Package ‘weightedGCM’

October 12, 2022

Type Package

Title Weighted Generalised Covariance Measure Conditional Independence Test

Version 0.1.0

Description A conditional independence test that can be applied both to univariate and multivariate random variables. The test is based on a weighted form of the sample covariance of the residuals after a nonlinear regression on the conditioning variables. Details are described in Scheidegger, Hoerrmann and Buehlmann (2021) "The Weighted Generalised Covariance Measure" <arXiv:2111.04361>. The test is a generalisation of the Generalised Covariance Measure (GCM) implemented in the R package 'GeneralisedCovarianceMeasure' by Jonas Peters and Rajen D. Shah based on Shah and Peters (2020) "The Hardness of Conditional Independence Testing and the Generalised Covariance Measure" <arXiv:1804.07203>.

License GPL-2

Imports GeneralisedCovarianceMeasure, methods, mgcv, stats, xgboost

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Cyrill Scheidegger [aut, cre], Julia Hoerrmann [ths], Peter Buehlmann [ths], Jonas Peters [ctb, cph] (The code in 'trainFunctions.R' is copied (with small modifications) from the R package 'GeneralisedCovarianceMeasure' by Jonas Peters and Rajen D. Shah), Rajen D. Shah [ctb, cph] (The code in 'trainFunctions.R' is copied (with small modifications) from the R package 'GeneralisedCovarianceMeasure' by Jonas Peters and Rajen D. Shah)

Maintainer Cyrill Scheidegger <cyrill.scheidegger@stat.math.ethz.ch>
Description

The Weighted Generalised Covariance Measure (WGCM) with Estimated Weight Function is a test for conditional independence. It is a generalisation of the Generalised Covariance Measure implemented in the R package GeneralisedCovarianceMeasure.

Usage

wgcm.est(X, Y, Z, beta = 0.3, regr.meth, regr.pars = list(), nsim = 499)

Arguments

X
A (n x d_X) numeric matrix with n observations of d_X variables.

Y
A (n x d_Y) numeric matrix with n observations of d_Y variables.

Z
A (n x d_Z) numeric matrix with n observations of d_Z variables.

beta
A real number between 0 and 1 indicating the fraction of the sample used to estimate the weight function.

regr.meth
One of "gam" and "xgboost" indicating the regression method used to estimate the conditional expectations E[X|Z] and E[Y|Z] and the weight function sign(E[(X-E[X|Z])(Y-E[Y|Z])|Z]).

regr.pars
Optional additional regression parameters according to GeneralisedCovarianceMeasure::comp.resids()

nsim
Number of samples used to calculate the p-value using simulation. Only used if max(d_X, d_Y) > 1.

Value

A p-value for the null hypothesis of conditional independence of X and Y given Z.
References

Please cite the following papers. Cyrill Scheidegger, Julia Hoerrmann, Peter Buehlmann: "The Weighted Generalised Covariance Measure" https://arxiv.org/abs/2111.04361

Examples

```r
set.seed(1)
n <- 200
Z <- rnorm(n)
X <- Z + 0.3*rnorm(n)
Y1 <- Z + 0.3*rnorm(n)
Y2 <- Z + 0.3*rnorm(n) + 0.3*X
Y3 <- Z + 0.3*rnorm(n) + 0.15*X^2
wgcm.est(X, Y1, Z, beta = 0.3, regr.meth = "gam")
wgcm.est(X, Y2, Z, beta = 0.3, regr.meth = "gam")
wgcm.est(X, Y3, Z, beta = 0.3, regr.meth = "gam")
```

wgcm.fix

Weighted Generalised Covariance Measure (WGCM) With Fixed Weight Functions Conditional Independence Test

Description

The Weighted Generalised Covariance Measure (WGCM) with Fixed Weight Functions is a test for conditional independence. It is a generalisation of the Generalised Covariance Measure implemented in the R package GeneralisedCovarianceMeasure.

Usage

```r
wgcm.fix(
  X,
  Y,
  Z,
  regr.meth,
  regr.pars = list(),
  weight.num,
  weight.meth = "sign",
  nsim = 499
)
```

Arguments

- `X` A (n x d_X) numeric matrix with n observations of d_X variables.
- `Y` A (n x d_Y) numeric matrix with n observations of d_Y variables.
wgcm.fix

Z
A \((n \times d_Z)\) numeric matrix with \(n\) observations of \(d_Z\) variables.

regr.meth
One of "gam" and "xgboost" indicating the regression method used to estimate the conditional expectations \(E[X|Z]\) and \(E[Y|Z]\).

regr.pars
Optional additional regression parameters according to GeneralisedCovarianceMeasure::comp.resids().

weight.num
Number \(k_0\) of weight functions per dimension of \(Z\) to be used additionally to the constant weight function \(w(z) = 1\). The total number of weight functions will be \(1 + k_0 \times d_Z\). In case of \(\max(d_X, d_Y) > 1\), the same \(1 + k_0 \times d_Z\) weight functions are used for every combination of the components of \(X\) and \(Y\).

weight.meth
String indicating the method to choose the weight functions. Currently, only "sign" is implemented.

nsim
Number of samples used to calculate the p-value using simulation.

Value
A p-value for the null hypothesis of conditional independence of \(X\) and \(Y\) given \(Z\).

References
Please cite the following papers. Cyrill Scheidegger, Julia Hoerrmann, Peter Bühlmann: "The Weighted Generalised Covariance Measure" https://arxiv.org/abs/2111.04361

Examples

```r
define_seed
set.seed(1)
n <- 200
Z <- rnorm(n)
X <- Z + 0.3*rnorm(n)
Y1 <- Z + 0.3*rnorm(n)
Y2 <- Z + 0.3*rnorm(n) + 0.3*X
Y3 <- Z + 0.3*rnorm(n) + 0.15*X^2
wgcm.fix(X, Y1, Z, regr.meth = "gam", weight.num = 7, weight.meth = "sign")
wgcm.fix(X, Y2, Z, regr.meth = "gam", weight.num = 7, weight.meth = "sign")
wgcm.fix(X, Y3, Z, regr.meth = "gam", weight.num = 7, weight.meth = "sign")
```
Index

wgcm.est, 2
wgcm.fix, 3