Package ‘vtreat’

June 12, 2024

Type Package
Title A Statistically Sound 'data.frame' Processor/Conditioner
Version 1.6.5
Date 2024-06-12
BugReports https://github.com/WinVector/vtreat/issues
Maintainer John Mount <jmount@win-vector.com>
Description A 'data.frame' processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. 'vtreat' prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems 'vtreat' defends against: 'Inf', 'NA', too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Reference: ```v'treat': a data.frame Processor for Predictive Modeling'', Zumel, Mount, 2016, <DOI:10.5281/zenodo.1173313>.
License GPL-2 | GPL-3
Depends R (>= 3.4.0), wrapr (>= 2.1.0)
Imports stats, digest
Suggests rquery (>= 1.4.99), rqdatatable (>= 1.3.3), data.table (>= 1.12.2), knitr, rmarkdown, parallel, DBI, RSQLite, datasets, R.rsp, tinytest
VignetteBuilder knitr, R.rsp
RoxygenNote 7.3.1
ByteCompile true
NeedsCompilation no
Author John Mount [aut, cre], Nina Zumel [aut], Win-Vector LLC [cph]
Repository CRAN
Date/Publication 2024-06-12 16:40:02 UTC
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vtreat-package</td>
<td>3</td>
</tr>
<tr>
<td>apply_transform</td>
<td>4</td>
</tr>
<tr>
<td>as_rquery_plan</td>
<td>4</td>
</tr>
<tr>
<td>BinomialOutcomeTreatment</td>
<td>6</td>
</tr>
<tr>
<td>buildEvalSets</td>
<td>7</td>
</tr>
<tr>
<td>center_scale</td>
<td>9</td>
</tr>
<tr>
<td>classification_parameters</td>
<td>9</td>
</tr>
<tr>
<td>designTreatmentsC</td>
<td>10</td>
</tr>
<tr>
<td>designTreatmentsN</td>
<td>12</td>
</tr>
<tr>
<td>designTreatmentsZ</td>
<td>15</td>
</tr>
<tr>
<td>design_missingness_treatment</td>
<td>16</td>
</tr>
<tr>
<td>fit</td>
<td>18</td>
</tr>
<tr>
<td>fit_prepare</td>
<td>18</td>
</tr>
<tr>
<td>fit_transform</td>
<td>19</td>
</tr>
<tr>
<td>format.vtreatment</td>
<td>20</td>
</tr>
<tr>
<td>getSplitPlanAppLabels</td>
<td>20</td>
</tr>
<tr>
<td>get_feature_names</td>
<td>21</td>
</tr>
<tr>
<td>get_score_frame</td>
<td>21</td>
</tr>
<tr>
<td>get_transform</td>
<td>22</td>
</tr>
<tr>
<td>kWayCrossValidation</td>
<td>22</td>
</tr>
<tr>
<td>kWayStratifiedY</td>
<td>23</td>
</tr>
<tr>
<td>kWayStratifiedYReplace</td>
<td>24</td>
</tr>
<tr>
<td>makeCustomCoderCat</td>
<td>24</td>
</tr>
<tr>
<td>makeCustomCoderNum</td>
<td>25</td>
</tr>
<tr>
<td>makekWayCrossValidationGroupedByColumn</td>
<td>26</td>
</tr>
<tr>
<td>mkCrossFrameCEExperiment</td>
<td>27</td>
</tr>
<tr>
<td>mkCrossFrameMExperiment</td>
<td>30</td>
</tr>
<tr>
<td>mkCrossFrameNExperiment</td>
<td>33</td>
</tr>
<tr>
<td>MultinomialOutcomeTreatment</td>
<td>36</td>
</tr>
<tr>
<td>multinomial_parameters</td>
<td>37</td>
</tr>
<tr>
<td>novel_value_summary</td>
<td>37</td>
</tr>
<tr>
<td>NumericOutcomeTreatment</td>
<td>38</td>
</tr>
<tr>
<td>oneWayHoldout</td>
<td>39</td>
</tr>
<tr>
<td>patch_columns_into_frame</td>
<td>40</td>
</tr>
<tr>
<td>prepare</td>
<td>40</td>
</tr>
<tr>
<td>prepare.multinomial_plan</td>
<td>41</td>
</tr>
<tr>
<td>prepare.simple_plan</td>
<td>42</td>
</tr>
<tr>
<td>prepare.treatmentplan</td>
<td>43</td>
</tr>
<tr>
<td>pre_comp_xval</td>
<td>45</td>
</tr>
<tr>
<td>print.multinomial_plan</td>
<td>46</td>
</tr>
<tr>
<td>print.simple_plan</td>
<td>47</td>
</tr>
<tr>
<td>print.treatmentplan</td>
<td>47</td>
</tr>
<tr>
<td>print.vtreatment</td>
<td>48</td>
</tr>
<tr>
<td>problemAppPlan</td>
<td>49</td>
</tr>
<tr>
<td>regression_parameters</td>
<td>48</td>
</tr>
<tr>
<td>rquery_prepare</td>
<td>49</td>
</tr>
</tbody>
</table>
vtreat-package

vtreat: A Statistically Sound 'data.frame' Processor/Conditioner

Description

A 'data.frame' processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. 'vtreat' prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems 'vtreat' defends against: 'Inf', 'NA', too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). 'vtreat::prepare' should be used as you would use 'model.matrix'.

Details

For more information:

- vignette('vtreat', package='vtreat')
- vignette(package='vtreat')
- Website: https://github.com/WinVector/vtreat

Author(s)

Maintainer: John Mount <jmount@win-vector.com>

Authors:

- Nina Zumel <nzumel@win-vector.com>

Other contributors:

- Win-Vector LLC [copyright holder]
See Also

Useful links:

• https://github.com/WinVector/vtreat/
• https://winvector.github.io/vtreat/
• Report bugs at https://github.com/WinVector/vtreat/issues

apply_transform Transform second argument by first.

Description

Apply first argument to second as a transform.

Usage

apply_transform(vps, dframe, ..., parallelCluster = NULL)

Arguments

vps vtreat pipe step, object defining transform.
dframe data.frame, data to transform
... not used, forces later arguments to bind by name.
parallelCluster optional, parallel cluster to run on.

Value

transformed dframe

as_rquery_plan Convert vtreatment plans into a sequence of rquery operations.

Description

Convert vtreatment plans into a sequence of rquery operations.

Usage

as_rquery_plan(treatmentplans, ..., var_restriction = NULL)
as_rquery_plan

Arguments

treatmentplans vtest treatment plan or list of vtest treatment plan sharing same outcome and outcome type.

... not used, force any later arguments to bind to names.

var Restriction
character, if not null restrict to producing these variables.

Value

list(optree_generator (ordered list of functions), temp_tables (named list of tables))

See Also

rquery_prepare

Examples

if(requireNamespace("rquery", quietly = TRUE)) {
 dTrainC <- data.frame(x = c('a', 'a', 'a', 'b', NA, 'b'),
 z = c(1, 2, NA, 4, 5, 6),
 y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE),
 stringsAsFactors = FALSE)
 dTrainC$id <- seq_len(nrow(dTrainC))
 treatmentsC <- designTreatmentsC(dTrainC, c("x", "z"), 'y', TRUE)
 print(prepare(treatmentsC, dTrainC))
 rqplan <- as_rquery_plan(list(treatmentsC))
 ops <- flatten_fn_list(rquery::local_td(dTrainC), rqplan$optree_generators)
 cat(format(ops))
 if(requireNamespace("rqdatatable", quietly = TRUE)) {
 treated <- rqdatatable::ex_data_table(ops, tables = rqplan$tables)
 print(treated[])
 }
 if(requireNamespace("DBI", quietly = TRUE) &&
 requireNamespace("RSQLite", quietly = TRUE)) {
 db <- DBI::dbConnect(RSQLite::SQLite(), "::memory")
 source_data <- rquery::rq_copy_to(db, "dTrainC", dTrainC,
 overwrite = TRUE, temporary = TRUE)
 rest <- rquery_prepare(db, rqplan, source_data, "dTreatedC",
 extracols = "id")
 resd <- DBI::dbReadTable(db, rest$table_name)
 print(resd)
 }
}
BinomialOutcomeTreatment

Stateful object for designing and applying binomial outcome treatments.

Description

Hold settings and results for binomial classification data preparation.

Usage

BinomialOutcomeTreatment(
 ...,
 var_list,
 outcome_name,
 outcome_target = TRUE,
 cols_to_copy = NULL,
 params = NULL,
 imputation_map = NULL
)

Arguments

... not used, force arguments to be specified by name.
var_list Names of columns to treat (effective variables).
outcome_name Name of column holding outcome variable. dframe[[outcome_name]] must be only finite and non-missing values.
outcome_target Value/level of outcome to be considered "success", and there must be a cut such that dframe[[outcome_name]]==outcome_target at least twice and dframe[[outcome_name]]!=outcome_target at least twice.
cols_to_copy list of extra columns to copy.
params parameters list from classification_parameters
imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details

buildEvalSets

Build set carve-up for out-of-sample evaluation.

Description

Return a carve-up of seq_len(nRows). Very useful for any sort of nested model situation (such as data prep, stacking, or super-learning).

Usage

```r
buildEvalSets(
  nRows,
  ..., 
  dframe = NULL,
  y = NULL,
  splitFunction = NULL,
  nSplits = 3
)
```

Arguments

- **nRows**: scalar, >=1 number of rows to sample from.
- **...**: no additional arguments, declared to forced named binding of later arguments.
- **dframe**: (optional) original data.frame, passed to user splitFunction.
- **y**: (optional) numeric vector, outcome variable (possibly to stratify on), passed to user splitFunction.
- **splitFunction**: (optional) function taking arguments nSplits,nRows,dframe, and y; returning a user desired split.
- **nSplits**: integer, target number of splits.

Details

Also sets attribute "splitmethod" on return value that describes how the split was performed. `attr(returnValue,'splitmethod')` is one of: 'notsplit' (data was not split; corner cases like single row data sets), 'oneway' (leave one out holdout), 'kwaycross' (a simple partition), 'userfunction' (user supplied function was actually used), or a user specified attribute. Any user desired properties (such as stratification on y, or preservation of groups designated by original data row numbers) may not apply unless you see that 'userfunction' has been used.

The intent is the user splitFunction only needs to handle "easy cases" and maintain user invariants. If the user splitFunction returns NULL, throws, or returns an unacceptable carve-up then `vtreat::buildEvalSets` returns its own eval set plan. The signature of splitFunction should be `splitFunction(nRows,nSplits,dframe,y)` where nSplits is the number of pieces we want in the carve-up, nRows is the number of rows to split, dframe is the original data frame (useful for any group control variables), and y is a numeric vector representing outcome (useful for outcome stratification).

Note that `buildEvalSets` may not always return a partition (such as one row dataframes), or if the user split function chooses to make rows eligible for application a different number of times.
buildEvalSets

Value

list of lists where the app portion of the sub-lists is a disjoint carve-up of seq_len(nRows) and each list as a train portion disjoint from app.

See Also

kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples

```r
# use
buildEvalSets(200)

# longer example
# helper fns
# fit models using experiment plan to estimate out of sample behavior
fitModelAndApply <- function(trainData, applicationData) {
  model <- lm(y~x, data=trainData)
  predict(model, newdata=applicationData)
}

simulateOutOfSampleTrainEval <- function(d, fitApplyFn) {
  eSets <- buildEvalSets(nrow(d))
  evals <- lapply(eSets, function(ei) {
    fitApplyFn(d[ei$train,], d[ei$app,])
  })
  pred <- numeric(nrow(d))
  for(eii in seq_len(length(eSets))) {
    pred[eSets[[eii]]$app] <- evals[[eii]]
  }
  pred
}

# run the experiment
set.seed(2352356)
# example data
d <- data.frame(x=rnorm(5), y=rnorm(5),
  outOfSampleEst=NA, inSampleEst=NA)

# fit model on all data
d$inSampleEst <- fitModelAndApply(d, d)
# compute in-sample R^2 (above zero, falsely shows a
# relation until we adjust for degrees of freedom)
1-sum((d$y-d$inSampleEst)^2)/sum((d$y-mean(d$y))^2)

# compute out-sample R^2 (not positive,
# evidence of no relation)
1-sum((d$y-d$outOfSampleEst)^2)/sum((d$y-mean(d$y))^2)
```
center_scale

Center and scale a set of variables.

Description

Center and scale a set of variables. Other columns are passed through.

Usage

```r
center_scale(d, center, scale)
```

Arguments

data.frame to work with

target vector of variables to center

Value

d with centered and scaled columns altered

Examples

d <- data.frame(x = 1:5,
y = c('a', 'a', 'b', 'b', 'b'))
vars_to_transform = "x"
t <- base::scale(as.matrix(d[, vars_to_transform, drop = FALSE]),
 center = TRUE, scale = TRUE)
t
centering <- attr(t, "scaled:center")
scaling <- attr(t, "scaled:scale")
center_scale(d, center = centering, scale = scaling)
```

---

**classification_parameters**  

vtreat classification parameters.

**Description**  

Usage

classification_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

designTreatmentsC Build all treatments for a data frame to predict a categorical outcome.

Description

Function to design variable treatments for binary prediction of a categorical outcome. Data frame is assumed to have only atomic columns except for dates (which are converted to numeric). Note: re-encoding high cardinality categorical variables can introduce undesirable nested model bias, for such data consider using mkCrossFrameCExperiment.

Usage

designTreatmentsC(
  dframe,
  varlist,
  outcomeName,
  outcomeTarget = TRUE,
  ...
  weights = c(),
  minFraction = 0.02,
  smFactor = 0,
  rareCount = 0,
  rareSig = NULL,
  collarProb = 0,
  codeRestriction = NULL,
  customCoders = NULL,
  splitFunction = NULL,
  ncross = 3,
  forceSplit = FALSE,
  catScaling = TRUE,
  verbose = TRUE,
  parallelCluster = NULL,
  use_parallel = TRUE,
  missingness_imputation = NULL,
  imputation_map = NULL
)
Arguments

dframe  Data frame to learn treatments from (training data), must have at least 1 row.
varlist  Names of columns to treat (effective variables).
outcomename  Name of column holding outcome variable. dframe[[outcomename]] must be only finite non-missing values.
outcometarget  Value/level of outcome to be considered "success", and there must be a cut such that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget at least twice.
weights  optional training weights for each row
minFraction  optional minimum frequency a categorical level must have to be converted to an indicator column.
smFactor  optional smoothing factor for impact coding models.
rareCount  optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
rareSig  optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb  what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.treatmentplan.
codeRestriction  what types of variables to produce (character array of level codes, NULL means no restriction).
customCoders  map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).
splitFunction  (optional) see vtreat::buildEvalSets.
ncross  optional scalar >=2 number of cross validation splits use in rescoring complex variables.
forceSplit  logical, if TRUE force cross-validated significance calculations on all variables.
catScaling  optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.
verbose  if TRUE print progress.
parallelCluster  (optional) a cluster object created by package parallel or package snow.
use_parallel  logical, if TRUE use parallel methods (when parallel cluster is set).
missingness_imputation  function of signature f(values: numeric, weights: numeric), simple missing value imputer.
imputation_map  map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.
designTreatmentsN

Details

The main fields are mostly vectors with names (all with the same names in the same order):
- vars : (character array without names) names of variables (in same order as names on the other
diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only
variables that move will be in the treated frame - # - sig : an estimate significance of effect
See the vtreat vignette for a bit more detail and a worked example.
Columns that do not vary are not passed through.

Note: re-encoding high cardinality on training data can introduce nested model bias, consider using
mkCrossFrameCExperiment instead.

Value

treatment plan (for use with prepare)

See Also

prepare.treatmentplan, designTreatmentsN, designTreatmentsZ, mkCrossFrameCExperiment

Examples

dTrainC <- data.frame(x=c('a','a','a','b','b','b'),
z=c(1,2,3,4,5,6),
y=c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE))
dTestC <- data.frame(x=c('a','b','c',NA),
z=c(10,20,30,NA))
treatmentsC <- designTreatmentsC(dTrainC,colnames(dTrainC),'y',TRUE)
dTestCTreated <- prepare(treatmentsC,dTestC,pruneSig=0.99)
designTreatmentsN build all treatments for a data frame to predict a numeric outcome

Description

Function to design variable treatments for binary prediction of a numeric outcome. Data frame
is assumed to have only atomic columns except for dates (which are converted to numeric). Note:
each column is processed independently of all others. Note: re-encoding high cardinality on training
data categorical variables can introduce undesirable nested model bias, for such data consider using
mkCrossFrameCExperiment.

Usage

designTreatmentsN(
  dframe,
  varlist,
  outcomename,
...,
weights = c(),
minFraction = 0.02,
smFactor = 0,
rareCount = 0,
rareSig = NULL,
collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,
splitFunction = NULL,
ncross = 3,
forceSplit = FALSE,
verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL
)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcome Name of column holding outcome variable. dframe[[outcome]] must be
... only finite non-missing values and there must be a cut such that dframe[[outcome]]
is both above the cut at least twice and below the cut at least twice.
weights no additional arguments, declared to forced named binding of later arguments
minFraction optional training weights for each row
smFactor optional minimum frequency a categorical level must have to be converted to an
rareCount indicator column.
rareSig optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared
rare-level. Defaults to 0 or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater.
collarProb Defaults to NULL or off.
what fraction of the data (pseudo-probability) to collar data at if doCollar is set
during prepare.treatmentplan.
codeRestriction what types of variables to produce (character array of level codes, NULL means
no restriction).
customCoders map from code names to custom categorical variable encoding functions (please
md).
splitFunction (optional) see vtreat::buildEvalSets.
ncross  optional scalar >=2 number of cross validation splits use in rescoring complex variables.
forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
verbose if TRUE print progress.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods (when parallel cluster is set).
missingness_imputation function of signature f(values: numeric, weights: numeric), simple missing value imputer.
imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details
The main fields are mostly vectors with names (all with the same names in the same order):
- vars : (character array without names) names of variables (in same order as names on the other diagnostic vectors) - varMoves : logical TRUE if the variable varied during hold out scoring, only variables that move will be in the treated frame - sig : an estimate significance of effect

See the vtreat vignette for a bit more detail and a worked example.
Columns that do not vary are not passed through.

Value
treatment plan (for use with prepare)

See Also
prepare.treatmentplan, designTreatmentsC, designTreatmentsZ, mkCrossFrameNExperiment

Examples
dTrainN <- data.frame(x=c('a','a','a','a','b','b','b'),
  z=c(1,2,3,4,5,6,7),y=c(0,0,0,1,0,1,1))
dTestN <- data.frame(x=c('a','b','c',NA),
  z=c(10,20,30,NA))
treatmentsN = designTreatmentsN(dTrainN,colnames(dTrainN),'y')
dTestNTreated <- prepare(treatmentsN,dTestN,pruneSig=0.99)
**designTreatmentsZ**  
Design variable treatments with no outcome variable.

**Description**

Data frame is assumed to have only atomic columns except for dates (which are converted to numeric). Note: each column is processed independently of all others.

**Usage**

```r
designTreatmentsZ(
 dframe,
 varlist,
 ...,
 minFraction = 0,
 weights = c(),
 rareCount = 0,
 collarProb = 0,
 codeRestriction = NULL,
 customCoders = NULL,
 verbose = TRUE,
 parallelCluster = NULL,
 use_parallel = TRUE,
 missingness_imputation = NULL,
 imputation_map = NULL
)
```

**Arguments**

- `dframe` Data frame to learn treatments from (training data), must have at least 1 row.
- `varlist` Names of columns to treat (effective variables).
- `...` no additional arguments, declared to forced named binding of later arguments
- `minFraction` optional minimum frequency a categorical level must have to be converted to an indicator column.
- `weights` optional training weights for each row
- `rareCount` optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
- `collarProb` what fraction of the data (pseudo-probability) to collar data at if doCollar is set during `prepare.treatmentplan`.
- `codeRestriction` what types of variables to produce (character array of level codes, NULL means no restriction).
- `customCoders` map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).
Design a simple treatment plan to indicate missingness and perform simple imputation.

**Description**

Design a simple treatment plan to indicate missingness and perform simple imputation.

**verbose**

if TRUE print progress.

**parallelCluster**

(optional) a cluster object created by package parallel or package snow.

**use_parallel**

logical, if TRUE use parallel methods (if parallel cluster is set).

**missingness_imputation**

function of signature f(values: numeric, weights: numeric), simple missing value imputer.

**imputation_map**

map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

**Details**

The main fields are mostly vectors with names (all with the same names in the same order):
- **vars** : (character array without names) names of variables (in same order as names on the other diagnostic vectors)
- **varMoves** : logical TRUE if the variable varied during hold out scoring, only variables that move will be in the treated frame

See the vtreat vignette for a bit more detail and a worked example.

Columns that do not vary are not passed through.

**Value**

treatment plan (for use with prepare)

**See Also**

prepare.treatmentplan, designTreatmentsC, designTreatmentsN

**Examples**

```r
dTrainZ <- data.frame(x=c('a','a','a','a','b','b',NA,'e','e'),
 z=c(1,2,3,4,5,6,7,NA,9))
dTestZ <- data.frame(x=c('a','x','c',NA),
 z=c(10,20,30,NA))
treatmentsZ = designTreatmentsZ(dTrainZ, colnames(dTrainZ),
 rareCount=0)
dTrainZTreated <- prepare(treatmentsZ, dTrainZ)
dTestZTreated <- prepare(treatmentsZ, dTestZ)
```

---

**design_missingness_treatment**

*Design a simple treatment plan to indicate missingness and perform simple imputation.*

---

Design a simple treatment plan to indicate missingness and perform simple imputation.
Usage

design_missingness_treatment(
  dframe,
  ..., 
  varlist = colnames(dframe),
  invalid_mark = "_invalid_",
  drop_constant_columns = FALSE,
  missingness_imputation = NULL,
  imputation_map = NULL
)

Arguments

dframe data.frame to drive design.

... not used, forces later arguments to bind by name.

varlist character, names of columns to process.

invalid_mark character, name to use for NA levels and novel levels.

drop_constant_columns logical, if TRUE drop columns that do not vary from the treatment plan.

missingness_imputation function of signature f(values: numeric), simple missing value imputer.

imputation_map map from column names to functions of signature f(values: numeric), simple missing value imputers.

Value

simple treatment plan.

See Also

prepare.simple_plan

Examples

d <- wrapr::build_frame(
  "x1", "x2", "x3" |
  1 , 4 , "A" |
  NA , 5 , "B" |
  3 , 6 , NA )

plan <- design_missingness_treatment(d)
prepare(plan, d)

prepare(plan, data.frame(x1=NA, x2=NA, x3="E"))
fit

Fit first argument to data in second argument.

Description
Update the state of first argument to have learned or fit from second argument.

Usage
fit(vps, dframe, ..., weights = NULL, parallelCluster = NULL)

Arguments
vps vtreat pipe step, object specifying fit
dframe data.frame, data to fit from.
... not used, forces later arguments to bind by name.
weights optional, per-dframe data weights.
parallelCluster optional, parallel cluster to run on.

Details
Note: input vps is not altered, fit is in returned value.

Value
new fit object

fit_prepare
Fit and prepare in a cross-validated manner.

Description
Update the state of first argument to have learned or fit from second argument, and compute a cross validated example of such a transform.

Usage
fit_prepare(vps, dframe, ..., weights = NULL, parallelCluster = NULL)
### fit_transform

**Arguments**

- **vps**: vtreat pipe step, object specifying fit.
- **dframe**: data.frame, data to fit from.
- **weights**: optional, per-dframe data weights.
- **parallelCluster**: optional, parallel cluster to run on.

**Details**

Note: input vps is not altered, fit is in returned list.

**Value**

@return named list containing: treatments and cross_frame

---

**Description**

Update the state of first argument to have learned or fit from second argument, and compute a cross validated example of such a transform.

**Usage**

```r
fit_transform(vps, dframe, ..., weights = NULL, parallelCluster = NULL)
```

**Arguments**

- **vps**: vtreat pipe step, object specifying fit.
- **dframe**: data.frame, data to fit from.
- **weights**: optional, per-dframe data weights.
- **parallelCluster**: optional, parallel cluster to run on.

**Details**

Note: input vps is not altered, fit is in returned list.

**Value**

@return named list containing: treatments and cross_frame
format.vtreatment  
Display treatment plan.

Description
Display treatment plan.

Usage
## S3 method for class 'vtreatment'
format(x, ...)

Arguments
x  treatment plan
...  additional args (to match general signature).

getSplitPlanAppLabels  read application labels off a split plan.

Description
read application labels off a split plan.

Usage
getSocketAddress(nRow, plan)

Arguments
nRow  number of rows in original data.frame.
plan  split plan

Value
vector of labels

See Also
kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples
plan <- kWayStratifiedY(3,2,NULL,NULL)
getSocketAddress(3,plan)
**get_feature_names**

Return feasible feature names.

**Description**

Return previously fit feature names.

**Usage**

```python
get_feature_names(vps)
```

**Arguments**

- `vps` vtreat pipe step, mutable object to read from.

**Value**

- feature names

---

**get_score_frame**

Return score frame from vps.

**Description**

Return previously fit score frame.

**Usage**

```python
get_score_frame(vps)
```

**Arguments**

- `vps` vtreat pipe step, mutable object to read from.

**Value**

- score frame
get_transform  

Return underlying transform from vps.

Description

Return previously fit transform.

Usage

get_transform(vps)

Arguments

vps  vtreat pipe step, mutable object to read from.

Value

transform

kWayCrossValidation  
k-fold cross validation, a splitFunction in the sense of vtreat::buildEvalSets

Description

k-fold cross validation, a splitFunction in the sense of vtreat::buildEvalSets

Usage

kWayCrossValidation(nRows, nSplits, dframe, y)

Arguments

nRows  number of rows to split (>1).

nSplits  number of groups to split into (>1,<=nRows).

dframe  original data frame (ignored).

y  numeric outcome variable (ignored).

Value

split plan

Examples

kWayCrossValidation(7,2,NULL,NULL)
**kWayStratifiedY**

**k-fold cross validation stratified on y, a splitFunction in the sense of vtreat::buildEvalSets**

**Description**

k-fold cross validation stratified on y, a splitFunction in the sense of vtreat::buildEvalSets

**Usage**

```r
kWayStratifiedY(nRows, nSplits, dframe, y)
```

**Arguments**

- `nRows`: number of rows to split (>1)
- `nSplits`: number of groups to split into (<nRows,>1).
- `dframe`: original data frame (ignored).
- `y`: numeric outcome variable try to have equidistributed in each split.

**Value**

split plan

**Examples**

```r
set.seed(23255)
d <- data.frame(y=sin(1:100))
pStrat <- kWayStratifiedY(nrow(d),5,d,d$y)
problemAppPlan(nrow(d),5,pStrat,TRUE)
d$stratGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pStrat)
pSimple <- kWayCrossValidation(nrow(d),5,d,d$y)
problemAppPlan(nrow(d),5,pSimple,TRUE)
d$simpleGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pSimple)
summary(tapply(dy,dsimpleGroup,mean))
summary(tapply(dy,dstratGroup,mean))
```
makeCustomCoderCat

Make a categorical input custom coder.

Description

Make a categorical input custom coder.
Usage

makeCustomCoderCat(
  ..., customCode, coder, codeSeq, v, vcolin, zoY, zC, zTarget, weights = NULL, catScaling = FALSE
)

Arguments

... not used, force arguments to be set by name
customCode code name
coder user supplied variable re-coder (see vignette for type signature)
codeSeq arguments to custom coder
v variable name
vcolin data column, character
zoY outcome column as numeric
zC if classification outcome column as character
zTarget if classification target class
weights per-row weights
catScaling optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.

Value

wrapped custom coder

Description

Make a numeric input custom coder.
Usage
makeCustomCoderNum(
  ..., 
  customCode, 
  coder, 
  codeSeq, 
  v, 
  vcolin, 
  zoY, 
  zC, 
  zTarget, 
  weights = NULL, 
  catScaling = FALSE 
)

Arguments
... not used, force arguments to be set by name
customCode code name
coder user supplied variable re-coder (see vignette for type signature)
codeSeq arguments to custom coder
v variable name
vcolin data column, numeric
zoY outcome column as numeric
zC if classification outcome column as character
zTarget if classification target class
weights per-row weights
catScaling optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.

Value
wrapped custom coder

makekWayCrossValidationGroupedByColumn

Build a k-fold cross validation splitter, respecting (never splitting) groupingColumn.

Description
Build a k-fold cross validation splitter, respecting (never splitting) groupingColumn.

Usage
makekWayCrossValidationGroupedByColumn(groupingColumnName)
Arguments

groupingColumnName
name of column to group by.

Value

splitting function in the sense of vtreat::buildEvalSets.

Examples

d <- data.frame(y=sin(1:100))
d$group <- floor(seq_len(nrow(d))/5)
splitter <- makekWayCrossValidationGroupedByColumn('group')
split <- splitter(nrow(d),5,d,d$y)
d$splitLabel <- vtreat::getSplitPlanAppLabels(nrow(d),split)
rowSums(table(d$group,d$splitLabel)>0)

Description

Builds a designTreatmentsC treatment plan and a data frame prepared from df from that is "cross" in the sense each row is treated using a treatment plan built from a subset of df from disjoint from the given row. The goal is to try to and supply a method of breaking nested model bias other than splitting into calibration, training, test sets.

Usage

mkCrossFrameCExperiment(
dframe,
varlist,
outcomeName,
outcomeTarget,
...,
weights = c(),
minFraction = 0.02,
smFactor = 0,
rareCount = 0,
rareSig = 1,
collarProb = 0,
codeRestriction = NULL,
customCoders = NULL,
scale = FALSE,
doCollar = FALSE,
splitFunction = NULL,
ccross = 3,
forceSplit = FALSE,
catScaling = TRUE,
verbose = TRUE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL
)

Arguments

  dframe        Data frame to learn treatments from (training data), must have at least 1 row.
  varlist       Names of columns to treat (effective variables).
  outcomename   Name of column holding outcome variable. dframe[[outcomename]] must be
                only finite non-missing values.
  outcometarget Value/level of outcome to be considered "success", and there must be a cut such
                that dframe[[outcomename]]==outcometarget at least twice and dframe[[outcomename]]!=outcometarget
                at least twice.
  ...           no additional arguments, declared to forced named binding of later arguments
  weights       optional training weights for each row
  minFraction   optional minimum frequency a categorical level must have to be converted to an
                indicator column.
  smFactor      optional smoothing factor for impact coding models.
  rareCount     optional integer, allow levels with this count or below to be pooled into a shared
                rare-level. Defaults to 0 or off.
  rareSig       optional numeric, suppress levels from pooling at this significance value greater.
                Defaults to NULL or off.
  collarProb    what fraction of the data (pseudo-probability) to collar data at if doCollar is set
                during prepare.treatmentplan.
  codeRestriction what types of variables to produce (character array of level codes, NULL means
                no restriction).
  customCoders  map from code names to custom categorical variable encoding functions (please
  scale         optional if TRUE replace numeric variables with regression ("move to outcome-
                scale").
  doCollar      optional if TRUE collar numeric variables by cutting off after a tail-probability
                specified by collarProb during treatment design.
  splitFunction (optional) see v treat::buildEvalSets.
  ncross        optional scalar>=2 number of cross-validation rounds to design.
  forceSplit    logical, if TRUE force cross-validated significance calculations on all variables.
### mkCrossFrameCExperiment

- **catScaling** optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.
- **verbose** if TRUE print progress.
- **parallelCluster** (optional) a cluster object created by package parallel or package snow.
- **use_parallel** logical, if TRUE use parallel methods.
- **missingness_imputation** function of signature f(values: numeric, weights: numeric), simple missing value imputer.
- **imputation_map** map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

### Value

named list containing: treatments, crossFrame, crossWeights, method, and evalSets

### See Also

designTreatmentsC, designTreatmentsN, prepare.treatmentplan

### Examples

```r
categorical example
set.seed(23525)

we set up our raw training and application data
dTrainC <- data.frame(
 x = c('a', 'a', 'a', 'b', 'b', NA, NA),
 z = c(1, 2, 3, 4, NA, 6, NA),
 y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE))

dTestC <- data.frame(
 x = c('a', 'b', 'c', NA),
 z = c(10, 20, 30, NA))

we perform a vtreat cross frame experiment
and unpack the results into treatmentsC
and dTrainCTreated
unpack[
 treatmentsC = treatments,
 dTrainCTreated = crossFrame
] <- mkCrossFrameCExperiment(
 dframe = dTrainC,
 varlist = setdiff(colnames(dTrainC), 'y'),
 outcomename = 'y',
 outcometarget = TRUE,
 verbose = FALSE)

the treatments include a score frame relating new
derived variables to original columns
treatmentsC$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %>%
```

Function to build multi-outcome vtreat cross frame and treatment plan.

Description

Please see vignette("MultiClassVtreat", package = "vtreat") https://winvector.github.io/vtreat/articles/MultiClassVtreat.html.

Usage

mkCrossFrameMExperiment(
  dframe,
  varlist,
  outcomename,
  ..., weights = c(),
  minFraction = 0.02,
  smFactor = 0,
  rareCount = 0,
  rareSig = 1,
  collarProb = 0,
  codeRestriction = NULL,
  customCoders = NULL,
  scale = FALSE,
  doCollar = FALSE,
  splitFunction = vtreat::kWayCrossValidation,
  ncross = 3,
forceSplit = FALSE,
catScaling = FALSE,
y_dependent_treatments = c("catB"),
verbose = FALSE,
parallelCluster = NULL,
use_parallel = TRUE,
missingness_imputation = NULL,
imputation_map = NULL
)

Arguments

dframe               data to learn from
varlist              character, vector of independent variable column names.
outcomeName          character, name of outcome column.
...                   not used, declared to forced named binding of later arguments
weights              optional training weights for each row
minFraction          optional minimum frequency a categorical level must have to be converted to an indicator column.
smFactor             optional smoothing factor for impact coding models.
rareCount            optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
rareSig              optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb           what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.multinomial_plan.

codeRestriction      what types of variables to produce (character array of level codes, NULL means no restriction).
customCoders         map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).
scale                optional if TRUE replace numeric variables with regression ("move to outcome-scale").
doCollar             optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.
splitFunction        (optional) see vtreat::buildEvalSets .
ncross               optional scalar>=2 number of cross-validation rounds to design.
forceSplit           logical, if TRUE force cross-validated significance calculations on all variables.
catScaling           optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.
y_dependent_treatments character what treatment types to build per-outcome level.
verbose              if TRUE print progress.
mkCrossFrameMExperiment

parallelCluster
(optional) a cluster object created by package parallel or package snow.

use_parallel logical, if TRUE use parallel methods.

missingness_imputation function of signature f(values: numeric, weights: numeric), simple missing value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Value
a names list containing cross_frame, treat_m, score_frame, and fit_obj_id

See Also
prepare.multinomial_plan

Examples

# numeric example
set.seed(23525)

# we set up our raw training and application data
dTrainM <- data.frame(
  x = c('a', 'a', 'a', 'a', 'b', 'b', NA, NA),
  z = c(1, 2, 3, 4, 5, NA, 7, NA),
  y = c(0, 0, 0, 1, 0, 1, 2, 1))
dTestM <- data.frame(
  x = c('a', 'b', 'c', NA),
  z = c(10, 20, 30, NA))

# we perform a vtreat cross frame experiment
# and unpack the results into treatmentsM,
# dTrainMTreated, and score_frame
unpack[
  treatmentsM = treat_m,
  dTrainMTreated = cross_frame,
  score_frame = score_frame
] <- mkCrossFrameMExperiment(
  dframe = dTrainM,
  varlist = setdiff(colnames(dTrainM), 'y'),
  outcome_name = 'y',
  verbose = FALSE)

# the score_frame relates new
# derived variables to original columns
score_frame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'outcome_level')] %>%
  print(.)

# the treated frame is a "cross frame" which
# is a transform of the training data built
# as if the treatment were learned on a different
# disjoint training set to avoid nested model
# bias and over-fit.
dTrainMTreated %.>%
  head(.) %.>%
  print(.)

# Any future application data is prepared with
# the prepare method.
dTestMTreated <- prepare(treatmentsM, dTestM, pruneSig=NULL)

dTestMTreated %.>%
  head(.) %.>%
  print(.)

---

**Description**

Builds a `designTreatmentsN` treatment plan and a data frame prepared from `df` that is "cross" in the sense each row is treated using a treatment plan built from a subset of `df` disjoint from the given row. The goal is to try to and supply a method of breaking nested model bias other than splitting into calibration, training, test sets.

**Usage**

```r
mkCrossFrameNExperiment(
 df,
 varlist,
 outcomeName,
 ...,
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
 rareCount = 0,
 rareSig = 1,
 collarProb = 0,
 codeRestriction = NULL,
 customCoders = NULL,
 scale = FALSE,
 doCollar = FALSE,
 splitFunction = NULL,
 ncross = 3,
 forceSplit = FALSE,
)```

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomeName Name of column holding outcome variable. dframe[[outcomeName]] must be only finite non-missing values and there must be a cut such that dframe[[outcomeName]] is both above the cut at least twice and below the cut at least twice.
...
no additional arguments, declared to forced named binding of later arguments
weights optional training weights for each row
minFraction optional minimum frequency a categorical level must have to be converted to an indicator column.
smFactor optional smoothing factor for impact coding models.
rareCount optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
rareSig optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
collarProb what fraction of the data (pseudo-probability) to collar data at if doCollar is set during prepare.treatmentplan.
codeRestriction what types of variables to produce (character array of level codes, NULL means no restriction).
customCoders map from code names to custom categorical variable encoding functions (please see https://github.com/WinVector/vtreat/blob/main/extras/CustomLevelCoders.md).
scale optional if TRUE replace numeric variables with regression ("move to outcome-scale").
doCollar optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.
splitFunction (optional) see vtreat::buildEvalSets.
ncross optional scalar>=2 number of cross-validation rounds to design.
forceSplit logical, if TRUE force cross-validated significance calculations on all variables.
verbose if TRUE print progress.
parallelCluster (optional) a cluster object created by package parallel or package snow.
use_parallel logical, if TRUE use parallel methods.
missingness_imputation
 function of signature f(values: numeric, weights: numeric), simple missing value imputer.

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Value
 named list containing: treatments, crossFrame, crossWeights, method, and evalSets

See Also
 designTreatmentsC, designTreatmentsN, prepare.treatmentplan

Examples
 # numeric example
 set.seed(23525)

 # we set up our raw training and application data
 dTrainN <- data.frame(
 x = c('a', 'a', 'a', 'b', 'b', NA, NA),
 z = c(1, 2, 3, 4, 5, NA, 7, NA),
 y = c(0, 0, 0, 1, 0, 1, 1, 1))
 dTestN <- data.frame(
 x = c('a', 'b', 'c', NA),
 z = c(10, 20, 30, NA))

 # we perform a vtreat cross frame experiment
 # and unpack the results into treatmentsN
 # and dTrainNTreated
 unpack[treatmentsN = treatments, dTrainNTreated = crossFrame] <- mkCrossFrameNExperiment(dframe = dTrainN, varlist = setdiff(colnames(dTrainN), 'y'), outcomename = 'y', verbose = FALSE)

 # the treatments include a score frame relating new
 # derived variables to original columns
 treatmentsN$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %>% print()

 # the treated frame is a "cross frame" which
 # is a transform of the training data built
 # as if the treatment were learned on a different
 # disjoint training set to avoid nested model
 # bias and over-fit.
 dTrainNTreated %>%
MultinomialOutcomeTreatment

Stateful object for designing and applying multinomial outcome treatments.

Description

Hold settings and results for multinomial classification data preparation.

Usage

MultinomialOutcomeTreatment(
 ...,
 var_list,
 outcome_name,
 cols_to_copy = NULL,
 params = NULL,
 imputation_map = NULL
)

Arguments

... not used, force arguments to be specified by name.

var_list Names of columns to treat (effective variables).

outcome_name Name of column holding outcome variable. dframe[[outcome_name]] must be only finite non-missing values.

cols_to_copy list of extra columns to copy.

params parameters list from multinomial_parameters

imputation_map map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.
multinomial_parameters

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameMExperiment and prepare.multinomial_plan for details.

Note: there currently is no designTreatmentsM, so MultinomialOutcomeTreatment$fit() is implemented in terms of MultinomialOutcomeTreatment$fit_transform()

multinomial_parameters

vtreat multinomial parameters.

Description

A list of settings and values for vtreat multinomial classification fitting. Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameMExperiment and prepare.multinomial_plan for details.

Usage

multinomial_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

novel_value_summary Report new/novel appearances of character values.

Description

Report new/novel appearances of character values.

Usage

novel_value_summary(dframe, trackedValues)

Arguments

dframe Data frame to inspect.
trackedValues optional named list mapping variables to know values, allows warnings upon novel level appearances (see track_values)
Value

frame of novel occurrences

See Also

`prepare.treatmentplan, track_values`

Examples

```r
set.seed(23525)
zip <- c(NA, paste('z', 1:10, sep = "_"))
N <- 10
d <- data.frame(zip = sample(zip, N, replace=TRUE),
                 zip2 = sample(zip, N, replace=TRUE),
                 y = runif(N))
dSample <- d[1:5, , drop = FALSE]
trackedValues <- track_values(dSample, c("zip", "zip2"))
novel_value_summary(d, trackedValues)
```

NumericOutcomeTreatment

Stateful object for designing and applying numeric outcome treatments.

Description

Hold settings and results for regression data preparation.

Usage

```r
NumericOutcomeTreatment(
  ..., 
  var_list, 
  outcome_name, 
  cols_to_copy = NULL, 
  params = NULL, 
  imputation_map = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>...</code></td>
<td>not used, force arguments to be specified by name.</td>
</tr>
<tr>
<td><code>var_list</code></td>
<td>Names of columns to treat (effective variables).</td>
</tr>
<tr>
<td><code>outcome_name</code></td>
<td>Name of column holding outcome variable. <code>dframe[[outcome_name]]</code> must be</td>
</tr>
<tr>
<td></td>
<td>only finite non-missing values.</td>
</tr>
<tr>
<td><code>cols_to_copy</code></td>
<td>list of extra columns to copy.</td>
</tr>
</tbody>
</table>
params: parameters list from `regression_parameters`

`imputation_map`: map from column names to functions of signature `f(values: numeric, weights: numeric)`, simple missing value imputers.

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, `mkCrossFrameNExperiment`, `designTreatmentsN`, and `prepare.treatmentplan` for details.

oneWayHoldout

One way holdout, a splitFunction in the sense of vtreat::buildEvalSets.

Description

Note one way holdout can leak target expected values, so it should not be preferred in nested modeling situations. Also, doesn’t respect `nSplits`.

Usage

```r
oneWayHoldout(nRows, nSplits, dframe, y)
```

Arguments

- `nRows`: number of rows to split (integer >1).
- `nSplits`: number of groups to split into (ignored).
- `dframe`: original data frame (ignored).
- `y`: numeric outcome variable (ignored).

Value

`split plan`

Examples

```r
oneWayHoldout(3, NULL, NULL, NULL)
```
patch_columns_into_frame

Patch columns into data.frame.

Description

Add columns from new_frame into old_frame, replacing any columns with matching names in orig_frame with values from new_frame.

Usage

```r
patch_columns_into_frame(orig_frame, new_frame)
```

Arguments

- `orig_frame`: data.frame to patch into.
- `new_frame`: data.frame to take replacement columns from.

Value

patched data.frame

Examples

```r
orig_frame <- data.frame(x = 1, y = 2)
new_frame <- data.frame(y = 3, z = 4)
patch_columns_into_frame(orig_frame, new_frame)
```

prepare

Apply treatments and restrict to useful variables.

Description

Apply treatments and restrict to useful variables.

Usage

```r
prepare(treatmentplan, dframe, ...)
```

Arguments

- `treatmentplan`: Plan built by designTreatmentsC() or designTreatmentsN()
- `dframe`: Data frame to be treated
- `...`: no additional arguments, declared to forced named binding of later arguments
See Also

prepare.treatmentplan, prepare.simple_plan, prepare.multinomial_plan

prepare.multinomial_plan

Function to apply mkCrossFrameMExperiment treatments.

Description

Please see vignette("MultiClassVtreat", package = "vtreat") https://winvector.github.io/vtreat/articles/MultiClassVtreat.html.

Usage

S3 method for class 'multinomial_plan'
prepare(
 treatmentplan,
 dframe,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>treatmentplan</td>
<td>multinomial_plan from mkCrossFrameMExperiment.</td>
</tr>
<tr>
<td>dframe</td>
<td>new data to process.</td>
</tr>
<tr>
<td>...</td>
<td>not used, declared to forced named binding of later arguments</td>
</tr>
<tr>
<td>pruneSig</td>
<td>suppress variables with significance above this level</td>
</tr>
<tr>
<td>scale</td>
<td>optional if TRUE replace numeric variables with single variable model regres-</td>
</tr>
<tr>
<td></td>
<td>sions ("move to outcome-scale"). These have mean zero and (for variables with</td>
</tr>
<tr>
<td></td>
<td>significant less than 1) slope 1 when regressed (lm for regression problems/glm</td>
</tr>
<tr>
<td></td>
<td>for classification problems) against outcome.</td>
</tr>
<tr>
<td>doCollar</td>
<td>optional if TRUE collar numeric variables by cutting off after a tail-probability</td>
</tr>
<tr>
<td></td>
<td>specified by collarProb during treatment design.</td>
</tr>
<tr>
<td>varRestriction</td>
<td>optional list of treated variable names to restrict to</td>
</tr>
</tbody>
</table>
prepare.simple_plan

S3 method for class 'simple_plan'
prepare(treatmentplan, dframe, ...)

Arguments
- **treatmentplan**: A simple treatment plan.
- **dframe**: data.frame to be treated.
- **...**: not used, present for S3 signature consistency.

See Also
- `design_missingness_treatment`, `prepare`
Examples

```r
d <- wrapr::build_frame(
  "x1", "x2", "x3" |
  1 , 4 , "A" |
  NA , 5 , "B" |
  3 , 6 , NA )

plan <- design_missingness_treatment(d)
prepare(plan, d)
prepare(plan, data.frame(x1=NA, x2=NA, x3="E"))
```

Description

Use a treatment plan to prepare a data frame for analysis. The resulting frame will have new effective variables that are numeric and free of NaN/NA. If the outcome column is present it will be copied over. The intent is that these frames are compatible with more machine learning techniques, and avoid a lot of corner cases (NA, NaN, novel levels, too many levels). Note: each column is processed independently of all others. Also copies over outcome if present. Note: treatmentplan’s are not meant for long-term storage, a warning is issued if the version of vtreat that produced the plan differs from the version running `prepare()`.

Usage

```r
## S3 method for class 'treatmentplan'
prepare(
  treatmentplan,
  dframe,
  ...
)
```
Arguments

treatmentplan: Plan built by designTreatmentsC() or designTreatmentsN()
dframe: Data frame to be treated
...: no additional arguments, declared to forced named binding of later arguments
pruneSig: suppress variables with significance above this level
scale: optional if TRUE replace numeric variables with single variable model regressions ("move to outcome-scale"). These have mean zero and (for variables with significant less than 1) slope 1 when regressed (lm for regression problems/glm for classification problems) against outcome.
doCollar: optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.
varRestriction: optional list of treated variable names to restrict to
codeRestriction: optional list of treated variable codes to restrict to
trackedValues: optional named list mapping variables to know values, allows warnings upon novel level appearances (see track_values)
extracols: extra columns to copy.
parallelCluster: (optional) a cluster object created by package parallel or package snow.
use_parallel: logical, if TRUE use parallel methods.
check_for_duplicate_frames: logical, if TRUE check if we called prepare on same data.frame as design step.

Value
treated data frame (all columns numeric- without NA, NaN)

See Also
mkCrossFrameCExperiment, mkCrossFrameNExperiment, designTreatmentsC, designTreatmentsN, designTreatmentsZ, prepare

Examples

categorical example
set.seed(23525)

we set up our raw training and application data
dTrainC <- data.frame(
 x = c('a', 'a', 'a', 'b', 'b', NA, NA),
 z = c(1, 2, 3, 4, NA, 6, NA),
 y = c(FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE))

dTestC <- data.frame(
 x = c('a', 'b', 'c', NA),
 z = c(10, 20, 30, NA))
we perform a vtreat cross frame experiment
and unpack the results into treatmentsC
and dTrainCTreated
unpack[
 treatmentsC = treatments,
 dTrainCTreated = crossFrame
] <- mkCrossFrameCExperiment(
 dframe = dTrainC,
 varlist = setdiff(colnames(dTrainC), 'y'),
 outcomename = 'y',
 outcometarget = TRUE,
 verbose = FALSE)

the treatments include a score frame relating new
derived variables to original columns
treatmentsC$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')] %.>%
print(.)

the treated frame is a "cross frame" which
is a transform of the training data built
as if the treatment were learned on a different
disjoint training set to avoid nested model
bias and over-fit.
dTrainCTreated %.>%
head(.) %.>%
print(.)

Any future application data is prepared with
the prepare method.
dTestCTreated <- prepare(treatmentsC, dTestC, pruneSig=NULL)
dTestCTreated %.>%
head(.) %.>%
print(.)

pre_comp_xval
Pre-computed cross-plan (so same split happens each time).

Description

Pre-computed cross-plan (so same split happens each time).

Usage

pre_comp_xval(nRows, nSplits, splitplan)
Arguments

- `nRows` number of rows to split (integer >1).
- `nSplits` number of groups to split into (ignored).
- `splitplan` split plan to actually use

Value

- `splitplan`

Examples

```r
p1 <- oneWayHoldout(3,NULL,NULL,NULL)
p2 <- pre_comp_xval(3, 3, p1)
p2(3, 3)
```

Description

Print treatmentplan.

Usage

```r
## S3 method for class 'multinomial_plan'
print(x, ...)
```

Arguments

- `x` treatmentplan
- `...` additional args (to match general signature).
print.simple_plan

Description

Print treatmentplan.

Usage

S3 method for class 'simple_plan'
print(x, ...)

Arguments

 x treatmentplan
 ... additional args (to match general signature).

print.treatmentplan Print treatmentplan.

Description

Print treatmentplan.

Usage

S3 method for class 'treatmentplan'
print(x, ...)

Arguments

 x treatmentplan
 ... additional args (to match general signature).

See Also

designTreatmentsC, designTreatmentsN, designTreatmentsZ, prepare.treatmentplan
print.vtreatment

Print treatmentplan.

Description

Print treatmentplan.

Usage

```r
## S3 method for class 'vtreatment'
print(x, ...)
```

Arguments

- `x` treatmentplan
- `...` additional args (to match general signature).

See Also

designTreatmentsC, designTreatmentsN, designTreatmentsZ, prepare.treatmentplan

problemAppPlan

check if appPlan is a good carve-up of 1:nRows into nSplits groups

Description

check if appPlan is a good carve-up of 1:nRows into nSplits groups

Usage

```r
problemAppPlan(nRows, nSplits, appPlan, strictCheck)
```

Arguments

- `nRows` number of rows to carve-up
- `nSplits` number of sets to carve-up into
- `appPlan` carve-up to critique
- `strictCheck` logical, if true expect application data to be a carve-up and training data to be a maximal partition and to match nSplits.

Value

problem with carve-up (null if good)
regression_parameters

See Also

kWayCrossValidation, kWayStratifiedY, and makekWayCrossValidationGroupedByColumn

Examples

plan <- kWayStratifiedY(3,2,NULL,NULL)
problemAppPlan(3,3,plan,TRUE)

regression_parameters vtreat regression parameters.

Description

A list of settings and values for vtreat regression fitting. Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, mkCrossFrameCExperiment, designTreatmentsC, and mkCrossFrameNExperiment, designTreatmentsN, prepare.treatmentplan for details.

Usage

regression_parameters(user_params = NULL)

Arguments

user_params list of user overrides.

Value

filled out parameter list

rquery_prepare Materialize a treated data frame remotely.

Description

Materialize a treated data frame remotely.
Usage

```r
rquery_prepare(
  db,
  rqplan,
  data_source,
  result_table_name,
  ..., extracols = NULL,
  temporary = FALSE,
  overwrite = TRUE,
  attempt_nan_inf_mapping = FALSE,
  col_sample = NULL,
  return_ops = FALSE
)
```

```r
materialize_treated(
  db,
  rqplan,
  data_source,
  result_table_name,
  ..., extracols = NULL,
  temporary = FALSE,
  overwrite = TRUE,
  attempt_nan_inf_mapping = FALSE,
  col_sample = NULL,
  return_ops = FALSE
)
```

Arguments

- `db`: a db handle.
- `rqplan`: an query plan produced by `as_rquery_plan()`.
- `data_source`: relop, data source (usually a relop_table_source).
- `result_table_name`: character, table name to land result in.
- `...`: force later arguments to bind by name.
- `extracols`: extra columns to copy.
- `temporary`: logical, if TRUE try to make result temporary.
- `overwrite`: logical, if TRUE try to overwrite result.
- `attempt_nan_inf_mapping`: logical, if TRUE attempt to map NaN and Infinity to NA/NULL (goot on PostgreSQL, not on Spark).
- `col_sample`: sample of data to determine column types.
- `return_ops`: logical, if TRUE return operator tree instead of materializing.
solve_piecewise

Value

description of treated table.

Functions

• materialize_treated(): old name for rquery_prepare function

See Also

as_rquery_plan, rqdatatable_prepare

solve_piecewise Solve as piecewise linear problem, numeric target.

Description

Return a vector of length y that is a piecewise function of x. This vector is picked as close to y (by square-distance) as possible for a set of x-only determined cut-points. Cross-validates for a good number of segments.

Usage

solve_piecewise(varName, x, y, w = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>varName</td>
<td>character, name of variable</td>
</tr>
<tr>
<td>x</td>
<td>numeric input (not empty, no NAs).</td>
</tr>
<tr>
<td>y</td>
<td>numeric or castable to such (same length as x no NAs), output to match</td>
</tr>
<tr>
<td>w</td>
<td>numeric positive, same length as x (weights, can be NULL)</td>
</tr>
</tbody>
</table>

Value

segmented y prediction
solve_piecewisec
Solve as piecewise logit problem, categorical target.

Description
Return a vector of length y that is a piecewise function of x. This vector is picked as close to y (by square-distance) as possible for a set of x-only determined cut-points. Cross-validates for a good number of segments.

Usage
solve_piecewisec(varName, x, y, w = NULL)

Arguments
- varName: character, name of variable
- x: numeric input (not empty, no NAs).
- y: numeric or castable to such (same length as x no NAs), output to match
- w: numeric positive, same length as x (weights, can be NULL)

Value
segmented y prediction

spline_variable
Spline variable numeric target.

Description
Return a spline approximation of data.

Usage
spline_variable(varName, x, y, w = NULL)

Arguments
- varName: character, name of variable
- x: numeric input (not empty, no NAs).
- y: numeric or castable to such (same length as x no NAs), output to match
- w: numeric positive, same length as x (weights, can be NULL)

Value
spline y prediction
spline_variablec

Spline variable categorical target.

Description

Return a spline approximation of the change in log odds.

Usage

spline_variablec(varName, x, y, w = NULL)

Arguments

- **varName** character, name of variable
- **x** numeric input (not empty, no NAs).
- **y** numeric or castable to such (same length as x no NAs), output to match
- **w** numeric positive, same length as x (weights, can be NULL)

Value

spline y prediction

square_window

Build a square windows variable, numeric target.

Description

Build a square moving average window (KNN in 1d). This is a high-frequency feature.

Usage

square_window(varName, x, y, w = NULL)

Arguments

- **varName** character, name of variable
- **x** numeric input (not empty, no NAs).
- **y** numeric or castable to such (same length as x no NAs), output to match
- **w** numeric positive, same length as x (weights, can be NULL) IGNORED

Value

segmented y prediction
Examples

```r
d <- data.frame(x = c(NA, 1:6), y = c(0, 0, 0, 1, 1, 0, 0))
square_window("v", d$x, d$y)
```

`square_windowc` *Build a square windows variable, categorical target.*

Description

Build a square moving average window (KNN in 1d). This is a high-frequency feature. Approximation of the change in log odds.

Usage

```r
square_windowc(varName, x, y, w = NULL)
```

Arguments

- `varName` character, name of variable
- `x` numeric input (not empty, no NAs).
- `y` numeric or castable to such (same length as x no NAs), output to match
- `w` numeric positive, same length as x (weights, can be NULL) IGNORED

Value

segmented y prediction

Examples

```r
d <- data.frame(x = c(NA, 1:6), y = c(0, 0, 0, 1, 1, 0, 0))
square_window("v", d$x, d$y)
```
track_values

Track unique character values for variables.

Description

Builds lists of observed unique character values of varlist variables from the data frame.

Usage

```r
track_values(dframe, varlist)
```

Arguments

- `dframe` Data frame to learn treatments from (training data), must have at least 1 row.
- `varlist` Names of columns to treat (effective variables).

Value

named list of values seen.

See Also

`prepare.treatmentplan`, `novel_value_summary`

Examples

```r
set.seed(23525)
zip <- c(NA, paste('z', 1:100, sep = "_"))
N <- 500
d <- data.frame(zip = sample(zip, N, replace=TRUE),
    zip2 = sample(zip, N, replace=TRUE),
    y = runif(N))
dSample <- d[1:300, , drop = FALSE]
tplan <- designTreatmentsN(dSample,
    c("zip", "zip2"), "y",
    verbose = FALSE)
trackedValues <- track_values(dSample, c("zip", "zip2"))
# don't normally want to catch warnings,
# doing it here as this is an example
# and must not have unhandled warnings.
tryCatch(
    prepare(tplan, d, trackedValues = trackedValues),
    warning = function(w) { cat(paste(w, collapse = "\n")) })
```
UnsupervisedTreatment

Stateful object for designing and applying unsupervised treatments.

Description

Hold settings and results for unsupervised data preparation.

Usage

UnsupervisedTreatment(
 ...,
 var_list,
 cols_to_copy = NULL,
 params = NULL,
 imputation_map = NULL
)

Arguments

...
 not used, force arguments to be specified by name.
 var_list
 Names of columns to treat (effective variables).
 cols_to_copy
 list of extra columns to copy.
 params
 parameters list from unsupervised_parameters
 imputation_map
 map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Details

Please see https://github.com/WinVector/vtreat/blob/main/Examples/fit_transform/fit_transform_api.md, designTreatmentsZ and prepare.treatmentplan for details.

Note: for UnsupervisedTreatment fit_transform(d) is implemented as fit(d)$transform(d).

unsupervised_parameters

vtreat unsupervised parameters.

Description

Usage

unsupervised_parameters(user_params = NULL)
value_variables_C

Arguments

user_params list of user overrides.

Value

filled out parameter list

Description

Value variables for prediction a categorical outcome.

Usage

value_variables_C(
 dframe,
 varlist,
 outcomename,
 outcometarget,
 ...
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
 rareCount = 0,
 rareSig = 1,
 collarProb = 0,
 scale = FALSE,
 doCollar = FALSE,
 splitFunction = NULL,
 ncross = 3,
 forceSplit = FALSE,
 catScaling = TRUE,
 verbose = FALSE,
 parallelCluster = NULL,
 use_parallel = TRUE,
 customCoders = list(c.PiecewiseV.num = vtreat::solve_piecewisec, n.PiecewiseV.num = vtreat::solve_piecewise, c.knearest.num = vtreat::square_windowc, n.knearest.num = vtreat::square_window),
 codeRestriction = c("PiecewiseV", "knearest", "clean", "isBAD", "catB", "catP"),
 missingness_imputation = NULL,
 imputation_map = NULL
)
Arguments

- **dframe**: Data frame to learn treatments from (training data), must have at least 1 row.
- **varlist**: Names of columns to treat (effective variables).
- **outcome_name**: Name of column holding outcome variable. `dframe[[outcome_name]]` must be only finite non-missing values.
- **outcome_target**: Value/level of outcome to be considered "success", and there must be a cut such that `dframe[[outcome_name]] == outcome_target` at least twice and `dframe[[outcome_name]] != outcome_target` at least twice.
- **weights**: optional training weights for each row
- **min_fraction**: optional minimum frequency a categorical level must have to be converted to an indicator column.
- **sm_factor**: optional smoothing factor for impact coding models.
- **rare_count**: optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.
- **rare_sig**: optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.
- **collar_prob**: what fraction of the data (pseudo-probability) to collar data at if `doCollar` is set during `prepare.treatmentplan`.
- **scale**: optional if TRUE replace numeric variables with regression ("move to outcome-scale").
- **doCollar**: optional if TRUE collar numeric variables by cutting off after a tail-probability specified by `collarProb` during treatment design.
- **split_function**: (optional) see vreat::buildEvalSets.
- **ncross**: optional scalar>=2 number of cross-validation rounds to design.
- **force_split**: logical, if TRUE force cross-validated significance calculations on all variables.
- **cat_scaling**: optional, if TRUE use glm() linkspace, if FALSE use lm() for scaling.
- **verbose**: if TRUE print progress.
- **parallel_cluster**: (optional) a cluster object created by package parallel or package snow.
- **use_parallel**: logical, if TRUE use parallel methods.
- **custom_coders**: additional coders to use for variable importance estimate.
- **code_restriction**: codes to restrict to for variable importance estimate.
- **missingness_imputation**: function of signature f(values: numeric, weights: numeric), simple missing value imputer.
- **imputation_map**: map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.

Value

- table of variable valuations
value_variables_N

Value variables for prediction a numeric outcome.

Description

Value variables for prediction a numeric outcome.

Usage

value_variables_N(
 dframe,
 varlist,
 outcomename,
 ...,
 weights = c(),
 minFraction = 0.02,
 smFactor = 0,
 rareCount = 0,
 rareSig = 1,
 collarProb = 0,
 scale = FALSE,
 doCollar = FALSE,
 splitFunction = NULL,
 ncross = 3,
 forceSplit = FALSE,
 verbose = FALSE,
 parallelCluster = NULL,
 use_parallel = TRUE,
 customCoders = list(c.PiecewiseV.num = vtreat::solve_piecewisec, n.PiecewiseV.num = vtreat::solve_piecewise, c.knearest.num = vtreat::square_windowc, n.knearest.num = vtreat::square_window),
 codeRestriction = c("PiecewiseV", "knearest", "clean", "isBAD", "catB", "catP"),
 missingness_imputation = NULL,
 imputation_map = NULL
)

Arguments

dframe Data frame to learn treatments from (training data), must have at least 1 row.
varlist Names of columns to treat (effective variables).
outcomename Name of column holding outcome variable. dframe[[outcomename]] must be only finite non-missing values and there must be a cut such that dframe[[outcomename]] is both above the cut at least twice and below the cut at least twice.
... no additional arguments, declared to forced named binding of later arguments
weights optional training weights for each row
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minFraction</td>
<td>optional minimum frequency a categorical level must have to be converted to an indicator column.</td>
</tr>
<tr>
<td>smFactor</td>
<td>optional smoothing factor for impact coding models.</td>
</tr>
<tr>
<td>rareCount</td>
<td>optional integer, allow levels with this count or below to be pooled into a shared rare-level. Defaults to 0 or off.</td>
</tr>
<tr>
<td>rareSig</td>
<td>optional numeric, suppress levels from pooling at this significance value greater. Defaults to NULL or off.</td>
</tr>
<tr>
<td>collarProb</td>
<td>what fraction of the data (pseudo-probability) to collar data at if doCollar is set during <code>prepare.treatmentplan</code>.</td>
</tr>
<tr>
<td>scale</td>
<td>optional if TRUE replace numeric variables with regression ("move to outcome-scale").</td>
</tr>
<tr>
<td>doCollar</td>
<td>optional if TRUE collar numeric variables by cutting off after a tail-probability specified by collarProb during treatment design.</td>
</tr>
<tr>
<td>splitFunction</td>
<td>(optional) see vtreat::buildEvalSets .</td>
</tr>
<tr>
<td>ncross</td>
<td>optional scalar>=2 number of cross-validation rounds to design.</td>
</tr>
<tr>
<td>forceSplit</td>
<td>logical, if TRUE force cross-validated significance calculations on all variables.</td>
</tr>
<tr>
<td>verbose</td>
<td>if TRUE print progress.</td>
</tr>
<tr>
<td>parallelCluster</td>
<td>(optional) a cluster object created by package parallel or package snow.</td>
</tr>
<tr>
<td>use_parallel</td>
<td>logical, if TRUE use parallel methods.</td>
</tr>
<tr>
<td>customCoders</td>
<td>additional coders to use for variable importance estimate.</td>
</tr>
<tr>
<td>codeRestriction</td>
<td>codes to restrict to for variable importance estimate.</td>
</tr>
<tr>
<td>missingness_imputation</td>
<td>function of signature f(values: numeric, weights: numeric), simple missing value imputer.</td>
</tr>
<tr>
<td>imputation_map</td>
<td>map from column names to functions of signature f(values: numeric, weights: numeric), simple missing value imputers.</td>
</tr>
</tbody>
</table>

Value

- table of variable valuations

variable_values

Return variable evaluations.

Description

Return variable evaluations.

Usage

```r
variable_values(sf)
```
vnames

Arguments

- sf

Value

- per-original varaible evaluations

vnames

New treated variable names from a treatmentplan$treatment item.

Description

New treated variable names from a treatmentplan$treatment item.

Usage

vnames(x)

Arguments

- x

See Also

designTreatmentsC designTreatmentsN designTreatmentsZ

vorig

Original variable name from a treatmentplan$treatment item.

Description

Original variable name from a treatmentplan$treatment item.

Usage

vorig(x)

Arguments

- x

See Also

designTreatmentsC designTreatmentsN designTreatmentsZ
Index

apply_transform, 4
as_rquery_plan, 4, 51

BinomialOutcomeTreatment, 6
buildEvalSets, 7

center_scale, 9
classification_parameters, 9

design_missingness_treatment, 16, 42
designTreatmentsC, 6, 9, 10, 14, 16, 27, 29, 35, 44, 47–49, 61
designTreatmentsN, 12, 16, 29, 33, 35, 39, 44, 47–49, 61
designTreatmentsZ, 12, 14, 15, 44, 47, 48, 56, 61

fit, 18
fit_prepare, 18
fit_transform, 19
format.vtreatment, 20

get_feature_names, 21
get_score_frame, 21
get_transform, 22
getSplitPlanAppLabels, 20

kWayCrossValidation, 8, 20, 22, 49
kWayStratifiedY, 8, 20, 23, 49
kWayStratifiedYReplace, 24

makeCustomCoderCat, 24
makeCustomCoderNum, 25
makekWayCrossValidationGroupedByColumn, 8, 20, 26, 49
materialize_treated(rquery_prepare), 49
mkCrossFrameCExperiment, 6, 9, 10, 12, 27, 44, 49
mkCrossFrameMExperiment, 30, 37, 42
mkCrossFrameNExperiment, 12, 14, 33, 39, 44, 49

multinomial_parameters, 37
MultinomialOutcomeTreatment, 36

novel_value_summary, 37, 55
NumericOutcomeTreatment, 38

oneWayHoldout, 39

patch_columns_into_frame, 40
pre_comp_xval, 45
prepare, 40, 42, 44
prepare.multinomial_plan, 31, 32, 37, 41, 41
prepare.simple_plan, 17, 41, 42
prepare.treatmentplan, 6, 9, 11–16, 28, 29, 34, 35, 38, 39, 41, 43, 47–49, 55, 56, 58, 60
print.multinomial_plan, 46
print.simple_plan, 47
print.treatmentplan, 47
print.vtreatment, 48
problemAppPlan, 48

regression_parameters, 49
rqdatatable_prepare, 51
rquery_prepare, 5, 49

solve_piecewise, 51
solve_piecewisec, 52
spline_variable, 52
spline_variablec, 53
square_window, 53
square_windowc, 54

track_values, 37, 38, 42, 44, 55

unsupervised_parameters, 56
UnsupervisedTreatment, 56

value_variables_C, 57
value_variables_N, 59
variable_values, 60
vnames, 61
vorig, 61
vtreat (vtreat-package), 3
vtreat-package, 3