Package ‘wrappedtools’

March 28, 2023

Type Package
Title Useful Wrappers Around Commonly Used Functions
Description The main functionalities of 'wrappedtools' are:
adding backticks to variable names; rounding to desired precision
with special case for p-values;
selecting columns based on pattern and storing their position, name,
and backticked name; computing and formatting of descriptive statistics
(e.g. mean±SD), comparing groups and creating publication-ready tables with
descriptive statistics and p-values; creating specialized plots for
correlation matrices. Functions were mainly written for my own daily work or
teaching, but may be of use to others as well.

Version 0.9.1
Date 2023-03-28
Maintainer Andreas Busjahn <andreas@busjahn.net>
License GPL-3
Encoding UTF-8
Imports stats, boot, knitr, coin, utils, dplyr, forcats, purrr, glue,
rlang, stringr, ggplot2, tibble, tidyr, kableExtra, lifecycle,
broom, rlist
Depends R (>= 4.2)
RoxygenNote 7.2.3
LazyData true
VignetteBuilder knitr
Suggests rmarkdown, testthat
NeedsCompilation no
Author Andreas Busjahn [cre, aut] (<https://orcid.org/0000-0001-9650-6919>),
Bilal Asser [aut]
Repository CRAN
Date/Publication 2023-03-28 18:30:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bt</td>
<td>3</td>
</tr>
<tr>
<td>cat_desc_stats</td>
<td>3</td>
</tr>
<tr>
<td>cn</td>
<td>4</td>
</tr>
<tr>
<td>compare2numvars</td>
<td>5</td>
</tr>
<tr>
<td>compare2qualvars</td>
<td>6</td>
</tr>
<tr>
<td>compare_n_numvars</td>
<td>7</td>
</tr>
<tr>
<td>compare_n_qualvars</td>
<td>9</td>
</tr>
<tr>
<td>cortestR</td>
<td>10</td>
</tr>
<tr>
<td>faketrial</td>
<td>11</td>
</tr>
<tr>
<td>FindVars</td>
<td>12</td>
</tr>
<tr>
<td>formatP</td>
<td>13</td>
</tr>
<tr>
<td>ggcormat</td>
<td>14</td>
</tr>
<tr>
<td>glmCI</td>
<td>15</td>
</tr>
<tr>
<td>ksnormal</td>
<td>16</td>
</tr>
<tr>
<td>logrange_l</td>
<td>16</td>
</tr>
<tr>
<td>markSign</td>
<td>17</td>
</tr>
<tr>
<td>meansd</td>
<td>18</td>
</tr>
<tr>
<td>meanse</td>
<td>19</td>
</tr>
<tr>
<td>medianse</td>
<td>20</td>
</tr>
<tr>
<td>median_cl_boot</td>
<td>20</td>
</tr>
<tr>
<td>median_quart</td>
<td>21</td>
</tr>
<tr>
<td>pairwise_fisher_test</td>
<td>22</td>
</tr>
<tr>
<td>pairwise_ordcat_test</td>
<td>23</td>
</tr>
<tr>
<td>pairwise_t_test</td>
<td>24</td>
</tr>
<tr>
<td>pairwise_wilcox_test</td>
<td>25</td>
</tr>
<tr>
<td>pdf_kable</td>
<td>26</td>
</tr>
<tr>
<td>plot_LB</td>
<td>27</td>
</tr>
<tr>
<td>plot_MM</td>
<td>28</td>
</tr>
<tr>
<td>print_kable</td>
<td>29</td>
</tr>
<tr>
<td>roundR</td>
<td>30</td>
</tr>
<tr>
<td>SEM</td>
<td>31</td>
</tr>
<tr>
<td>se_median</td>
<td>31</td>
</tr>
<tr>
<td>surprisal</td>
<td>32</td>
</tr>
<tr>
<td>tab.search</td>
<td>32</td>
</tr>
<tr>
<td>t_var_test</td>
<td>33</td>
</tr>
<tr>
<td>var_coeff</td>
<td>33</td>
</tr>
</tbody>
</table>

Index 35
bt
Add backticks to names or remove them

Description

bt adds leading and trailing backticks to make illegal variable names usable. Optionally removes them.

Usage

bt(x, remove = FALSE)

Arguments

- **x**: Names to add backtick to.
- **remove**: Option to remove existing backticks, default=FALSE.

Value

Character vector with backticks added.

Examples

```r
bt('name 1')
```

cat_desc_stats
Compute absolute and relative frequencies.

Description

cat_desc_stats computes absolute and relative frequencies for categorical data with a number of formatting options.

Usage

```r
cat_desc_stats(
  source = NULL,
  separator = " ",
  return_level = TRUE,
  ndigit = 0,
  groupvar = NULL,
  singleline = FALSE,
  percent = TRUE,
  prettynum = FALSE,
  .german = FALSE,
  quelle = NULL
)
```
Arguments

- **source**: Data for computation. Previously "quelle".
- **separator**: delimiter between results per level, preset as `''`.
- **return_level**: Should levels be reported?
- **ndigit**: Digits for rounding of relative frequencies.
- **groupvar**: Optional grouping factor.
- **singleline**: Put all group levels in a single line?
- **percent**: Logical, add percent-symbol after relative frequencies?
- **prettynum**: logical, apply prettyNum to results?
- **.german**: logical, should "," and "," be used as bigmark and decimal? Sets prettynum to TRUE.
- **quelle**: deprecated, retained for compatibility, use 'source' instead.

Value

Structure depends on parameter return_level: if FALSE than a tibble with descriptives, otherwise a list with two tibbles with levels of factor and descriptives. If parameter singleline is FALSE (default), results for each factor level is reported in a separate line, otherwise they are pasted. Number of columns for result tibbles is one or number of levels of the additional grouping variable.

Examples

- `cat_desc_stats(mtcars$gear)`
- `cat_desc_stats(mtcars$gear, return_level = FALSE)`
- `cat_desc_stats(mtcars$gear, groupvar = mtcars$am)`
- `cat_desc_stats(mtcars$gear, groupvar = mtcars$am, singleline = TRUE)`

cn
Shortcut for `colnames()`

Description

`cn` lists column names, by default for variable `rawdata`.

Usage

`cn(data = rawdata)`

Arguments

- **data**: Data structure to read column names from.

Value

Character vector with column names.
`compare2numvars`

Examples

```r
cn(mtcars)
```

Description

`compare2numvars` computes either `t_var_test` or `wilcox.test`, depending on parameter `gaussian`. Descriptive statistics, depending on distribution, are reported as well.

Usage

```r
compare2numvars(
  data,
  dep_vars,
  indep_var,
  gaussian,
  round_p = 3,
  round_desc = 2,
  range = FALSE,
  rangesep = " ",
  pretext = FALSE,
  mark = FALSE,
  n = FALSE,
  add_n = FALSE
)
```

Arguments

- `data` name of dataset (tibble/data.frame) to analyze.
- `dep_vars` vector of column names for independent variables.
- `indep_var` name of grouping variable, has to translate to 2 groups. If more levels are encountered, an error is produced.
- `gaussian` logical specifying normal or ordinal values.
- `round_p` level for rounding p-value.
- `round_desc` number of significant digits for rounding of descriptive stats.
- `range` include min/max?
- `rangesep` text between statistics and range or other elements.
- `pretext` for function `formatP`.
- `mark` for function `formatP`.
- `n` create columns for n per group?
- `add_n` add n to descriptive statistics?
Value
A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep_vars.

Examples

Assuming Normal distribution:
compare2numvars(
 data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
 gaussian = TRUE
)

Ordinal scale:
compare2numvars(
 data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
 gaussian = FALSE
)

If dependent variable has more than 2 levels, consider fct_lump:
mtcars |> dplyr::mutate(gear=factor(gear) |> forcats::fct_lump_n(n=1)) |>
compare2numvars(dep_vars="wt",indep_var="gear",gaussian=TRUE)

compare2qualvars Comparison for columns of factors for 2 groups

Description
compare2qualvars computes fisher.test with simulated p-value and descriptive statistics for a group of categorical dependent variables.

Usage

compare2qualvars(
 data,
 dep_vars,
 indep_var,
 round_p = 3,
 round_desc = 2,
 pretext = FALSE,
 mark = FALSE,
 singleline = FALSE,
 spacer = " ",
 linebreak = "\n",
 p_subgroups = FALSE
)
compare_n_numvars

Comparison for columns of Gaussian or ordinal measures for n groups

Arguments

- **data**: name of data set (tibble/data.frame) to analyze.
- **dep_vars**: vector of column names for dependent variables.
- **indep_var**: name of grouping variable, has to translate to 2 groups.
- **round_p**: level for rounding p-value.
- **round_desc**: number of significant digits for rounding of descriptive stats.
- **pretext**: for function `formatP`.
- **mark**: for function `formatP`.
- **singleline**: Put all group levels in a single line?
- **spacer**: Text element to indent levels and fill empty cells, defaults to " ".
- **linebreak**: place holder for newline.
- **p_subgroups**: test subgroups by recoding other levels into other, default is not to do this.

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep_vars.

Examples

```r
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " ",
)
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " ", singleline = TRUE
)
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " ", p_subgroups = TRUE
)
```

Description

Some names were changed in August 2022, to reflect the update of the function to handle ordinal data using non-parametric equivalents.
Usage

```r
compare_n_numvars(
 .data = rawdata,
 dep_vars,
 indep_var,
 gaussian,
 round_desc = 2,
 range = FALSE,
 rangesep = " ",
 pretext = FALSE,
 mark = FALSE,
 round_p = 3,
 add_n = FALSE
)
```

Arguments

- `.data` name of dataset (tibble/data.frame) to analyze, defaults to rawdata.
- `dep_vars` vector of column names.
- `indep_var` name of grouping variable.
- `gaussian` Logical specifying normal or ordinal indep_var (and chooses comparison tests accordingly)
- `round_desc` number of significant digits for rounding of descriptive stats.
- `range` include min/max?
- `rangesep` text between statistics and range or other elements.
- `pretext`, `mark` for function formatP.
- `round_p` level for rounding p-value.
- `add_n` add n to descriptive statistics?

Value

A list with elements "results": tibble with descriptive statistics, p-value from ANOVA/Kruskal-Wallis test, p-values for pairwise comparisons, significance indicators, and descriptives pasted with significance. "raw": nested list with output from all underlying analyses.

Examples

```r
# Usually, only the result table is relevant:
compare_n_numvars(
 .data = mtcars, dep_vars = c("wt", "mpg", "hp"),
 indep_var = "drat",
 gaussian = TRUE
)$results
# For a report, result columns may be filtered as needed:
compare_n_numvars(
 .data = mtcars, dep_vars = c("wt", "mpg", "hp"),
 indep_var = "cyl",
)
```r

\[\text{gaussian} = \text{FALSE} \]
\)
\$results |>
dplyr::select(Variable, `cyl 4 fn`:`cyl 8 fn`, mutivar.p)

compare_n_qualvars
Comparison for columns of factors for more than 2 groups with post-hoc

Description
Comparison for columns of factors for more than 2 groups with post-hoc

Usage

```r

compare_n_qualvars(
  data,
  dep_vars,
  indep_var,
  round_p = 3,
  round_desc = 2,
  pretext = FALSE,
  mark = FALSE,
  singleline = FALSE,
  spacer = "&nbsp;",
  linebreak = "\n",
  prettynum = FALSE
)
```

Arguments

- **data**
 name of data set (tibble/data.frame) to analyze.
- **dep_vars**
 vector of column names.
- **indep_var**
 name of grouping variable.
- **round_p**
 level for rounding p-value.
- **round_desc**
 number of significant digits for rounding of descriptive stats
- **pretext**
 for function `formatP`
- **mark**
 for function `formatP`
- **singleline**
 Put all group levels in a single line?
- **spacer**
 Text element to indent levels, defaults to " ".
- **linebreak**
 place holder for newline.
- **prettynum**
 Apply prettyNum to results?

Value

A tibble with variable names, descriptive statistics, and p-value of `fisher.test` and `pairwise_fisher_test`, number of rows is number of dep_vars.
Examples

```r
# Separate lines for each factor level:
cmp_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  spacer = " ")
# All levels in one row but with linebreaks:
cmp_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  singleline = TRUE)
# All levels in one row, separated by ";":
cmp_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  singleline = TRUE, linebreak = "; ")
```

cortestR

Correlations with significance

Description

cortestR computes correlations and their significance level based on cor.test. Coefficients and p-values may be combined or reported separately.

Usage

cortestR(
 cordata,
 method = "pearson",
 digits = 3,
 digits_p = 3,
 sign_symbol = TRUE,
 split = FALSE,
 space = ""
)

Arguments

cordata data frame or matrix with rawdata.
method as in cor.test.
digits rounding level for estimate.
digits_p rounding level for p value.
sign_symbol If true, use significance indicator instead of p-value.
split logical, report correlation and p combined (default) or split in list.
space character to fill empty upper triangle.
Value

Depending on parameters `split` and `sign_symbol`, either a single data frame with coefficient and p-values or significance symbols or a list with two data frames.

Examples

```r
# with defaults
cortestR(mtcars[, c("wt", "mpg", "qsec")], split = FALSE, sign_symbol = TRUE)
# separate coefficients and p-values
(cortestR(mtcars[, c("wt", "mpg", "qsec")], split = TRUE, sign_symbol = FALSE))
```

Description

A dataset containing physiological data, biomarkers, and categorical data.

Usage

```r
faketrial
```

Format

A tibble with 300 rows and 24 variables:

- **Sex**: Sex of animal, factor with levels 'female', 'male'
- **Agegroup**: Factor with levels 'young', 'middle', 'old'
- **Treatment**: Factor with levels 'sham', 'OP'
- **HR**: Heart rate
- **sysRR, diaRR**: Systolic and diastolic blood pressure
- **Med xxx**: Pseudo-medications, factors with levels 'y', 'n'
- **Biomarker x units**: Biomarkers with log-normal distribution
- **Responder**: Factor yes/no, systolic blood pressure >= 120?
FindVars

Find numeric index and names of columns based on patterns

Description

FindVars looks up colnames (by default for data-frame rawdata) based on parts of names, using regular expressions. Be warned that special characters as e.g. [(need to be escaped or replaced by . Exclusion rules may be specified as well.

Usage

FindVars(
 varnames,
 allnames = colnames(rawdata),
 exact = FALSE,
 exclude = NA,
 casesensitive = TRUE,
 fixed = FALSE,
 return_symbols = FALSE
)

Arguments

varnames Vector of pattern to look for.
allnames Vector of values to detect pattern in; by default, colnames(rawdata).
exact Partial matching or exact only (adding ^ and $)?
exclude Vector of pattern to exclude from found names.
casesensitive Logical if case is respected in matching (default FALSE: a<>A)
fixed Logical, match as is, argument is passed to grep().
return_symbols Should names be reported as symbols additionally? (Default FALSE)

Value

A list with index, names, backticked names, and symbols

Examples

FindVars(varnames = c("c", "g"), allnames = colnames(mtcars))
FindVars(varnames = c("c", "g"), allnames = colnames(mtcars), exclude = "r")
rawdata <- mtcars
FindVars(varnames = c("c", "g"))
formatP

Re-format p-values, avoiding rounding to 0 and adding surprisal if requested

Description

`formatP` simplifies p-values by rounding to the maximum of p or a predefined level. Optionally < or = can be added, as well as symbols according to significance level.

Usage

```r
formatP( 
  pIn, 
  ndigits = 3, 
  textout = TRUE, 
  pretext = FALSE, 
  mark = FALSE, 
  german_num = FALSE, 
  add.surprisal = FALSE, 
  sprecision = 1
)
```

Arguments

- **pIn**
 A numeric vector or matrix with p-values.
- **ndigits**
 Number of digits (default=3).
- **textout**
 Cast output to character (default=TRUE)?
- **pretext**
 Should = or < be added before p (default=FALSE)?
- **mark**
 Should significance level be added after p (default=FALSE)?
- **german_num**
 change dot (default) to comma?
- **add.surprisal**
 Add surprisal aka Shannon information to p-value (default=FALSE)?
- **sprecision**
 Rounding level for surprisal (default=1).

Value

vector or matrix (depending on type of pIn) with type character (default) or numeric, depending on parameter textout

Examples

```r
formatP(0.012345)
formatP(0.012345, add.surprisal = TRUE)
formatP(0.012345, ndigits = 4)
formatP(0.000122345, ndigits = 3, pretext = TRUE)
```
ggcormat

Print graphical representation of a correlation matrix.

Description

ggcormat makes the same correlation matrix as cortestR and graphically represents it in a plot.

Usage

ggcormat(
 cor_mat,
 p_mat = NULL,
 method = "Correlation",
 title = "",
 maxpoint = 2.1,
 textsize = 5,
 axistextsize = 2,
 titlesize = 3,
 breaklabels = NULL,
 lower_only = TRUE,
 .low = "blue3",
 .high = "red2",
 .legendtitle = NULL
)

Arguments

cor_mat correlation matrix as produced by cor.
p_mat Optional matrix of p-values; if provided, this is used to define size of dots rather than absolute correlation.
method text specifying type of correlation.
title plot title.
maxpoint maximum for scale_size_manual, may need adjustment depending on plotsize.
textsize for theme text.
avistextsize relative text size for axes.
titlesize as you already guessed, relative text size for title.
breaklabels currently not used, intended for str_wrap.
lower_only should only lower triangle be plotted?
.low Color for heatmap.
.high Color for heatmap.
.legendtitle Optional name for color legend.
glmCI

Value

A ggplot object, allowing further styling.

Examples

```r
coeff_pvalues <- cortestR(mtcars[, c("wt", "mpg", "qsec", "hp")],
  split = TRUE, sign_symbol = FALSE
)
# focus on coefficients:
ggcormat(cor_mat = coeff_pvalues$corout, maxpoint = 5)
# size taken from p-value:
ggcormat(
  cor_mat = coeff_pvalues$corout,
  p_mat = coeff_pvalues$pout, maxpoint = 5)
```

glmCI

Confidence interval for generalized linear models

Description

`glm_CI` computes and formats of CIs for glm.

Usage

```r
glmCI(model, min = .01, max = 100, cisep = '\U000022ef', ndigit=2)
```

Arguments

- **model**: Output from `glm`.
- **min, max**: Lower and upper limits for CIs, useful for extremely wide CIs.
- **cisep**: Separator between CI values.
- **ndigit**: Rounding level.

Value

A list with coefficient, CIs, and pasted coef([CIs]).

Examples

```r
glm_out <- glm(am ~ mpg, family = binomial, data = mtcars)
glmCI(glm_out)
```
ksnormal \hfill \textit{Kolmogorov-Smirnov-Test against Normal distribution}

\section*{Description}
ksnormal is a convenience function around \texttt{ks.test}, testing against Normal distribution.

\section*{Usage}
\begin{verbatim}
ksnormal(x)
\end{verbatim}

\section*{Arguments}
\begin{itemize}
 \item \texttt{x}
 Vector of data to test.
\end{itemize}

\section*{Value}
p.value from \texttt{ks.test}.

\section*{Examples}
\begin{verbatim}
original ks.test:
ks.test(
 x = mtcars$wt, pnorm, mean = mean(mtcars$wt, na.rm = TRUE),
 sd = sd(mtcars$wt, na.rm = TRUE)
)
wrapped version:
ksnormal(x = mtcars$wt)
\end{verbatim}

\begin{tabular}{ll}
\hline
logrange_1 & \textit{Predefined sets of labels for plots with log-scaled axes} \\
\hline
\end{tabular}

\section*{Description}
logrange_1 returns a vector for log-labels at 0.1, 1, 100, 1000 ...

\section*{Usage}
\begin{verbatim}
logrange_1
logrange_5
logrange_123456789
logrange_12357
logrange_15
\end{verbatim}
markSign

Format

An object of class numeric of length 41.
An object of class numeric of length 738.
An object of class numeric of length 369.
An object of class numeric of length 205.
An object of class numeric of length 82.

Value

numeric vector
numeric vector

Functions

- `logrange_5`: vector for log-labels at 1.0, 1.5, 2.0, 2.5 ... 10, 15, 20, 25 ...
- `logrange_123456789`: vector for log-labels at 1, 2, 3 ... 9, 10, 20, 30 ... 90, 100 ...
- `logrange_12357`: vector for log-labels at 1, 2, 3, 5, 7, 10, 20, 30, 50, 70 ...
- `logrange_15`: vector for log-labels at 1, 5, 10, 50 ...

Examples

```r
ggplot2::ggplot(mtcars) +
ggplot2::aes(wt, mpg) +
ggplot2::geom_point() +
ggplot2::scale_y_log10(breaks = logrange_5)
ggplot2::ggplot(mtcars) +
ggplot2::aes(wt, mpg) +
ggplot2::geom_point() +
ggplot2::scale_y_log10(breaks = logrange_123456789)
```

markSign

Convert significance levels to symbols

Description

`markSign` returns the symbol associated with a significance level.

Usage

`markSign(SignIn, plabel = c("n.s.", "+", "*", "**", "***"))`

Arguments

- **SignIn**: A single p-value.
- **plabel**: A translation table, predefined with the usual symbols.
Value

factor with label as defined in plabel.

Examples

markSign(0.012)

Description

Compute mean and sd and put together with the ± symbol.

Usage

meansd(
 x,
 roundDig = 2,
 drop0 = FALSE,
 groupvar = NULL,
 range = FALSE,
 rangesep = " ",
 add_n = FALSE,
 .german = FALSE
)

Arguments

 x Data for computation.
 roundDig Number of relevant digits for roundR.
 drop0 Should trailing zeros be dropped?
 groupvar Optional grouping variable for subgroups.
 range Should min and max be included in output?
 rangesep How should min/max be separated from mean+-sd?
 add_n Should n be included in output?
 .german logical, should "." and "," be used as bigmark and decimal?

Value

character vector with mean ± SD, rounded to desired precision
Examples

```r
# basic usage of meansd
meansd(x = mtcars$wt)

# with additional options
meansd(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
```

meanse

Compute mean and standard error of mean and put together with the ± symbol.

Description

`meanse` computes SEM based on Standard Deviation/square root(n)

Usage

```r
meanse(x, mult = 1, roundDig = 2, drop0 = FALSE)
```

Arguments

- `x`: Data for computation.
- `mult`: multiplier for SEM, default 1, can be set to e.g. 2 or 1.96 to create confidence intervals
- `roundDig`: Number of relevant digits for roundR.
- `drop0`: Should trailing zeros be dropped?

Value

character vector with mean ± SEM, rounded to desired precision

Examples

```r
# basic usage of meanse
meanse(x = mtcars$wt)
```
medianse

Compute standard error of median.

Description

medianse is based on mad/square root(n)

Usage

medianse(x)

Arguments

x

Data for computation.

Value

numeric vector with SE Median.

Examples

```r
# basic usage of medianse
ddfse(x = mtcars$wt)
```

median_cl_boot

Compute confidence interval of median by bootstrapping.

Description

median_cl_boot computes lower and upper confidence limits for the estimated median, based on bootstrapping.

Usage

median_cl_boot(x, conf = 0.95, type = "basic", nrepl = 10^3)

Arguments

x

Data for computation.

cconf

confidence interval with default 95%.

type

type for function boot.ci.

nrepl

number of bootstrap replications, defaults to 1000.

Value

A tibble with one row and three columns: Median, CIlow, CIhigh.
Examples

basic usage of median_cl_boot
median_cl_boot(x = mtcars$wt)

median_quart

Compute median and quartiles and put together.

Description

Compute median and quartiles and put together.

Usage

median_quart(
 x,
 nround = NULL,
 probs = c(0.25, 0.5, 0.75),
 qtype = 8,
 roundDig = 2,
 drop0 = FALSE,
 groupvar = NULL,
 range = FALSE,
 rangesep = " ",
 rangearrow = " -> ",
 prettynum = FALSE,
 .german = FALSE,
 add_n = FALSE
)

Arguments

x Data for computation.
nround Number of digits for fixed round.
probs Quantiles to compute.
qtype Type of quantiles.
roundDig Number of relevant digits for roundR.
drop0 Should trailing zeros be dropped?
groupvar Optional grouping variable for subgroups.
range Should min and max be included in output?
rangesep How should min/max be separated from mean+-sd?
rangearrow What is put between min -> max?
prettynum logical, apply prettyNum to results?
.german logical, should "." and "," be used as bigmark and decimal?
add_n Should n be included in output?
pairwise_fisher_test

Value

character vector with median [1stQuartile/3rdQuartile], rounded to desired precision

Examples

basic usage of median_quart
median_quart(x = mtcars$wt)

with additional options
median_quart(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)

data(faketrial)

median_quart(x=faketrial$`Biomarker 1 [units]`, groupvar = faketrial$Treatment)

pairwise_fisher_test Pairwise Fisher's exact tests

Description

pairwise_fisher_test calculates pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise_fisher_test(
 dep_var,
 indep_var,
 adjmethod = "fdr",
 plevel = 0.05,
 symbols = letters[-1],
 ref = FALSE
)

Arguments

dep_var dependent variable, containing the data.

indep_var independent variable, should be factor or coercible.

adjmethod method for adjusting p values (see p.adjust).

plevel threshold for significance.

symbols predefined as b,c, d...; provides footnotes to mark group differences, e.g. b

ref is the 1st subgroup the reference (like in Dunnett test)?

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)
Examples

All pairwise comparisons
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear)
Only comparison against reference gear=3
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear, ref = TRUE)

description

pairwise_ordcat_test calculates pairwise comparisons for ordinal categories between all group
levels with corrections for multiple testing.

Usage

pairwise_ordcat_test(
 dep_var,
 indep_var,
 adjmethod = "fdr",
 plevel = 0.05,
 symbols = letters[-1],
 ref = FALSE,
 cmh = TRUE
)

Arguments

dep_var dependent variable, containing the data
indep_var independent variable, should be factor
adjmethod method for adjusting p values (see p.adjust)
plevel threshold for significance
symbols predefined as b,c, d...; provides footnotes to mark group differences, e.g. b
means different from group 2
ref is the 1st subgroup the reference (like in Dunnett test)

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise"
(vector of length number of levels - 1)
Examples

All pairwise comparisons
mtcars2 <- dplyr::mutate(mtcars, cyl = factor(cyl, ordered = TRUE))
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear)
Only comparison against reference gear=3
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear, ref = TRUE)

pairwise_t_test

Extended pairwise t-test

Description

pairwise_t_test calculate pairwise comparisons between group levels with corrections for multiple testing based on pairwise.t.test

Usage

pairwise_t_test(
 dep_var,
 indep_var,
 adjmethod = "fdr",
 plevel = 0.05,
 symbols = letters[-1]
)

Arguments

dep_var dependent variable, containing the data
indep_var independent variable, should be factor
adjmethod method for adjusting p values (see p.adjust)
plevel threshold for significance
symbols predefined as b,c,d...: provides footnotes to mark group differences, e.g. b means different from group 2

Value

A list with method output of pairwise.t.test, matrix of p-values, and character vector with significance indicators.

Examples

pairwise_t_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
pairwise_wilcox_test

Pairwise Wilcoxon tests

Description

pairwise_wilcox_test calculates pairwise comparisons on ordinal data between all group levels with corrections for multiple testing based on wilcox_test from package 'coin'.

Usage

pairwise_wilcox_test(
 dep_var,
 indep_var,
 strat_var = NA,
 adjmethod = "fdr",
 distr = "exact",
 plevel = 0.05,
 symbols = letters[-1],
 sep = ""
)

Arguments

dep_var dependent variable, containing the data.
indep_var independent variable, should be factor.
strat_var optional factor for stratification.
adjmethod method for adjusting p values (see p.adjust)
distr Computation of p-values, see wilcox_test.
plevel threshold for significance.
symbols predefined as b,c, d...; provides footnotes to mark group differences, e.g. b means different from group 2.
sep text between statistics and range or other elements.

Value

A list with matrix of adjusted p-values and character vector with significance indicators.

Examples

pairwise_wilcox_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
pdf_kable

Enhanced kable with latex

Description

pdf_kable formats tibbles/df’s for markdown

Usage

pdf_kable(
 .input,
 width1 = 6,
 twidth = 14,
 tposition = "left",
 innercaption = NULL,
 caption = "",
 foot = NULL,
 escape = TRUE
)

Arguments

 .input table to print
 width1 Width of 1st column, default 6.
 twidth Default 14
 tposition Default left
 innercaption subheader
 caption header
 foot footnote
 escape see kable

Value

A character vector of the table source code.
plot_LB

Lineweaver-Burk diagram

Description

plot_LB plots a Lineweaver-Burk diagram and computes the linear model

Usage

plot_LB(
 data,
 substrate,
 velocity,
 group = NULL,
 title = "Lineweaver-Burk-Plot",
 xlab = "1/substrate",
 ylab = "1/velocity"
)

Arguments

data data structure with columns for model data
substrate colname for substrate concentration
velocity colname for reaction velocity
group colname for optional grouping factor
title title of the plot
xlab label of the abscissa
ylab label of the ordinate

Examples

MMdata <- data.frame(subst = c(2.00, 1.00, 0.50, 0.25),
 velo = c(0.2253, 0.1795, 0.1380, 0.1000))

plot_LB(data=MMdata,
 substrate = 'subst',velocity = 'velo')

MMdata <- data.frame(subst = rep(c(2.00, 1.00, 0.50, 0.25),2),
 velo = c(0.2253, 0.1795, 0.1380, 0.1000,
 0.4731333, 0.4089333, 0.3473000, 0.2546667),
 condition = rep(c('C1','C2'),each=4))

plot_LB(data=MMdata,substrate = 'subst',
 velocity = 'velo',group='condition')
plot_MM Michaelis-Menten enzyme kinetics model and plot

Description

plot_MM creates a Michaelis-Menten type Enzyme kinetics plot and returns model as well

Usage

plot_MM(
 data,
 substrate,
 velocity,
 group = NULL,
 title = "Michaelis-Menten",
 xlab = "substrate",
 ylab = "velocity"
)

Arguments

data data structure with columns for model data
substrate colname for substrate concentration
velocity colname for reaction velocity
group colname for optional grouping factor
title title of the plot
xlab label for x-axis
ylab label for y-axis

Value

a list with elements "MMfit" and "MMplot"

Examples

MMdata <- data.frame(subst = c(2.00, 1.00, 0.50, 0.25),
 velo = c(0.2253, 0.1795, 0.1380, 0.1000))

plot_MM(data = MMdata,
 substrate = 'subst', velocity = 'velo')

MMdata <- data.frame(subst = rep(c(2.00, 1.00, 0.50, 0.25),2),
 velo = c(0.2253, 0.1795, 0.1380, 0.1000,
 0.4731333, 0.4089333, 0.3473000, 0.2546667),
 condition = rep(c('C1','C2'),each=4))
```r
plot_MM(data=MMdata,substrate = 'subst',
velocity = 'velo', group='condition')
```

Description

[Superseded]

Usage

```r
print_kable(t, nrows = 30, caption = "", ncols = 100, ...)
```

Arguments

- `t`: table to print.
- `nrows`: number of rows (30) before splitting.
- `caption`: header.
- `ncols`: number of columns (100) before splitting.
- `...`: Further arguments passed to `kable`.

Details

Package `flextable` is a more powerful alternative

`print_kable` formats and prints tibbles/df's in markdown with splitting into sub-tables with repeated caption and header.

Value

No return value, called for side effects.

Examples

```r
## Not run:
print_kable(mtcars, caption = "test")
```

End(Not run)
Description

`roundR` takes a vector or matrix of numbers and returns rounded values with selected precision and various formatting options.

Usage

```r
def roundR(roundin, level = 2, smooth = FALSE, textout = TRUE, drop0 = FALSE, .german = FALSE, .bigmark = FALSE)
```

Arguments

- `roundin`: A vector or matrix of numbers.
- `level`: A number specifying number of relevant digits to keep.
- `smooth`: A logical specifying if you want rounding before the dot (e.g. 12345 to 12300).
- `textout`: A logical if output is converted to text.
- `drop0`: A logical if trailing zeros should be dropped.
- `.german`: A logical if german numbers should be reported.
- `.bigmark`: A logical if big.mark is to be shown, mark itself depends on parameter `.german`.

Value

vector of type character (default) or numeric, depending on parameter `textout`.

Examples

```r
roundR(1.23456, level = 3)
roundR(1.23456, level = 3, .german = TRUE)
roundR(1234.56, level = 2, smooth = TRUE)
```
SEM

Standard Error of Mean.

Description
SEM computes standard error of mean.

Usage
SEM(x)

Arguments
x Data for computation.

Value
numeric vector with SEM.

Examples
SEM(x = mtcars$wt)

se_median

Compute standard error of median

Description
se_median is based on mad/square root(n) (Deprecated, please see medianse, which is the same but named more consistently)

Usage
se_median(x)

Arguments
x Data for computation.

Value
numeric vector with SE Median.
Examples

```r
# basic usage of se_median
## Not run:
se_median(x = mtcars$wt)
## End(Not run)
```

surprisal

Compute surprisal aka Shannon information from p-values

Description

surprisal takes p-values and returns s, a value representing the number of consecutive heads on a fair coin, that would be as surprising as the p-value.

Usage

```r
surprisal(p, precision = 1)
```

Arguments

- `p`: a vector of p-values
- `precision`: rounding level with default 1

Value

a character vector of s-values

tab.search

Search within data.frame or tibble

Description

tab.search searches for pattern within a data-frame or tibble, returning column(s) and row(s).

Usage

```r
tab.search(searchdata = rawdata, pattern, find.all = T, names.only = FALSE)
```

Arguments

- `searchdata`: table to search in, predefined as rawdata
- `pattern`: regex, for exact matches add `^findme$`
- `find.all`: return all row indices or only 1st per column, default=TRUE
- `names.only`: return only vector of colnames rather than list with names and rows, default=FALSE
t_var_test

Value

A list with numeric vectors for each column giving row numbers of matched elements

t_var_test
Independent sample t-test with test for equal variance

Description

t_var_test tests for equal variance based on var.test and calls t.test, setting the option var.equal accordingly.

Usage

t_var_test(data, formula, cutoff = 0.05)

Arguments

data
Tibble or data_frame.

formula
Formula object with dependent and independent variable.

cutoff
is significance threshold for equal variances.

Value

A list from t.test

Examples

t_var_test(mtcars, wt ~ am)
may be used in pipes:
mtcars |> t_var_test(wt ~ am)

var_coeff

Compute coefficient of variance.

Description

var_coeff computes relative variability as standard deviation/mean *100

Usage

var_coeff(x)

Arguments

x
Data for computation.
Value

numeric vector with coefficient of variance.

Examples

```
var_coeff(x = mtcars$wt)
```
Index

* datasets
 faketrial, 11
 logrange_1, 16

bt, 3

cat_desc_stats, 3
cmh_test, 23
cn, 4
compare2numvars, 5
compare2qualvars, 6
compare_n_numvars, 7
compare_n_qualvars, 9
cor.test, 10
cortestR, 10, 14

faketrial, 11
FindVars, 12
fisher.test, 6, 9
formatP, 5, 7, 9, 13

ggcormat, 14
glm, 15
glmCI, 15
grep(), 12

kable, 29
ks.test, 16
ksnormal, 16

lbl_test, 23
logrange_1, 16
logrange_123456789 (logrange_1), 16
logrange_12357 (logrange_1), 16
logrange_15 (logrange_1), 16
logrange_5 (logrange_1), 16

mad, 20, 31
markSign, 17
meansd, 18
meanse, 19

median_cl_boot, 20
median_quart, 21
medianse, 20, 31

p.adjust, 22–25
pairwise.t.test, 24
pairwise_fisher_test, 9, 22
pairwise_ordcat_test, 23
pairwise_t_test, 24
pairwise_wilcox_test, 25
pdf_kable, 26
plot_LB, 27
plot_MM, 28
print_kable, 29

roundR, 30

se_median, 31
SEM, 31
surprisal, 32

t.test, 33
t_var_test, 5, 33
tab.search, 32

units, 11

var.test, 33
var_coef, 33

wilcoxon.test, 5
wilcox_test, 25