numerical arguments for the other functions.

Author(s)

J. Lequesne <justine.lequesne@unicaen.fr>

References

Examples

```r
n<- 100
rpareto(n,mu=2,c=1)
```

entropy.estimate

Vasicek estimate of differential Shannon Entropy

Description

Computes Vasicek estimate of differential Shannon entropy from a numeric sample.

Usage

```r
entropy.estimate(x,window)
```

Arguments

- `x` (numeric, vector) the numeric sample.
- `window` (numeric, single value) an integer between 1 and half on the sample size specifying the window size for computing Vasicek estimate. See Details for additional information.
Details

Vasicek estimator of Shannon entropy is defined, for a random sample X_1, \ldots, X_n, by

$$\frac{1}{n} \sum_{i=1}^{n} \log\left(\frac{n}{2m} [X_{(i+m)} - X_{(i-m)}]\right),$$

where $X_{(i)}$ is the order statistic, $m < (n/2)$ is the window size, and $X_{(i)} = X_{(1)}$ for $i < 1$ and $X_{(i)} = X_{(n)}$ for $i > n$.

Value

A single numeric value representing the Vasicek estimate of entropy of the sample

Author(s)

J. Lequesne <justine.lequesne@unicaen.fr>

References

See Also

vs.test which performs Vasicek-Song goodness-of-fit tests to the specified maximum entropy distribution family.

Examples

```r
set.seed(2)
samp <- rnorm(100, mean = 0, s = 1)
entropy.estimate(x = samp, window = 8)
log(2*pi*exp(1))/2 #true value of entropy of normal distribution
```

Description

Performs Vasicek-Song goodness-of-fit test to the specified distribution family.

Usage

```r
vs.test(x, densfun, param = NULL,
        simulate.p.value = NULL, B = 5000,
        delta = NULL, extend = FALSE, relax = FALSE)
```
Arguments

x (numeric, vector) the numeric sample.

densfun A character string specifying the fitted distribution. Possible values are "dunif", "dnorm", "dlnorm", "dexp", "dgamma", "dweibull", "dpareto", "df", "dlaplace" and "dbeta".

param (numeric, vector) specifies the parameter(s) of the fitted distribution. If NULL (default), a GOF test to the parametric family of distributions specified by densfun is performed.

simulate.p.value (logical, single value) if TRUE, the p-value of the sample is estimated by means of Monte Carlo methods. If NULL (the default), the p-value is simulated if the sample size is smaller than 80; otherwise, an asymptotic p-value is computed.

B (numeric, single value) a numeric value specifying the number of simulations to perform in Monte-Carlo estimation of the p-value.

delta (numeric, single value) a numeric value smaller than 1/3 specifying the upper bound $n^{1/3} - \delta$ for window size, where n is the sample size. The default depends on densfun; see Vignettes for details.

extend (logical, single value). If FALSE (the default), the bound for the window is $n^{1/3} - \delta$; if TRUE, the bound is $n/2$.

relax (logical, single value) avoids the constraint $V_{mn} \leq -\frac{1}{n} \sum_{i=1}^{n} \log p_0(X_i, \hat{\theta}_n)$ when computing the optimal window; see details. Default is FALSE.

Details

The test statistic is

$$I_{mn} = -V_{mn} - \frac{1}{n} \sum_{i=1}^{n} \log p_0(X_i, \theta),$$

where V_{mn} is the Vasichek estimator of Shannon entropy computed from the numeric sample x with window size m and $p_0(x, \theta)$ is the density function of the specified distribution densfun to be tested, with θ the parameter of the null for a simple hypothesis or its maximum likelihood estimate for a composite null hypothesis (param=NULL); See Song (2002), Girardin and Lequesne (2017) and Lequesne and Regnault (2018).

An optimal window size m is automatically computed; see Song (2002).

An exact p-value is computed if the sample size is less than 100. Otherwise, asymptotic distribution is used whose approximation may be inaccurate for small samples; see Lequesne and Regnault (2018).

Value

A list with class "htest" containing the following components:

observed The sample under study.

data.name The name (as an R object) of the sample.

null.value A character string specifying the name of the fitted distribution.
method
The character string "Vasicek GOF test to" followed by the name of the fitted distribution.

statistic
Vasicek test statistic; see Details below.

parameter
The optimal window for Vasicek test statistic

estimate
Parameter(s) of the fitted distribution. If param is NULL, parameters are estimated. If param is suitably filled out by the user, it is returned.

p.value
The p-value of the test.

Author(s)
J. Lequesne <justine.lequesne@unicaen.fr>

References

See Also
- entropy.estimate which computes the Vasicek estimator of Shannon entropy.

Examples
```r
set.seed(1)
samp <- rnorm(50,2,3)
vs.test(x = samp, densfun = 'dnorm', param = c(2,3), B = 500) #Simple null hypothesis
vs.test(x = samp, densfun='dnorm', B = 500) #Composite null hypothesis
## Using asymptotic distribution to compute the p-value
vs.test(x = samp, densfun='dnorm', simulate.p.value = FALSE) #Composite null hypothesis
```
Index

* Differential Shannon entropy
 entropy.estimate, 6
* datasets
 contaminants, 3
* distribution
 dlaplace, 4
 dpareto, 5
* htest
 vs.test, 7
* package
 vsgoftest-package, 2

aluminium1 (contaminants), 3
aluminium2 (contaminants), 3

contaminants, 3
dlplace, 4
dpareto, 5

entropy.estimate, 6, 9

manganese (contaminants), 3

plaplace (dlaplace), 4
ppareto (dpareto), 5

qlaplace (dlaplace), 4
qpareto (dpareto), 5

rlaplace (dlaplace), 4
rpareto (dpareto), 5

toluene (contaminants), 3

vs.test, 7, 7
vsgoftest (vsgoftest-package), 2
vsgoftest-package, 2