Package ‘waspr’

July 24, 2020

Type Package
Title Wasserstein Barycenters of Subset Posteriors
Version 1.0.0
Description Functions to compute Wasserstein barycenters of subset posteriors using the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) <doi:10.1016/j.jmaa.2017.02.003>. The Wasserstein barycenter is a geometric approach for combining subset posteriors. It allows for parallel and distributed computation of the posterior in case of complex models and/or big datasets, thereby increasing computational speed tremendously.
License GPL-3
Encoding UTF-8
LazyData true
Imports Rcpp (>= 1.0.4.6), methods
LinkingTo BH, Rcpp, RcppArmadillo,
RooxygenNote 7.1.0
Suggests knitr, rmarkdown, testthat, spelling
VignetteBuilder knitr
Language en-US
Biarch true
Depends R (>= 3.5.0)
NeedsCompilation yes
Author Jolien Cremers [aut, cre]
Maintainer Jolien Cremers <joliencremers@gmail.com>
Repository CRAN
Date/Publication 2020-07-24 17:30:02 UTC
R topics documented:

- combine ... 2
- hpd_est ... 3
- mode_est .. 3
- pois_logistic ... 4
- print.wasp ... 4
- summary ... 5
- summary.wasp ... 6
- swap_rcpp ... 6
- wasp ... 7
- waspr ... 8

Index 10

<table>
<thead>
<tr>
<th>combine</th>
<th>Combine output of the swapping algorithm</th>
</tr>
</thead>
</table>

Description

This (non-exported) function combines the output from the swapping algorithm (Puccetti, Rüschendorf and Vanduffel, 2020).

Usage

```r
combine(x)
```

Arguments

- `x`

a three dimensional array (rows = subsets, columns = par, slices = samples) containing posterior samples for all subsets

Value

A wasp object, which can be further analyzed using the associated function `summary.wasp`.

Source

hpd_est

Compute the 95 percent Highest Posterior Density interval

Description

Compute the 95 percent Highest Posterior Density interval

Usage

```r
hpd_est(x)
```

Arguments

- `x`: a numeric vector

Value

A vector containing the lower and upper bound of the 96 Posterior Density interval of a numeric vector as computed by the methods from Venter (1967).

Source

Examples

```r
library(waspr)
hpd_est(pois_logistic[,1,])
```

mode_est

Compute the mode

Description

Compute the mode

Usage

```r
mode_est(x)
```

Arguments

- `x`: a numeric vector

Examples

```r
library(waspr)
mode_est(pois_logistic[,1,])
```
Value

The mode of a numeric vector as computed by the methods from Venter (1967).

Source

Examples

```r
library(waspr)
mode_est(pois_logistic[1,1,])
```

Description

A set of mcmc samples from 8 subposteriors from the analysis of a joint model with a logistic and poisson outcome variable.

Usage

```r
pois_logistic
```

Format

An array with 3 dimensions of which the first represents the subposteriors (size = 8), the second represents the parameters (size = 8) and the third represents the amount of mcmc samples (size = 450).

Description

Print posterior summaries for the Wasserstein barycenter of subset posteriors

Usage

```r
## S3 method for class 'wasp'
print(x, ...)
```
Arguments

x a wasp object obtained from the function wasp().
...

further arguments passed to or from other methods.

Value

A print of posterior summaries for the Wasserstein barycenter of subset posteriors

Examples

library(waspr)
out <- wasp(pois_logistic,
par.names = c("beta_s", "alpha_l", "beta_l",
"baseline_sigma", "baseline_mu",
"correlation", "sigma_s", "sigma_l"))
print(out)
summary.wasp

Posterior summaries for the Wasserstein barycenter of subset posteriors

Description

Outputs and prints posterior summary statistics (mean, mode, sd, 95 Posterior Density interval)

Usage

```r
## S3 method for class 'wasp'
summary(x)
```

Arguments

- `x`: a `wasp` object obtained from the function `wasp()`.

Value

Posterior summary statistics (mean, mode, sd, 95 all the Wasserstein barycenter of subset posteriors of all parameters in the model).

Examples

```r
library(waspr)
out <- wasp(pois_logistic, 
            par.names = c("beta_s", "alpha_l", "beta_l", 
                           "baseline_sigma", "baseline_mu", 
                           "correlation", "sigma_s", "sigma_l"))
summary(out)
```

swap_rcpp

The swapping algorithm for computing Wasserstein barycenters

Description

The swapping algorithm for computing Wasserstein barycenters

Usage

```r
swap_rcpp(samples, acc = 0.001, iter = 10L, out = FALSE)
```
wasp

Arguments

- `samples`: A cube containing samples for all subset posteriors (rows = subsets, columns = par, slices = samples)
- `acc`: accuracy
- `iter`: maximum number of iterations of the algorithm
- `out`: boolean indicating whether output for each iteration should be displayed (default = false)

Value

A three dimensional array (rows = subsets, columns = par, slices = samples) containing output from the swapping algorithm.

wasp
Compute Wasserstein barycenters of subset posteriors

Description

This function computes Wasserstein Barycenters of subset posteriors and gives posterior summaries for the full posterior.

Usage

```r
wasp(mcmc, par.names = NULL, acc = 0.001, iter = 10, out = FALSE)
```

Arguments

- `mcmc`: a three dimensional array (rows = number of subset posteriors, columns = number of parameters of the posterior distribution, slices = samples number of samples for each subset posterior) containing posterior samples for all subsets
- `par.names`: optional character vector with parameter names
- `acc`: accuracy of the swapping algorithm (default = 0.001)
- `iter`: maximum number of iterations of the swapping algorithm (default = 10)
- `out`: boolean indicating whether output for each iteration of the swapping algorithm should be displayed (default = false)

Details

The swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) is used to compute Wasserstein barycenters of subset posteriors.
Value

A wasp object, which can be further analyzed using the associated function `summary.wasp`.

A wasp object contains the following elements (some elements are not returned if not applicable):

- **barycenter**: A matrix of posterior samples (rows) for all parameters (columns) of the full posterior obtained by the swapping algorithm.
- **raw**: An array (dim = c(subsets, parameters, samples)) containing the raw output from the swapping algorithm.
- **call**: The call to the `wasp()` function.
- **subsets**: The amount of subset posteriors in mcmc.
- **parameters**: The amount of parameters in mcmc.
- **samples**: The amount of posterior samples for each subset posterior in mcmc.
- **acc**: Accuracy of the swapping algorithm, default = 0.001.
- **iter**: Maximum amount of iterations for the swapping algorithm, default = 10.

Source

Examples

```r
library(waspr)
out <- wasp(pois_logistic,
    par.names = c("beta_s", "alpha_l", "beta_l",
        "baseline_sigma", "baseline_mu",
        "correlation", "sigma_s", "sigma_l")
)
summary(out)
```

Description

This package contains functions to compute Wasserstein barycenters of subset posteriors using the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020). The Wasserstein barycenter is a geometric approach for combining subset posteriors. It allows for parallel and distributed computation of the posterior in case of complex models and/or big datasets, thereby increasing computational speed tremendously.
Functions

The main function of the package is:

`wasp`, which runs the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020), combines the output from the swapping algorithm and computes the Wasserstein barycenter. It returns an S3 object of type `wasp`.

Source

Index

* datasets
 pois_logistic, 4

combine, 2
hpd_est, 3
mode_est, 3
pois_logistic, 4
print.wasp, 4
summary, 5
summary.wasp, 2, 5, 6, 8
swap_rcpp, 6
wasp, 7, 9
waspr, 8