Package ‘wowa’

May 24, 2022

Type Package

Title Weighted Ordered Weighted Average

Version 1.0.2

Date 2022-05-22

Maintainer Gleb Beliakov <gleb@deakin.edu.au>

Author Gleb Beliakov [aut, cre],
Daniela Calderon [aut]

Description Introduce weights into Ordered Weighted Averages and extend bivariate means based on n-ary tree construction. Please refer to the following:
G. Beliakov, J.J. Dujmovic (2016) <doi:10.1016/j.ins.2015.10.040>,

License LGPL-3

LazyData FALSE

Imports Rcpp (>= 1.0.0)

LinkingTo Rcpp

RoxygenNote 5.0.1

NeedsCompilation yes

Copyright Gleb Beliakov

Repository CRAN

Date/Publication 2022-05-24 08:30:01 UTC

R topics documented:

wowa .. 2
wowa.ImplicitWOWA 3
wowa.OWA .. 4
wowa.WAM .. 5
wowa.WAn .. 5
Various weighted multivariate extensions of bivariate and OWA functions, including implicit, quantifier-based and binary tree based WOWA.

Usage

```r
wowa()
```

Details

Lists the functions implemented in this package.

Value

`output` No return value, called for printing only.

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

```r
wowa()
```
wowa.ImplicitWOWA
Implicit Weighted OWA Computation Function

Description

Function for Calculating implicit Weighted OWA function

Usage

```r
wowa.ImplicitWOWA(x, p, w, n)
```

Arguments

- `x` The vector of inputs
- `p` The weights of inputs x
- `w` The OWA weightings vector
- `n` Dimension of the vector x

Value

- output The value of the Impicit Weighted OWA

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

```
n <- 4
example <- wowa.ImplicitWOWA(c(0.3, 0.4, 0.8, 0.2), c(0.3, 0.25, 0.3, 0.15),
                             c(0.4, 0.35, 0.2, 0.05), n)
example
```

wowa.OWA
Ordered weighted average function

Description

Function for computing the ordered weighted averages

Usage

```
wowa.OWA(n, x, w)
```

Arguments

- `n`: Dimension of the vector `x`
- `x`: The vector of inputs
- `w`: The OWA weights

Value

- `output`: The value of the ordered weighted average.

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

```
n <- 4
wowa.OWA(n, c(0.3, 0.4, 0.8, 0.2), c(0.4, 0.35, 0.2, 0.05))
```
wowa.WAM

WAM computation

Description

Function for calculating the Weighted Arithmetic Mean

Usage

```
wowa.WAM(n, x, w)
```

Arguments

- **n**: Dimension of the array `x`
- **x**: The vector of inputs
- **w**: The vector of weights

Value

- **output**: The value of the WAM function

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

```
n <- 4
wowa.WAM(n, c(0.3,0.4,0.8,0.2), c(0.3,0.25,0.3,0.15) )
```

wowa.WAn

Extension of binary averaging

Description

Function for calculating a binary tree multivariate extension of a binary averaging function

Usage

```
wowa.WAn(x, w, n, Fn, L)
```
Arguments

- **x**: Vector of inputs
- **w**: The weightings vector
- **n**: Dimension of the array x (and w)
- **Fn**: Bivariate symmetric mean that is extended to n arguments
- **L**: The number of levels of the binary tree (see docs)

Value

- **output**: The output is Weighted n-variate mean extending Fn

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

wowa.weightedf

Weighted extension of the OWA function

Description

Function for extending order weighted averages and other multivariate symmetric functions

Usage

wowa.weightedf(x, p, w, n, Fn, L)

Arguments

- x: The vector of inputs
- p: The weights of inputs x
- w: The OWA weightings vector
- n: The dimension of the vector x
- Fn: Base n-variate symmetric function defined in R
- L: The number of levels of the n-ary tree (see docs)

Value

output: The output is the weighted ordered weighted average.

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

```r
Fn <- function(n, x, w) {
    out <- 0.0
    for(i in 1:n) out <- out + x[i] * w[i]
    #print(out)
    return(out)
}

n <- 4

example <- wowa.weightedf(c(0.3, 0.4, 0.8, 0.2),
                           c(0.3, 0.25, 0.3, 0.15),
                           c(0.4, 0.35, 0.2, 0.05),
                           n, Fn, 10)

example
```

wowa.weightedOWAQuantifier

WOWA value computation Function

Description

Function for calculating the value of the quantifier-based WOWA function

Usage

```r
wowa.weightedOWAQuantifier(x, p, w, n, spl)
```

Arguments

- **x**
 - The vector of inputs
- **p**
 - The weights of inputs x
- **w**
 - The OWA weightings vector
- **n**
 - The dimension of the array x
- **spl**
 - A structure that keeps the spline knots and coefficients computed in weighte-
 dOWAQuantifierBuild function

Value

- **output**
 - The output is quantifier-based WOWA value

Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University
References

Examples

```r
n <- 4
pweights=c(0.3,0.25,0.3,0.15);
wweights=c(0.4,0.35,0.2,0.05);
tempspline <- wowa.weightedOWAQuantifierBuild(pweights, wweights , n)
wowa.weightedOWAQuantifier(c(0.3,0.4,0.8,0.2), pweights, wweights, n, tempspline)
```

wowa.weightedOWAQuantifierBuild

RIM quantifier of the Weighted OWA function

Description

Function for building the RIM quantifier of the Weighted OWA function.

Usage

`wowa.weightedOWAQuantifierBuild(p, w, n)`

Arguments

- `p` The weights of inputs `x`
- `w` The OWA weightings vector
- `n` The dimension of the vectors `p,w`

Value

- `output` A structure which has fields: spl, which keeps the spline knots and coefficients for later use in `wowa.weightedOWAQuantifier`, and `Tnum`, the number of knots in the monotone spline
Author(s)

Gleb Beliakov, Daniela L. Calderon, Deakin University

References

Examples

```r
n <- 4
pweights=c(0.3,0.25,0.3,0.15);
wwweights=c(0.4,0.35,0.2,0.05);
tspanline <- wowa.weightedOWAQuantifierBuild(pweights,wwweights,n)
wowa.weightedOWAQuantifier(c(0.3,0.4,0.8,0.2), pweights, wweights, n, tspline)
```
Index

* Implicit Wowa
 wowa.ImplicitWowa, 3
* OWA
 wowa.OWA, 4
* WAM
 wowa.WAM, 5
* WAn
 wowa.WAn, 5
* Wowa
 wowa, 2
 wowa.ImplicitWowa, 3
 wowa.WAM, 5
 wowa.WAn, 5
 wowa.weightedOWAQuantifier, 8
 wowa.weightedOWAQuantifierBuild, 9
* weightedOWAQuantifier
 wowa.weightedOWAQuantifier, 8
 wowa.weightedOWAQuantifierBuild, 9
* weighteddf
 wowa.weighteddf, 7
* wowa
 wowa, 2
 wowa, 2
 wowa.ImplicitWowa, 3
 wowa.OWA, 4
 wowa.WAM, 5
 wowa.WAn, 5
 wowa.weighteddf, 7
 wowa.weightedOWAQuantifier, 8
 wowa.weightedOWAQuantifierBuild, 9