Package ‘wv’

January 16, 2020

Type Package
Title Wavelet Variance
Version 0.1.1
Date 2020-01-16
LazyData true
Maintainer Stéphane Guerrier <stef.guerrier@gmail.com>
Depends R (>= 3.5.0)
License AGPL-3
Imports Rcpp, simts, utils, grDevices, coda, methods, graphics, stats
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.0.2
Encoding UTF-8
Suggests knitr, rmarkdown
URL https://github.com/SMAC-Group/wv
BugReports https://github.com/SMAC-Group/wv/issues
NeedsCompilation yes
Author Stéphane Guerrier [aut, cre],
James Balamuta [aut],
Justin Lee [aut],
Roberto Molinari [aut],
Yuming Zhang [aut],
Nathanael Claussen [ctb],
Haotian Xu [ctb],
Lionel Voirol [ctb]
Repository CRAN
Date/Publication 2020-01-16 18:40:02 UTC

1
R topics documented:

ACF .. 2
adis_wv ... 3
ar1_to_wv ... 4
arma11_to_wv .. 5
arma_to_wv ... 6
av_ar1 .. 7
av_wn .. 8
compare_wvar .. 9
cmpare_wvar_no_split 10
cmpare_wvar_split .. 11
dr_to_wv .. 11
dwt .. 12
imar_wv .. 13
kvh1750_wv .. 13
ln200_wv ... 14
ma1_to_wv ... 15
modwt .. 16
navchip_wv ... 17
qn_to_wv ... 17
robust_eda ... 18
rw_to_wv ... 19
sarma_objdesc ... 20
sp_hifilter .. 21
sp_modwt_cpp ... 21
wccv .. 22
wccv_get_y .. 22
wccv_pair ... 23
wn_to_wv ... 24
wvar ... 25

Index ... 28

ACF Auto-Covariance and Correlation Functions

Description

The ACF function computes the estimated autocovariance or autocorrelation for both univariate and multivariate cases.

Usage

ACF(x, lagmax = 0, cor = TRUE, demean = TRUE)
Arguments

\(x\)
A matrix with dimensions \(N \times S\) or \(N\) observations and \(S\) processes

\(\text{lagmax}\)
A integer indicating the max lag.

\(\text{cor}\)
A bool indicating whether the correlation (TRUE) or covariance (FALSE) should be computed.

\(\text{demean}\)
A bool indicating whether the data should be detrended (TRUE) or not (FALSE)

Details

\(\text{lagmax}\) default is \(10 \times \log_{10}(N/m)\) where \(N\) is the number of observations and \(m\) is the number of series being compared. If \(\text{lagmax}\) supplied is greater than the number of observations, then one less than the total will be taken.

Value

An array of dimensions \(N \times S \times S\).

Author(s)

Yunxiang Zhang

Examples

Get Autocorrelation
\(m = \text{ACF}()\)

Get Autocovariance and do not remove trend from signal
\(m = \text{ACF}()\)

Description

This data set contains wavelet variance of gyroscope and accelerometer data from an ADIS 16405 sensor.

Usage

\(\text{adis_wv}\)
Format

A list of the following elements:

- "sensor": Name of the sensor.
- "freq": The frequency at which the error signal is measured.
- "n": Sample size of the data.
- "type": The types of sensors considered in the data.
- "axis": The axes of sensors considered in the data.
- "wvar": A list containing the computed wavelet variance based on the data.

Source

The IMU data comes from Department of Geomatics Engineering, University of Calgary.

| ar1_to_wv | AR(1) process to WV |

Description

This function computes the Haar WV of an AR(1) process

Usage

ar1_to_wv(phi, sigma2, tau)

Arguments

phi A double that is the phi term of the AR(1) process
sigma2 A double corresponding to variance of AR(1) process
tau A vec containing the scales e.g. 2^τ

Details

This function is significantly faster than its generalized counter part arma_to_wv.

Value

A vec containing the wavelet variance of the AR(1) process.

Process Haar Wavelet Variance Formula

The Autoregressive Order 1 (AR(1)) process has a Haar Wavelet Variance given by:

$$2\sigma^2 \left(4\phi^{\tau_j + 1} - \phi^{\tau_j + 1} - \frac{1}{2} \phi^2 \tau_j + \frac{\tau_j}{2} - 3\phi \right) / \left((1 - \phi)^2 (1 - \phi^2) \tau_j^2 \right)$$
arma11_to_wv

See Also

arma_to_wv, arma11_to_wv

| arma11_to_wv | ARMA(1,1) to WV |

Description

This function computes the WV (haar) of an Autoregressive Order 1 - Moving Average Order 1 (ARMA(1,1)) process.

Usage

arma11_to_wv(phi, theta, sigma2, tau)

Arguments

phi A double corresponding to the autoregressive term.
theta A double corresponding to the moving average term.
sigma2 A double the variance of the process.
tau A vec containing the scales e.g. 2^τ

Details

This function is significantly faster than its generalized counter part arma_to_wv

Value

A vec containing the wavelet variance of the ARMA(1,1) process.

Process Haar Wavelet Variance Formula

The Autoregressive Order 1 and Moving Average Order 1 (ARMA(1,1)) process has a Haar Wavelet Variance given by:

$$\nu_j^2(\phi, \theta, \sigma^2) = -\frac{2\sigma^2 \left(-\frac{1}{2}(\theta + 1)^2 \left(\phi^2 - 1\right) \tau_j - (\theta + \phi)(\theta \phi + 1) \left(\phi \tau_j - 4\phi \tau_j^2 + 3\right)\right)}{(\phi - 1)^3(\phi + 1)\tau_j^2}$$

See Also

arma_to_wv
Description

This function computes the Haar Wavelet Variance of an ARMA process.

Usage

arma_to_wv(ar, ma, sigma2, tau)

Arguments

ar A vec containing the coefficients of the AR process
ma A vec containing the coefficients of the MA process
sigma2 A double containing the residual variance
tau A vec containing the scales e.g. 2^τ

Details

The function is a generic implementation that requires a stationary theoretical autocorrelation function (ACF) and the ability to transform an ARMA(p,q) process into an MA(∞) (e.g. infinite MA process).

Value

A vec containing the wavelet variance of the ARMA process.

Process Haar Wavelet Variance Formula

The Autoregressive Order p and Moving Average Order q (ARMA(p,q)) process has a Haar Wavelet Variance given by:

$$
\tau_j \left[1 - \rho \left(\frac{\tau_j}{2} \right) \right] + 2 \sum_{i=1}^{\tau_j-1} i \left[2 \rho \left(\frac{\tau_j}{2} - i \right) - \rho (i) - \rho (\tau_j - i) \right] \frac{\tau_j^2}{\sigma_X^2}
$$

where σ_X^2 is given by the variance of the ARMA process. Furthermore, this assumes that stationarity has been achieved as it directly.

See Also

ARMAtoMA_cpp, ARMAacf_cpp, and arma11_to_wv
av_ar1

Calculate Theoretical Allan Variance for Stationary First-Order Autoregressive (AR1) Process

Description

This function allows us to calculate the theoretical allan variance for stationary first-order autoregressive (AR1) process.

Usage

```r
av_ar1(n, phi, sigma2)
```

Arguments

- `n`: An integer value for the size of the cluster.
- `phi`: A double value for the autocorrection parameter ϕ.
- `sigma2`: A double value for the variance parameter σ^2.

Value

A double indicating the theoretical allan variance for AR1 process.

Note

This function is based on the calculation of the theoretical allan variance for stationary AR1 process raised in "Allan Variance of Time Series Models for Measurement Data" by Nien Fan Zhang. This calculation is fundamental and necessary for the study in "A Study of the Allan Variance for Constant-Mean Non-Stationary Processes" by Xu et al. (IEEE Signal Processing Letters, 2017).

Author(s)

Yuming Zhang

Examples

```r
av1 = av_ar1(n = 5, phi = 0.9, sigma2 = 1)
av2 = av_ar1(n = 8, phi = 0.5, sigma2 = 2)
```
Calculate Theoretical Allan Variance for Stationary White Noise Process

Description

This function allows us to calculate the theoretical allan variance for stationary white noise process.

Usage

\[
\text{av}_\text{wn}(\sigma^2, n)
\]

Arguments

- \(\sigma^2\): A double value for the variance parameter \(\sigma^2\).
- \(n\): An integer value for the size of the cluster.

Value

A double indicating the theoretical allan variance for the white noise process.

Note

This function is based on the calculation of the theoretical allan variance for stationary white noise process raised in "Allan Variance of Time Series Models for Measurement Data" by Nien Fan Zhang. This calculation is fundamental and necessary for the study in "A Study of the Allan Variance for Constant-Mean Non-Stationary Processes" by Xu et al. (IEEE Signal Processing Letters, 2017).

Author(s)

Yuming Zhang

Examples

\[
\begin{align*}
\text{av1} &= \text{av}_\text{wn}(\sigma^2 = 1, n = 5) \\
\text{av2} &= \text{av}_\text{wn}(\sigma^2 = 2, n = 8)
\end{align*}
\]
Comparison Between Multiple Wavelet Variances

Description

Displays plots of multiple wavelet variances of different time series accounting for CI values.

Usage

```r
compare_wvar(
  ..., 
  split = FALSE,
  add_legend = TRUE,
  units = NULL,
  xlab = NULL,
  ylab = NULL,
  main = NULL,
  col_wv = NULL,
  col_ci = NULL,
  nb_ticks_x = NULL,
  nb_ticks_y = NULL,
  legend_position = NULL,
  ci_wv = NULL,
  point_cex = NULL,
  point_pch = NULL,
  names = NULL,
  cex_labels = 0.8
)
```

Arguments

- `...` One or more time series objects.
- `split` A boolean that, if TRUE, arranges the plots into a matrix-like format.
- `add_legend` A boolean that, if TRUE, adds a legend to the plot.
- `units` A string that specifies the units of time plotted on the x axes. Note: This argument will not be used if xlab is specified.
- `xlab` A string that gives a title for the x axes.
- `ylab` A string that gives a title for the y axes.
- `main` A string that gives an overall title for the plot.
- `col_wv` A string that specifies the color of the wavelet variance lines.
- `col_ci` A string that specifies the color of the confidence interval shade.
- `nb_ticks_x` An integer that specifies the maximum number of ticks for the x-axis.
- `nb_ticks_y` An integer that specifies the maximum number of ticks for the y-axis.
compare_wvar_no_split

legend_position
A string that specifies the position of the legend (use legend_position = NA to remove legend).

ci_wv
A boolean that determines whether confidence interval polygons will be drawn.

point_cex
A double that specifies the size of each symbol to be plotted.

point_pch
A double that specifies the symbol type to be plotted.

names
A string that specifies the name of the WV AR objects.

cex_labels
A double that specifies the magnification of the labels (x and y).

Author(s)
Stephane Guerrier and Justin Lee

Examples

set.seed(999)
n = 10^4
Xt = arima.sim(n = n, list(ar = 0.10))
Yt = arima.sim(n = n, list(ar = 0.35))
Zt = arima.sim(n = n, list(ar = 0.70))
Wt = arima.sim(n = n, list(ar = 0.95))

wv_Xt = wvar(Xt)
wv_Yt = wvar(Yt)
wv_Zt = wvar(Zt)
wv_Wt = wvar(Wt)

compare_wvar(wv_Xt, wv_Yt, wv_Zt, wv_Wt)

compare_wvar_no_split

Combined Plot Comparison Between Multiple Wavelet Variances

Description

This is a helper function for the `compare_var()` function. This method accepts the same set of arguments as `compare_wvar` and returns a single plot that compares multiple wavelet variances of different time series accounting for CI values.

Usage

`compare_wvar_no_split(graph_details)`

Arguments

`graph_details` List of inputs

Author(s)

Stephane Guerrier, Justin Lee, and Nathanael Claussen
compare_wvar_split
Multi-Plot Comparison Between Multiple Wavelet Variances

Description

This is a helper function for the `compare_var()` function. This method accepts the same set of arguments as `compare_wvar` and returns a comparison of multiple wavelet variances of different time series accounting for CI values as a set of different plots.

Usage

```r
compare_wvar_split(graph_details)
```

Arguments

- `graph_details` List of inputs

Author(s)

Stephane Guerrier, Justin Lee, and Nathanael Claussen

dr_to_wv
Drift to WV

Description

This function compute the WV (haar) of a Drift process

Usage

```r
dr_to_wv(omega, tau)
```

Arguments

- `omega` A `double` corresponding to the slope of the drift
- `tau` A `vec` containing the scales e.g. 2^τ

Value

A `vec` containing the wavelet variance of the drift.

Process Haar Wavelet Variance Formula

The Drift (DR) process has a Haar Wavelet Variance given by:

$$\nu_j^2(\omega) = \frac{\tau^2 \omega^2}{16}$$
Discrete Wavelet Transform

Description

Calculation of the coefficients for the discrete wavelet transformation

Usage

dwt(x, nlevels = floor(log2(length(x))), filter = "haar")

Arguments

x
A vector with dimensions N x 1.

nlevels
A integer indicating the J levels of decomposition.

filter
A string indicating the filter name

Details

Performs a level J decomposition of the time series using the pyramid algorithm. The default J is determined by floor(log2(length(x)))

Value

A field<vec> that contains the wavelet coefficients for each decomposition level

Author(s)

James Balamuta, Justin Lee and Stephane Guerrier

Examples

set.seed(999)
x = rnorm(2^8)
ret = dwt(x)

summary(ret)
plot(ret)
imar_wv
Wavelet variance of IMU Data from IMAR Gyroscopes

Description

This data set contains wavelet variance of IMAR gyroscopes data.

Usage

imar_wv

Format

A list of the following elements:

- "sensor": Name of the sensor.
- "freq": The frequency at which the error signal is measured.
- "n": Sample size of the data.
- "type": The types of sensors considered in the data.
- "axis": The axes of sensors considered in the data.
- "wvar": A list containing the computed wavelet variance based on the data.

Source

The IMU data comes from Geodetic Engineering Laboratory (TOPO) and Swiss Federal Institute of Technology Lausanne (EPFL).

kvh1750_wv
Wavelet variance of IMU Data from a KVH1750 IMU sensor

Description

This data set contains wavelet variance of gyroscope and accelerometer data from an KVH1750 sensor.

Usage

kvh1750_wv
Format

A list of the following elements:

- "sensor": Name of the sensor.
- "freq": The frequency at which the error signal is measured.
- "n": Sample size of the data.
- "type": The types of sensors considered in the data.
- "axis": The axes of sensors considered in the data.
- "wvar": A list containing the computed wavelet variance based on the data.

Source

The IMU data comes from Department of Geomatics Engineering, University of Calgary.

Description

This data set contains wavelet variance of LN200 gyroscope and accelerometer data.

Usage

ln200_wv

Format

A list of the following elements:

- "sensor": Name of the sensor.
- "freq": The frequency at which the error signal is measured.
- "n": Sample size of the data.
- "type": The types of sensors considered in the data.
- "axis": The axes of sensors considered in the data.
- "wvar": A list containing the computed wavelet variance based on the data.

Source

The IMU data comes from Geodetic Engineering Laboratory (TOPO) and Swiss Federal Institute of Technology Lausanne (EPFL).
Description

This function computes the WV (haar) of a Moving Average order 1 (MA1) process.

Usage

\texttt{ma1_to_wv(theta, sigma2, tau)}

Arguments

- \texttt{theta} \\
 A double corresponding to the moving average term.

- \texttt{sigma2} \\
 A double the variance of the process.

- \texttt{tau} \\
 A vec containing the scales e.g. \(2^r\)

Details

This function is significantly faster than its generalized counter part \texttt{arma_to_wv}.

Value

A vec containing the wavelet variance of the MA(1) process.

Process Haar Wavelet Variance Formula

The Moving Average Order 1 (MA(1)) process has a Haar Wavelet Variance given by:

\[
\nu^2_j (\theta, \sigma^2) = \frac{((\theta + 1)^2 \tau_j - 6\theta) \sigma^2}{\tau_j^2}
\]

See Also

\texttt{arma_to_wv, arma11_to_wv}
modwt

Maximum Overlap Discrete Wavelet Transform

Description

Calculates the coefficients for the discrete wavelet transformation

Usage

modwt(x, nlevels = floor(log2(length(x) - 1)), filter = "haar")

Arguments

x
A vector with dimensions N x 1.

nlevels
A integer indicating the J levels of decomposition.

filter
A string indicating the filter name

Details

Performs a level J decomposition of the time series using the pyramid algorithm. The default J is determined by \(\text{floor}(\log_2(\text{length}(x))) \)

Value

A field<vec> that contains the wavelet coefficients for each decomposition level

Author(s)

James Balamuta, Justin Lee and Stephane Guerrier

Examples

set.seed(999)
x = rnorm(100)
ret = modwt(x)

summary(ret)

plot(ret)
Description
This data set contains wavelet variance of gyroscope and accelerometer data from a navchip sensor.

Usage
navchip_wv

Format
A list of the following elements:
- "sensor": Name of the sensor.
- "freq": The frequency at which the error signal is measured.
- "n": Sample size of the data.
- "type": The types of sensors considered in the data.
- "axis": The axes of sensors considered in the data.
- "wvar": A list containing the computed wavelet variance based on the data.

Source
The IMU data of the navchip sensor comes from Geodetic Engineering Laboratory (TOPO) and Swiss Federal Institute of Technology Lausanne (EPFL).

qn_to_wv
Quantisation Noise (QN) to WV

Description
This function compute the Haar WV of a Quantisation Noise (QN) process

Usage
qn_to_wv(q2, tau)

Arguments
- q2: A double corresponding to variance of drift
- tau: A vec containing the scales e.g. 2^r
Value

A vec containing the wavelet variance of the QN.

Process Haar Wavelet Variance Formula

The Quantization Noise (QN) process has a Haar Wavelet Variance given by:

\[\nu_j^2 \left(Q^2 \right) = \frac{6Q^2}{\tau_j^2} \]

robust_eda
Comparison between classical and robust Wavelet Variances

Description

Displays a plot of the wavelet variances (classical and robust) for a given time series accounting for CI values.

Usage

```
robust_eda(
  x,
  eff = 0.6,
  units = NULL,
  xlab = NULL,
  ylab = NULL,
  main = NULL,
  col_wv = NULL,
  col_ci = NULL,
  nb_ticks_x = NULL,
  nb_ticks_y = NULL,
  legend_position = NULL,
  ...
)
```

Arguments

- **x**
 A time series objects.
- **eff**
 An integer that specifies the efficiency of the robust estimator.
- **units**
 A string that specifies the units of time plotted on the x axis.
- **xlab**
 A string that gives a title for the x axis.
- **ylab**
 A string that gives a title for the y axis.
- **main**
 A string that gives an overall title for the plot.
- **col_wv**
 A string that specifies the color of the wavelet variance line.
- **col_ci**
 A string that specifies the color of the confidence interval shade.
nb_ticks_x An integer that specifies the maximum number of ticks for the x-axis.

nb_ticks_y An integer that specifies the maximum number of ticks for the y-axis.

legend_position
A string that specifies the position of the legend (use legend_position = NA to remove legend).

... Additional arguments affecting the plot.

Value
Plot of wavelet variance and confidence interval for each scale.

Author(s)
Stephane Guerrier, Nathanael Claussen, and Justin Lee

Examples
set.seed(999)
n = 10^4
Xt = rnorm(n)
wv = wvar(Xt)

plot(wv)
plot(wv, main = "Simulated white noise", xlab = "Scales")
plot(wv, units = "sec", legend_position = "topright")
plot(wv, col_wv = "darkred", col_ci = "pink")

Description
This function compute the WV (haar) of a Random Walk process

Usage
rw_to_wv(gamma2, tau)

Arguments

gamma2 A double corresponding to variance of RW
tau A vec containing the scales e.g. 2^r

Value
A vec containing the wavelet variance of the random walk.
Process Haar Wavelet Variance Formula

The Random Walk (RW) process has a Haar Wavelet Variance given by:

\[\nu_j^2 (\gamma^2) = \frac{(\tau_j^2 + 2) \gamma^2}{12 \tau_j} \]

sarma_objdesc

Create the ts.model obj.desc given split values

Description

Computes the total phi and total theta vector length.

Usage

`sarma_objdesc(ar, ma, sar,isma, s, i, si)`

Arguments

- **ar**: A vec containing the non-seasonal phi parameters.
- **ma**: A vec containing the non-seasonal theta parameters.
- **sar**: A vec containing the seasonal phi parameters.
- **sma**: A vec containing the seasonal theta parameters.
- **s**: An unsigned integer containing the frequency of seasonality.
- **i**: An unsigned integer containing the number of non-seasonal differences.
- **si**: An unsigned integer containing the number of seasonal differences.

Value

A vec with rows:

- **np**: Number of Non-Seasonal AR Terms
- **nq**: Number of Non-Seasonal MA Terms
- **nsp**: Number of Seasonal AR Terms
- **nsq**: Number of Seasonal MA Terms
- **nsigma**: Number of Variances (always 1)
- **s**: Season Value
- **i**: Number of non-seasonal differences
- **si**: Number of Seasonal Differences
sp_hfilter

Haar filter for a spatial case

Description
Haar filter for a spatial case

Usage
sp_hfilter(jscale)

Arguments
jscale An int of the Number of Scales

sp_modwt_cpp
Compute the Spatial Wavelet Coefficients

Description
Compute the Spatial Wavelet Coefficients

Usage
sp_modwt_cpp(X, J1, J2)

Arguments
X is a matrix with row, col orientation
J1, J2 is the levels of decomposition along the rows, columns

Details
By default this function will return the wavelet coefficient in addition to the wavelet

Value
A list of vectors containing the wavelet coefficients.
\texttt{wccv} \hfill \textit{Cross Covariance of Matrix}

\section{Description}
Calculates the Cross-covariance between multiple wavelet transformations (dwt or modwt)

\section{Usage}
\texttt{wccv(x, decomp = "modwt", filter = "haar", nlevels = NULL)}

\section{Arguments}
\begin{itemize}
\item \texttt{x} \hspace{1cm} A vector with dimensions N x M.
\item \texttt{decomp} \hspace{1cm} A string that indicates whether to use the "dwt" or "modwt" decomposition.
\item \texttt{filter} \hspace{1cm} A string that specifies what wavelet filter to use.
\item \texttt{nlevels} \hspace{1cm} An integer that indicates the level of decomposition. It must be less than or equal to floor(log2(length(x))).
\end{itemize}

\section{Details}
If \texttt{nlevels} is not specified, it is set to \[\lfloor \log_2 (\text{length} (x)) \rfloor\]

\section{Value}
Returns a matrix of lists of all the possible pair cross-covariance, variance of each wavelet cross-covariance and its 95

\section{Author(s)}
Justin Lee

\texttt{wccv_get_y} \hfill \textit{Mapping to log10 scale}

\section{Description}
Map x to the value in log10 scale

\section{Usage}
\texttt{wccv_get_y(x, tick_y_min, tick_y_step)}
wccv_pair

Arguments

- **x**: A vector with dimensions J x 1.
- **tick_y_min**: A negative integer the minimum power of 10, which corresponds to the smallest scale on y-axis.
- **tick_y_step**: An integer indicating the increment of the sequence.

Details

tick_y_min is usually chosen as floor(min(log10(abs(x))))

Value

A field<vec> that contains values in log10 scale.

Author(s)

James Balamuta and Justin Lee

Examples

```r
x = 2^(-1:-9)
y.min = floor(min(log10(abs(x))))
y.step = 2
wccv_get_y(x, y.min, y.step)
```

wccv_pair

Cross Covariance of a TS Pair

Description

Calculates the Cross-covariance between two wavelet transformation (dwt or modwt)

Usage

```r
wccv_pair(x, y, decomp = "modwt", filter = "haar", nlevels = NULL)
```

Arguments

- **x**: A vector with dimensions N x 1.
- **y**: A vector with dimensions N x 1.
- **decomp**: A string that indicates whether to use the "dwt" or "modwt" decomposition.
- **filter**: A string that specifies what wavelet filter to use.
- **nlevels**: An integer that indicates the level of decomposition. It must be less than or equal to floor(log2(length(x))).
Details

If `nlevels` is not specified, it is set to \(\lfloor \log_2 (\text{length} (x)) \rfloor \)

Value

Returns a list of a matrix containing cross-covariance, variance of each wavelet cross-covariance and its 95

Author(s)

Justin Lee

\texttt{wn_to_wv} \quad \textit{Gaussian White Noise to WV}

Description

This function compute the Haar WV of a Gaussian White Noise process

Usage

\texttt{wn_to_wv(sigma2, tau)}

Arguments

\begin{itemize}
 \item \texttt{sigma2} \quad \text{A double corresponding to variance of WN}
 \item \texttt{tau} \quad \text{A vec containing the scales e.g. } 2^r
\end{itemize}

Value

A vec containing the wavelet variance of the white noise.

Process Haar Wavelet Variance Formula

The Gaussian White Noise (WN) process has a Haar Wavelet Variance given by:

\[\nu_j^2 (\sigma^2) = \frac{\sigma^2}{\tau_j^2} \]
Description

Calculates the (MO)DWT wavelet variance

Usage

wvar(x, ...)

S3 method for class 'lts'
wvar(
 x,
 decomp = "modwt",
 filter = "haar",
 nlevels = NULL,
 alpha = 0.05,
 robust = FALSE,
 eff = 0.6,
 to.unit = NULL,
 ...
)

S3 method for class 'gts'
wvar(
 x,
 decomp = "modwt",
 filter = "haar",
 nlevels = NULL,
 alpha = 0.05,
 robust = FALSE,
 eff = 0.6,
 to.unit = NULL,
 ...
)

S3 method for class 'ts'
wvar(
 x,
 decomp = "modwt",
 filter = "haar",
 nlevels = NULL,
 alpha = 0.05,
 robust = FALSE,
 eff = 0.6,
 to.unit = NULL,
Arguments

x A vector with dimensions N x 1.
... Further arguments passed to or from other methods.
decomp A string that indicates whether to use a "dwt" or "modwt" decomposition.
filter A string that specifies which wavelet filter to use.
nlevels An integer that indicates the level of decomposition. It must be less than or equal to floor(log2(length(x))).
alpha A double that specifies the significance level which in turn specifies the $1 - \alpha$ confidence level.
robust A boolean that triggers the use of the robust estimate.
eff A double that indicates the efficiency as it relates to an MLE.
to.unit A string indicating the unit to which the data is converted.
freq A numeric that provides the rate of samples.
from.unit A string indicating the unit from which the data is converted.
Details

The default value of `nlevels` will be set to $\lfloor \log_2 (\text{length} \ (x)) \rfloor$, unless otherwise specified.

Value

A list with the structure:

- "variance": Wavelet Variance
- "ci_low": Lower CI
- "ci_high": Upper CI
- "robust": Robust active
- "eff": Efficiency level for Robust calculation
- "alpha": p value used for CI
- "unit": String representation of the unit

Author(s)

James Balamuta, Justin Lee and Stephane Guerrier

Examples

```r
set.seed(999)
x = rnorm(100)

# Default
wvar(x)

# Robust
wvar(x, robust = TRUE, eff=0.3)

# Classical
wvar(x, robust = FALSE, eff=0.3)

# 90% Confidence Interval
wvar(x, alpha = 0.10)
```
Index

*Topic **datasets**
- adis_wv, 3
- imar_wv, 13
- kvh1750_wv, 13
- ln200_wv, 14
- navchip_wv, 17

ACF, 2
- adis_wv, 3
- ar1_to_wv, 4
- arma11_to_wv, 5, 6, 15
- arma_to_wv, 4, 5, 6, 15
- ARMAacf_cpp, 6
- ARMAtoMA_cpp, 6
- av_ar1, 7
- av_wn, 8
- compare_wvar, 9
- compare_wvar_no_split, 10
- compare_wvar_split, 11
- dr_to_wv, 11
- dwt, 12
- imar_wv, 13
- kvh1750_wv, 13
- ln200_wv, 14
- ma1_to_wv, 15
- modwt, 16
- navchip_wv, 17
- qn_to_wv, 17
- robust_edu, 18
- rw_to_wv, 19
- sarma_objdesc, 20
- sp_hfilter, 21
- sp_modwt_cpp, 21
- wccv, 22
- wccv_get_y, 22
- wccv_pair, 23
- wn_to_wv, 24
- wvar, 25