Package ‘weco’

May 4, 2018

Title Western Electric Company Rules (WECO) for Shewhart Control Chart

Version 1.2

Author Chenguang Wang [aut, cre],
        Lingmin Zeng [aut],
        Zheyu Wang [aut],
        Wei Zhao1 [aut],
        Harry Yang [aut]

Maintainer Chenguang Wang <cwang68@jhmi.edu>

Description Western Electric Company Rules (WECO) have been widely used for
        Shewhart control charts in order to increase the sensitivity of detecting
        assignable causes of process change. This package implements eight commonly
        used WECO rules and allow to apply the combination of these individual rules
        for detecting the deviation from a stable process. The package also provides
        a web-based graphical user interface to help users conduct the analysis.

Depends R (>= 3.4)

License GPL (>= 3)

LazyData true

RoxygenNote 5.0.1

Suggests knitr, DT, shiny, shinythemes

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-05-03 23:03:19 UTC

R topics documented:

- weco-package ......................................................... 2
- plot.weco .......................................................... 3
- run.weco ............................................................ 4
- summary.weco ...................................................... 4
- weco.combine ....................................................... 5
Description

Western Electric Company Rules (WECO) for Shewhart Control Chart

Introduction

WECO rules got the name from the quality control handbook published by the Western Electric Company in 1956. These rules detect the deviation from a stable process by continuously testing data against predefined abnormal patterns and have been accompanied with Shewhart control chart in statistical process control.

There are eight commonly adopted abnormal patterns, namely, eight WECO rules. It is of great interest to combine different WECO rules to increase the power to detect deviation from a stable process. This package implements the combination of multiple WECO rules.

Note that it is necessary to minimize the probability for making false alarms when the process is in control. Running length is the first time at which a process experiences out-of-control signals. The average running length (ARL) is frequently used as a measure in statistical process control for evaluating and comparing the performances of different methods.

Rules

This package considers the following eight WECO rules:

**Rule 1** 1 data point is greater than 3 standard deviation from the center line. (This rule is to identify single data point that is out of the acceptable range.)

**Rule 2** 9 data points in a row on the same side of the center line. (The ideal stable process is assumed to be up and down around the center line. A large block of data points on the same side of the center line indicates a process mean is shifted.)

**Rule 3** 6 data points in a row, all increasing or decreasing. (This rule is also an indicator of possible mean shift.)

**Rule 4** 16 data points in a row, alternating up and down. (When data points are routinely alternating up and down, it shows a high negative correlation between neighboring observations, which is abnormal for a stable process. For an in-control-process, it is not expected to observe correlation between neighboring data points.)

**Rule 5** 2 out of 3 data points on the same side are greater than 2 standard deviations from the center line. (For a normally distributed in-control-process, about 95 deviation. The chance to violate this rule is 0.00306. This rule is used to detect increase in process variation.)
**Rule 6** 4 out of 5 data points on the same side are greater than 1 standard deviation from the center line. (For a normally distributed in-control-process, about 62 deviation. This chance to violate this rule is 0.00553. This rule is also used to detect increase in process variation.)

**Rule 7** 15 data points in a row within 1 standard deviation of the center line. (Too many data points are within 1 standard deviation indicates the decrease in process variation.)

**Rule 8** 8 data points in a row are greater than 1 standard deviation of the center line. (This is another rule to detect increase in process variance.)

**Graphical user interface (GUI)**

This package provides a web-based Shiny GUI. See `run.weco` for details.

**References**


---

### plot.weco

*Plot WECO results*

---

**Description**

Generate plot with the observed data with abnormalities identified

**Usage**

```r
## S3 method for class 'weco'
plot(x, ...)  
```

**Arguments**

- `x` A class `weco` vector returned from `weco.rule` or `weco.combined`  
- `...` The function takes the following arguments  
  - `start` First point for plotting  
  - `end` Last point for plotting  
  - `selected` Index of data points that will be highlighted  
  - `runin` Number of running points that will be colored differently  
  - `ref` Boolean. If true, reference lines will be given at 1, 2 and 3 times standard deviation  
  - `ylim` Range of Y-axis  
  - `cols` Color of each data point

**See Also**

`weco.rule, weco.combined`
Examples

```r
x <- rnorm(1000);
rst.comb <- weco.comb(x, lst.rules=list(list(1), list(2, k=9)));
plot(rst.comb, start=10, end=80, selected = c(60,70));
```

---

### run.weco

**Run Web-Based weco application**

**Description**

Call Shiny to run weco as a web-based application. A web browser will be brought up.

**Usage**

```r
run.weco()
```

**Examples**

```r
## not run:
run.weco()
## end(not run)
```

---

### summary.weco

**Summary of WECO outcome**

**Description**

Print summary of a class weco object

**Usage**

```r
## S3 method for class 'weco'
summary(object, ...)
```

**Arguments**

- `object` A class weco object returned from `weco.rule` or `weco.combine`
- `...` Other arguments for summary
weco.combine

Examples

```r
x <- rnorm(1000);
rst.comb <- weco.combine(x, lst.rules=list(list(1), list(2, k=9)));
summary(rst.comb);
```

---

weco.combine  

*Combination of WECO Rules*

**Description**

Apply a combination of multiple WECO rules to continuously observed data from some process to detect abnormal signals

**Usage**

```
weco.combine(x, sdx = sd(x), mux = mean(x), lst.rules)
```

**Arguments**

- **x**: A vector of continuously observed data from some process
- **sdx**: Standard deviation of the observed data
- **mux**: Mean of the observed data
- **lst.rules**: List of rules with parameters. The first element in the list is the rule number

**Value**

A vector with the same length as x that contains the out of boundary status of each point

**Examples**

```r
x <- rnorm(1000);
rst.comb <- weco.combine(x, lst.rules=list(list(1), list(2, k=9)));
rst.comb2 <- weco.combine(x, lst.rules=list(list(3), list(4, k=16)));
```
weco.info

Describe WECO rules

Description

Get the description of a WECO rule

Usage

weco.info(rule, ..., prt = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule</td>
<td>WECO rule number from 1 to 8</td>
</tr>
<tr>
<td>...</td>
<td>Specifications for individual rule</td>
</tr>
<tr>
<td>k</td>
<td>Number of &quot;abnormal&quot; data points</td>
</tr>
<tr>
<td>l</td>
<td>Number of standard deviations</td>
</tr>
<tr>
<td>n</td>
<td>Number of data points prior to the current point (including the current point) to be evaluated</td>
</tr>
<tr>
<td>prt</td>
<td>Whether to print the detailed information</td>
</tr>
</tbody>
</table>

Value

A list that contains a text description of the rule and a vector of parameters with their default values

Examples

```r
info.1 <- weco.info(rule=1);
print(info.1$description);
info.1 <- weco.info(rule=1, l=2);
print(info.1$description);
```

weco.rl

Get running lengths

Description

Get running lengths

Usage

weco.rl(weco.rst)
weco.rule

Arguments

  weco.rst      A class weco vector returned from weco.rule or weco.combine

Value

A vector of running lengths detected from the observed continuously observed data

See Also

  weco.rule, weco.combine

Examples

  x <- rnorm(1000);
  rstcomb <- weco.combine(x, lst.rules=list(list(1), list(2, k=9)));
  weco.rl(rstcomb);

weco.rule  Individual WECO Rule

Description

  Apply individual WECO rules 1-8 to continuously observed data from some process to detect abnormal signals. See weco-package for the details of the eight WECO rules.

Usage

  weco.rule(rule, x, sdx = sd(x), mux = mean(x), ...)

Arguments

  rule              WECO rule number from 1 to 8
  x                 A vector of continuously observed data from some process
  sdx               Standard deviation of the observed data
  mux               Mean of the observed data
  ...               Specifications for individual rule
  k                 Number of "abnormal" data points
  l                 Number of standard deviations
  n                 Number of data points prior to the current point (including the current point) to be evaluated
Value

A class weco list contains the original data x, the mean, standard deviation, the rules, and a vector with the same length as x that contains the out of boundary status of each point.

See Also

weco-package

Examples

```r
x <- rnorm(1000);

## use empirical mean and standard deviation of x
rst.1 <- weco.rule(1, x, l=3);
rst.2 <- weco.rule(2, x, k=9);
rst.3 <- weco.rule(3, x, k=6);
rst.4 <- weco.rule(4, x, k=16);
rst.5 <- weco.rule(5, x, k=2, n=3, l=2);
rst.6 <- weco.rule(6, x, k=4, n=5, l=1);
rst.7 <- weco.rule(7, x, k=15, l=1);
rst.8 <- weco.rule(8, x, k=8, l=1);

## use given mean and standard deviation
rst.1 <- weco.rule(1, x, l=3, mux=0, sdx=1);
```
Index

plot.weco, 3
run.weco, 3, 4
summary.weco, 4
weco-package, 2
weco.combine, 3, 4, 5, 7
weco.info, 6
weco.r1, 6
weco.rule, 3, 4, 7, 7