Package ‘wrProteo’

July 26, 2024

Version 1.12.0

Title Proteomics Data Analysis Functions

Author Wolfgang Raffelsberger [aut, cre]

Maintainer Wolfgang Raffelsberger <w.raffelsberger@gmail.com>

Description Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted.

Initial results from multiple software for protein (and peptei) quantitation can be imported (to a common format):

Metadata provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms.

Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included.

Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package ‘limma’ <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events.
Multi-species samples, as frequently used in benchmarks (e.g., Navarro et al. 2016 <doi:10.1038/nbt.3685>, Ramus et al. 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches.

As a detailed example, the data-set from Ramus et al. 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.

Contents

- .atomicMasses .. 3
- .checkKnitrProt .. 4
- .checkSetupGroups .. 5
- .commonSpecies .. 6
- .extrSpeciesPref ... 6
- .imputeNA ... 7
- .plotQuantDistr .. 8
- AAmass .. 10
- AucROC .. 11
- cleanListCoNames .. 12
- combineMultiFilterNAinput 13
- convAASeq2mass ... 15
- corColumnOrder ... 16
- countNoOfCommonPeptides 17
- exportSdrfDraft .. 18
- extractTestingResults 20
- extrSpeciesAnnot .. 21
- foldChangeArrow2 ... 22
- fuseProteomicsProjects 24
- getUPS1acc ... 26
- isolNAneighb .. 26
This function returns the molecular mass based on main elements found in biology/proteomics as average and mono-isotopic mass. The result includes H, C, N, O, P, S, Se and the electron. The values are based on http://www.ionsource.com/Card/Mass/mass.htm in ref to http://physics.nist.gov/Comp (as of 2019).
Usage
.atomicMasses()

Value
This function returns a numeric matrix with mass values

See Also
massDeFormula

Examples
.atomicMasses()

Description
This function allows checking presence of knitr and rmarkdown

Usage
.checkKnitrProt(tryF = FALSE)

Arguments

tryF (logical)

Value
This function returns a logical value

See Also
presenceFilt

Examples
.checkKnitrProt()
Description

This (low-level) function performs an additional/final check & adjustments to sample-names after readSampleMetaData()

Usage

```r
.checkSetupGroups(
  abund,  # (matrix or data.frame) abundance data, only the colnames will be used
  setupSd, # (list) describing sample-setup, typically produced by from package wrMisc
  gr = NULL, # (factor) optional custom information about replicate-layout, has priority over setupSd
  sampleNames = NULL, # (character) custom sample-names, has priority over abund and setupSd
  quantMeth = NULL, # (character) 2-letter abbreviation of name of quantitation-software (eg 'MQ')
  silent = FALSE, # (logical) suppress messages
  callFrom = NULL, # (character) allow easier tracking of messages produced
  debug = FALSE # (logical) display additional messages for debugging
)
```

Arguments

- **abund**: (matrix or data.frame) abundance data, only the colnames will be used
- **setupSd**: (list) describing sample-setup, typically produced by from package wrMisc
- **gr**: (factor) optional custom information about replicate-layout, has priority over setupSd
- **sampleNames**: (character) custom sample-names, has priority over abund and setupSd
- **quantMeth**: (character) 2-letter abbreviation of name of quantitation-software (eg 'MQ')
- **silent**: (logical) suppress messages
- **callFrom**: (character) allow easier tracking of messages produced
- **debug**: (logical) display additional messages for debugging

Value

This function returns an enlarged/updated list 'setupSd' (set setupSd$sampleNames, setupSd$groups)

See Also

used in readProtDiscovererFile, readMaxQuantFile, readProlineFile, readFragpipeFile

Examples

```r
set.seed(2021)
```
.commonSpecies

Get matrix with UniProt abbreviations for selected species as well as simple names

Description

This (low-level) function allows accessing matrix with UniProt abbreviations for species frequently used in research. This information may be used to harmonize species descriptions or extract species information out of protein-names.

Usage

.commonSpecies()

Value

This function returns a 2-column matrix with species names

See Also

used eg in readProtDiscovererFile, readMaxQuantFile, readProlineFile, readFragpipeFile

Examples

.commonSpecies()

.extrSpecPref

Extract additional information to construct column SpecType

Description

This (low-level) function creates the column annot[,'SpecType'] which may help distinguishing different lines/proteins. This information may, for example, be used to normalize only to all proteins of a common backgroud matrix (species). If $mainSpecies or $conta: match to annot[,"Species"], annot[,"EntryName"], annot[,"GeneName"], if length==1 grep in annot[,"Species"]

Usage

.extrSpecPref(
 specPref,
 annot,
 useColumn = c("Species", "EntryName", "GeneName", "Accession"),
 suplInp = NULL,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
.imputeNA

Arguments

specPref (list) may contain $mainSpecies, $conta ...
annot (matrix) main protein annotation
useColumn (factor) columns from annot to use/mine
suplInp (matrix) additional custom annotation
silent (logical) suppress messages
debug (logical) display additional messages for debugging (starting with 'mainSpecies', 'conta' and others - later may overwrite prev settings)
callFrom (character) allow easier tracking of messages produced

Value

This function returns a matrix with additional column 'SpecType'

See Also

used in readProtDiscovererFile, readMaxQuantFile, readProlineFile, readFragpipeFile

Examples

 .commonSpecies()

 .imputeNA Basic NA-imputation (main)

 .imputeNA(
 dat,
 gr = NULL,
 impParam,
 exclNeg = TRUE,
 inclLowValMod = TRUE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
Arguments

- **dat** (matrix or data.frame) main data (may contain NA)
- **gr** (character or factor) grouping of columns of dat, replicate association
- **impParam** (numeric) 1st for mean; 2nd for sd; 3rd for seed
- **exclNeg** (logical) exclude negative
- **inclLowValMod** (logical) label on x-axis on plot
- **silent** (logical) suppress messages
- **debug** (logical) supplemental messages for debugging
- **callFrom** (character) allow easier tracking of messages produced

Value

This function returns a list with $data and $datImp

See Also

for more complex treatment *matrixNAneighbourImpute*;

Examples

```R
dat1 <- matrix(11:22, ncol=4)
.imputeNA(dat1, impParam=c(mean(dat1, na.rm=TRUE), 0.1))
```

Description

This (low-level) function allows (generic) plotting of density distribution for quantitation import-functions

Usage

```R
.plotQuantDistr(  
  abund,  
  quant,  
  custLay = NULL,  
  normalizeMeth = NULL,  
  softNa = NULL,  
  refLi = NULL,  
  refLiIni = NULL,  
  notLogAbund = NA,
)```
Arguments

abund (matrix or data.frame) abundance data, will be plotted as distribution
quant (matrix or data.frame) optional additional abundance data, to plot 2nd distribution, eg of normalized data
custLay (matrix) describing sample setup, typically produced by normalizeMeth (character, length=1) name of normalization method (will be displayed in title of figure)
softNa (character, length=1) name of quantitation-software (typically 2-letter abbreviation, eg 'MQ')
refLi (integer) to display number reference lines
refLiIni (integer) to display initial number reference lines
notLogAbund (logical) set to TRUE if abund is linear but should be plotted as log2
figMarg (numeric, length=4) custom figure margins (will be passed to par), defaults to c(3.5, 3.5, 3, 1)
tit (character) custom title
las (integer) indicate orientation of text in axes
cexAxis (numeric) size of numeric axis labels as cex-expansion factor (see also par)
nameSer (character) custom label for data-sets or columns (length must match number of data-sets)
cexNameSer (numeric) size of individual data-series labels as cex-expansion factor (see also par)
silent (logical) suppress messages
callFrom (character) allow easier tracking of messages produced
debug (logical) display additional messages for debugging

Value

This function returns logical value (if data were valid for plotting) and produces a density distribution figure (if data were found valid)

See Also

used in readProtDiscovererFile, readMaxQuantFile, readProlineFile, readFragpipeFile
Examples

```r
set.seed(2018); datT8 <- matrix(round(rnorm(800) +3,1), nc=8, dimnames=list(paste("li",1:100,sep=""), paste(rep(LETTERS[1:3],c(3,3,2)),letters[18:25],sep="")))
.plotQuantDistr(datT8, quant=NULL, refLi=NULL, tit="Synthetic Data Distribution")
```

---

### AAmass

**Molecular mass for amino-acids**

**Description**

Calculate molecular mass based on atomic composition

**Usage**

```r
AAmass(massTy = "mono", inPept = TRUE, inclSpecAA = FALSE)
```

**Arguments**

- `massTy` (character) 'mono' or 'average'
- `inPept` (logical) remove H20 corresponding to water loss at peptide bond formation
- `inclSpecAA` (logical) include ornithine O & selenocysteine U

**Value**

This function returns a vector with masses for all amino-acids (argument `massTy` to switch from mono-isotopic to average mass)

**See Also**

`massDeFormula`, `convToNum`

**Examples**

```r
AAmass()
massDeFormula(c("12H12O","HO"," 2H 1 Se, 6C 2N","HSeCN"," ","e"))
massDeFormula(c("12H12O","H2O", "2H 1 Se, 6C 2N", "HSeCN", " ", "e"))
```

```r
AAmass()
```
This function calculates the AUC (area under the curve) from ROC data in matrix of specificity and sensitivity values, as provided in the output from `summarizeForROC`.

**Usage**

```r
AucROC(
 dat,
 useCol = c("spec", "sens"),
 returnIfInvalid = NA,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```

**Arguments**

- `dat` (matrix or data.frame) main input containing sensitivity and specificity data (from `summarizeForROC`)
- `useCol` (character or integer) column names to be used: 1st for specificity and 2nd for sensitivity count columns
- `returnIfInvalid` (NA or NULL) what to return if data for calculating ROC is invalid or incomplete
- `silent` (logical) suppress messages
- `debug` (logical) additional messages for debugging
- `callFrom` (character) allows easier tracking of messages produced

**Value**

This function returns a matrix including imputed values or list of final and matrix with number of imputed by group (plus optional plot)

**See Also**

preparing ROC data `summarizeForROC`, (re)plot the ROC figure `plotROC`; note that numerous other packages also provide support for working with ROC-curves: Eg `rocPkgShort`, `ROCR`, `pROC` or `ROCit`, etc.
Examples

```r
set.seed(2019); test1 <- list(annot=cbind(Species=c(rep("b",35), letters[sample.int(n=3, size=150, replace=TRUE)])), BH=matrix(c(runif(35,0,0.01), runif(150)), ncol=1))
roc1 <- summarizeForROC(test1, spec=c("a","b","c"), annotCol="Species")
AucROC(roc1)
```

---

### cleanListCoNames

**Selective batch cleaning of sample- (ie column-) names in list**

**Description**

This function allows to manipulate sample-names (ie colnames of abundance data) in a batch-wise manner from data stored as multiple matrixes or data.frames of a list. Import functions such as `readMaxQuantFile()` organize initial flat files into lists (of matrixes) of the different types of data. Many times all column names in such lists carry long names including redundant information, like the overall experiment name or date, etc. The aim of this function is to facilitate 'cleaning' the sample- (ie column-) names to obtain short and concise names. Character terms to be removed (via argument `rem`) and/or replaced/substituted (via argument `subst`) should be given as they are, characters with special behaviour in `grep` (like '.') will be protected internally. Note, that the character substitution part will be done first, and the removal part (without character replacement) afterwards.

**Usage**

```r
cleanListCoNames(
 dat,
 rem = NULL,
 subst = c("-", " "),
 lstE = c("raw", "quant", "counts"),
 mathOper = NULL,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```

**Arguments**

- **dat**
  (list) main input

- **rem**
  (character) character string to be removed, may be named 'left' and 'right' for more specific exact pattern matching (this part will be performed before character substitutions by `subst`)

- **subst**
  (character of length=2, or matrix with 2 columns) pair(s) of character-strings for replacement (1st as search-item and 2nd as replacement); this part is performed after character-removal via `rem`

- **lstE**
  (character, length=1) names of list-elements where colnames should be cleaned
**Description**

In most omics data-analysis one needs to employ a certain number of filtering strategies to avoid getting artifacts to the step of statistical testing. `combineMultFilterNAimput` takes on one side the original data and on the other side NA-imputed data to create several different filters and to finally combine them. A filter aiming to take away the least abundant values (using the imputed data) can be fine-tuned by the argument `abundThr`. This step compares the means for each group and line, at least one group-mean has to be > the threshold (based on hypothesis that if all conditions represent extrememly low measures their differential may not be determined with certainty). In contrast, the filter addressing the number of missing values (NA) uses the original data, the arguments `colTotNa`, `minSpeNo` and `minTotNo` are used at this step. Basically, this step allows defining a minimum content of ‘real’ (ie non-NA) values for further considering the measurements as reliable. This part uses internally `presenceFilt` for filtering elevated content of NA per line. Finally, this function combines both filters (as matrix of FALSE and TRUE) on NA-imputed and original data and returns a vector of logical values if corresponding lines pass all filter criteria.

**Usage**

```r
combineMultFilterNAimput(
 dat,
 imputed,
 grp,
 annDat = NULL,
```
Arguments

dat (matrix or data.frame) main data (may contain NA)
imputed (character) same as 'dat' but with all NA imputed
grp (character or factor) define groups of replicates (in columns of 'dat')
annDat (matrix or data.frame) annotation data (should match lines of 'dat')
abundThr (numeric) optional threshold filter for minimumn abundance
colRazNa (character) if razor peptides are used: column name for razor peptide count
colTotNa (character) column name for total peptide count
minSpeNo (integer) minimum number of specific peptides for maintaining proteins
minTotNo (integer) minimum total ie max razor number of peptides
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allows easier tracking of messages produced

Value

This function returns a vector of logical values if corresponding line passes filter criteria

See Also

presenceFilt

Examples

set.seed(2013)
datT6 <- matrix(round(rnorm(300)+3,1), ncol=6,
   dimnames=list(paste0("li",1:50), letters[19:24]))
datT6 <- datT6 +matrix(rep(1:nrow(datT6),ncol(datT6)), ncol=ncol(datT6))
datT6[6:7,c(1,3,6)] <- NA
datT6[which(datT6 < 11 & datT6 > 10.5)] <- NA
datT6[which(datT6 < 6 & datT6 > 5)] <- NA
datT6[which(datT6 < 4.6 & datT6 > 4)] <- NA
datT6b <- matrixNAneighbourImpute(datT6, gr=gl(2,3))
datT6c <- combineMultFilterNAimput(datT6, datT6b, grp=gl(2,3), abundThr=2)
convAASeq2mass

Molecular mass for amino-acids

Description

This function calculates the molecular mass of one-letter code amino-acid sequences.

Usage

convAASeq2mass(
  x,
  massTy = "mono",
  seqName = TRUE,
  silent = FALSE,
  callFrom = NULL
)

Arguments

x (character) aminoacid sequence (single upper case letters for describing a peptide/protein)

massTy (character) default 'mono' for mono-isotopic masses (alternative 'average')

seqName (logical) optional (alternative) names for the content of 'x' (ie aa seq) as name (always if 'x' has no names)

silent (logical) suppress messages

callFrom (character) allow easier tracking of message(s) produced

Value

This function returns a vector with masses for all amino-acids (argument 'massTy' to switch form mono-isotopic to average mass)

See Also

massDeFormula, AAmass, convToNum

Examples

convAASeq2mass(c("PEPTIDE","PROTEINES"))

pep1 <- c(aa="AAAA", de="DEFDEF")

convAASeq2mass(pep1, seqN=FALSE)
**corColumnOrder**  
*Order Columns In List of Matrixes And Vectors*

**Description**
This function orders columns in list of matrixes (or matrix) according to argument sampNames. It can be used to adjust/correct the order of samples after reading data using `readMaxQuantFile()`, `readProteomeDiscovererFile()` etc. The input may also be MArrayLM-type object from package `limma` or from functions `moderTestXgrp` or `moderTest2grp`.

**Usage**
```r
corColumnOrder(
 dat, replNames = NULL, sampNames, useListElem = c("quant", "raw", "counts"), annotElem = "sampleSetup", newNames = NULL, silent = FALSE, debug = FALSE, callFrom = NULL
)
```

**Arguments**
- `dat` (matrix, list or MArrayLM-object from limma) main input of which columns should get re-ordered, may be output from `moderTestXgrp` or `moderTest2grp`.
- `replNames` (character) new column-names (in order as input from `dat`), allows renaming colnames before defining new order
- `sampNames` (character) column-names in desired order for output (must match colnames of `dat` or `replNames`, if used)
- `useListElem` (character) in case `dat` is list, all list-elements who’s columns should get (re-)ordered
- `annotElem` (character) name of list-element of `dat` with annotation data to get in new order
- `newNames` deprecated, please use `replNames` instead
- `silent` (logical) suppress messages
- `debug` (logical) display additional messages for debugging
- `callFrom` (character) allow easier tracking of messages produced

**Value**
This function returns an object of same class as input `dat` (ie matrix, list or MArrayLM-object from `limma`)
countNoOfCommonPeptides

See Also

readMaxQuantFile, readProteomeDiscovererFile; moderTestXgrp or moderTest2grp

Examples

grp <- factor(rep(LETTERS[c(3,1,4)], c(2,3,3)))
dat1 <- matrix(1:15, ncol=5, dimnames=list(NULL,c("D","A","C","E","B")))
corColumnOrder(dat1, sampNames=LETTERS[1:5])

dat2 <- list(quant=dat1, raw=dat1)
dat2
corColumnOrder(dat2, sampNames=LETTERS[1:5])

countNoOfCommonPeptides

Compare in-silico digested proteomes for unique and shared peptides, counts per protein or as peptides. The in-silico digestion may be performed separately using the package cleaver. Note: input must be list (or multiple names lists) of proteins with their respective peptides (e.g. by in-silico digestion).

Description

Compare in-silico digested proteomes for unique and shared peptides, counts per protein or as peptides.

Usage

countNoOfCommonPeptides(
  ..., prefix = c("Hs", "Sc", "Ec"), sep = ",", silent = FALSE,
  debug = FALSE, callFrom = NULL
)
exportSdrfDraft

Export Sample Meta-data from Quantification-Software as Sdrf-draft

Description

Sample/experimental annotation meta-data form MaxQuant that was previously import can now be formatted in sdrf-style and exported using this function to write a draft-sdrf-file. Please note that this information will not _complete_ in respect to all information used in data-bases like Pride. Sdrf-files provide additional meta-information about samles and MS-runs in a standardized format, they may also be part of submissions to Pride.

Arguments

... 
  (list) multiple lists of (ini-silico) digested proteins (typically protein ID as names) with their respective peptides (AA sequence), one entry for each species

prefix 
  (character) optional (species-) prefix for entries in '...', will be only considered if '...' has no names

sep 
  (character) concatenation symbol

silent 
  (logical) suppress messages

dbg 
  (logical) display additional messages for debugging

callFrom 
  (character) allow easier tracking of message(s) produced

Value

This function returns a list with $byPep as list of logical matrixes for each peptide (as line) and unique/shared/etc for each species; $byProt as list of matrixes with count data per proten (as line) for each species; $tab with simple summary-type count data

See Also

readFasta2 and/or cleave-methods in package cleaver

Examples

## The example mimics a proteomics experiment where extracts form E coli and Saccharomyces cerevisiae were mixed, thus not all peptides may occur unique.
(mi2 = countNoOfCommonPeptides(Ec=list(E1=letters[1:4],E2=letters[c(3:7)],
  E3=letters[c(4,8,13)],E4=letters[9]),Sc=list(S1=letters[c(2:3,6)],
  S2=letters[10:13],S3=letters[c(5,6,11)],S4=letters[c(11)],S5="n")))

## a .. uni E, b .. inteR, c .. inteR(+intra E), d .. intra E (no4), e .. inteR,
## f .. inteR +intra E (no6), g .. uni E, h .. uni E, i .. uni E, j .. uni S (no10), k .. intra S (no11), l .. uni S (no12), m .. inteR (no13)
lapply(mi2$byProt,head)
mi2$tab
Usage

```r
evalSdrfDraft(
 lst,
 fileName = "sdrfDraft.tsv",
 correctFileExtension = TRUE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```

Arguments

- **lst**: (list) object created by import-function (MaxQuant)
- **fileName**: (character) file-name (and path) to be used when exporting
- **correctFileExtension**: (logical) if TRUE the `fileName` will get a `.tsv`-extension if not already present
- **silent**: (logical) suppress messages
- **debug**: (logical) additional messages for debugging
- **callFrom**: (character) allow easier tracking of messages produced

Details

Gathering as much as possible information about samples and MS-runs requires that the additional files created from software, like MaxQuant using `readMaxQuantFile`, is present and was imported when calling the import-function (eg using the argument `_suplAnnotFile=TRUE_`). Please note that this functionality was designed for the case where no (external) sdrf-file is available. Thus, when data was imported including external sdrf (using the `_sdrf=_` argument), exporting incomplete annotation-data from MaxQuant-produced files does not make any sense and therefore won’t be possible.

After exporting the draft sdrf the user is advised to check and complete the information in the resulting file. Unfortunately, not all information present in a standard sdrf-file (like on Pride) cannot be gathered automatically, but key columns are already present and thus may facilitate completing. Please note, that the file-format has been defined as `.tsv`, thus columns/fields should be separated by tabs. At manual editing and completion, some editing- or tabulator-software may change the file-extension to `.tsv.txt`, in this case the final files should be renamed as `.tsv` to remain compatible with Pride.

At this point only the import of data from MaxQuant via `readMaxQuantFile` has been developed to extract information for creating a draft-sdrf. Other data/file-import functions may be further developed to gather as much as possible equivalent information in the future.

Value

This function writes an Sdrf draft to file

See Also

This function may be used after reading/importing data by `readMaxQuantFile` in absence of sfdrf
extractTestingResults

Extract Results From Moderated t-tests

Description

This function allows convenient access to results produced using the functions `moderTest2grp` or `moderTestXgrp`. The user can define the threshold which type of multiple testing correction should be used (as long as the multiple testing correction method was actually performed as part of testing).

Usage

```r
extractTestingResults(
 stat,
 compNo = 1,
 statTy = "BH",
 thrsh = 0.05,
 FCthrs = 1.5,
 annotCol = c("Accession", "EntryName", "GeneName"),
 nSign = 6,
 addTy = c("allMeans"),
 filename = NULL,
 fileTy = "csvUS",
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```

Arguments

- **stat** (`'MArrayLM'-object or list) Designated for the output from `moderTest2grp` or `moderTestXgrp`
- **compNo** (integer) the comparison number/index to be used
- **statTy** (character) the multiple-testing correction type to be considered when looking for significant changes with threshold `thrsh` (depends on which have been run initially with `moderTest2grp` or `moderTestXgrp`)
- **thrsh** (numeric) the threshold to be applied on `statTy` for the result of the statistical testing (after multiple testing correction)
extrSpeciesAnnot

Extract species annotation

Description

eextrSpeciesAnnot identifies species-related annotation (as suffix to identifiers) for data combining multiple species and returns alternative (short) names. This function also suppresses extra heading or tailing space or punctuation characters. In case multiple tags are found, the last tag is reported and a message of alert may be displayed.
Usage
extrSpeciesAnnot(
  annot,
  spec = c("_CONT", "_HUMAN", "_YEAST", "_ECOLI"),
  shortNa = c("cont", "H", "S", "E"),
  silent = FALSE,
  debug = FALSE,
  callFrom = NULL
)

Arguments

annot  (character) vector with initial annotation
spec   (character) the tags to be identified
shortNa (character) the final abbreviation used, order and length must fit to argument annot
silent  (logical) suppress messages
debug   (logical) display additional messages for debugging
callFrom (character) allow easier tracking of messages produced

Value
This function returns a character vector with single (last of multiple) term if found in argument annot

See Also
grep

Examples
spec <- c("keratin_CONT","AB_HUMAN","CD_YEAST","EF_G_HUMAN","HI_HUMAN_ECOLI","_YEAST_012")
extrSpeciesAnnot(spec)

Description
NOTE : This function is deprecated, please use foldChangeArrow instead !! This function was made for adding an arrow indicating a fold-change to MA- or Volcano-plots. When comparing multiple concentrations of standards in benchmark-tests it may be useful to indicate the expected ratio in a pair-wise comparison. In case of main input as list or MArrayLM-object (as generated from limma), the column-names of multiple pairwise comparisons can be used for extracting a numeric content (supposed as concentrations in sample-names) which will be used to determine the expected ratio used for plotting. Optionally the ratio used for plotting can be returned as numeric value.
foldChangeArrow2

Usage

foldChangeArrow2(
  FC,
  useComp = 1,
  isLin = TRUE,
  asX = TRUE,
  col = 1,
  arr = c(0.005, 0.15),
  lwd = NULL,
  addText = c(line = -0.9, cex = 0.7, txt = "expected", loc = "toright"),
  returnRatio = FALSE,
  silent = FALSE,
  debug = FALSE,
  callFrom = NULL
)

Arguments

FC (numeric, list or MArrayLM-object) main information for drawing arrow: either numeric value for fold-change/log2-ratio of object to search for colnames of statistical testing for extracting numeric part

useComp (integer) only used in case FC is list or MArrayLM-object an has multiple pairwise-comparisons

isLin (logical) indicate if FC is log2 or not

asX (logical) indicate if arrow should be on x-axis

col (integer or character) custom color

arr (numeric, length=2) start- and end-points of arrow (as relative to entire plot)

lwd (numeric) line-width of arrow

addText (logical or named vector) indicate if text explaining arrow should be displayed, use TRUE for default (on top right of plot), or any combination of 'loc','line','cex','side','adj','col','text' (or 'txt') for customizing specific elements

returnRatio (logical) return ratio

silent (logical) suppress messages

debug (logical) display additional messages for debugging

callFrom (character) allow easier tracking of message(s) produced

Details

The argument addText also allows specifying a fixed position when using addText=c(loc="bottomleft"), also bottomright, topleft, topright, toleft and toright may be used. In this case the elements side and adjust will be redefined to accomodate the text in the corner specified.

Ultimately this function will be integrated to the package wrGraph.
Value
plots arrow only (and explicative text), if returnRatio=TRUE also returns numeric value for extracted ratio

See Also
new version: foldChangeArrow; used with MAplotW, VolcanoPlotW

Examples
plot(rnorm(20,1.5,0.1),1:20)
#deprecated# foldChangeArrow2(FC=1.5)

fuseProteomicsProjects
Combine Multiple Proteomics Data-Sets

Description
This function allows combining up to 3 separate data-sets previously imported using wrProteo.

Usage
fuseProteomicsProjects(
  x,
  y,
  z = NULL,
  columnNa = "Accession",
  NA.rm = TRUE,
  listNa = c(quant = "quant", annot = "annot"),
  all = FALSE,
  textModif = NULL,
  shortNa = NULL,
  retProtLst = FALSE,
  silent = FALSE,
  debug = FALSE,
  callFrom = NULL
)

Arguments
x (list) First Proteomics data-set
y (list) Second Proteomics data-set
z (list) optional third Proteomics data-set
columnNa (character) column names from annotation
fuseProteomicsProjects

NA.rm (logical) remove NAs
listNa (character) names of key list-elements from x to be treated; the first one is used as pattern for the format of quantitation data, the last one for the annotation data
all (logical) union of intersect or merge should be performed between x, y and z
textModif (character) Additional modifications to the identifiers from argument columnNa; so far integrated: rmPrecAA for removing preceeding caps letters (amino-acids, eg [KR].AGVIFPVGR.[ML] => AGVIFPVGR) or rmTerminalDigit for removing terminal digits (charge-states)
shortNa (character) for appending to output-colnames
retProtLst (logical) return list-object similar to input, otherwise a matrix of fused/aligned quantitation data
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allow easier tracking of messages produced

Details

Some quantification software way give some identifiers multiple times, i.e. as multiple lines (e.g. for different modifications or charge states, etc). In this case this function tries first to summarize all lines with identical identifiers (using the function combineRedundLinesInList which used by default the median value). Thus, it is very important to know your data and to understand when lines that appear with the same identifiers should/may be fused/summarized without doing damage to the later biological interpretation! The user may specify for each dataset the column out of the protein/peptide-annotation to use via the argument columnNa. Then, this content will be matched as identical match, so when combining data from different software special care should be taken!

Please note, that (at this point) the data from different series/objects will be joined as they are, i.e. without any additional normalization. It is up to the user to inspect the resulting data and to decide if and which type of normalization may be suitable!

Please do NOT try combining protein and peptide quantification data.

Value

This function returns a list with the same number of list-elements as $x$, i.e. typically this contains:
$raw$ (initial/raw abundance values), $quant$ with final normalized quantitations, $annot$, optionally
$counts$ an array with number of peptides, $quantNotes$ or $notes$

See Also

sd

Examples

path1 <- system.file("extdata", package="wrProteo")
dataMQ <- readMaxQuantFile(path1, specPref=NULL, normalizeMeth="median")
MCproFi1 <- "tinyMC.RData"
dataMC <- readMassChroQFile(path1, file=MCproFi1, plotGraph=FALSE)
dataFused <- fuseProteomicsProjects(dataMQ, dataMC)
**getUPS1acc**  
*Accession-Numbers And Names Of UPS1 Proteins*

**Description**

UPS1 (see https://www.sigmaaldrich.com/FR/en/product/sigma/ups1) and UPS2 are commerical products consisting of a mix of 48 human (purified) proteins. They are frequently used as standard in spike-in experiments, available from Sigma-Aldrich. This function allows accessing their protein accession numbers and associated names on UniProt.

**Usage**

getUPS1acc()

**Value**

This function returns data.frame with accession-numbers as stated by the supplier ($acFull), trimmed accession-numbers, ie without version numbers ($ac) and associated (UniProt) names on UniProt as well as the species designation for the collection of 48 human UPS-1 proteins.

**Examples**

head(getUPS1acc())

---

**isolNAneighb**  
*Isolate NA-neighbours*

**Description**

This functions extracts all replicate-values where at least one of the replicates is NA and sorts by number of NAs per group. A list with all NA-neighbours organized by the number of NAs gets returned.

**Usage**

isolNAneighb(mat, gr, silent = FALSE, debug = FALSE, callFrom = NULL)

**Arguments**

- **mat** (matrix or data.frame) main data (may contain NA)
- **gr** (character or factor) grouping of columns of 'mat', replicate association
- **silent** (logical) suppress messages
- **debug** (logical) display additional messages for debugging
- **callFrom** (character) allow easier tracking of messages produced
massDeFormula

Description

Calculate molecular mass based on atomic composition

Usage

massDeFormula(
    comp,
    massTy = "mono",
    rmEmpty = FALSE,
    silent = FALSE,
    callFrom = NULL
)

Arguments

comp (character) atomic composition
massTy (character) 'mono' or 'average'
rmEmpty (logical) suppress empty entries
silent (logical) suppress messages
callFrom (character) allow easier tracking of messages produced

Value

This function returns a numeric vector with mass

See Also

This function gets used by matrixNAneighbourImpute and testRobustToNAimputation; estimation of mode stableMode; detection of NAs na.fail

Examples

mat1 <- c(22.2, 22.5, 22.2, 21.5, 22.0, 22.1, 21.7, 21.5, 22, 22.2, 22.7,
NA, NA, NA, NA, NA, NA, NA, 21.2, NA, NA, NA, NA,
NA, 22.6, 23.2, 23.2, 22.4, 22.8, 22.8, NA, 23.3, 23.2, NA, 23.7,
NA, 23.0, 23.1, 23.0, 23.2, 23.2, NA, 23.3, NA, NA, 23.3, 23.8)
mat1 <- matrix(mat1, ncol=12, byrow=TRUE)
gr4 <- gl(3, 4)
isolNAneighb(mat1, gr4)
matrixNAinspect makes histograms of the full data and shows sub-population of NA-neighbour values. The aim of this function is to investigate the nature of NA values in matrix (of experimental measures) where replicate measurements are available. If a given element was measured twice, and one of these measurements revealed a NA while the other one gave a (finite) numeric value, the non-NA-value is considered a NA-neighbour. The subpopulation of these NA-neighbour values will then be highlighted in the resulting histogram. In a number of experimental settings some actual measurements may not meet an arbitrary defined baseline (as 'zero') or may be too low to be distinguishable from noise that associated measures were initially recorded as NA. In several types of measurements in proteomics and transcriptomics this may happen. So this function allows to collect all NA-neighbour values and compare them to the global distribution of the data to investigate if NA-neighbours are typically very low values. In case of data with multiple replicates NA-neighbour values may be distinguished for the case of 2 NA per group/replicate-set. The resulting plots are typically used to decide if and how NA values may get replaced by imputed random values or whether measures containing NA-values should rather be omitted. Of course, such decisions do have a strong impact on further steps of data-analysis and should be performed with care.

Usage

```r
matrixNAinspect(
 dat,
 gr = NULL,
 retnNA = TRUE,
 xLab = NULL,
 tit = NULL,
 xLim = NULL,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```

Arguments

- **dat**: (matrix or data.frame) main numeric data

See Also

- `convToNum`

Examples

```r
massDeFormula(c("12H12O","H0"," 2H 1 Se, 6C 2N","HSeCN"," ","e"))
```

```
matrixNAinspect Histogram of content of NAs in matrix
```
**matrixNAneighbourImpute**

gr (character or factor) grouping of columns of dat indicating who is a replicate of whom (i.e., the length of 'gr' must be equivalent to the number of columns in 'dat')

retnNA (logical) report number of NAs in graphic

xLab (character) custom x-label

tit (character) custom title

xLim (numerical, length=2) custom x-axis limits

silent (logical) suppress messages

debug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced

**Value**

This function produces a graphic (to the current graphical device)

**See Also**

hist, na.fail, naOmit

**Examples**

```r
set.seed(2013)
datT6 <- matrix(round(rnorm(300)+3,1), ncol=6,
 dimnames=list(paste("li",1:50,sep=""), letters[19:24]))
datT6 <- datT6 +matrix(rep(1:nrow(datT6),ncol(datT6)), ncol=ncol(datT6))
datT6[6:7,c(1,3,6)] <- NA
datT6[which(datT6 < 11 & datT6 > 10.5)] <- NA
datT6[which(datT6 < 6 & datT6 > 5)] <- NA
datT6[which(datT6 < 4.6 & datT6 > 4)] <- NA
matrixNAinspect(datT6, gr=gl(2,3))
```

**matrixNAneighbourImpute**

*Imputation of NA-values based on non-NA replicates*

**Description**

It is assumed that NA-values appear in data when quantitation values are very low (as this appears e.g., in quantitative shotgun proteomics). Here, the concept of (technical) replicates is used to investigate what kind of values appear in the other replicates next to NA-values for the same line/protein. Groups of replicate samples are defined via argument gr which describes the columns of dat). Then, they are inspected for each line to gather NA-neighbour values (i.e., those values where NAs and regular measures are observed the same time). E.g., let’s consider a line contains a set of 4 replicates for a given group. Now, if 2 of them are NA-values, the remaining 2 non-NA-values will be considered as NA-neighbours. Ultimately, the aim is to replace all NA-values based on values from a normal distribution resembling their respective NA-neighbours.
Usage

matrixNAneighbourImpute(
  dat,
  gr,
  imputMethod = "mode2",
  retnNA = TRUE,
  avSd = c(0.15, 0.5),
  avSdH = NULL,
  NAneigLst = NULL,
  plotHist = c("hist", "mode"),
  xLab = NULL,
  xLim = NULL,
  yLab = NULL,
  yLim = NULL,
  tit = NULL,
  figImputDetail = TRUE,
  seedNo = NULL,
  silent = FALSE,
  callFrom = NULL,
  debug = FALSE)
)

Arguments

dat (matrix or data.frame) main data (may contain NA)
gr (character or factor) grouping of columns of 'dat', replicate association
imputMethod (character) choose the imputation method (may be 'mode2'(default), 'mode1', 'datQuant', 'modeAdopt' or 'informed')
retnNA (logical) decide (if =TRUE) only NA-substuted data should be returned, or if list with $data, $nNA, SNANeighbour and $RandParam should be returned
avSd (numerical,length=2) population characteristics 'high' (mean and sd) for >1 NA-neighbours (per line)
avSdH depreciated, please use avSd instead; (numerical,length=2) population characteristics 'high' (mean and sd) for >1 NA-neighbours (per line)
NAneigLst (list) option for repeated rounds of imputations: list of NA-neighbour values can be furnished for slightly faster processing
plotHist (character or logical) decide if supplemental figure with histogram should be drawn, the details 'Hist', 'quant' (display quantile of original data), 'mode' (display mode of original data) can be chosen explicitly
xLab (character) label on x-axis on plot
xLim (numeric, length=2) custom x-axis limits
yLab (character) label on y-axis on plot
yLim (numeric, length=2) custom y-axis limits
tit (character) title on plot
Details

By default a histogram gets plotted showing the initial, imputed and final distribution to check the global hypothesis that NA-values arose from very low measurements and to appreciate the impact of the imputed values to the overall final distribution.

There are a number of experimental settings where low measurements may be reported as NA. Sometimes an arbitrary defined baseline (as 'zero') may provoke those values found below being unfortunately reported as NA or as 0 (in case of MaxQuant). In quantitative proteomics (DDA-mode) the presence of numerous high-abundance peptides will lead to the fact that a number of less intense MS-peaks don’t get identified properly and will then be reported as NA in the respective samples, while the same peptides may by correctly identified and quantified in other (replicate) samples. So, if a given protein/peptide gets properly quantified in some replicate samples but reported as NA in other replicate samples one may thus speculate that similar values like in the successful quantifications may have occurred. Thus, imputation of NA-values may be done on the basis of NA-neighbours.

When extracting NA-neighbours, a slightly more focussed approach gets checked, too, the 2-NA-neighbours: In case a set of replicates for a given protein contains at least 2 non-NA-values (instead of just one) it will be considered as a (min) 2-NA-neighbour as well as regular NA-neighbour. If >300 of these (min) 2-NA-neighbours get found, they will be used instead of the regular NA-neighbours. For creating a collection of normal random values one may use directly the mode of the NA-neighbours (or 2-NA-neighbours, if >300 such values available). To do so, the first value of argument avSd must be set to NA. Otherwise, the first value avSd will be used as quantile of all data to define the mean for the imputed data (ie as quantile(dat, avSd[1], na.rm=TRUE)). The sd for generating normal random values will be taken from the sd of all NA-neighbours (or 2-NA-neighbours) multiplied by the second value in argument avSd (or avSd, if >300 2-NA-neighbours), since the sd of the NA-neighbours is usually quite high. In extremely rare cases it may happen that no NA-neighbours are found (ie if NAs occur, all replicates are NA). Then, this function replaces NA-values based on the normal random values obtained as described above.

Value

This function returns a list with:
- $data .. matrix of data where NA are replaced by imputed values,
- $nNA .. number of NA by group,
- $randParam .. parameters used for making random data

See Also

This function gets used by testRobustToNAimputation; estimation of mode stableMode; detection of NAs na.fail
Examples

```r
set.seed(2013)
datT6 <- matrix(round(rnorm(300)+3,1), ncol=6, dimnames=list(paste("li",1:50,sep=""), letters[19:24]))
datT6 <- datT6 +matrix(rep(1:nrow(datT6), ncol(datT6)), ncol=ncol(datT6))
datT6[6:7, c(1,3,6)] <- NA
datT6[which(datT6 < 11 & datT6 > 10.5)] <- NA
datT6[which(datT6 < 6 & datT6 > 5)] <- NA
datT6[which(datT6 < 4.6 & datT6 > 4)] <- NA
datT6b <- matrixNAneighbourImpute(datT6, gr=gl(2,3))
head(datT6b$data)
```

---

**plotROC**

*Plot ROC curves*

Description

`plotROC` plots ROC curves based on results from `summarizeForROC`. This function plots only, it does not return any data. It allows printing simultaneously multiple ROC curves from different studies, it is also compatible with data from 3 species mix as in proteomics benchmark. Input can be prepared using `moderTest2grp` followed by `summarizeForROC`.

Usage

```r
plotROC(
 dat,
 ...,
 useColumn = 2:3,
 methNames = NULL,
 col = NULL,
 pch = 1,
 bg = NULL,
 tit = NULL,
 xlim = NULL,
 ylim = NULL,
 point05 = 0.05,
 pointSi = 0.85,
 nByMeth = NULL,
 speciesOrder = NULL,
 txtLoc = NULL,
 legCex = 0.72,
 las = 1,
 addSuplT = TRUE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```
plotROC

Arguments

dat (matrix) from testing (eg summarizeForROC)

... optional additional data-sets to include as separate ROC-curves to same plot

(useColumn (integer or character, length=2) columns from dat to be used for specificity and sensitivity

methNames (character) names of methods (data-sets) to be displayed

col (character) custom colors for lines and text (choose one color for each different data-set)

pch (integer) type of symbol to be used (see also par)

bg (character) background color in plot (see also par)

tit (character) custom title

xlim (numeric, length=2) custom x-axis limits

ylim (numeric, length=2) custom y-axis limits

point05 (numeric) specific point to highlight in plot (typically at alpha=0.05)

pointSi (numeric) size of points (as expansion factor cex)

nByMeth (integer) value of n to display

speciesOrder (integer) custom order of species in legend

txtLoc (numeric, length=3) location for text (x, y location and proportional factor for line-offset, default is c(0.4,0.3,0.04))

legCex (numeric) cex expansion factor for legend (see also par)

las (numeric) factor for text-orientation (see also par)

addSuplT (logical) add text with information about precision, accuracy and FDR

silent (logical) suppress messages

debug (logical) display additional messages for debugging

callFrom (character) allow easier tracking of message(s) produced

Value

This function returns only a plot with ROC curves

See Also

summarizeForROC, moderTest2grp

Examples

roc0 <- cbind(alph=c(2e-6,4e-5,4e-4,2.7e-3,1.6e-2,4.2e-2,8.3e-2,1.7e-1,2.7e-1,4.1e-1,5.3e-1,
6.8e-1,8.3e-1,9.7e-1), spec=c(1,1,1,0.957,0.915,0.915,0.809,0.702,0.489,0.362,0.234,
0.128,0.0426), sens=c(0,0,0.145,0.942,2.54,2.68,3.33,3.99,4.71,5.87,6.67,8.04,8.77,
9.93)/10, n.pos.a=c(0,0,0,2,4,9,14,24,36,41) )

plotROC(roc0)
Description

razorNoFilter filters based on either a) number of total peptides and specific peptides or b) number of razor peptides. This function was designed for filtering using a minimum number of (PSM-) count values following the common practice to consider results with 2 or more peptide counts as reliable. The function be (re-)run independently on each of various questions (comparisons). Note: Non-integer data will be truncated to integer (equivalent to floor).

Usage

```r
razorNoFilter(
 annot,
 speNa = NULL,
 totNa = NULL,
 minRazNa = NULL,
 minSpeNo = 1,
 minTotNo = 2,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```

Arguments

- **annot** (matrix or data.frame) main data (may contain NAs) with (PSM-) count values for each protein
- **speNa** (integer or character) indicate which column of 'annot' has number of specific peptides
- **totNa** (integer or character) indicate which column of 'annot' has number of total peptides
- **minRazNa** (integer or character) name of column with number of razor peptides, alternative to 'minSpeNo' & 'minTotNo'
- **minSpeNo** (integer) minimum number of specific peptides
- **minTotNo** (integer) minimum total ie max razor number of peptides
- **silent** (logical) suppress messages
- **debug** (logical) display additional messages for debugging
- **callFrom** (character) allow easier tracking of messages produced

Value

This function returns a vector of logical values if corresponding line passes filter criteria
readAlphaPeptFile

See Also

presenceFilt

Examples

```r
set.seed(2019); datT <- matrix(sample.int(20,60,replace=TRUE), ncol=6,
 dimnames=list(letters[1:10], LETTERS[1:6])) -3
datT[,2] <- datT[,2] +2
datT[which(datT <0)] <- 0
razorNoFilter(datT, speNa="A", totNa="B")
```

---

**readAlphaPeptFile**  
*Read (Normalized) Quantitation Data Files Produced By AlphaPept*

**Description**

Protein quantification results from AlphaPept can be read using this function. Input files compressed as .gz can be read as well. The protein abundance values (XIC) get extracted. Since protein annotation is not very extensive with this format of data, the function allows reading the initial fasta files (from the directory above the quantitation-results) allowing to extract more protein-annotation (like species). Sample-annotation (if available) can be extracted from sdrf files, too. The protein abundance values may be normalized using multiple methods (median normalization as default), the determination of normalization factors can be restricted to specific proteins (normalization to bait protein(s), or to invariable matrix of spike-in experiments). The protein annotation data gets parsed to extract specific fields (ID, name, description, species ...). Besides, a graphical display of the distribution of protein abundance values may be generated before and after normalization.

**Usage**

```r
readAlphaPeptFile(
 fileName = "results_proteins.csv",
 path = NULL,
 fasta = NULL,
 isLog2 = FALSE,
 normalizeMeth = "none",
 quantCol = ",LFQ$",
 contamCol = NULL,
 read0asNA = TRUE,
 refLi = NULL,
 sampleNames = NULL,
 specPref = NULL,
 extrColNames = NULL,
 remRev = TRUE,
 remConta = FALSE,
 separateAnnot = TRUE,
 gr = NULL,
 sdrf = NULL,
)```
Arguments

- **fileName** (character) name of file to be read (default 'results_proteins.csv'). Gz-compressed files can be read, too.
- **path** (character) path of file to be read
- **fasta** (logical or character) if TRUE the (first) fasta from one directory higher than fileName will be read as fasta-file to extract further protein annotation; if character a fasta-file at this location will be read/used/
- **isLog2** (logical) typically data read from AlphaPept are expected NOT to be isLog2=TRUE
- **normalizeMeth** (character) normalization method, defaults to median, for more details see normalizeThis
- **quantCol** (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
- **contamCol** (character or integer, length=1) which columns should be used for contaminants
- **read0asNA** (logical) decide if initial quantifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)
- **refLi** (character or integer) custom specify which line of data should be used for normalization, ie which line is main species; if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
- **sampleNames** (character) custom column-names for quantification data; this argument has priority over suplAnnotFile
- **specPref** (character) prefix to identifiers allowing to separate i) recognize contamination database, ii) species of main identifications and iii) spike-in species
- **extrColNames** (character or NULL) custom definition of col-names to extract
- **remRev** (logical) option to remove all protein-identifications based on reverse-peptides
- **remConta** (logical) option to remove all proteins identified as contaminants
- **separateAnnot** (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations
- **gr** (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)
- **sdrf** (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from
defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf

supAnnotFile (logical or character) optional reading of supplemental files produced by Comptomics; if gr is provided, it gets priority for grouping of replicates if TRUE default to files 'summary.txt' (needed to match information of sdrf) and 'parameters.txt' which can be found in the same folder as the main quantitation results; if character the respective file-names (relative ro absolute path), 1st is expected to correspond to 'summary.txt' (tabulated text, the samples as given to Comptomics) and 2nd to 'parameters.txt' (tabulated text, all parameters given to Comptomics)

groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)
titGraph (character) custom title to plot of distribution of quantitation values
wex (numeric) relative expansion factor of the violin in plot
plotGraph (logical) optional plot violplot of initial and normalized data (using normalizeMeth); alternatively the argument may contain numeric details that will be passed to layout when plotting
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allow easier tracking of messages produced

Details

Meta-data describing the samples and experimental setup may be available from a sdrf-file (from the directory above the analysis/quantification results) If available, the meta-data will be examined for determining groups of replicates and the results thereof can be found in $sampleSetup$levels. Alternatively, a dataframe formatted like sdrf-files (ie for each sample a separate line, see also function readSdrf) may be given, too.

This import-function has been developed using AlphaPept version x.x. The final output is a list containing these elements: $raw, $quant, $annot, $counts, $sampleSetup, $quantNotes, $notes, or (if separateAnnot=FALSE) data.frame with annotation- and main quantification-content. If sdrf information has been found, an add-tional list-element setup will be added contaiing the entire meta-data as setup$meta and the suggested organization as setup$lev.

Value

This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot (columns), $counts an array with 'PSM' and 'NoOfRazorPeptides', $quantNotes, $notes and optional setup for meta-data from sdrf; or a data.frame with quantitation and annotation if separateAnnot=FALSE

See Also

read.table, normalizeThis, readProteomeDiscovererFile, readProlineFile (and other import-functions), matrixNAinspect
Examples

```r
path1 <- system.file("extdata", package="wrProteo")
# Here we'll load a short/trimmed example file
fiNaAP <- "tinyAlpaPeptide.csv.gz"
dataAP <- readAlphaPeptFile(file = fiNaAP, path = path1, tit = "tiny AlphaPeptide ")
summary(dataAP$quant)
```

Description

This function allows importing protein identification and quantification results from DIA-NN. Data should be exported as tabulated text (tsv) as protein-groups (pg) to allow import by thus function. Quantification data and other relevant information will be parsed and extracted (similar to the other import-functions from this package). The final output is a list containing as (main) elements: $annot, $raw and $quant, or a data.frame with the quantification data and a part of the annotation if argument separateAnnot=FALSE.

Usage

```r
readDiaNNFile(
  fileName,
  path = NULL,
  normalizeMeth = "median",
  sampleNames = NULL,
  read0asNA = TRUE,
  quantCol = "\.raw$",
  annotCol = NULL,
  refLi = NULL,
  separateAnnot = TRUE,
  FDRCol = NULL,
  groupPref = list(lowNumberOfGroups = TRUE),
  plotGraph = TRUE,
  titGraph = "DiaNN",
  wex = 1.6,
  specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
  gr = NULL,
  sdrf = NULL,
  suplAnnotFile = FALSE,
  silent = FALSE,
  debug = FALSE,
  callFrom = NULL
)
```
Arguments

- **fileName** (character) name of file to be read
- **path** (character) path of file to be read
- **normalizeMeth** (character) normalization method, defaults to `median`, for more details see `normalizeThis`
- **sampleNames** (character) custom column-names for quantification data; this argument has priority over `suplAnnotFile`
- **read0asNA** (logical) decide if initial quantifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)
- **quantCol** (character or integer) exact col-names, or if length=1 content of `quantCol` will be used as pattern to search among column-names for $quant using `grep`
- **annotCol** (character) column names to be read/extracted for the annotation section (default `c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..PSMs","X..Unique.Peptides","X..AAs","MW..kDa.")`)
- **refLi** (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
- **separateAnnot** (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final log2 (normalized) quantitations
- **FDRCol** - not used (the argument was kept to remain with the same syntax as the other import functions fo this package)
- **groupPref** (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to `readSampleMetaData`. May contain `lowNumberOfGroups=FALSE` for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)
- **plotGraph** (logical or integer) optional plot of type vioplot of initial and normalized data (using `normalizeMeth`); if integer, it will be passed to `layout` when plotting
- **titGraph** (character) custom title to plot of distribution of quantitation values
- **wex** (integer) relative expansion factor of the violin-plot (will be passed to `vioplotW`)
- **specPref** (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - marked as 'species2', 'species3'....); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument `annotCol`)
- **gr** (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from `sdrf` and/or `suplAnnotFile` (if provided)
- **sdrf** (character, list or data.frame) optional extraction and adding of experimential meta-data: if character, this may be the ID at ProteomeExchange, the second element may give futher indications for automatic organization of groups of replicates. Besides, the output from `readSdrf` or a list from `defineSamples` may be provided; if `gr` is provided, `gr` gets priority for grouping of replicates
- **suplAnnotFile** (logical or character) optional reading of supplemental files; however, if `gr` is provided, `gr` gets priority for grouping of replicates; if character the respective file-name (relative or absolute path)
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allow easier tracking of messages produced

Details
This function has been developed using DIA-NN version 1.8.x. Note, reading gene-group (gg) files is in principle possible, but resulting files typically lack protein-identifiers which may be less convenient in later steps of analysis. Thus, it is suggested to rather read protein-group (pg) files.

Using the argument supAnnotFile it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information.

Value
This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot, $counts an array with number of peptides, $quantNotes and $notes; or if separateAnnot=FALSE the function returns a data.frame with annotation and quantitation only

See Also
read.table, normalizeThis), readMaxQuantFile, readProtDiscovFile, readProlineFile

Examples

diaNNFil <- "tinyDiaNN1.tsv.gz"
This file contains much less identifications than one may usually obtain
path1 <- system.file("extdata", package="wrProteo")
let's define the main species and allow tagging some contaminants
specPref1 <- c(conta="conta|CON_|LYSC_CHICK", mainSpecies="HUMAN")
dataNN <- readDiaNNFile(path1, file=diaNNFil, specPref=specPref1, tit="Tiny DIA-NN Data")
summary(dataNN$quant)

readDiaNNPeptides Read Tabulated Files Exported by DiaNN At Peptide Level

Description
This function allows importing peptide identification and quantification results from DiaNN. Data should be exported as tabulated text (tsv) to allow import by thus function. Quantification data and other relevant information will be extracted similar like the other import-functions from this package. The final output is a list containing as (main) elements: $annot, $raw and $quant, or a data.frame with the quantification data and a part of the annotation if argument separateAnnot=FALSE.
readDiaNNPeptides

Usage

readDiaNNPeptides(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 read0asNA = TRUE,
 quantCol = '\\.raw$",
 annotCol = NULL,
 refLi = NULL,
 separateAnnot = TRUE,
 FDRCol = NULL,
 groupPref = list(lowNumberOfGroups = TRUE),
 plotGraph = TRUE,
 titGraph = "DiaNN",
 wex = 1.6,
 specPref = c(conta = "CON|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 gr = NULL,
 sdrf = NULL,
 suplAnnotFile = FALSE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

fileName (character) name of file to be read
path (character) path of file to be read
normalizeMeth (character) normalization method, defaults to median, for more details see normalizeThis
sampleNames (character) custom column-names for quantification data; this argument has priority over suplAnnotFile
read0asNA (logical) decide if initial quantifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant
annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..AAs","MW..kDa."))
refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final log2 (normalized) quantitations
FDRCol (list) - not used
groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to `readSampleMetaData`. May contain `lowNumberOfGroups=FALSE` for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group).

plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using `normalizeMeth`); if integer, it will be passed to `layout` when plotting.

titGraph (character) custom title to plot of distribution of quantitation values.

wex (integer) relative expansion factor of the violin-plot (will be passed to `vioplotW`).

specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - marked as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument `annotCol`).

gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from `sdrf` and/or `suplAnnotFile` (if provided).

sdrf (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second element may give further indications for automatic organization of groups of replicates. Besides, the output from `readSdrf` or a list from `defineSamples` may be provided; if `gr` is provided, `gr` gets priority for grouping of replicates.

suplAnnotFile (logical or character) optional reading of supplemental files; however, if `gr` is provided, `gr` gets priority for grouping of replicates; if character the respective file-name (relative or absolute path).

silent (logical) suppress messages.

debug (logical) additional messages for debugging.

callFrom (character) allow easier tracking of messages produced.

Details

This function has been developed using DiaNN version 1.8.x.

Using the argument `suplAnnotFile` it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information.

Value

This function returns a list with `$raw` (initial/raw abundance values), `$quant` with final normalized quantitations, `$annot`, `$counts` an array with number of peptides, `$quantNotes` and `$notes`; or if `separateAnnot=FALSE` the function returns a data.frame with annotation and quantitation only.

See Also

`read.table`, `normalizeThis`, `readMaxQuantFile`, `readProtDiscovFile`, `readProlineFile`
Examples

diaNNFi1 <- "tinyDiaNN1.tsv.gz"
This file contains much less identifications than one may usually obtain
path1 <- system.file("extdata", package="wrProteo")
let's define the main species and allow tagging some contaminants
specPref1 <- c(conta="conta|CON_|LYSC_CHICK", mainSpecies="HUMAN")
dataNN <- readDiaNNFile(path1, file=diaNNFi1, specPref=specPref1, tit="Tiny DIA-NN Data")
summary(dataNN$quant)

readFasta2

Read File Of Protein Sequences In Fasta Format

Description

Read fasta formatted file (from UniProt) to extract (protein) sequences and name. If tableOut=TRUE output may be organized as matrix for separating meta-annotation (eg uniqueIdentifier, entryName, proteinName, GN) in separate columns.

Usage

readFasta2(
 filename,
 delim = "|",
 databaseSign = c("sp", "tr", "generic", "gi"),
 removeEntries = NULL,
 tableOut = FALSE,
 UniprSep = c("OS=" , "OX=" , "GN=" , "PE=" , "SV="),
 strictSpecPattern = TRUE,
 cleanCols = TRUE,
 silent = FALSE,
 callFrom = NULL,
 debug = FALSE
)

Arguments

filename (character) names fasta-file to be read
delim (character) delimiter at header-line
databaseSign (character) characters at beginning right after the '>' (typically specifying the data-base-origin), they will be excluded from the sequence-header
removeEntries (character) if 'empty' allows removing entries without any sequence entries; set to 'duplicated' to remove duplicate entries (same sequence and same header)
tableOut (logical) toggle to return named character-vector or matrix with enhanced parsing of fasta-header. The resulting matrix will contain the comumns 'database', 'uniqueIdentifier', 'entryName', and further columns depending on argument UniprSep
readFragpipeFile

Read Tabulated Files Exported by FragPipe At Protein Level

Description

This function allows importing protein identification and quantification results from Fragpipe which were previously exported as tabulated text (tsv). Quantification data and other relevant information will be extracted similar like the other import-functions from this package. The final output is a list containing the elements: $annot, $raw and $quant, or a data.frame with the quantification data and a part of the annotation if argument separateAnnot=FALSE.

UniprSep (character) separators for further separating entry-fields if tableOut=TRUE, see also UniProt-FASTA-headers
strictSpecPattern (logical or character) pattern for recognizing EntryName which is typically preceding ProteinName (separated by ’ ’); if TRUE the name (capital letters and digits) must contain in the second part '_' plus capital letters, if FALSE the second part may be absent; if not matching pattern the text will be at the beginning of the ProteinName

cleanCols (logical) remove columns with all entries NA, if tableOut=TRUE
silent (logical) suppress messages
callFrom (character) allows easier tracking of messages produced
debug (logical) supplemental messages for debugging

Value

This function returns (depending on argument tableOut) a simple character vector (of sequences) with (entire) Uniprot annotation as name or b) a matrix with columns: 'database','uniqueIdentifier','entryName','proteinName','sequence' and further columns depending on argument UniprSep

See Also

writeFasta2 for writing as fasta; for reading scan or read.fasta from the package seqinr

Examples

Tiny example with common contaminants
path1 <- system.file('extdata', package='wrProteo')
fiNa <- "conta1.fasta.gz"
fasta1 <- readFasta2(file.path(path1, fiNa))
now let's read and further separate annotation-fields
fasta2 <- readFasta2(file.path(path1, fiNa), tableOut=TRUE)
str(fasta1)

readFragpipeFile

Usage

readFragpipeFile(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 read0asNA = TRUE,
 quantCol = "Intensity$",
 annotCol = NULL,
 refLi = NULL,
 separateAnnot = TRUE,
 FDRCol = list("Protein.Probability", lim = 0.99),
 groupPref = list(lowNumberOfGroups = TRUE),
 plotGraph = TRUE,
 titGraph = "FragPipe",
 wex = 1.6,
 specPref = c(conta = "CON|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 gr = NULL,
 sdrf = NULL,
 suplAnnotFile = FALSE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

fileName (character) name of file to be read
path (character) path of file to be read
normalizeMeth (character) normalization method, defaults to median, for more details see normalizeThis
sampleNames (character) custom column-names for quantification data; this argument has priority over suplAnnotFile
read0asNA (logical) decide if initial quantifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..AAs","MW..kDa."))
refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final log2 (normalized) quantitations
FDRCol (list) optional indication to search for protein FDR information
groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)

plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using normalizeMeth); if integer, it will be passed to layout when plotting

titGraph (character) custom title to plot of distribution of quantitation values

wex (integer) relative expansion factor of the violin-plot (will be passed to vioplotW)

specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as ‘conta’, 2nd for main species-marked as ‘mainSpe’, and optional following ones for supplemental tags/species - maked as ‘species2’, ‘species3’...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)

gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)

sdrf (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give futher indicatations for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf

suplAnnotFile (logical or character) optional reading of supplemental files; however, if gr is provided, gr gets priority for grouping of replicates; if character the respective file-name (relative or absolute path)

silent (logical) suppress messages

debug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced

Details

This function has been developed using Fragpipe versions 18.0 and 19.0.

Using the argument suplAnnotFile it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information.

Value

This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot, $counts an array with number of peptides, $quantNotes and $notes; or if separateAnnot=FALSE the function returns a data.frame with annotation and quantitation only

See Also

read.table, normalizeThis), readMaxQuantFile, readProtDiscovFile, readProlineFile
Examples

FPproFi1 <- "tinyFragpipe1.tsv.gz"
path1 <- system.file("extdata", package="wrProteo")
let's define the main species and allow tagging some contaminants
specPref1 <- c(conta="conta|CON_|LYSC_CHICK", mainSpecies="MOUSE")
dataFP <- readFragpipeFile(path1, file=FPproFi1, specPref=specPref1, tit="Tiny Fragpipe Data")
summary(dataFP$quant)

description

This function allows importing initial peptide identification and quantification results from Ionbot which were exported as tabulated tsv can be imported and relevant information extracted. The final output is a list containing 3 main elements: $annot, $raw and optional $quant, or returns data.frame with entire content of file if separateAnnot=FALSE.

Usage

readIonbotPeptides(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 suplAnnotFile = TRUE,
 gr = NULL,
 sdrf = NULL,
 read0asNA = TRUE,
 quantCol = "^Abundances*",
 annotCol = NULL,
 contamCol = "Contaminant",
 refLi = NULL,
 separateAnnot = TRUE,
 FDRCol = list(c("Protein.FDR.Confidence","High"), c("Found.in.Sample.", "High")),
 plotGraph = TRUE,
 chUnit = TRUE,
 titGraph = "Ionbot",
 wex = 1.6,
 specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
Arguments

fileName (character) name of file to be read
path (character) path of file to be read
normalizeMeth (character) normalization method, defaults to median, for more details see /link[wrMisc]{normalizeThis}
sampleNames (character) new column-names for quantification data (ProteomeDiscoverer does not automatically use file-names from spectra); this argument has priority over suplAnnotFile
suplAnnotFile (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)
gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)
sdrf (character, list or data.frame) optional extraction and adding of experimenal meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf
read0asNA (logical) decide if initial quantifications at 0 should be transformed to NA
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..AAs","MW..kDa.")
contamCol (character or integer, length=1) which columns should be used for contaminants marked by ProteomeDiscoverer. If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants
refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations
FDRCol (list) optional indication to search for protein FDR information
plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using normalizeMeth); if integer, it will be passed to layout when plotting
chUnit (logical or character) will be passed to readSampleMetaData() for (optional) adjustig of unit-prefixes in meta-data group labels, in case multiple different unit-prefixes are used (eg '100pMol' and '1nMol').
titGraph (character) depreciated custom title to plot, please use 'tit'
wex (integer) relative expansion factor of the violin-plot (will be passed to /link[wrGraph]{vioplotW})
specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - marked as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)

silent (logical) suppress messages

debug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced

Details

The format of resulting files at export also depends which columns are chosen as visible inside ProteomeDiscoverer and subsequently get chosen for export. Using the argument supplAnnotFile it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information.

If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants

Besides, full raw-file path will be extracted for $notes in final output.

Value

This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot, $counts an array with number of peptides, $quantNotes and $notes; or if separateAnnot=FALSE the function returns a data.frame with annotation and quantitation only

See Also

/link[utils]{read.table}, /link{readMaxQuantFile}, /link{readProteomeDiscovererFile}, /link[wrMisc]{normalizeThis})

Examples

path1 <- system.file("extdata", package="wrProteo")
fileIonbot <- "tinyIonbotFile1.tsv.gz"
#fiNa <- "C:\E\projects\MassSpec\smallProj\2024\ionbot_UPS1_9815\Ionbot_Pept\QuantifiedPeptides.tsv"

datIonbotPept <- readIonbotPeptides(fileIonbot, path=path1)
readMassChroQFile

Read tabulated files imported from MassChroQ

Description

Quantification results using MassChroQ should be initially treated using the R-package Mass-ChroqR (both distributed by the PAPPSO at http://pappso.inrae.fr/) for initial normalization on peptide-level and combination of peptide values into protein abundances.

Usage

readMassChroQFile(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 refLi = NULL,
 separateAnnot = TRUE,
 titGraph = "MassChroQ",
 wex = NULL,
 specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 gr = NULL,
 sdrf = NULL,
 suplAnnotFile = FALSE,
 groupPref = list(lowNumberOfGroups = TRUE),
 plotGraph = TRUE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

fileName
(character) name of file to be read (may be tsv, csv, rda or rdata); both US and European csv formats are supported

path
(character) path of file to be read

normalizeMeth
(character) normalization method (will be sent to normalizeThis)

sampleNames
(character) custom column-names for quantification data; this argument has priority over suplAnnotFile

refLi
(character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given

separateAnnot
(logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations

titGraph
(character) custom title to plot of distribution of quantitation values
readMassChroQFile

wex (integer) relative expansion factor of the violin-plot (will be passed to \texttt{vioplotW})
specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - made as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)
gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from \texttt{sdrf} and/or \texttt{suplAnnotFile} (if provided)
sdrf (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give further indications for automatic organization of groups of replicates. Besides, the output from \texttt{readSdrf} or a list from \texttt{defineSamples} may be provided; if \texttt{gr} is provided, \texttt{gr} gets priority for grouping of replicates; if \texttt{sdrfOrder=TRUE} the output will be put in order of \texttt{sdrf}suplAnnotFile (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if \texttt{gr} is provided, \texttt{gr} gets priority for grouping of replicates; if \texttt{TRUE} defaults to file '*InputFiles.txt' (needed to match information of \texttt{sdrf}) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)
groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to \texttt{readSampleMetaData}. May contain \texttt{lowNumberOfGroups=FALSE} for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)
plotGraph (logical) optional plot of type vioplot of initial and normalized data (using \texttt{normalizeMeth}); if integer, it will be passed to \texttt{layout} when plotting
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allow easier tracking of messages produced

Details

The final output of this function is a list containing 3 elements: \$annot, \$raw, \$quant and \$notes, or returns data.frame with entire content of file if \texttt{separateAnnot=FALSE}. Other list-elements remain empty to keep format compatible to other import functions.

This function has been developed using MassChroQ version 2.2 and R-package MassChroqR version 0.4.0. Both are distributed by the PAPPSO (http://pappso.inrae.fr/). When saving quantifications generated in R as RData (with extension .rda) using the R-packages associated with MassChroq, the ABUNDANCE_TABLE produced by \texttt{mcq.get.compar(XICAB)} should be used. After import data get (re-)normalized according to \texttt{normalizeMeth} and \texttt{refLi}, and boxplots or vioplots drawn.

Value

This function returns list with \$raw (initial/raw abundance values), \$quant with final normalized quantitations, \$annot, \$counts an array with number of peptides, \$quantNotes and \$notes; or if \texttt{separateAnnot=FALSE} the function returns a data.frame with annotation and quantitation only.
readMaxQuantFile

Read Quantitation Data-Files (proteinGroups.txt) Produced From MaxQuant At Protein Level

Description

Protein quantification results from MaxQuant can be read using this function and relevant information extracted. Input files compressed as .gz can be read as well. The protein abundance values (XIC), peptide counting information like number of unique razor-peptides or PSM values and sample-annotation (if available) can be extracted, too. The protein abundance values may be normalized using multiple methods (median normalization as default), the determination of normalization factors can be restricted to specific proteins (normalization to bait protein(s), or to invariable matrix of spike-in experiments). The protein annotation data gets parsed to extract specific fields (ID, name, description, species ...). Besides, a graphical display of the distribution of protein abundance values may be generated before and after normalization.

Usage

```r
readMaxQuantFile(
  path,
  fileName = "proteinGroups.txt",
  normalizeMeth = "median",
  quantCol = "LFQ.intensity",
  contamCol = "Potential.contaminant",
  pepCountCol = c("Razor + unique peptides", "Unique peptides", "MS.MS.count"),
  read0asNA = TRUE,
  refLi = NULL,
  sampleNames = NULL,
  extrColNames = c("Majority.protein.IDs", "Fasta.headers", "Number.of.proteins"),
  specPref = c(conta = "conta|CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
  remRev = TRUE,
  remConta = FALSE,
  separateAnnot = TRUE,
  gr = NULL,
  sdrf = NULL,
  supplAnnotFile = NULL,
  groupPref = list(lowNumberOfGroups = TRUE),
  titGraph = NULL,
)
```

Examples

```r
path1 <- system.file("extdata", package="wrProteo")
fiNa <- "tinyMC.RData"
dataMC <- readMassChroQFile(file=fiNa, path=path1)
```

See Also

`read.table, normalizeThis`, `readProlineFile`
Arguments

path (character) path of file to be read

fileName (character) name of file to be read (default 'proteinGroups.txt' as typically generated by MaxQuant in txt folder). Gz-compressed files can be read, too.

normalizeMeth (character) normalization method, defaults to median, for more details see normalizeThis

quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep

contamCol (character or integer, length=1) which columns should be used for contaminants

pepCountCol (character) pattern to search among column-names for count data (1st entry for 'Razor + unique peptides', 2nd fro 'Unique peptides', 3rd for 'MS.MS.count' (PSM))

read0asNA (logical) decide if initial quntifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)

refLi (character or integer) custom specify which line of data should be used for normalization, ie which line is main species; if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given

sampleNames (character) custom column-names for quantification data; this argument has priority over supplAnnotFile

extrColNames (character) column names to be read (1st position: prefix for LFQ quantitation, default 'LFQ.intensity'; 2nd: column name for protein-IDs, default 'Majority.protein.IDs'; 3rd: column names of fasta-headers, default 'Fasta.headers', 4th: column name for number of protein IDs matching, default 'Number.of.proteins')

specPref (character) prefix to identifiers allowing to separate i) recognize contamination database, ii) species of main identifications and iii) spike-in species

remRev (logical) option to remove all protein-identifications based on reverse-peptides

remConta (logical) option to remove all proteins identified as contaminants

separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations

gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or supplAnnotFile (if provided)

sdrf (character, list or data.frame) optional extraction and adding of experimential meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give futher indicatations for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf
sup1AnnotFile (logical or character) optional reading of supplemental files produced by MaxQuant; if gr is provided, it gets priority for grouping of replicates if TRUE default to 'summary.txt' (needed to match information of sdrf) and 'parameters.txt' which can be found in the same folder as the main quantitation results; if character the respective file-names (relative ro absolute path), 1st is expected to correspond to 'summary.txt' (tabulated text, the samples as given to MaxQuant) and 2nd to 'parameters.txt' (tabulated text, all parameters given to MaxQuant)

groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)

titGraph (character) custom title to plot of distribution of quantitation values

wex (numeric) relative expansion factor of the violin in plot

plotGraph (logical) optional plot vioplot of initial and normalized data (using normalizeMeth); alternatively the argument may contain numeric details that will be passed to layout when plotting

silent (logical) suppress messages

debug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced

Details

MaxQuant is proteomics quantification software provided by the MaxPlanck institute. By default MaxQuant writes the results of each run to the path combined/txt, from there (only) the files 'proteinGroups.txt' (main quantitation at protein level), 'summary.txt' and 'parameters.txt' will be used.

Meta-data describing the samples and experimental setup may be available from two sources: a) The file summary.txt which gets produced by MaxQuant in the same folder as the main quantification data. b) Furthermore, meta-data deposited as sdrf at Pride can be retrieved (via the respective github page) when giving the accession number in argument sdrf. Then, the meta-data will be examined for determining groups of replicates and the results thereof can be found in $sampleSetup$levels. Alternatively, a dataframe formatted like sdrf-files (ie for each sample a separate line, see also function readSdrf) may be given. In tricky cases it is also possible to precise the column-name to use for defining the groups of replicates or the method for automatically choosing the most suited column via the 2nd value of the argument sdrf. Please note, that sdrf is still experimental and only a small fraction of proteomics-data on Pride have been annotated accordingly. If a valid sdrf is furnished, it’s information has priority over the information extracted from the MaxQuant produced file summary.txt.

This import-function has been developed using MaxQuant versions 1.6.10.x to 2.0.x, the format of the resulting file 'proteinGroups.txt' is typically well conserved between versions. The final output is a list containing these elements: raw, $quant$, $annot$, $counts$, $sampleSetup$, $quantNotes$, $notes$, or (if separateAnnot=FALSE) data.frame with annotation- and main quantification-content. If sdrf information has been found, an additional list-element setup will be added containing the entire meta-data as setup$meta and the suggested organization as setup$lev.
Value
This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot (columns), $counts an array with 'PSM' and 'NoOfRazorPeptides', $quantNotes, $notes and optional setup for meta-data from sdrf; or a data.frame with quantitation and annotation if separateAnnot=FALSE

See Also
read.table, normalizeThis, readProteomeDiscovererFile, readProlineFile (and other importfunctions), matrixNAinspect

Examples
path1 <- system.file("extdata", package="wrProteo")
Here we'll load a short/trimmed example file (thus not the MaxQuant default name)
fiNa <- "proteinGroupsMaxQuant1.txt.gz"
specPr <- c(conta="CON_|LYSC_CHICK", mainSpecies="YEAST", spike="HUMAN_UPS")
dataMQ <- readMaxQuantFile(path1, file=fiNa, specPref=specPr, tit="tiny MaxQuant")
summary(dataMQ$quant)
matrixNAinspect(dataMQ$quant, gr=gl(3,3))

readMaxQuantPeptides Read Peptide Identification and Quantitation Data-Files (peptides.txt)
Produced By MaxQuant

Description
Peptide level identification and quantification data produced by MaxQuant can be read using this function and relevant information extracted. Input files compressed as .gz can be read as well. The peptide abundance values (XIC), peptide counting information and sample-annotation (if available) can be extracted, too.

Usage
readMaxQuantPeptides(
 path,
 fileName = "peptides.txt",
 normalizeMeth = "median",
 quantCol = "Intensity",
 contamCol = "Potential.contaminant",
 pepCountCol = "Experiment",
 refLi = NULL,
 sampleNames = NULL,
 specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "HUMAN"),
)
remRev = TRUE,
remConta = FALSE,
separateAnnot = TRUE,
gr = NULL,
sdrf = NULL,
suplAnnotFile = NULL,
groupPref = list(lowNumberOfGroups = TRUE),
titGraph = NULL,
wex = 1.6,
plotGraph = TRUE,
silent = FALSE,
debug = FALSE,
callFrom = NULL
)

Arguments

path (character) path of file to be read
fileName (character) name of file to be read (default 'peptides.txt' as typically generated by MaxQuant in txt folder). Gz-compressed files can be read, too.
normalizeMeth (character) normalization method (for details see normalizeThis)
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
contamCol (character or integer, length=1) which columns should be used for contaminants
pepCountCol (character) pattern to search among column-names for count data (defaults to 'Experiment')
refLi (character or integer) custom specify which line of data should be used for normalization, ie which line is main species; if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
sampleNames (character) custom column-names for quantification data; this argument has priority over supplAnnotFile
extrColNames (character) column names to be read (1st position: prefix for quantitation; default 'intensity'; 2nd: column name for peptide-IDs, default)
specPref (character) prefix to identifiers allowing to separate i) recognize contamination database, ii) species of main identifications and iii) spike-in species
remRev (logical) option to remove all peptide-identifications based on reverse-peptides
remConta (logical) option to remove all peptides identified as contaminants
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations
gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or supplAnnotFile (if provided)
sdrf (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from
readMaxQuantPeptides

defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf.

supAnnotFile (logical or character) optional reading of supplemental files produced by MaxQuant; if gr is provided, it gets priority for grouping of replicates if TRUE default to files 'summary.txt' (needed to match information of sdrf) and 'parameters.txt' which can be found in the same folder as the main quantitation results; if character the respective file-names (relative ro absolute path), 1st is expected to correspond to 'summary.txt' (tabulated text, the samples as given to MaxQuant) and 2nd to 'parameters.txt' (tabulated text, all parameters given to MaxQuant).

groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group).

titGraph (character) custom title to plot

titGraph (character) custom title to plot

wex (numeric) relative expansion factor of the violin in plot

plotGraph (logical) optional plot vioplot of initial and normalized data (using normalizeMeth); alternatively the argument may contain numeric details that will be passed to layout when plotting

silent (logical) suppress messages

debuge (logical) suppress messages for debugging

callFrom (character) allow easier tracking of messages produced

Details

The peptide annotation data gets parsed to extract specific fields (ID, name, description, species ...). Besides, a graphical display of the distribution of peptide abundance values may be generated before and after normalization.

MaxQuant is proteomics quantification software provided by the MaxPlanck institute. By default MaxQuant write the results of each run to the path combined/txt, from there (only) the files 'peptides.txt' (main quantitation at peptide level), 'summary.txt' and 'parameters.txt' will be used for this function.

Meta-data describing the samples and experimental setup may be available from two sources: a) The file summary.txt which gets produced by MaxQuant in the same folder as the main quantitation data. b) Furthermore, meta-data deposited as sdrf at Pride can be retrieved (via the respective github page) when giving the accession number in argument sdrf. Then, the meta-data will be examined for determining groups of replicates and the results thereof can be found in $sampleSetup$levels. Alternatively, a dataframe formatted like sdrf-files (ie for each sample a separate line, see also function readSdrf) may be given. In tricky cases it is also possible to precise the column-name to use for defining the groups of replicates or the method for automatically choosing the most suited column via the 2nd value of the argument sdrf, see also the function defineSamples (which gets used internally). Please note, that sdrf is still experimental and only a small fraction of proteomics-data on Pride have been annotated accordingly. If a valid sdrf is furnished, it's information has priority over the information extracted from the MaxQuant produced file summary.txt.

This function has been developed using MaxQuant versions 1.6.10.x to 2.0.x, the format of the resulting file 'peptides.txt' is typically well conserved between versions. The final output is a list containing these elements: $raw, $quant, $annot, $counts, $sampleSetup, $quantNotes, $notes, or
Read csv files exported by OpenMS

Description

Protein quantification results from OpenMS which were exported as .csv can be imported and relevant information extracted. Peptide data get summarized by protein by top3 or sum methods. The final output is a list containing the elements: $annot, $raw, $quant ie normalized final quantifications, or returns data.frame with entire content of file if separateAnnot=FALSE.

Usage

readOpenMSFile(
 fileName = NULL,
 path = NULL,
 normalizeMeth = "median",
 refLi = NULL,
 sampleNames = NULL,
 quantCol = "Intensity",
 sumMeth = "top3",
 minPepNo = 1,
 protNaCol = "ProteinName",
 separateAnnot = TRUE,
plotGraph = TRUE,
tit = "OpenMS",
wex = 1.6,
specPref = c(conta = "LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
silent = FALSE,
debug = FALSE,
callFrom = NULL)

Arguments

fileName (character) name of file to be read
path (character) path of file to be read
normalizeMeth (character) normalization method (will be sent to normalizeThis)
refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
sampleNames (character) new column-names for quantification data (by default the names from files with spectra will be used)
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
sumMeth (character) method for summarizing peptide data (so far 'top3' and 'sum' available)
minPepNo (integer) minimum number of peptides to be used for retruning quantification
protNaCol (character) column name to be read/extracted for the annotation section (default "ProteinName")
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations
plotGraph (logical) optional plot of type vioplot of initial and normalized data (using normalizeMeth); if integer, it will be passed to layout when plotting
tit (character) custom title to plot
wex (integer) relative expansion factor of the violin-plot (will be passed to vioplotW)
specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - made as 'species2','species3'...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)
silent (logical) suppress messages
debug (logical) display additional messages for debugging
callFrom (character) allow easier tracking of message(s) produced
Details

This function has been developed based on the OpenMS peptide-identification and label-free-quantification module. Csv input files may also be compresses as .gz.

Note: With this version the information about protein-modifications (PTMs) may not yet get exploited fully.

Value

This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot, $counts an array with number of peptides, $quantNotes,$expSetup and $notes; or if separateAnnot=FALSE the function returns a data.frame with annotation and quantitation only

See Also

read.table, normalizeThis), readMaxQuantFile, readProlineFile, readProtDiscovFile

Examples

path1 <- system.file("extdata", package="wrProteo")
fiNa <- "OpenMS_tiny.csv.gz"
dataOM <- readOpenMSFile(file=fiNa, path=path1, tit="tiny OpenMS example")
summary(dataOM$quant)

readProlineFile Read xlsx, csv or tsv files exported from Proline and MS-Angel

Description

Quantification results from Proline Proline and MS-Angel exported as xlsx format can be read directly using this function. Besides, files in tsv, csv (European and US format) or tabulated txt can be read, too. Then relevant information gets extracted, the data can optionally normalized and displayed as boxplot or vioplot. The final output is a list containing 6 elements: $raw, $quant, $annot, $counts, $quantNotes and $notes. Alternatively, a data.frame with annotation and quantitation data may be returned if separateAnnot=FALSE. Note: There is no normalization by default since quite frequently data produced by Proline are already sufficiently normalized. The figure produced using the argument plotGraph=TRUE may help judging if the data appear sufficiently normalized (distributions should align).

Usage

readProlineFile(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 logConvert = TRUE,
sampleNames = NULL,
quantCol = "^abundance_",
annotCol = c("accession", "description", "is_validated", "protein_set_score",
 "X.peptides", "X.specific_peptides"),
remStrainNo = TRUE,
pepCountCol = c("^psm_count_", "^peptides_count_"),
trimColnames = FALSE,
refLi = NULL,
separateAnnot = TRUE,
plotGraph = TRUE,
titGraph = NULL,
wex = 2,
specPref = c(conta = "_conta\|", mainSpecies = "OS=Homo sapiens"),
gr = NULL,
sdrf = NULL,
suplAnnotfile = TRUE,
groupPref = list(lowNumberOfGroups = TRUE),
silent = FALSE,
callFrom = NULL,
debug = FALSE
)

Arguments

fileName (character) name of file to read: .xlsx-, .csv-, .txt- and .tsv can be read (csv, txt
and tsv may be gz-compressed). Reading xlsx requires package 'readxl'.
path (character) optional path (note: Windows backslash should be protected or written as '/')
normalizeMeth (character) normalization method (for details and options see normalizeThis)
logConvert (logical) convert numeric data as log2, will be placed in $quant
sampleNames (character) custom column-names for quantification data; this argument has prior-
ity over suplAnnotFile
quantCol (character or integer) columns with main quantitation-data: precise colnames to
extract, or if length=1 content of quantCol will be used as pattern to search
among column-names for $quant using grep
annotCol (character) precise colnames or if length=1 pattern to search among column-
names for $annot
remStrainNo (logical) if TRUE, the organism annotation will be trimmed to uppercaseWord+space+lowercaseWord
(pepCountCol (character) pattern to search among column-names for count data of PSM and
NoOfPeptides
trimColnames (logical) optional trimming of column-names of any redundant characters from
beginning and end
refLi (integer) custom decide which line of data is main species, if single character
entry it will be used to choose a group of species (eg 'mainSpe')
readProlineFile

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>separateAnnot</td>
<td>(logical) separate annotation form numeric data (quantCol and annotCol must be defined)</td>
</tr>
<tr>
<td>plotGraph</td>
<td>(logical or matrix of integer) optional plot vioplot of initial data; if integer, it will be passed to layout when plotting</td>
</tr>
<tr>
<td>titGraph</td>
<td>(character) custom title to plot of distribution of quantitation values</td>
</tr>
<tr>
<td>wex</td>
<td>(integer) relative expansion factor of the violin-plot (will be passed to vioplotW)</td>
</tr>
<tr>
<td>specPref</td>
<td>(character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - marked as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)</td>
</tr>
<tr>
<td>gr</td>
<td>(character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)</td>
</tr>
<tr>
<td>sdrf</td>
<td>(character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf</td>
</tr>
<tr>
<td>suplAnnotFile</td>
<td>(logical or character) optional reading of supplemental files produced by quantification software; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)</td>
</tr>
<tr>
<td>groupPref</td>
<td>(list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (default to low number of groups, ie higher number of samples per group)</td>
</tr>
<tr>
<td>silent</td>
<td>(logical) suppress messages</td>
</tr>
<tr>
<td>callFrom</td>
<td>(character) allow easier tracking of messages produced</td>
</tr>
<tr>
<td>debug</td>
<td>(logical) display additional messages for debugging</td>
</tr>
</tbody>
</table>

Details

This function has been developed using Proline version 1.6.1 coupled with MS-Angel 1.6.1. The classical way of using this function consists in exporting results produced by Proline and MS-Angel as xlsx file. Besides, other formats may be read, too. This includes csv (eg the main sheet/table of the xlsx exported file saved as csv). **WOMBAT** represents an effort to automatize quantitative proteomics experiments, using this route data get exported as txt files which can be read, too.

Value

This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot (columns), $counts an array with 'PSM' and 'NoOfPeptides', $quantNotes and $notes; or a data.frame with quantitation and annotation if separateAnnot=FALSE
readProtDiscovererPeptides

See Also

read.table

Examples

path1 <- system.file("extdata", package="wrProteo")
fiNa <- "exampleProlineABC.csv.gz"
dataABC <- readProlineFile(path=path1, file=fiNa)
summary(dataABC$quant)

readProtDiscovererPeptides

readProtDiscovererPeptides, depreciated

Description

This function has been depreciated and replaced by readProteomeDiscovererPeptides (from this package).

Usage

readProtDiscovererPeptides(...)

Arguments

... Actually, this function doesn’t ready any input any more

Value

This function returns NULL

See Also

readProteomeDiscovererFile, readProteomeDiscovererPeptides
Description

Deprecated old version of Protein identification and quantification results from Thermo ProteomeDiscoverer which were exported as tabulated text can be imported and relevant information extracted. The final output is a list containing 3 elements: $annot, $raw and optional $quant, or returns data.frame with entire content of file if separateAnnot=FALSE. Please use readProteomeDiscovererFile() from the same package instead!

Usage

readProtDiscovFile(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 read0asNA = TRUE,
 quantCol = "^Abundances*",
 annotCol = NULL,
 contamCol = "Contaminant",
 refLi = NULL,
 separateAnnot = TRUE,
 FDRCol = list(c("^Protein.FDR.Confidence", "High"), c("^Found.in.Sample.", "High")),
 gr = NULL,
 sdrf = NULL,
 sup1AnnotFile = TRUE,
 groupPref = list(lowNumberOfGroups = TRUE),
 specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 plotGraph = TRUE,
 wex = 1.6,
 titGraph = "Proteome Discoverer",
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

- **fileName** (character) name of file to be read
- **path** (character) path of file to be read
- **normalizeMeth** (character) normalization method, defaults to median, for more details see normalizeThis
- **sampleNames** (character) custom column-names for quantification data (ProteomeDiscoverer does not automatically use file-names from spectra); this argument has priority over sup1AnnotFile
readProtDiscovFile

read0asNA (logical) decide if initial quantifications at 0 should be transformed to NA
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..PSMs","X..Unique.Peptides","X..AAs","MW..kDa."))
contamCol (character or integer, length=1) which columns should be used for contaminants marked by ProteomeDiscoverer. If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants
refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final log2 (normalized) quantitations
FDRCol (list) optional indication to search for protein FDR information
gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or supplAnnotFile (if provided)
sdrf (character, list or data.frame) optional extraction and adding of experimenal meta-data: if character, this may be the ID at ProteomeExchange, the second element may give futher indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates
suplAnnotFile (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)
groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)
specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - made as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)
plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using normalizeMeth); if integer, it will be passed to layout when plotting
wex (integer) relative expansion factor of the violin-plot (will be passed to vioplotW)
titGraph (character) custom title to plot of distribution of quantitation values
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allow easier tracking of messages produced
Details

This function has been replaced by `readProteomeDiscovererFile` (from the same package)! The syntax and structure of output has remained the same, you can simply replace the name of the function called.

This function has been developed using Thermo Proteome Discoverer versions 2.2 to 2.5. The format of resulting files at export also depends which columns are chosen as visible inside Proteome Discoverer and subsequently get chosen for export. Using the argument `suplAnnotFile` it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information. If a column named `contamCol` is found, the data will be lateron filtered to remove all contaminants, set to `NULL` for keeping all contaminants.

This function replaces the depreciated function `readPDExport`.

Value

This function returns a list with `$raw` (initial/raw abundance values), `$quant` with final normalized quantitations, `$annot`, `$counts` an array with number of peptides, `$quantNotes` and `$notes`; or if `separateAnnot=FALSE` the function returns a `data.frame` with annotation and quantitation only.

See Also

`read.table`, `normalizeThis`, `readMaxQuantFile`, `readProlineFile`, `readFragpipeFile`

Examples

```r
path1 <- system.file("extdata", package="wrProteo")
fiNa <- "tinyPD_allProteins.txt.gz"
## Please use the function readProteinDiscovererFile(), as shown below (same syntax)
dataPD <- readProteomeDiscovererFile(file=fiNa, path=path1, suplAnnotFile=FALSE)
summary(dataPD$quant)
```

readProtDiscovPeptides

Read Tabulated Files Exported by ProteomeDiscoverer At Peptide Level, Deprecated

Description

Depreciated old version of Peptide identification and quantification results from Thermo Proteome Discoverer which were exported as tabulated text can be imported and relevant information extracted. The final output is a list containing 3 elements: `$annot`, `$raw` and optional `$quant`, or returns `data.frame` with entire content of file if `separateAnnot=FALSE`.
Usage

readProtDiscovPeptides(
 fileName, # (character) name of file to be read
 path = NULL, # (character) path of file to be read
 normalizeMeth = "median", # (character) normalization method, defaults to median, for more details see normalizeThis
 sampleNames = NULL, # (character) new column-names for quantification data (ProteomeDiscoverer does not automatically use file-names from spectra); this argument has priority over suplAnnotFile
 suplAnnotFile = TRUE, # (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)
 gr = NULL, # (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)
 sdrf = NULL, # (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second element may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates
 read0asNA = TRUE, # (logical) decide if initial quantifications at 0 should be transformed to NA
 quantCol = "^Abundances*", # (character) quantification data
 annotCol = NULL, # (character) annotation data
 contamCol = "Contaminant", # (character) contaminant data
 refLi = NULL, # (character) reference list
 separateAnnot = TRUE, # (logical) separate annotations
 FDRCol = list(c("Protein.FDR.Confidence", "High"), c("Found.in.Sample.", "High")), # (list) FDR values
 plotGraph = TRUE, # (logical) plot graph
 titGraph = "Proteome Discoverer", # (character) title of graph
 wex = 1.6, # (numeric) width expansion factor
 specPref = c(conta = "CON\|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"), # (character) spectral preference
 silent = FALSE, # (logical) silent mode
 debug = FALSE, # (logical) debug mode
 callFrom = NULL # (character) call from
)

Arguments

fileName # (character) name of file to be read
path # (character) path of file to be read
normalizeMeth # (character) normalization method, defaults to median, for more details see normalizeThis
sampleNames # (character) new column-names for quantification data (ProteomeDiscoverer does not automatically use file-names from spectra); this argument has priority over suplAnnotFile
suplAnnotFile # (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)
gr # (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)
sdrf # (character, list or data.frame) optional extraction and adding of experimental meta-data: if character, this may be the ID at ProteomeExchange, the second element may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates
read0asNA # (logical) decide if initial quantifications at 0 should be transformed to NA
quantCol
(character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep

annotCol
(character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..PSMs","X..Unique.Peptides","X..AAs","MW..kDa."))

contamCol
(character or integer, length=1) which columns should be used for contaminants marked by ProteomeDiscoverer. If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants

refLi
(character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given

separateAnnot
(logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations

FDRCol
(list) optional indication to search for protein FDR information

plotGraph
(logical or integer) optional plot of type violplot of initial and normalized data (using normalizeMeth); if integer, it will be passed to layout when plotting

titGraph
(character) deprecated custom title to plot, please use 'tit'

wex
(integer) relative expansion factor of the violin-plot (will be passed to vioplotW)

specPref
(character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - marked as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)

silent
(logical) suppress messages

debug
(logical) additional messages for debugging

callFrom
(character) allow easier tracking of messages produced

Details
This function has been developed using Thermo ProteomeDiscoverer versions 2.2 to 2.5. The format of resulting files at export also depends which columns are chosen as visible inside ProteomeDiscoverer and subsequently get chosen for export. Using the argument supLAnnotFile it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment realted information. Precedent and following aminoacids (relative to identified protease recognition sites) will be removed form peptide sequences and be displayed in $annot as columns 'prec' and 'foll'. If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants This function replaces the depreciated function readPDEExport.

Besides, ProteomeDiscoverer version number and full raw-file path will be extracted for $notes in final output.
Value

This function returns a list with raw (initial/raw abundance values), $quant$ with final normalized quantitations, $annot$, $counts$ an array with number of peptides, $quantNotes$ and $notes$; or if separateAnnot=FALSE the function returns a data.frame with annotation and quantitation only.

See Also

read.table, normalizeThis, readMaxQuantFile, readProteomeDiscovererFile

Examples

path1 <- system.file("extdata", package="wrProteo")

Read Tabulated Files Exported By ProteomeDiscoverer At Protein Level

Description

Protein identification and quantification results from Thermo ProteomeDiscoverer which were exported as tabulated text can be imported and relevant information extracted.

Usage

readProteomeDiscovererFile(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 read0asNA = TRUE,
 quantCol = "^Abundance",
 annotCol = NULL,
 contamCol = "Contaminant",
 refLi = NULL,
 separateAnnot = TRUE,
 FDRCol = list(c("Protein.FDR.Confidence", "High"), c("Found.in.Sample.", "High")),
 gr = NULL,
 sdrf = NULL,
 suplAnnotFile = TRUE,
 groupPref = list(lowNumberOfGroups = TRUE),
 specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 plotGraph = TRUE,
 wex = 1.6,
 titGraph = "Proteome Discoverer",
 silent = FALSE,
Arguments

fileName (character) name of file to be read
path (character) path of file to be read
normalizeMeth (character) normalization method, defaults to median, for more details see normalizeThis
sampleNames (character) custom column-names for quantification data (ProteomeDiscoverer does not automatically use file-names from spectra); this argument has priority over suplAnnotFile
read@asNA (logical) decide if initial quantifications at 0 should be transformed to NA
quantCol (character or integer) define which columns should be extracted as quantitation data: The argument may be the exact column-names to be used, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep; if quantCol='allAfter_calc.pI' all columns to the right of the column 'calc.pI' will be interpreted as quantitation data (may be useful with files that have been manually edited before passing to wrProteo)
annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..Ps","X..Unique.Ps","X..AAs","MW..kDa."))
contamCol (character or integer, length=1) which columns should be used for contaminants marked by ProteomeDiscoverer. If a column named contamCol is found, the data will be later filtered to remove all contaminants, set to NULL for keeping all contaminants
refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final log2 (normalized) quantitations
FDRCol (list) optional indication to search for protein FDR information
gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)
sdrf (character, list or data.frame) optional extraction and adding of experimenal meta-data: if character, this may be the ID at ProteomeExchange, the second & third elements may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates; if sdrfOrder=TRUE the output will be put in order of sdrf
suplAnnotFile (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)
groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to `readSampleMetaData`. May contain `lowNumberOfGroups=FALSE` for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)

specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - made as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)

plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using `normalizeMeth`); if integer, it will be passed to `layout` when plotting

wex (integer) relative expansion factor of the violin-plot (will be passed to `vioplotW`)

titGraph (character) custom title to plot of distribution of quantitation values

silent (logical) suppress messages

drug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced

Details

This function has been developed using Thermo ProteomeDiscoverer versions 2.2 to 2.5. The format of resulting files at export also depends which columns are chosen as visible inside ProteomeDiscoverer and subsequently get chosen for export. Using the argument `suplAnnotFile` it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information. If a column named `contamCol` is found, the data will be lateron filtered to remove all contaminants, set to `NULL` for keeping all contaminants.

The final output is a list containing as (main) elements: `$annot`, `$raw` and optional `$quant`, or returns data.frame with entire content of file if `separateAnnot=FALSE`.

This function replaces the depreciated function `readProtDiscovFile`.

Value

This function returns a list with `$raw` (initial/raw abundance values), `$quant` with final normalized quantitations, `$annot`, `$counts` an array with number of peptides, `$quantNotes` and `$notes`; or if `separateAnnot=FALSE` the function returns a data.frame with annotation and quantitation only

See Also

`read.table, normalizeThis), readMaxQuantFile, readProlineFile, readFragpipeFile`

Examples

```r
path1 <- system.file("extdata", package="wrProteo")
fiNa <- "tinyPD_allProteins.txt.gz"
dataPD <- readProteomeDiscovererFile(file=fiNa, path=path1, suplAnnotFile=FALSE)
summary(dataPD$quant)
```
readProteomeDiscovererPeptides

 Read Tabulated Files Exported by ProteomeDiscoverer At Peptide Level

Description

Initials peptide identificationa and quantification results form Thermo ProteomeDiscoverer which were exported as tabulated text can be imported and relevant information extracted. The final output is a list containing 3 elements: $annot, $raw and optional $quant, or returns data.frame with entire content of file if separateAnnot=FALSE.

Usage

readProteomeDiscovererPeptides(
 fileName,
 path = NULL,
 normalizeMeth = "median",
 sampleNames = NULL,
 suplAnnotFile = TRUE,
 gr = NULL,
 sdrf = NULL,
 read0asNA = TRUE,
 quantCol = "^Abundances*",
 annotCol = NULL,
 contamCol = "Contaminant",
 refLi = NULL,
 separateAnnot = TRUE,
 FDRCol = list(c("^Protein.FDR.Confidence", "High"), c("^Found.in.Sample.", "High")),
 plotGraph = TRUE,
 titGraph = "Proteome Discoverer",
 wex = 1.6,
 specPref = c(conta = "CON_|LYSC_CHICK", mainSpecies = "OS=Homo sapiens"),
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

fileName (character) name of file to be read
path (character) path of file to be read
normalizeMeth (character) normalization method, defaults to median, for more details see normalizeThis
sampleNames (character) new column-names for quantification data (ProteomeDiscoverer does not automatically use file-names from spectra); this argument has priority over suplAnnotFile
suplAnnotFile (logical or character) optional reading of supplemental files produced by ProteomeDiscoverer; however, if gr is provided, gr gets priority for grouping of replicates; if TRUE defaults to file '*InputFiles.txt' (needed to match information of sdrf) which can be exported next to main quantitation results; if character the respective file-name (relative or absolute path)

gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)

sdrf (character, list or data.frame) optional extraction and adding of experimetal meta-data: if character, this may be the ID at ProteomeExchange, the second element may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates

read0asNA (logical) decide if initial quantifications at 0 should be transformed to NA

quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep

annotCol (character) column names to be read/extracted for the annotation section (default c("Accession","Description","Gene","Contaminant","Sum.PEP.Score","Coverage....","X..Peptides","X..PSMs","X..Unique.Peptides","X..AAs","MW..kDa."))

contamCol (character or integer, length=1) which columns should be used for contaminants marked by ProteomeDiscoverer. If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants

refLi (character or integer) custom specify which line of data is main species, if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given

separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations

FDRCol (list) optional indication to search for protein FDR information

plotGraph (logical or integer) optional plot of type vioplot of initial and normalized data (using normalizeMeth); if integer, it will be passed to layout when plotting

titGraph (character) deprecated custom title to plot, please use 'tit'

wex (integer) relative expansion factor of the violin-plot (will be passed to vioplotW)

specPref (character or list) define characteristic text for recognizing (main) groups of species (1st for contaminants - will be marked as 'conta', 2nd for main species-marked as 'mainSpe', and optional following ones for supplemental tags/species - marked as 'species2','species3',...); if list and list-element has multiple values they will be used for exact matching of accessions (ie 2nd of argument annotCol)

silent (logical) suppress messages

debug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced
readSampleMetaData

Details

This function has been developed using Thermo ProteomeDiscoverer versions 2.2 to 2.5. The format of resulting files at export also depends which columns are chosen as visible inside ProteomeDiscoverer and subsequently get chosen for export. Using the argument supAnnotFile it is possible to specify a specific file (or search for default file) to read for extracting file-names as sample-names and other experiment related information. Precedent and following aminoacids (relative to identified protease recognition sites) will be removed form peptide sequences and be displayed in $annot as columns ‘prec’ and ‘foll’. If a column named contamCol is found, the data will be lateron filtered to remove all contaminants, set to NULL for keeping all contaminants. This function replaces the depreciated function readPDEexport.

Besides, ProteomeDiscoverer version number and full raw-file path will be extracted for $notes in final output.

Value

This function returns a list with $raw (initial/raw abundance values), $quant with final normalized quantitations, $annot, $counts an array with number of peptides, $quantNotes and $notes; or if separateAnnot=FALSE the function returns a data.frame with annotation and quantitation only.

See Also

read.table, normalizeThis), readMaxQuantFile, readProteomeDiscovererFile

Examples

path1 <- system.file("extdata", package="wrProteo")

readSampleMetaData

Read Sample Meta-data from Quantification-Software And/Or Sdrf And Align To Experimental Data

Description

Sample/experimental annotation meta-data form MaxQuant, ProteomeDiscoverer, FragPipe, Proline or similar, can be read using this function and relevant information extracted. Furthermore, annotation in sdrf-format can be added (the order of sdrf will be adjated automatically, if possible). This functions returns a list with grouping of samples into replicates and additional information gathered. Input files compressed as .gz can be read as well.

Usage

readSampleMetaData(
 quantMeth,
 sdrf = NULL,
 supAnnotFile = NULL,
 path = ".",
)
Arguments

- **quantMeth** (character, length=1) quantification method used; 2-letter abbreviations like 'MQ', 'PD', 'PL', 'FP' etc may be used.

- **sdrf** (character, list or data.frame) optional extraction and adding of experimenal meta-data: if character, this may be the ID at ProteomeExchange or a similarly formatted local file. `sdrf` will get priority over `suplAnnotFile`, if provided.

- **suplAnnotFile** (logical or character) optional reading of supplemental files produced by MaxQuant; if `gr` is provided, it gets priority for grouping of replicates if `TRUE` in case of method=="MQ" (MaxQuant) default to files 'summary.txt' (needed to match information of `sdrf`) and 'parameters.txt' which can be found in the same folder as the main quantitation results; if character the respective file-names (relative ro absolute path), 1st is expected to correspond to 'summary.txt' (tabulated text, the samples as given to MaxQuant) and 2nd to 'parameters.txt' (tabulated text, all parameters given to MaxQuant) in case of method=="PL" (Proline), this argument should contain the initial file-name (for the identification and quantification data) in the first position.

- **path** (character) optional path of file(s) to be read.

- **abund** (matrix or data.frame) experimental quantitation data; only column-names will be used for aligning order of annotated samples.

- **groupPref** (list) additional parameters for interpreting meta-data to identify structure of groups (replicates); May contain `lowNumberOfGroups=FALSE` for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group). A vector of custom sample-names may be provided via `sampleNames=...` (must be of correct length); if contains `sampleNames="sdrf"` sample-names will be used from trimmed file-names.

- **chUnit** (logical or character) optional adjusting of group-labels from sample meta-data in case multiple different unit-prefixes are used to single common prefix (eg adjust '100pMol' and '1nMol' to '100pMol' and '1000pMol') for better downstream analysis. This option will call `adjustUnitPrefix` and `checkUnitPrefix` from package `wrMisc` If character exactly this/these unit-names will be searched in sample-names and checked if multiple different decimal prefixes are used; if `TRUE` the default set of unit-names ('Mol', 'mol', 'days', 'day', 'm', 'sec', 's', 'h') will be checked in the sample-names for different decimal prefixes.

- **silent** (logical) suppress messages if `TRUE`.

- **debug** (logical) additional messages for debugging.

- **callFrom** (character) allow easier tracking of messages produced.
Details

When initially reading/importing quantitation data, typically very little is known about the setup of different samples in the underlying experiment. The overall aim is to read and mine the corresponding sample-annotation documented by the quantitation-software and/or from an sdrf repository and to attach it to the experimental data. This way, in subsequent steps of analysis (e.g., PCA, statistical tests) the user does not have to bother studying the experimental setup to figure out which samples should be considered as replicates of whom.

Sample annotation meta-data can be obtained from two sources: a) form additional files produced (and exported) by the initial quantitation software (so far MaxQuant and ProteomeDiscoverer have been implemented) or b) from the universal sdrf-format (from PRIDE or user-supplied). Both types can be imported and checked in the same run, if valid sdrf-information is found this will be given priority. For more information about the sdrf format please see [sdrf on github](https://github.com/bigbio/proteomics-sample-metadata).

Value

This function returns a list with $level (grouping of samples given as integer), and $meth (method by which grouping as determined). If valid sdrf was given, the resultant list contains in addition $sdrfDat (data.frame of annotation). Alternatively it may contain a $sdrfExport if sufficient information has been gathered (so far only for MaxQuant) for a draft sdrf for export (that should be revised and completed by the user). If software annotation has been found it will be shown in $annotBySoft. If all entries are invalid or entries do not pass the tests, this function returns an empty list.

See Also

this function is used internally by readMaxQuantFile, [readProteomeDiscovererFile](link{readProteomeDiscovererFile}) etc; uses readSdrf for reading sdrf-files, replicateStructure for mining annotation columns

Examples

```r
sdrf001819Setup <- readSampleMetaData(quantMeth=NA, sdrf="PXD001819")
str(sdrf001819Setup)
```

readSdrf

Read proteomics meta-data as sdrf file

Description

This function allows reading proteomics meta-data from sdrf file, as they are provided on https://github.com/bigbio/proteomics-sample-metadata. A data.frame containing all annotation data will be returned. To stay conform with the (non-obligatory) recommendations, column names are shown as lower caps.
Usage

readSdrf(
 fi,
 chCol = "auto",
 urlPrefix = "github",
 silent = FALSE,
 callFrom = NULL,
 debug = FALSE
)

Arguments

fi (character) main input; may be full path or url to the file with meta-annotation. If a short project-name is given, it will be searched based at the location of urlPrefix

chCol (character, length=1) optional checking of column-names

urlPrefix (character, length=1) prefix to add to search when no complete path or url is given on fi, defaults to proteomics-metadata-standard on github

silent (logical) suppress messages

callFrom (character) allows easier tracking of messages produced

debug (logical) display additional messages for debugging

Details

The packages utils and wrMisc must be installed. Please note that reading sdrf files (if not provided as local copy) will take a few seconds, depending on the responsiveness of github. This function only handles the main reading of sdrf data and some diagnostic checks. For mining sdrf data please look at replicateStructure and readSampleMetaData.

Value

This function returns the content of sdrf-file as data.frame (or NULL if the corresponding file was not found)

See Also

readSampleMetaData, replicateStructure

Examples

This may take a few sconds...

sdrf001819 <- readSdrf("PXD001819")
str(sdrf001819)
readUCSCtable

Read annotation files from UCSC

Description

This function allows reading and importing genomic UCSC-annotation data. Files can be read as default UCSC exprot or as GTF-format. In the context of proteomics we noticed that sometimes UniProt tables from UCSC are hard to match to identifiers from UniProt Fasta-files, ie many protein-identifiers won’t match. For this reason additional support is given to reading 'Genes and Gene Predictions': Since this table does not include protein-identifiers, a non-redundant list of ENSxxx transcript identifiers can be exported as file for an additional stop of conversion, eg using a batch conversion tool at the site of UniProt. The initial genomic annotation can then be complemented using readUniProtExport. Using this more elaborate route, we found higher coverage when trying to add genomic annotation to protein-identifiers to proteomics results with annotation based on an initial Fasta-file.

Usage

readUCSCtable(
 fiName,
 exportFileNa = NULL,
 gtf = NA,
 simplifyCols = c("gene_id", "chr", "start", "end", "strand", "frame"),
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

fiName (character) name (and path) of file to read
exportFileNa (character) optional file-name to be exported, if NULL no file will be written
gtf (logical) specify if file fiName in gtf-format (see UCSC)
simplifyCols (character) optional list of column-names to be used for simplification (if 6 column-headers are given): the 1st value will be used to identify the column used as refence to summarize all lines with this ID; for the 2nd (typically chromosome names) will be taken a representative value, for the 3rd (typically gene start site) will be taken the minimum, for the 4th (typically gene end site) will be taken the maximum, for the 5th and 6th a representative values will be reported;
silent (logical) suppress messages
debug (logical) display additional messages for debugging
callFrom (character) allow easier tracking of message(s) produced

Value

This function returns a matrix, optionally the file 'exportFileNa’ may be written
See Also

\texttt{readUniProtExport}

Examples

\begin{verbatim}
path1 <- system.file("extdata", package="wrProteo")
gtfFi <- file.path(path1, "UCSC_hg38_chr11extr.gtf.gz")
here we'll write the file for UniProt conversion to tempdir() to keep things tidy
expFi <- file.path(tempdir(), "deUcscForUniProt2.txt")
UcscAnnot1 <- readUCSCtable(gtfFi, exportFileNa=expFi)

results can be further combined with readUniProtExport()
deUniProtFi <- file.path(path1, "deUniProt_hg38chr11extr.tab")
deUniPr1 <- readUniProtExport(deUniProtFi, deUcsc=UcscAnnot1,
 targRegion="chr11:1-135,086,622")
deUniPr1[1:5,-5]
\end{verbatim}

\texttt{readUniProtExport} \hspace{1cm} \textit{Read protein annotation as exported from UniProt batch-conversion}

Description

This function allows reading and importing protein-ID conversion results from \texttt{UniProt}. To do so, first copy/paste your query IDs into \texttt{UniProt} 'Retrieve/ID mapping' field called '1. Provide your identifiers' (or upload as file), verify '2. Select options'. In a typical case of 'enst000xxx' IDs you may leave default settings, ie 'Ensemble Transcript' as input and 'UniProt KB' as output. Then, 'Submit' your search and retrieve results via 'Download', you need to specify a 'Tab-separated' format! If you download as 'Compressed' you need to decompress the .gz file before running the function \texttt{readUCSCtable}. In addition, a file with UCSC annotation (Ensrnot accessions and chromosomic locations, obtained using \texttt{readUCSCtable}) can be integrated.

Usage

\begin{verbatim}
readUniProtExport(
 UniProtFileNa,
 deUcsc = NULL,
 targRegion = NULL,
 useUniPrCol = NULL,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
\end{verbatim}

Arguments

\begin{itemize}
 \item \textbf{UniProtFileNa} \hspace{1cm} \texttt{(character)} name (and path) of file exported from Uniprot (tabulated text file including headers)
\end{itemize}
readUniProtExport

Read UniProt file (https://www.uniprot.org) for gene annotation.

Usage

`readUniProtExport(deUcsc = NULL, targRegion = NULL, useUniPrCol = NULL, silent = FALSE, debug = FALSE, callFrom = NULL)`

Arguments

- `deUcsc` (data.frame) object produced by `readUCSCtable` to be combined with data from UniProtFileNa
- `targRegion` (character or list) optional marking of chromosomal locations to be part of a given chromosomal target region, may be given as character like `chr11:1-135,086,622` or as list with a first component characterizing the chromosome and a integer-vector with start- and end- sites
- `useUniPrCol` (character) optional declaration which columns from UniProt exported file should be used/imported (default 'EnsID', 'Entry', 'Entry.name', 'Status', 'Protein.names', 'Gene.names', 'Length').
- `silent` (logical) suppress messages
- `debug` (logical) display additional messages for debugging
- `callFrom` (character) allow easier tracking of message(s) produced

Details

In a typical use case, first chromosomal location annotation is extracted from UCSC for the species of interest and imported to R using `readUCSCtable`. However, the tables provided by UCSC don’t contain Uniprot IDs. Thus, an additional (batch-)conversion step needs to get added. For this reason `readUCSCtable` allows writing a file with Ensemble transcript IDs which can be converted to UniProt IDs at the site of UniProt. Then, UniProt annotation (downloaded as tab-separated) can be imported and combined with the genomic annotation using this function.

Value

This function returns a data.frame (with columns $EnsID, $Entry, $Entry.name, $Status, $Protein.names, $Gene.names, $Length; if `deUcsc` is integrated plus: $chr, $type, $start, $end, $score, $strand, $Ensnot, $avPos)

See Also

- `readUCSCtable`

Examples

```r
path1 <- system.file("extdata", package="wrProteo")
deUniProtFi <- file.path(path1, "deUniProt_hg38chr11extr.tab")
deUniPr1a <- readUniProtExport(deUniProtFi)
str(deUniPr1a)
```

```r
## Workflow starting with UCSC annotation (gtf) files :
gtfFi <- file.path(path1, "UCSC_hg38_chr11extr.gtf.gz")
UcscAnnot1 <- readUCSCtable(gtfFi)
## Results of conversion at UniProt are already available (file "deUniProt_hg38chr11extr.tab")
myTargRegion <- list("chr1", pos=(198110001,198570000))
myTargRegion2 <- "chr11:1-135,086,622"        # works equally well
deUniPr1 <- readUniProtExport(deUniProtFi, deUcsc=UcscAnnot1, targRegion=myTargRegion)
## Now UniProt IDs and genomic locations are both available :
str(deUniPr1)
```
readWombatNormFile

Read (Normalized) Quantitation Data Files Produced By Wombat At Protein Level

Description

Protein quantification results from Wombat-P using the Bioconductor package Normalizer can be read using this function and relevant information extracted. Input files compressed as .gz can be read as well. The protein abundance values (XIC), peptide counting get extracted. Since protein annotation is not very extensive with this format of data, the function allows reading the initial fasta files (from the directory above the quantitation-results) allowing to extract more protein-annotation (like species). Sample-annotation (if available) can be extracted from sdrf files, which are typically part of the Wombat output, too. The protein abundance values may be normalized using multiple methods (median normalization as default), the determination of normalization factors can be restricted to specific proteins (normalization to bait protein(s), or to invariable matrix of spike-in experiments). The protein annotation data gets parsed to extract specific fields (ID, name, description, species ...). Besides, a graphical display of the distribution of protein abundance values may be generated before and after normalization.

Usage

readWombatNormFile(
 fileName,
 path = NULL,
 quantSoft = "(quant software not specified)",
 fasta = NULL,
 isLog2 = TRUE,
 normalizeMeth = "none",
 quantCol = "abundance_",
 contamCol = NULL,
 pepCountCol = c("number_of_peptides"),
 read0asNA = TRUE,
 refLi = NULL,
 sampleNames = NULL,
 extrColNames = c("protein_group"),
 specPref = NULL,
 remRev = TRUE,
 remConta = FALSE,
 separateAnnot = TRUE,
 gr = NULL,
 sdrf = NULL,
 suplAnnotFile = NULL,
 groupPref = list(lowNumberOfGroups = TRUE),
 titGraph = NULL,
 wex = 1.6,
 plotGraph = TRUE,
 silent = FALSE,
)
readWombatNormFile

default = FALSE,
callFrom = NULL
)

Arguments

fileName (character) name of file to be read (default 'proteinGroups.txt' as typically generated by Compomics in txt folder). Gz-compressed files can be read, too.
path (character) path of file to be read
quantSoft (character) quantification-software used inside Wombat-P
fasta (character or character) if TRUE the (first) fasta from one directory higher than fileName will be read as fasta-file to extract further protein annotation; if character a fasta-file at this location will be read/used/
isLog2 (logical) typically data read from Wombat are expected to be isLog2=TRUE
normalizeMeth (character) normalization method, defaults to median, for more details see normalizeThis
quantCol (character or integer) exact col-names, or if length=1 content of quantCol will be used as pattern to search among column-names for $quant using grep
contamCol (character or integer, length=1) which columns should be used for contaminants
pepCountCol (character) pattern to search among column-names for count data (1st entry for 'Razor + unique peptides', 2nd fro 'Unique peptides', 3rd for 'MS.MS.count' (PSM))
read0asNA (logical) decide if initial quantifications at 0 should be transformed to NA (thus avoid -Inf in log2 results)
refLi (character or integer) custom specify which line of data should be used for normalization, ie which line is main species; if character (eg 'mainSpe'), the column 'SpecType' in $annot will be searched for exact match of the (single) term given
sampleNames (character) custom column-names for quantification data; this argument has priority over suplAnnotFile
extrColNames (character) column names to be read (1st position: prefix for LFQ quantitation, default 'LFQ,intensity'; 2nd: column name for protein-IDs, default 'Majority.protein.IDs'; 3rd: column names of fasta-headers, default 'Fasta.headers', 4th: column name for number of protein IDs matching, default 'Number.of.proteins')
specPref (character) prefix to identifiers allowing to separate i) recognize contamination database, ii) species of main identifications and iii) spike-in species
remRev (logical) option to remove all protein-identifications based on reverse-peptides
remConta (logical) option to remove all proteins identified as contaminants
separateAnnot (logical) if TRUE output will be organized as list with $annot, $abund for initial/raw abundance values and $quant with final normalized quantitations
gr (character or factor) custom defined pattern of replicate association, will override final grouping of replicates from sdrf and/or suplAnnotFile (if provided)
readWombatNormFile

sdrf (logical, character, list or data.frame) optional extraction and adding of experimental meta-data: if sdrf=TRUE the 1st sdrf in the directory above fileName will be used if character, this may be the ID at ProteomeExchange, the second element may give further indications for automatic organization of groups of replicates. Besides, the output from readSdrf or a list from defineSamples may be provided; if gr is provided, gr gets priority for grouping of replicates

suplAnnotFile (logical or character) optional reading of supplemental files produced by Compmics; if gr is provided, it gets priority for grouping of replicates if TRUE default to files 'summary.txt' (needed to match information of sdrf) and 'parameters.txt' which can be found in the same folder as the main quantitation results; if character the respective file-names (relative ro absolute path), 1st is expected to correspond to 'summary.txt' (tabulated text, the samples as given to Compmics) and 2nd to 'parameters.txt' (tabulated text, all parameters given to Compmics)

groupPref (list) additional parameters for interpreting meta-data to identify structure of groups (replicates), will be passed to readSampleMetaData. May contain lowNumberOfGroups=FALSE for automatically choosing a rather elevated number of groups if possible (defaults to low number of groups, ie higher number of samples per group)

titGraph (character) custom title to plot of distribution of quantitation values

wex (numeric) relative expansion factor of the violin in plot

plotGraph (logical) optional plot vioplot of initial and normalized data (using normalizeMeth); alternatively the argument may contain numeric details that will be passed to layout when plotting

silent (logical) suppress messages

debug (logical) additional messages for debugging

callFrom (character) allow easier tracking of messages produced

Details

By standard workflow of Wombat-P writes the results of each analysis-method/quantification-algorithm as .csv files Meta-data describing the proteins may be available from two sources: a) The 1st column of the Wombat/normalizer output. b) Form the .fasta file in the directory above the analysis/quantification results of the Wombat-workflow

Meta-data describing the samples and experimental setup may be available from a sdrf-file (from the directory above the analysis/quantification results) If available, the meta-data will be examined for determining groups of replicates and the results thereof can be found in $sampleSetup$levels. Alternatively, a dataframe formatted like sdrf-files (ie for each sample a separate line, see also function readSdrf) may be given, too.

This import-function has been developed using Wombat-P version 1.x. The final output is a list containing these elements: $raw, $quant, $annot, $counts, $sampleSetup, $quantNotes, $notes, or (if separateAnnot=FALSE) data.frame with annotation- and main quantification-content. If sdrf information has been found, an additional list-element setup will be added containing the entire meta-data as setup$meta and the suggested organization as setup$lev.
removeSampleInList

Value

This function returns a list with raw (initial/raw abundance values), $quant$ with final normalized quantitations, $annot$ (columns), $counts$ an array with 'PSM' and 'NoOfRazorPeptides', $quantNotes$, $notes$ and optional setup for meta-data from sdrf; or a data.frame with quantitation and annotation if separateAnnot=FALSE

See Also

read.table, normalizeThis, readProteomeDiscovererFile, readProlineFile (and other import-functions), matrixNAinspect

Examples

```r
path1 <- system.file("extdata", package="wrProteo")
# Here we'll load a short/trimmed example file (originating from Compomics)
fiNa <- "tinyWombCompo1.csv.gz"
dataWB <- readWombatNormFile(file=fiNa, path=path1, tit="tiny Wombat/Compomics, Normalized ")
summary(dataWB$quant)
```

removeSampleInList

Remove Samples/Columns From list of matrixes

Description

Remove samples (ie columns) from every instance of list of matrixes. Note: This function assumes same order of columns in list-elements 'listElem'!

Usage

```r
removeSampleInList(
  dat,
  remSamp,
  listElem = c("raw", "quant", "counts", "sampleSetup"),
  silent = FALSE,
  debug = FALSE,
  callFrom = NULL
)
```

Arguments

- **dat** (list) main input to be filtered
- **remSamp** (integer) column number to exclude
- **listElem** (character) names of list-elements where columns indicated with 'remSamp' should be removed
- **silent** (logical) suppress messages
- **debug** (logical) display additional messages for debugging
- **callFrom** (character) allow easier tracking of message(s) produced
replMissingProtNames

Value

This function returns a matrix including imputed values or list of final and matrix with number of imputed by group (plus optional plot)

See Also

testRobustToNAimputation

Examples

set.seed(2019)
datT6 <- matrix(round(rnorm(300)+3,1), ncol=6, dimnames=list(paste("li",1:50,sep=""), letters[19:24]))
datL <- list(raw=datT6, quant=datT6, annot=matrix(nrow=nrow(datT6), ncol=2))
datDelta2 <- removeSampleInList(datL, remSam=2)

replMissingProtNames

Complement Missing EntryNames In Annotation

Description

This function helps replacing missing EntryNames (in $annot) after reading quantification results. To do so the column-names of annCol will be used: The content of 2nd element (and optional 3rd element) will be used to replace missing content in column defined by 1st element.

Usage

replMissingProtNames(
 x,
 annCol = c("EntryName", "Accession", "SpecType"),
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

x (list) output of readMaxQuantFile, readProtDiscovFile or readProlineFile. This list must be a matrix and contain $annot with the columns designated in annCol.

annCol (character) the column-names form x$annot) which will be used: The first column designs the column where empty fields are searched and the 2nd and (optional) 3rd will be used to fill the empty spots in the st column

silent (logical) suppress messages

debug (logical) display additional messages for debugging

callFrom (character) allow easier tracking of message(s) produced
shortSoftwName

Value

This function returns a list (like as input), but with missing elements of $annot completed (if available in other columns)

See Also

readMaxQuantFile, readProtDiscovFile, readProlineFile

Examples

dat <- list(quant=matrix(sample(11:99,9,replace=TRUE), ncol=3), annot=cbind(EntryName=c("YP010","YEAST"),Accession=c("A5Z2X5","P01966","P35900"), SpecType=c("Yeast",NA,NA)))
replMissingProtNames(dat)

shortSoftwName Get Short Names of Proteomics Quantitation Software

Description

Get/convert short names of various proteomics quantitation software names. A 2-letter abbreviation will be returned

Usage

shortSoftwName(
 x,
 tryAsLower = TRUE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

 x (character) 'mono’ or ‘average'
 tryAsLower (logical)
 silent (logical) suppress messages
 debug (logical) additional messages for debugging
 callFrom (character) allow easier tracking of messages produced

Value

This function returns a vector with masses for all amino-acids (argument 'massTy’ to switch from mono-isotopic to average mass)
summarizeForROC

See Also

massDeFormula, convToNum

Examples

shortSoftwName(c("maxquant","DIANN"))

summarizeForROC Summarize statistical test result for plotting ROC-curves

Description

This function takes statistical testing results (obtained using testRobustToNAimputation or moderTest2grp, based on limma) and calculates specificity and sensitivity values for plotting ROC-curves along a panel of thresholds. Based on annotation (from test$annot) with the user-defined column for species (argument 'spec') the counts of TP (true positives), FP (false positives), FN (false negatives) and TN are determined. In addition, an optional plot may be produced.

Usage

summarizeForROC(
 test,
 useComp = 1,
 tyThr = "BH",
 thr = NULL,
 columnTest = NULL,
 FCthrs = NULL,
 spec = c("H", "E", "S"),
 annotCol = "Species",
 filterMat = "filter",
 batchMode = FALSE,
 tit = NULL,
 color = 1,
 plotROC = TRUE,
 pch = 1,
 bg = NULL,
 overlPlot = FALSE,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)

Arguments

test (list or class MArrayLM, S3-object from limma) from testing (eg testRobustToNAimputation or test2grp)
useComp (character or integer) in case multiple comparisons (ie multiple columns 'test$tyThr'); which pairwise comparison to used
tyThr (character,length=1) type of statistical test-result to be used for sensitivity and specificity calculations (eg 'BH','lfdr' or 'p.value'), must be list-element of 'test'
thr (numeric) stat test (FDR/p-value) threshold, if NULL a panel of 108 p-value threshold-levels values will be used for calculating specificity and sensitivity
columnTest depreciated, please use 'useComp' instead
FCthrs (numeric) Fold-Change threshold (display as line) give as Fold-change and NOT as log2(FC), default at 1.5, set to NA for omitting
spec (character) labels for those species which should be matched to column annotCol ('spec') of test$annot and used for sensitivity and specificity calculations. Important: 1st entry for species designed as constant (ie matrix) and subsequent labels for spike-ins (expected variable)
annotCol (character, length=1) column name of test$annot to use to separate species
filterMat (character) name (or index) of element of test containing matrix or vector of logical filtering results
batchMode (logical) if batchMode=TRUE the function will return an empty matrix if no proteins qualify for computing ROC (eg all spike-proteins not passing filters) and plotROC will be set to FALSE
tit (character) optional custom title in graph
color (character or integer) color in graph
plotROC (logical) toggle plot on or off
pch (integer) type of symbol to be used (see par)
bg (character) background in plot (see par)
overlPlot (logical) overlay to existing plot if TRUE
silent (logical) suppress messages
debug (logical) additional messages for debugging
callFrom (character) allows easier tracking of messages produced

Details

Determining TP and FP counts requires 'ground truth' experiments, where it is known in advance which proteins are expected to change abundance between two groups of samples. Typically this is done by mixing proteins of different species origin, the first species noted by argument 'spec' designates the species to be considered constant (expected as FN in statistical tests). Then, one or multiple additional spike-in species can be defined. As the spike-in concentration should have been altered between different groups of samples, they are expected as TP.

The main aim of this function consists in providing specificity and sensitivity values, plus counts of TP (true positives), FP (false positives), FN (false negatives) and TN (true negatives), along various thresholds (specified in column 'alph') for statistical tests performed prior to calling this function.

Note, that the choice of species-annotation plays a crucial role who the counting results are obtained. In case of multiple spike-in species the user should pay attention if they all are expected to change
abundance at the same ratio. If not, it is advised to run this function multiple times separately only with the subset of those species expected to change at same ratio.

The dot on the plotted curve shows the results at the level of the single threshold alpha=0.05. For plotting multiple ROC curves as overlay and additional graphical parameters/options you may use `plotROC`.

See also ROC on Wikipedia for explanations of TP, FP, FN and TN as well as examples. Note that numerous other packages also provide support for building and plotting ROC-curves: Eg rocPKGShort, ROCR, pROC or ROCit.

Value

This function returns a numeric matrix containing the columns 'alph', 'spec', 'sens', 'prec', 'accur', 'FD' plus two columns with absolute numbers of lines (genes/proteins) passing the current threshold level alpha (1st species, all other species).

See Also

replot the figure using `plotROC`, calculate AUC using `AucROC`, robust test for preparing tables `testRobustToNAimputation`, `moderTest2grp`, `test2grp`, eBayes in package limma, `t.test`

Examples

```r
set.seed(2019); test1 <- list(annot=cbind(Species=c(rep("b",35), letters[sample.int(n=3, size=150, replace=TRUE)])), BH=matrix(c(runif(35,0,0.01), runif(150)), ncol=1))
tail(roc1 <- summarizeForROC(test1, spec=c("a","b","c"), annotCol="Species"))
```

test2grp

t-test each line of 2 groups of data

Description

test2grp performs t-test on two groups of data using limma, this is a custom implementation of `moderTest2grp` for proteomics. The final object also includes the results without moderation by limma (eg BH-FDR in `$nonMod.BH`). Furthermore, there is an option to make use of package ROTS (note, this will increase the time of computations considerably).

Usage

```r
test2grp(  
  dat,  
  questNo,  
  useCol = NULL,  
  grp = NULL,  
  annot = NULL,  
  ROTSn = 0,  
  silent = FALSE,  
)```
debug = FALSE,
callFrom = NULL
)

Arguments

**dat** (matrix or data.frame) main data (may contain NAs)

**questNo** (integer) specify here which question, ie comparison should be addressed

**useCol** (integer or character)

**grp** (character or factor)

**annot** (matrix or data.frame)

**ROTSn** (integer) number of iterations ROTS runs (stabilization of results may be seen with >300)

**silent** (logical) suppress messages

**debug** (logical) display additional messages for debugging

**callFrom** (character) allow easier tracking of message(s) produced

Value

This function returns a limma-type S3 object of class 'MArrayLM' (which can be accessed like a list); multiple testing correction types or modified testing by ROTS may get included ('p.value', 'FDR', 'BY', 'lfdr' or 'ROTS.BH')

See Also

`moderTest2grp`, `pVal2lfdr`, `t.test`, ROTS from the Bioconductor package ROTS

Examples

```r
set.seed(2018); datT8 <- matrix(round(rnorm(800)+3,1), nc=8, dimnames=list(paste("li",1:100,sep=""), paste(rep(LETTERS[1:3],c(3,3,2)),letters[18:25],sep="")))
datT8[5:8,5:6] <- datT8[5:8,5:6] + 3 # augment lines 5:8 (e-h)
grp8 <- gl(3,3,labels=LETTERS[1:3],length=8)
datL <- list(data=datT8, filt= wrMisc::presenceFilt(datT8,grp=grp8,maxGrpM=1,ratMa=0.8))
testAvB0 <- wrMisc::moderTest2grp(datT8[,1:6], gl(2,3))
testAvB <- test2grp(datL, questNo=1)
```
testRobustToNAimputation

Pair-wise testing robust to NA-imputation

**Description**

This function replaces NA values based on group neighbours (based on grouping of columns in argument gr), following overall assumption of close to Gaussian distribution. Furthermore, it is assumed that NA-values originate from experimental settings where measurements at or below detection limit are recorded as NA. In such cases (e.g. in proteomics) it is current practice to replace NA-values by very low (random) values in order to be able to perform t-tests. However, random normal values used for replacing may in rare cases deviate from the average (the 'assumed' value) and in particular, if multiple NA replacements are above the average, may look like induced biological data and be misinterpreted as so. The statistical testing uses eBayes from Bioconductor package limma for robust testing in the context of small numbers of replicates. By repeating multiple times the process of replacing NA-values and subsequent testing the results can be summarized afterwards by median over all repeated runs to remove the stochastic effect of individual NA-imputation. Thus, one may gain stability towards random-character of NA imputations by repeating imputation & test 'nLoop' times and summarize p-values by median (results stabilized at 50-100 rounds). It is necessary to define all groups of replicates in gr to obtain all possible pair-wise testing (multiple columns in $BH, $lfdr etc). The modified testing-procedure of Bioconductor package ROTS may optionally be included, if desired. This function returns a limma-like S3 list-object further enriched by additional fields/elements.

**Usage**

```r
testRobustToNAimputation(
 dat,
 gr = NULL,
 annot = NULL,
 retNA = TRUE,
 avSd = c(0.15, 0.5),
 avSdH = NULL,
 plotHist = FALSE,
 xLab = NULL,
 tit = NULL,
 imputMethod = "mode2",
 seedNo = NULL,
 multCorMeth = NULL,
 nLoop = 100,
 lfdrInclude = NULL,
 ROTSn = NULL,
 silent = FALSE,
 debug = FALSE,
 callFrom = NULL
)
```
Arguments

**dat**  (matrix or data.frame) main data (may contain NA); if dat is list containing $quant and $annot as matrix, the element $quant will be used.

**gr**  (character or factor) replicate association; if dat contains a list-element $sampleSetup$groups or $sampleSetup$lev this may be used in case gr=NULL.

**annot**  (matrix or data.frame) annotation (lines must match lines of data !), if annot is NULL and argument dat is a list containing both $quant and $annot, the element $annot will be used.

**retnNA**  (logical) retain and report number of NA.

**avSd**  (numerical,length=2) population characteristics (mean and sd) for >1 NA-neighbours (per line).

**avSdH**  depreciated, please use avSd instead; (numerical,length=2) population characteristics 'high' (mean and sd) for >1 NA-neighbours (per line).

**plotHist**  (logical) additional histogram of original, imputed and resultant distribution (made using matrixNAneighbourImpute).

**xLab**  (character) custom x-axis label.

**tit**  (character) custom title.

**imputMethod**  (character) choose the imputation method (may be 'mode2'(default), 'mode1', 'datQuant', 'modeAdopt', 'informed' or 'none', for details see matrixNAneighbourImpute).

**seedNo**  (integer) seed-value for normal random values.

**multCorMeth**  (character) define which method(s) for correction of multiple testing should be run (for choice: 'BH', 'lfdr', 'BY', 'tValTab', choosing several is possible).

**nLoop**  (integer) number of runs of independent NA-imputation.

**lfdrInclude**  (logical) depreciated, please use multCorMeth instead (include lfdr estimations, may cause warning message(s) concerning convergence if few too lines/proteins in dataset tested).

**ROTSn**  (integer) depreciated, please use multCorMeth instead (number of repeats by ROTS, if NULL ROTS will not be called).

**silent**  (logical) suppress messages.

**debug**  (logical) additional messages for debugging.

**callFrom**  (character) This function allows easier tracking of messages produced.

Details

The argument multCorMeth allows to choose which multiple correction algorithms will be used and included to the final results. Possible options are 'lfdr', 'BH', 'BY', 'tValTab', ROTSn='100' (name to element necessary) or 'noLimma' (to add initial p.values and BH to limma-results). By default 'lfdr' (local false discovery rate from package 'fdrtools') and 'BH' (Benjamini-Hochberg FDR) are chosen. The option 'BY' refers to Benjamini-Yakuteli FDR, 'tValTab' allows exporting all individual t-values from the repeated NA-substitution and subsequent testing.

This function is compatible with automatic extraction of experimental setup based on sdrf or other quantitation-specific sample annotation. In this case, the results of automated importing and mining of sample annotation should be stored as $sampleSetup$groups or $sampleSetup$lev.
For details on choice of NA-imputation procedures with arguments 'imputMethod' and 'avSd' please see `matrixNAneighbourImpute`.

**Value**

This function returns a limma-type S3 object of class 'MArrayLM' (which can be accessed like a list); multiple results of testing or multiple testing correction types may get included ('p.value','FDR','BY','lfdr' or 'ROTS.BH')

**See Also**

NA-imputation via `matrixNAneighbourImpute`, moderated t-test without NA-imputation `moderTest2grp`, calculating lfdr `pVal2lfdr`, eBayes in Bioconductor package `limma`, `t.test`, `ROTS` of Bioconductor package `ROTS`

**Examples**

```r
set.seed(2015); rand1 <- round(runif(600) + rnorm(600, 1, 2), 3)
dat1 <- matrix(rand1, ncol=6) + matrix(rep((1:100)/20, 6), ncol=6)
(dat1[dat1 < 1] <- NA) # mimic some NAs for low abundance
normalize data
boxplot(dat1, main="data before normalization")
dat1 <- wrMisc::normalizeThis(as.matrix(dat1), meth="median")
designate replicate relationships in samples ...
gr1 <- gl(2, 3, labels=LETTERS[1:2])
moderated t-test with repeated imputations (may take >10 sec, >60 sec if ROTSn >0 !)
PLtestR1 <- testRobustToNAimputation(dat=dat1, gr=grp1, retnNA=TRUE, nLoop=70)
names(PLtestR1)
```

---

**VolcanoPlotW2**

*Deprecated Volcano-plot*

**Description**

Please use `VolcanoPlotW()` from package wrGraph. This function does NOT produce a plot any more.

**Usage**

```r
VolcanoPlotW2(
 Mvalue,
 pValue = NULL,
 useComp = 1,
 filtFin = NULL,
 ProjNa = NULL,
 FCthrs = NULL,
)```
FdrList = NULL,
FdrThrs = NULL,
FdrType = NULL,
subTxt = NULL,
grayIncrem = TRUE,
col = NULL,
pch = 16,
compNa = NULL,
batchFig = FALSE,
cexMa = 1.8,
cexLa = 1.1,
limM = NULL,
limp = NULL,
annotColumn = NULL,
annColor = NULL,
cexPt = NULL,
cexSub = NULL,
cexTxLab = 0.7,
namesNBest = NULL,
NbestCol = 1,
sortLeg = "descend",
NaSpecTypeAsContam = TRUE,
useMar = c(6.2, 4, 4, 2),
returnData = FALSE,
callFrom = NULL,
silent = FALSE,
debug = FALSE
)

Arguments

Mvalue (numeric or matrix) data to plot; M-values are typically calculated as difference of log2-abundance values and 'pValue' the mean of log2-abundance values; M-values and p-values may be given as 2 columns of a matrix, in this case the argument pValue should remain NULL

pValue (numeric, list or data.frame) if NULL it is assumed that 2nd column of 'Mvalue' contains the p-values to be used

useComp (integer, length=1) choice of which of multiple comparisons to present in Mvalue (if generated using moderTestXgrp())

filtFin (matrix or logical) The data may get filtered before plotting: If FALSE no filtering will get applied; if matrix of TRUE/FALSE it will be used as optional custom filter, otherwise (if Mvalue if an MArrayLM-object eg from limma) a default filtering based on the filtFin element will be applied

ProjNa (character) custom title

Fcthrs (numeric) Fold-Change threshold (display as line) give as Fold-change and NOT log2(FC), default at 1.5, set to NA for omitting

FdrList (numeric) FDR data or name of list-element
FdrThrs (numeric) FDR threshold (display as line), default at 0.05, set to NA for omitting

FdrType (character) FDR-type to extract if Mvalue is 'MArrayLM'-object (e.g., produced by from moderTest2grp etc); if NULL it will search for suitable fields/values in this order: 'FDR', 'BH', 'lifdr' and 'BY'

subTxt (character) custom sub-title

grayIncrem (logical) if TRUE, display overlap of points as increased shades of gray

col (character) custom color(s) for points of plot (see also par)

pch (integer) type of symbol(s) to plot (default=16) (see also par)

compNa (character) names of groups compared

batchFig (logical) if TRUE figure title and axes legends will be kept shorter for display on fewer space

cexMa (numeric) font-size of title, as expansion factor (see also cex in par)

cexLa (numeric) size of axis-labels, as expansion factor (see also cex in par)

limM (numeric, length=2) range of axis M-values

limp (numeric, length=2) range of axis FDR / p-values

annotColumn (character) column names of annotation to be extracted (only if Mvalue is MArrayLM-object containing matrix $annot). The first entry (typically 'SpecType') is used for different symbols in figure, the second (typically 'GeneName') is used as preferred text for annotating the best points (if namesNBest allows to do so.)

annColor (character or integer) colors for specific groups of annotation (only if Mvalue is MArrayLM-object containing matrix $annot)

cexPt (numeric) size of points, as expansion factor (see also cex in par)

cexSub (numeric) size of subtitle, as expansion factor (see also cex in par)

cexTxLab (numeric) size of text-labels for points, as expansion factor (see also cex in par)

namesNBest (integer or character) number of best points to add names in figure; if 'passThr' all points passing FDR and FC-filtes will be selected; if the initial object Mvalue contains a list-element called 'annot' the second of the column specified in argument annotColumn will be used as text

NbestCol (character or integer) colors for text-labels of best points

sortLeg (character) sorting of 'SpecType' annotation either ascending ('ascend') or descending ('descend'), no sorting if NULL

NaSpecTypeAsContam (logical) consider lines/proteins with NA in Mvalue$annot[, "SpecType"] as contaminants (if a 'SpecType' for contaminants already exits)

useMar (numeric, length=4) custom margings (see also par)

returnData (logical) optional returning data.frame with (ID, Mvalue, pValue, FDRvalue, passFilt)

callFrom (character) allow easier tracking of message(s) produced

silent (logical) suppress messages

debug (logical) additional messages for debugging
Value

deprecated - returns nothing

See Also

dthis function was replaced by plotPCAw

Examples

```r
set.seed(2005); mat <- matrix(round(runif(900),2), ncol=9)
```

Description

Write sequences in fasta format to file

This function writes sequences from character vector as fasta formatted file (from UniProt) Line-headers are based on names of elements of input vector `prot`. This function also allows comparing the main vector of sequences with a reference vector `ref` to check if any of the sequences therein are truncated.

Usage

```r
writeFasta2(
  prot,
  fileNa = NULL,
  ref = NULL,
  lineLength = 60,
  eol = "\n",
  truSuf = "_tru",
  silent = FALSE,
  debug = FALSE,
  callFrom = NULL
)
```

Arguments

- `prot` (character) vector of sequences, names will be used for fasta-header
- `fileNa` (character) name (and path) for file to be written
writeFasta2

ref (character) optional/additional set of (reference-) sequences (only for comparison to prot), length of proteins from prot will be checked to mark truncated proteins by '_tru'

lineLength (integer, length=1) number of sequence characters per line (default 60, should be >1 and <10000)

eol (character) the character(s) to print at the end of each line (row); for example, eol = "\n" will produce Windows’ line endings on a Unix-alike OS

truSuf (character) suffix to be added for sequences found truncated when comparing with ref

silent (logical) suppress messages

debug (logical) supplemental messages for debugging

callFrom (character) allows easier tracking of messages produced

Details

Sequences without any names will be given generic headers like protein01 ... etc.

Value

This function writes the sequences from prot as fasta formatted-file

See Also

readFasta2 for reading fasta, write.fasta from the package seqinr

Examples

prots <- c(SEQU1="ABCDEFGHIJKL", SEQU2="CDEFGHIJKLMNOP")
writeFasta2(prots, fileNa=file.path(tempdir(),"testWrite.fasta"), lineLength=6)
Index

.atomicMasses, 3
.checkKnitrProt, 4
.checkSetupGroups, 5
.commonSpecies, 6
.extrSpecPref, 6
.imputeNA, 7
.plotQuantDistr, 8

AAmass, 10, 15
adjustUnitPrefix, 75
AucROC, 11, 89

chckUnitPrefix, 75

cleanListCoNames, 12
combineMultFilterNAimput, 13
combineRedundLinesInList, 25
convAASeq2mass, 15
convToNum, 10, 15, 28, 87
corColumnOrder, 16
countNoOfCommonPeptides, 17

dexportSdrfDraft, 18
dextractTestingResults, 20
dextrSpeciesAnnot, 21

foldChangeArrow, 22, 24
foldChangeArrow2, 22
fuseProteomicsProjects, 24

getUPSlacc, 26
grep, 13, 22

hist, 29

isolNAneighb, 26

MAplotW, 24
massDeFormula, 4, 10, 15, 27, 87
matrixNAinspect, 28, 37, 55, 84
matrixNAneighbourImpute, 8, 27, 29, 92, 93

moderTest2grp, 17, 20, 21, 32, 33, 87, 89, 90, 93
moderTestXgrp, 17, 21

na.fail, 27, 29, 31
naOmit, 29
normalizeThis, 36, 37, 39–42, 45, 46, 50, 52, 53, 55, 56, 58–61, 64, 66, 67, 69–72, 74, 82, 84

par, 9, 33, 88, 95
plotPCAw, 96
plotROC, 11, 32, 89
presenceFilt, 4, 13, 14, 35
pVal2lfdr, 90, 93

razorNoFilter, 34

read.table, 37, 40, 42, 46, 52, 55, 58, 60, 63, 66, 69, 71, 74, 84

readAlphaPeptFile, 35
readDiaNNFile, 38
readDiaNNPeptides, 40
readFasta2, 18, 43, 97
readFragpipeFile, 5–7, 9, 44, 66, 71
readIonbotPeptides, 47
readMassChroQFile, 50
readMaxQuantFile, 5–7, 9, 17, 19, 40, 42, 46, 52, 58, 60, 66, 69, 71, 74, 76, 86

readMaxQuantPeptides, 55
readOpenMSFile, 58
readProlineFile, 5–7, 9, 37, 40, 42, 46, 52, 55, 58, 60, 66, 67, 71, 84, 86

readProtDiscovererPeptides, 63
readProtDiscovFile, 40, 42, 46, 60, 64, 86

readProtDiscovPeptides, 66

readProteomeDiscovererFile, 17, 37, 55, 63, 69, 69, 74, 84

readProteomeDiscovPeptides, 63, 72

readSampleMetaData, 74, 77

readSdrf, 76, 76
readUCSCtable, 78, 79, 80
readUniProtExport, 78, 79, 79
readWombatNormFile, 81
removeSampleInList, 84
replicateStructure, 76, 77
replMissingProtNames, 85

scan, 44
sd, 25
shortSoftwName, 86
stableMode, 27, 31
summarizeForROC, 11, 32, 33, 87

t.test, 89, 90, 93
test2grp, 87, 89, 89
testRobustToNAimputation, 21, 27, 31, 85, 87, 89, 91

vioplotW, 39, 42, 46, 51, 59, 62, 65, 68, 71, 73
VolcanoPlotW, 24
VolcanoPlotW2, 93

writeFasta2, 44, 96