Description

The package implements Wild Binary Segmentation, a technique for consistent estimation of the number and locations of multiple change-points in data. It also provides a fast implementation of the standard Binary Segmentation algorithm.

Details

The main routines of the package are `wbs`, `sbs` and `changepoints`.

References

Examples

```r
# an example in which standard Binary Segmentation fails to detect change points
x <- rnorm(300) + c(rep(0,130),rep(-1,20),rep(1,20),rep(0,130))

s <- sbs(x)
w <- wbs(x)

s.cpt <- changepoints(s)
s.cpt

w.cpt <- changepoints(w)
w.cpt

# in this example, both algorithms work well
x <- rnorm(300) + c(rep(1,50),rep(0,250))

s <- sbs(x)
w <- wbs(x)

s.cpt <- changepoints(s)
s.cpt

w.cpt <- changepoints(w)
w.cpt
```
bic.penalty

Bayesian Information Criterion penalty term

Description

The function evaluates the penalty term for the standard Bayesian Information Criterion applied to the change-point detection problem. This routine is typically not called directly by the user; its name can be passed as an argument to `changepoints`.

Usage

```r
bic.penalty(n, cpt)
```

Arguments

- `n` the number of observations
- `cpt` a vector with localisations of change-points

Value

the penalty term $k \log(n)$ where k denotes the number of elements in `cpt`

Examples

```r
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="bic.penalty")
w.cpt$ic
```

changepoints

Change-points detected by WBS or BS

Description

The function applies user-specified stopping criteria to extract change-points from object generated by `wbs` or `sbs`. For object of class 'sbs', the function returns change-points whose corresponding test statistic exceeds threshold given in `th`. For object of class 'wbs', the change-points can be also detected using information criteria with penalties specified in `penalty`.
Usage

changepoints(object, ...)

S3 method for class 'sbs'
changepoints(object, th = NULL, th.const = 1.3, Kmax = NULL, ...)

S3 method for class 'wbs'
changepoints(object, th = NULL, th.const = 1.3, Kmax = 50, penalty = c("ssic.penalty", "bic.penalty", "mbic.penalty"), ...)

Arguments

object an object of 'wbs' or 'sbs' class returned by, respectively, wbs and sbs functions
...
... further arguments that may be passed to the penalty functions
th a vector of positive scalars
th.const a vector of positive scalars
Kmax a maximum number of change-points to be detected
penalty a character vector with names of penalty functions used

Details

For the change-point detection based on thresholding (object of class 'sbs' or 'wbs'), the user can either specify the thresholds in th directly, determine the maximum number Kmax of change-points to be detected, or let th depend on th.const.

When Kmax is given, the function automatically sets th to the lowest threshold such that the number of detected change-points is lower or equal than Kmax. Note that for the BS algorithm it might be not possible to find the threshold such that exactly Kmax change-points are found.

When th and Kmax are omitted, the threshold value is set to

\[th = \sigma \times th.const \sqrt{2 \log(n)} \]

where sigma is the Median Absolute Deviation estimate of the noise level and n is the number of elements in x.

For the change-point detection based on information criteria (object of class 'wbs' only), the user can specify both the maximum number of change-points (Kmax) and a type of the penalty used. Parameter penalty should contain a list of characters with names of the functions of at least two arguments (n and cpt). For each penalty given, the following information criterion is minimized over candidate sets of change-points cpt:

\[\frac{n}{2} \log \hat{\sigma}_k^2 + \text{penalty}(n, \text{cpt}) \]

where k denotes the number of elements in cpt, \(\hat{\sigma}_k \) is the corresponding maximum likelihood estimator of the residual variance.
Value

- **sigma**: Median Absolute Deviation estimate of the noise level
- **th**: a vector of thresholds
- **no.cpt.th**: the number of change-points detected for each value of th
- **cpt.th**: a list with the change-points detected for each value of th
- **Kmax**: a maximum number of change-points detected
- **ic.curve**: a list with values of the chosen information criteria
- **no.cpt.ic**: the number of change-points detected for each information criterion considered
- **cpt.ic**: a list with the change-points detected for each information criterion considered

Examples

```r
# we generates gaussian noise + Poisson process signal with 10 jumps on average
set.seed(10)
N <- rpois(1,10)
true.cpt <- sample(1000,N)
m1 <- matrix(rep(1:1000,N),1000,N,byrow=FALSE)
m2 <- matrix(rep(true.cpt,1000),1000,N,byrow=TRUE)
x <- rnorm(1000) + apply(m1>=m2,1,sum)

# we apply the BS and WBS algorithms with default values for their parameters
s <- sbs(x)
w <- wbs(x)

s.cpt <- changepoints(s)
s.cpt

w.cpt <- changepoints(w)
w.cpt

# we can use different stopping criteria, invoking sbs/wbs functions is not necessary
s.cpt <- changepoints(s,th.const=c(1,1.3))
s.cpt
w.cpt <- changepoints(w,th.const=c(1,1.3))
w.cpt
```

fixed.intervals

Fixed intervals

Description

The function generates approximately M intervals with endpoints in 1,2,...,n, without random drawing. This routine can be used inside `wbs` function and is typically not called directly by the user.
Usage

fixed.intervals(n, M)

Arguments

n a number of endpoints to choose from
M a number of intervals to generate

Details

Function finds the minimal \(m \) such that \(M \leq \frac{m(m-1)}{2} \). Then it generates \(m \) approximately equally-spaced positive integers lower than \(n \) and returns all possible intervals consisting of any two of these points.

Value

a 2-column matrix with start (first column) and end (second column) points of an interval in each row

See Also

random.intervals wbs

Examples

fixed.intervals(10,100)

mbic.penalty Modified Bayes Information Criterion penalty term

Description

The function evaluates the penalty term for the Modified Bayes Information Criterion proposed in N. Zhang and D. Siegmund (2007). This routine is typically not called directly by the user; its name can be passed as an argument to changepoints.

Usage

mbic.penalty(n, cpt)

Arguments

n the number of observations
cpt a vector with localisations of change-points
Value

the penalty term

\[\frac{3}{2} k \log(n) + \frac{1}{2} \sum_{i=1}^{k+1} \log \frac{l_i}{n}, \]

where \(k \) denotes the number of elements in \(\text{cpt} \) and \(l_i \) are the lengths of the intervals between changepoints in \(\text{cpt} \).

References

N. Zhang and D. Siegmund (2007), A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data, Biometrics.

Examples

```r
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="mbic.penalty")
w.cpt$cpt.ic
```

<table>
<thead>
<tr>
<th>means.between.cpt</th>
<th>Means between change-points</th>
</tr>
</thead>
</table>

Description

The function finds the average of the input vector \(x \) between change-points given in \(\text{cpt} \).

Usage

`means.between.cpt(x, cpt = NULL, ...)`

Arguments

- \(x \) a vector
- \(\text{cpt} \) a vector of integers with localisations of change-points
- \(... \) further arguments passed to \text{mean} method

Value

a vector of the same length as \(x \), piecewise constant and equal to the mean between change-points given in \(\text{cpt} \).
Examples

```r
x <- rnorm(100)+c(rep(-1,50),rep(1,50))
cpt <- 50
means.between.cpt(x,cpt)
w <- wbs(x)
cpt <- changepoints(w)
means.between.cpt(x,cpt=cpt$cpt.ic$sbic)
```

plot.sbs

Plot for an 'sbs' object

Description

Plots the input vector used to generate 'sbs' object \(x\) with fitted piecewise constant function, equal to the mean between change-points specified in \(cpt\).

Usage

```r
## S3 method for class 'sbs'
plot(x, cpt, ...)
```

Arguments

- **x**: an object of class 'sbs', returned by \texttt{sbs}
- **cpt**: a vector of integers with localisations of change-points
- **...**: other parameters which may be passed to \texttt{plot} and \texttt{changepoints}

Details

When \(cpt\) is omitted, the function automatically finds change-points using \texttt{changepoints} function with a default value of the threshold.

See Also

- \texttt{sbs}
- \texttt{changepoints}
Describes the method for generating a 'wbs' object. The method plots the input vector used to generate the 'wbs' object with a fitted piecewise constant function, equal to the mean between change-points specified in `cpt`.

Usage

```r
## S3 method for class 'wbs'
plot(x, cpt, ...)
```

Arguments

- `x`: an object of class 'wbs', returned by `wbs`
- `cpt`: a vector of integers with localisations of change-points
- `...`: other parameters which may be passed to `plot` and `changepoints`

Details

When `cpt` is omitted, the function automatically finds change-points using `changepoints` function with strengthened Schwarz Information Criterion as a stopping criterion for the WBS algorithm.

See Also

- `wbs`
- `changepoints`
- `ssic.penalty`

Displays the content of an 'sbs' object.

Usage

```r
## S3 method for class 'sbs'
print(x, ...)
```

Arguments

- `x`: an object of class 'sbs'
- `...`: further arguments passed to `print` method

See Also

- `sbs`
Description
Print for a 'wbs' object

Usage
S3 method for class 'wbs'
print(x, ...)

Arguments
x an object of class 'wbs'
... further arguments passed to print method

See Also
wbs

random.intervals Random intervals

Description
The function generates \(M \) intervals, whose endpoints are are drawn uniformly without replacements from \(1, 2, ..., n \). This routine can be used inside \texttt{wbs} function and is typically not called directly by the user.

Usage
random.intervals(n, M)

Arguments
n a number of endpoints to choose from
M a number of intervals to generate

Value
a \(M \) by 2 matrix with start (first column) and end (second column) points of an interval in each row

See Also
fixed.intervals wbs
Examples

random.intervals(10,100)

Change-point detection via standard Binary Segmentation

Description

The function applies the Binary Segmentation algorithm to identify potential locations of the change-points in the mean of the input vector \(x \). The object returned by this routine can be further passed to the `changepoints` function, which finds the final estimate of the change-points based on thresholding.

Usage

```r
sbs(x, ...)
```

Default S3 method:

```r
sbs(x, ...)
```

Arguments

- `x`
 a numeric vector

- `...`
 not in use

Value

an object of class "sbs", which contains the following fields

- `x`
 the vector provided

- `n`
 the length of `x`

- `res`
 a 6-column matrix with results, where 's' and 'e' denote start-end points of the intervals in which change-points candidates 'cpt' have been found; column 'CUSUM' contains corresponding value of CUSUM statistic; 'min.th' is the smallest threshold value for which given change-point candidate would be not added to the set of estimated change-points; the last column is the scale at which the change-point has been found

Examples

```r
x <- rnorm(300) + c(rep(1,50),rep(0,250))
s <- sbs(x)
s.cpt <- changepoints(s)
s.cpt
th <- c(s.cpt$th,0.7*s.cpt$th)
s.cpt <- changepoints(s,th=th)
s.cpt
```
ssic.penalty

Strengthened Schwarz Information Criterion penalty term

Description

The function evaluates the penalty term for the strengthened Schwarz Information Criterion proposed in P. Fryzlewicz (2014). This routine is typically not called directly by the user; its name can be passed as an argument to `changepoints`.

Usage

```r
ssic.penalty(n, cpt, alpha = 1.01, ssic.type = c("log", "power"))
```

Arguments

- `n`: the number of observations
- `cpt`: a vector with localisations of change-points
- `alpha`: a scalar greater than one
- `ssic.type`: a string ("log" or "power")

Value

The penalty term $k \log(n) \alpha$ for `ssic.penalty="log"` or $k n \alpha$ for `ssic.penalty="power"`, where k denotes the number of elements in `cpt`.

References

Examples

```r
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
w.cpt <- changepoints(w,penalty="ssic.penalty")
w.cpt$cpt.ic
```
Description

The function applies the Wild Binary Segmentation algorithm to identify potential locations of the change-points in the mean of the input vector \(x \). The object returned by this routine can be further passed to the `changepoints` function, which finds the final estimate of the change-points based on chosen stopping criteria.

Usage

\[
\text{wbs}(x, ...) \\
Default S3 method: \\
wbs(x, M = 5000, \text{rand.intervals} = \text{TRUE}, \text{integrated} = \text{TRUE}, ...) \\
\]

Arguments

- \(x \) a numeric vector
- \(... \) not in use
- \(M \) a number of intervals used in the WBS algorithm
- \(\text{rand.intervals} \) a logical variable; if \(\text{rand.intervals}=\text{TRUE} \) intervals used in the procedure are random, thus the output of the algorithm may slightly vary from run to run; for \(\text{rand.intervals}=\text{FALSE} \) the intervals used depend on \(M \) and the length of \(x \) only, hence the output is always the same for given input parameters
- \(\text{integrated} \) a logical variable indicating the version of Wild Binary Segmentation algorithm used; when \(\text{integrated}=\text{TRUE} \), augmented version of WBS is launched, which combines WBS and BS into one

Value

an object of class "wbs", which contains the following fields

- \(x \) the input vector provided
- \(n \) the length of \(x \)
- \(M \) the number of intervals used
- \(\text{rand.intervals} \) a logical variable indicating type of intervals
- \(\text{integrated} \) a logical variable indicating type of WBS procedure
- \(\text{res} \) a 6-column matrix with results, where 's' and 'e' denote start- end points of the intervals in which change-points candidates 'cpt' have been found; column 'CUSUM' contains corresponding value of CUSUM statistic; 'min.th' is the smallest threshold value for which given change-point candidate would be not added to the set of estimated change-points; the last column is the scale at which the change-point has been found
Examples

```r
x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
plot(w)
w.cpt <- changepoints(w)
w.cpt
th <- c(w.cpt$th, 0.7*w.cpt$th)
w.cpt <- changepoints(w, th=th)
w.cpt$cpt.th
```
Index

* math
 wbs-package, 2

* models
 wbs-package, 2

* ts
 wbs-package, 2

bic.penalty, 3
changepoints, 2, 3, 3, 6, 8, 9, 11–13
fixed.intervals, 5, 10
mbic.penalty, 6
means.between.cpt, 7
plot.sbs, 8
plot.wbs, 9
print.sbs, 9
print.wbs, 10
random.intervals, 6, 10
sbs, 2–4, 8, 9, 11
ssic.penalty, 9, 12

wbs, 2–6, 9, 10, 13
wbs-package, 2