Package ‘weyl’

September 30, 2023

Type Package
Title The Weyl Algebra
Version 0.0-4
Depends methods, R (>= 3.5.0)
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
License GPL (>= 2)
LazyData yes
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
Imports mathjaxr, disordR (>= 0.0-8), freealg (>= 1.0-4), spray (>= 1.0-19)
URL https://github.com/RobinHankin/weyl
BugReports https://github.com/RobinHankin/weyl/issues
RdMacros mathjaxr

R topics documented:

weyl-package ... 2
coeffs .. 3
constant ... 4
degree ... 5
derivation ... 6
dim .. 6
dot-class ... 7
drop .. 8
grade .. 9
identity ... 10
Ops ... 11
print.weyl .. 12
rweyl .. 14
Description

Details

The DESCRIPTION file:

Package: weyl
Type: Package
Title: The Weyl Algebra
Version: 0.0-4
Depends: methods, R (>= 3.5.0)
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role=c("aut","cre"), email="hankin.robin@gmail.com", comment=c(ORCID = "0000-0001-5982-0415"))
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
License: GPL (>= 2)
LazyData: yes
Suggests: knitr, rmarkdown, testthat
VignetteBuilder: knitr
Imports: mathjaxr, disordR (>= 0.0-8), freealg (>= 1.0-4), spray (>= 1.0-19)
URL: https://github.com/RobinHankin/weyl
BugReports: https://github.com/RobinHankin/weyl/issues
RdMacros: mathjaxr
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Index of help topics:

Ops Arithmetic Ops Group Methods for the Weyl algebra
coefs Manipulate the coefficients of a weyl object
constant The constant term
degree The degree of a 'weyl' object
derivation Derivations
dim The dimension of a 'weyl' object
dot-class Class "dot"
drop Drop redundant information
grade The grade of a weyl object
Manipulate the coefficients of a weyl object

Description

Manipulate the coefficients of a weyl object. The coefficients are disord objects.

Usage

coeffs(S) <- value

Arguments

S A weyl object

value Numeric

Details

To access coefficients of a weyl object S, use spray::coeffs(S) [package idiom is coeffs(S)]. Similarly to access the index matrix use index(s).

The replacement method is package-specific; use coeffs(S) <- value.

Value

Extraction methods return a disord object (possibly dropped); replacement methods return a weyl object.
Author(s)
Robin K. S. Hankin

Examples
(a <- rweyl(9))
coeffs(a)
coeffs(a)[coeffs(a)<3] <- 100
a

constant The constant term

Description
The constant of a `weyl` object is the coefficient of the term with all zeros.

Usage
constant(x, drop = TRUE)
constant(x) <- value

Arguments
x Object of class `weyl`
drop Boolean with default `TRUE` meaning to return the value of the coefficient, and
FALSE meaning to return the corresponding Weyl object
value Constant value to replace existing one

Value
Returns a numeric or `weyl` object

Note
The `constant.weyl()` function is somewhat awkward because it has to deal with the difficult case where the constant is zero and `drop=FALSE`.

Author(s)
Robin K. S. Hankin

Examples
(a <- rweyl()+700)
constant(a)
constant(a, drop=FALSE)

constant(a) <- 0
constant(a)
constant(a, drop=FALSE)

constant(a+66) == constant(a) + 66
The degree of a monomial weyl object $x^a \partial^b$ is defined as $a + b$. The degree of a general weyl object expressed as a linear combination of monomials is the maximum of the degrees of these monomials. Following Coutinho we have:

\begin{itemize}
 \item \text{deg}(d_1 + d_2) \leq \max(\text{deg}(d_1) + \text{deg}(d_2))
 \item \text{deg}(d_1d_2) = \text{deg}(d_1) + \text{deg}(d_2)
 \item \text{deg}(d_1d_2 - d_2d_1) \leq \text{deg}(d_1) + \text{deg}(d_2) - 2
\end{itemize}

Usage

\text{deg}(S)

Arguments

\begin{itemize}
 \item \texttt{S} Object of class \texttt{weyl}
\end{itemize}

Value

Nonnegative integer (or $-\infty$ for the zero Weyl object)

Note

The degree of the zero object is conventionally $-\infty$.

Author(s)

Robin K. S. Hankin

Examples

\begin{verbatim}
(a <- rweyl())
deg(a)
d1 <- rweyl(n=2)
d2 <- rweyl(n=2)
deg(d1+d2) <= deg(d1) + deg(d2)
deg(d1*d2) == deg(d1) + deg(d2)
deg(d1*d2-d2*d1) <= deg(d1) + deg(d2) - 2
\end{verbatim}
derivation

Derivations

Description

A derivation D of an algebra A is a linear operator that satisfies $D(d_1 d_2) = d_1 D(d_2) + D(d_1) d_2$, for every $d_1, d_2 \in A$. If a derivation is of the form $D(d) = [d, f] = df - fd$ for some fixed $f \in A$, we say that D is an inner derivation.

Function `as.der()` returns a derivation with `as.der(f)(g)=fg-gf`.

Usage

```r
as.der(S)
```

Arguments

- `S` Weyl object

Value

Returns a function, a derivation

Author(s)

Robin K. S. Hankin

Examples

```r
(o <- rweyl(n=2,d=2))
(f <- as.der(o))
d1 <-rweyl(n=1,d=2)
d2 <-rweyl(n=2,d=2)

f(d1*d2) == d1*f(d2) + f(d1)*d2 # should be TRUE
```

dim

The dimension of a weyl object

Description

The dimension of a Weyl algebra is the number of variables needed; it is half the `spray::arity()`.

The dimension of a Weyl algebra generated by $\{x_1, x_2, \ldots, x_n, \partial x_1, \partial x_2, \ldots, \partial x_n\}$ is n (not $2n$).

Usage

```r
## S3 method for class 'weyl'
dim(x)
```
dot-class

Arguments

x Object of class weyl

Value

Integer

Note

Empty spray objects give zero-dimensional weyl objects.

Author(s)

Robin K. S. Hankin

Examples

(a <- rweyl())
dim(a)

Description

The dot object is defined so that idiom like .[x,y] returns the commutator, that is, xy—yx.

The dot object is generated by running script inst/dot.Rmd, which includes some further discussion and technical documentation, and creates file dot.rda which resides in the data/ directory.

Arguments

x Object of any class
i,j elements to commute
...

Further arguments to dot_error(), currently ignored

Value

Always returns an object of the same class as xy.

Author(s)

Robin K. S. Hankin

Examples

x <- rweyl(n=1,d=2)
y <- rweyl(n=1,d=2)
z <- rweyl(n=1,d=2)

.[x,.[y,z]] + .[y,.[z,x]] + .[z,.[x,y]] # Jacobi identity
drop

Description

Coerce constant weyl objects to numeric

Usage

drop(x)

Arguments

x Weyl object

Details

If its argument is a constant weyl object, coerce to numeric.

Value

Returns either a length-one numeric vector or its argument, a weyl object

Note

Many functions in the package take drop as an argument which, if TRUE, means that the function returns a dropped value.

Author(s)

Robin K. S. Hankin

Examples

a <- rweyl() + 67
drop(a)

drop(idweyl(9))
drop(constant(a,drop=FALSE))
The grade of a homogeneous term of a Weyl algebra is the sum of the powers. Thus the grade of \(4xy^2\partial_x^3\partial_y^4\) is \(1 + 2 + 3 + 4 = 10\).

The functionality documented here closely follows the equivalent in the \texttt{clifford} package. Coutinho calls this the symbol map.

Usage

```r
grade(C, n, drop=TRUE)
grade(C,n) <- value
grades(x)
```

Arguments

- \(C\), \(x\): Weyl object
- \(n\): Integer vector specifying grades to extract
- \(value\): Replacement value, a numeric vector
- \(drop\): Boolean, with default \texttt{TRUE} meaning to coerce a constant operator to numeric, and \texttt{FALSE} meaning not to

Details

Function \texttt{grades()} returns an (unordered) vector specifying the grades of the constituent terms. Function \texttt{grades<-()} allows idiom such as \texttt{grade(x, 1:2) <- 7} to operate as expected [here to set all coefficients of terms with grades 1 or 2 to value 7].

Function \texttt{grade(C, n)} returns a Weyl object with just the elements of grade \(g\), where \(g \in n\).

The zero grade term, \texttt{grade(C, 0)}), is given more naturally by \texttt{constant(C)}.

Value

Integer vector or weyl object

Author(s)

Robin K. S. Hankin

Examples

```r
a <- rweyl(30)

grades(a)
grade(a,1:4)
grade(a,5:9) <- -99
a
```
The identity operator

Description

The identity operator maps any function to itself.

Usage

idweyl(d)
S3 method for class 'weyl'
as.id(S)
is.id(S)

Arguments

d Integer specifying dimensionality of the weyl object (twice the spray arity)
S A weyl object

Value

A weyl object corresponding to the identity operator

Note

The identity function cannot be called “id()” because then R would not know whether to create a spray or a weyl object.

Examples

idweyl(7)

a <- rweyl(d=5)
a
is.id(a)
is.id(1+a-a)
as.id(a)

a == a*1
a == a*as.id(a)
Description

Allows arithmetic operators to be used for spray calculations, such as addition, multiplication, division, integer powers, etc.

Idiom such as \(x^2 + yz/5 \) should work as expected. Operations are the same as those of the spray package except for \(*\), which is interpreted as functional composition. A number of helper functions are documented here (which are not designed for the end-user).

Usage

```r
## S3 method for class 'weyl'
Ops(e1, e2 = NULL)
weyl_prod_helper1(a, b, c, d)
weyl_prod_helper2(a, b, c, d)
weyl_prod_helper3(a, b, c, d)
weyl_prod_univariate_onerow(S1, S2, func)
weyl_prod_univariate_nrow(S1, S2)
weyl_prod_multivariate_onerow_singlecolumn(S1, S2, column)
weyl_prod_multivariate_onerow_allcolumns(S1, S2)
weyl_prod_multivariate_nrow_allcolumns(S1, S2)
weyl_power_scalar(S, n)
```

Arguments

- `S, S1, S2, e1, e2`: Objects of class `weyl`, elements of a Weyl algebra
- `a, b, c, d`: Integers, see details
- `column`: Column to be multiplied
- `n`: Integer power (non-negative)
- `func`: Function used for products

Details

All arithmetic is as for spray objects, apart from \(*\) and \(^\). Here, \(*\) is interpreted as operator concatenation: Thus, if \(w_1 \) and \(w_2 \) are Weyl objects, then \(w_1 w_2 \) is defined as the operator that takes \(f \) to \(w_1(w_2 f) \).

Functions such as `weyl_prod_multivariate_nrow_allcolumns()` are low-level helper functions with self-explanatory names. In this context, “univariate” means the first Weyl algebra, generated by \(\{x, \partial\} \), subject to \(x\partial - \partial x = 1 \); and “multivariate” means the algebra generated by \(\{x_1, x_2, \ldots, x_n, \partial_{x_1}, \partial_{x_2}, \ldots, \partial_{x_n}\} \).

The product is somewhat user-customisable via option `prodfunc`, which affects function `weyl_prod_univariate_onerow()`. Currently the package offers three examples: `weyl_prod_helper1()`, `weyl_prod_helper2()`, and `weyl_prod_helper3()`. These are algebraically identical but occupy different positions on the efficiency-readability scale. The option defaults to `weyl_prod_helper3()`, which is the fastest but most opaque. The vignette provides further details, motivation, and examples.
Value

Generally, return a weyl object

Note

Function `weyl_prod_univariate_nrow()` is present for completeness, it is not used in the package

Author(s)

Robin K. S. Hankin

Examples

```r
x <- rweyl(n=1,d=2)
y <- rweyl(n=1,d=2)
z <- rweyl(n=2,d=2)

x*(y+z) == x*y + x*z
is.zero(x*(y*z) - (x*y)*z)
```

print.weyl

Print methods for weyl objects

Description

Printing methods for weyl objects follow those for the spray package, with some additional functionality.

Usage

```r
## S3 method for class 'weyl'
print(x, ...)
```

Arguments

- `x` A weyl object
- `...` Further arguments, currently ignored

Details

Option `polyform` determines whether the object is to be printed in matrix form or polynomial form: as in the spray package, this option governs dispatch to either `print_spray_polyform()` or `print_spray_matrixform()`.

```r
> a <- rweyl()
> a  # default print method
A member of the Weyl algebra:
  x  y  z  dx  dy  dz  val
1 2 2 2 1 0 = 3
2 2 0 0 1 1 = 2
```
Irrespective of the value of polyform, option weylvars controls the variable names. If NULL (the default), then sensible values are used: either \([xyz]\) if the dimension is three or less, or integers. But option weylvars is user-settable:

\[
\begin{align*}
\text{options(weylvars=letters[18:20])} \\
\text{a}
\end{align*}
\]

A member of the Weyl algebra:
\[
\begin{align*}
r & s & t & dr & ds & dt & \text{val} \\
1 & 2 & 2 & 1 & 0 & = & 3 \\
2 & 2 & 0 & 0 & 1 & 1 & = & 2 \\
0 & 0 & 0 & 1 & 1 & 2 & = & 1 \\
\end{align*}
\]

\[
\begin{align*}
\text{options(polyform=TRUE)} \\
\text{a}
\end{align*}
\]

A member of the Weyl algebra:
\[
\begin{align*}
+3*r*s^2*t^2*dr^2*ds +2*r^2*s^2*ds*dt +dr*ds*dt^2
\end{align*}
\]

\[
\begin{align*}
\text{options(polyform=FALSE)} & ; \text{options(weylvars=NULL)}
\end{align*}
\]

If the user sets weylvars, the print method tries to do the Right Thing (tm). If set to c("a","b","c"), for example, the generators are named c(" a"," b"," c"," da"," db"," dc") [note the spaces]. If the algebra is univariate, the names will be something like \(d\) and \(x\). No checking is performed and if the length is not equal to the dimension, undesirable behaviour may occur. For the love of God, do not use a variable named \(d\). Internally, weylvars works by changing the sprayvars option in the spray package.

Note that, as for spray objects, this option has no algebraic significance: it only affects the print method.

Value

Returns a weyl object.

Author(s)

Robin K. S. Hankin

Examples

```r
a <- rweyl()
pdf(a)
options(polyform=TRUE)
pdf(a)
```
rweyl *Random weyl objects*

Description

Creates random weyl objects: quick-and-dirty examples of Weyl algebra elements

Usage

```r
rweyl(nterms = 3, vals = seq_len(nterms), dim = 3, powers = 0:2)
```

Arguments

- `nterms` Number of terms in output
- `vals` Values of coefficients
- `dim` Dimension of weyl object
- `powers` Set from which to sample the entries of the index matrix

Value

Returns a weyl object

Author(s)

Robin K. S. Hankin

Examples

```r
rweyl()
rweyl(d=7)
```

spray *Create spray objects*

Description

Function `spray()` creates a sparse array; function `weyl()` coerces a spray object to a Weyl object.

Usage

```r
spray(M,x,addrepeats=FALSE)
```

Arguments

- `M` An integer-valued matrix, the index of the weyl object
- `x` Numeric vector of coefficients
- `addrepeats` Boolean, specifying whether repeated rows are to be added
Details

The function is discussed and motivated in the `spray` package.

Value

Return a weyl or a Boolean

Author(s)

Robin K. S. Hankin

Examples

```r
(W <- spray(matrix(1:36,6,6),1:6))
weyl(W)

as.weyl(15,d=3)
```

Description

The algebra and weyl objects

Usage

```r
weyl(M)
is.weyl(M)
as.weyl(val,d)
is.ok.weyl(M)
```

Arguments

- `M` A weyl or spray object
- `val,d` Value and dimension for weyl object

Details

Function `weyl()` is the formal creator method; `is.weyl()` tests for weyl objects and `is.ok.weyl()` checks for well-formed sprays. Function `as.weyl()` tries (but not very hard) to infer what the user intended and return the right thing.

To create a spray object to pass to `weyl()`, use function `spray()`, which is a synonym for `spray::spray()`.

Value

Return a weyl or a Boolean

Author(s)

Robin K. S. Hankin
Examples

(W <- spray(matrix(1:36,6,6),1:6))
weyl(W)

as.weyl(15,d=3)

wiel-class Class “weyl”

Description

The formal S4 class for weyls.

Objects from the Class

Objects can be created by calls of the form new("weyl", ...) but this is not encouraged. Use functions weyl() or as.weyl() instead.

Author(s)

Robin K. S. Hankin

x_and_d Generating elements for the first Weyl algebra

Description

Variables x and d correspond to operator x and ∂x; they are provided for convenience. These elements generate the one-dimensional Weyl algebra.

Note that a similar system for multivariate Weyl algebras is not desirable. We might want to consider the Weyl algebra generated by \{x, y, z, ∂x, ∂y, ∂z\} and correspondingly define R variables x, y, z, dx, dy, dz. But then variable x is ambiguous: is it a member of the first Weyl algebra or the third?

Usage

data(x_and_d)

Author(s)

Robin K. S. Hankin

Examples

d
x

.[d,x] # dx-xd==1
d*3 * x^4
(1-d*x*d)*(x^2-d^3)
zero

The zero operator

Description

The zero operator maps any function to the zero function (which maps anything to zero). To test for being zero, use `spray::is.zero()`; package idiom would be `is.zero()`.

Usage

```
zero(d)
```

Arguments

- `d`
 Integer specifying dimensionality of the weyl object (twice the spray arity)

Value

A weyl object corresponding to the zero operator (or a Boolean for `is.zero()`)

Examples

```
(a <- rweyl(d=5))
is.zero(a)
is.zero(a-a)
is.zero(a*0)
a == a + zero(dim(a))
```
Index

* **classes**
 - weyl-class, 16
* **datasets**
 - x_and_d, 16
* **package**
 - weyl-package, 2
 - (.dot-class), 7
 - [,dot,ANY,ANY-method (dot-class), 7
 - [,dot,ANY,missing-method (dot-class), 7
 - [,dot,matrix,matrix-method (dot-class), 7
 - [,dot,missing,ANY-method (dot-class), 7
 - [,dot,missing,missing-method (dot-class), 7
 - [,dot-method (dot-class), 7
 - as.der (derivation), 6
 - as.id (identity), 10
 - as.identity (identity), 10
 - as.one.weyl (identity), 10
 - as.weyl (weyl), 15
 - coeffs (coeffs), 3
 - coeffs<-,weyl-method (coeffs), 3
 - coefs (coefs), 3
 - coefs<-,weyl-method (coefs), 3
 - coefs<-.weyl (coefs), 3
 - deg (degree), 5
 - degree, 5
 - derivation, 6
 - derivations (derivation), 6
 - dim, 6
 - dimension (dim), 6
 - dot (dot-class), 7
dot-class, 7
 - dot_error (dot-class), 7
 - drop, 8
 - drop,weyl-method (drop), 8
 - empty (zero), 17
 - extract (dot-class), 7
 - grade, 9
 - grade<- (grade), 9
 - grades (grade), 9
 - id (identity), 10
 - idweyl (identity), 10
 - index (coeffs), 3
 - is.empty (zero), 17
 - is.id (identity), 10
 - is.identity (identity), 10
 - is.ok.weyl (weyl), 15
 - is.weyl (weyl), 15
 - is.zero (zero), 17
 - jacobi (dot-class), 7
 - Ops, 11
 - print (print.weyl), 12
 - print.weyl, 12
 - prodfunc (Ops), 11
 - rweyl, 14
 - spray, 14
 - symbol_map (grade), 9
 - value (coeffs), 3
 - value,weyl-method (coeffs), 3
 - value,weyl (coeffs), 3
 - value<-.weyl (coeffs), 3
 - values (coeffs), 3
 - weyl, 15
 - weyl-class, 16
 - weyl-package, 2
 - weyl_power_scalar (Ops), 11
INDEX

weyl_prod (Ops), 11
weyl_prod_helper1 (Ops), 11
weyl_prod_helper2 (Ops), 11
weyl_prod_helper3 (Ops), 11
weyl_prod_multivariate_nrow_allcolumns (Ops), 11
weyl_prod_multivariate_onerow_allcolumns (Ops), 11
weyl_prod_multivariate_onerow_singlecolumn (Ops), 11
weyl_prod_univariate_nrow (Ops), 11
weyl_prod_univariate_onerow (Ops), 11
weylvares (print.weyl), 12

x (x_and_d), 16
x_and_d, 16

zero, 17