Package ‘whitechapelR’

October 2, 2018

Title Advanced Policing Techniques for the Board Game ‘Letters from Whitechapel’

Version 0.3.0

Description Provides a set of functions to make tracking the hidden movements of the ‘Jack’ player easier. By tracking every possible path Jack might have traveled from the point of the initial murder including special movement such as through alleyways and via carriages, the police can more accurately narrow the field of their search. Additionally, by tracking all possible hideouts from round to round, rounds 3 and 4 should have a vastly reduced field of search.

Depends R (>= 3.3)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports plyr, igraph
Suggests covr, testthat
RoxygenNote 6.0.1
NeedsCompilation no
Author Mark Ewing [aut, cre]
Maintainer Mark Ewing <b.mark@ewingsonline.com>
Repository CRAN
Date/Publication 2018-10-02 17:40:03 UTC

R topics documented:

alley ... 2
end_round .. 2
inspect_space ... 3
node_locations .. 4
roads ... 4
show_board .. 5
start_round ... 6
end_round

```
take_a_carriage ........................................... 6
take_a_step ............................................... 7
trim_possibilities ......................................... 7
```

Index 9

| alley | Undirected edge pairing of alley connecting nodes |

Description

Data used to establish possible connections used by Jack between nodes via alleyways.

Usage

```
alley
```

Format

A data frame with 452 rows and 2 variables

- x The smaller integer of the pair of vertices
- y The larger integer of the pair of vertices

end_round

```
Manage list of possible hideouts
```

Description

Create or update a list of possible hideouts based on final positions from the list of possible paths traveled.

Usage

```
end_round(paths, hideouts = NULL)
```

Arguments

- paths list of all possible paths already traveled
- hideouts optional vector of possible hideouts from previous rounds. Not used in round 1, only rounds 2 and 3

Value

list of all possible hideouts
Example

```r
possibilities = start_round(6T)
possibilities = take_a_step(possibilities, roads)
possibilities = take_a_step(possibilities, roads, blocked=list(c(63L8R), c(63L6U)))
possibilities = inspect_space(possibilities, space = c(29, 30), clue = FALSE)
possibilities = inspect_space(possibilities, space = 49, clue = TRUE)
hideouts = end_round(possibilities, hideouts=NULL)
possibilities = start_round(67)
possibilities = take_a_step(possibilities, roads)
hideouts = end_round(possibilities, hideouts=hideouts)
```

inspect_space

Update paths based on inspections

Description

Updated the list of possible paths based on the results of police investigation

Usage

`inspect_space(paths, space, clue)`

Arguments

- `paths` list of all possible paths already traveled
- `space` vector of integers of the spaces inspected
- `clue` single logical value indicating if evidence of Jack was found

Value

list of all possible paths traveled by Jack

Examples

```r
possibilities = start_round(64)
possibilities = take_a_step(possibilities, roads)
possibilities = take_a_step(possibilities, roads, blocked=list(c(63L82), c(63L65)))
possibilities = inspect_space(possibilities, space = c(29, 30), clue = FALSE)
possibilities = inspect_space(possibilities, space = 49, clue = TRUE)
```
node_locations

x, y coordinates of node points from the game board

Description

Data used to place nodes in graphical output according to their relative positions on the game board

Usage

node_locations

Format

A data frame with 195 rows and 4 variables

id An artifact of the computer vision process used to obtain coordinates
x The number of pixels from the left edge of the board to the center of the node
y The number of pixels from the top edge of the board to the center of the node
name The integer assigned to the node on the game board

roads

Undirected edge pairing of roads connecting nodes

Description

Data used to establish possible connections used by Jack between nodes

Usage

roads

Format

A data frame with 767 rows and 2 variables

x The smaller integer of the pair of vertices
y The larger integer of the pair of vertices
show_board

Display game board representation

Description

Show a graph representation of the game board with nodes placed in the appropriate relative spot, colored by the number of paths which include a particular node. Possible hideouts are marked with blue squares.

Usage

```r
show_board(paths = NULL, hideouts = NULL, roads, alley, node_locations)
```

Arguments

- **paths**: optional list of all possible paths already traveled
- **hideouts**: optional vector of possible hideouts from previous rounds.
- **roads**: data.frame of non-directional edge pairs for the road graph
- **alley**: data.frame of non-directional edge pairs for the alley graph
- **node_locations**: data.frame of where nodes should be placed in the graph

Details

roads, alley and node_locations are all bundled with the package (e.g. data(roads)). Solid lines in the graph represent road connections between nodes. Dashed lines represent alley way connections.

Value

plotted igraph object

Examples

```r
possibilities = start_round(64)
possibilities = take_a_step(possibilities, roads)
possibilities = take_a_step(possibilities, roads, blocked=list(c(63,82), c(63,65)))
possibilities = take_a_step(possibilities, alley)
show_board(paths=possibilities, hideouts=NULL, roads, alley, node_locations)
```
start_round

Start a new round

Description

Generate the initial list for a new round

Usage

```python
start_round(initial_murder)
```

Arguments

- `initial_murder` integer Space of the initial murder(s)

Value

list with the initial murder location(s) as the starting point(s)

Examples

```python
possibilities = start_round(64)
possibilities = start_round(128)
```

take_a_carriage

Track carriage movement

Description

Track two steps of unknown movement by Jack, on roads

Usage

```python
take_a_carriage(paths)
```

Arguments

- `paths` list of all possible paths already traveled

Value

list of all possible paths traveled by Jack

Examples

```python
possibilities = start_round(64)
possibilities = take_a_carriage(possibilities)
```
take_a_step

Track one movement

Description

Track one step of unknown movement by Jack, either on roads or through alleyways.

Usage

```r
take_a_step(paths, roads, blocked = NULL)
```

Arguments

- `paths`: list of all possible paths already traveled
- `roads`: data.frame of non-directional edge pairs for either the road graph or the alley graph
- `blocked`: list of node pairs which cannot be traversed because a police officer blocks it (should not be used for special movement)

Details

The non-directional edge pairs are available via `data(roads)` or `data(alley)`. This function does not account for the rule that Jack cannot travel through a road occupied by a police officer.

Value

list of all possible paths traveled by Jack

Examples

```r
possibilities = start_round(64)
possibilities = take_a_step(possibilities, roads)
possibilities = take_a_step(possibilities, roads, blocked=list(c(63L82), c(63L65)))
possibilities = take_a_step(possibilities, alley)
```

trim_possibilities

Trim possible paths

Description

Remove known impossible end points for Jack, typically as a result of having found, but not arrested Jack.

Usage

```r
trim_possibilities(paths, node)
```
trim_possibilities

Arguments

paths list of all possible paths already traveled
node vector of length 1 or 2 which specifies blocked nodes due to the presence of a policeman

Value

list of trimmed possible paths traveled by Jack

Examples

possibilities = start_round(6T)
possibilities = take_a_carriage(possibilities)
possibilities = trim_possibilities(possibilitiesL8R)
possibilities = trim_possibilities(possibilitiesLc(66L67))
Index

*Topic datasets
 alley, 2
 node_locations, 4
 roads, 4

alley, 2
end_round, 2
inspect_space, 3
node_locations, 4
roads, 4
show_board, 5
start_round, 6

take_a_carriage, 6
take_a_step, 7
trim_possibilities, 7