Package ‘xRing’

October 14, 2022

Type Package

Title Identify and Measure Tree Rings on X-Ray Micro-Density Profiles

Version 0.1.1

Depends R (>= 3.5)

Suggests detrendeR

Imports dplR, imager, tcltk2, tkRplotR

License GPL (>= 2)

ByteCompile yes

RoxygenNote 7.1.2

NeedsCompilation no

Author Filipe Campelo [aut, cre, cph]

Maintainer Filipe Campelo <fcampelo@ci.uc.pt>

Repository CRAN

Date/Publication 2022-04-22 12:20:02 UTC

R topics documented:

addRing .. 2
calibrateFilm ... 3
combineFrag ... 4
correctRings .. 5
detectEwLw ... 6
detectRings ... 6
fitCalibrationModel 8
getBorders ... 9
getDensity ... 10
addRing

Description
Add a tree-ring border by defining the position of the new border

Usage
addRing(object, x, series = NULL)

Arguments

object an object of class "xRingList" or "xRing"
x the position (number of the resp. pixel(s)) to set the new tree-ring border
series the name of the series to be changed when the object is "xRingList", by default is NULL

Value
a "xRing" or "xRingList" object with a tree-ring border added at the position x for the series given by series argument

Index

addRing Add Tree-Ring Border(s)
calibrateFilm

Examples

```r
data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
plot(PaPi$"AFO1001a")
PaPi$AFO1001a <- removeRing(PaPi$AFO1001a, 47)
plot(PaPi$"AFO1001a")
PaPi <- addRing(PaPi, series = "AFO1001a", x = 47)
plot(PaPi$"AFO1001a")
```

Description

Convenience function to do the whole calibration of a densitometry image in one function call internally calling `getSteps` and `fitCalibrationModel`

Usage

```r
calibrateFilm(
im,
  thickness = stepIncrease(0.24, 7),
  density = 1.2922,
  plot = TRUE,
  auto = FALSE,
  nPixel = 50,
  plotAuto = FALSE,
  ...
)
```

Arguments

- **im**
 - a grayscale image
- **thickness**
 - a vector specifying the thickness of the calibration wedge at each step
- **density**
 - the density of the reference material (i.e. the calibration wedge)
- **plot**
 - if TRUE the calibration model is displayed
- **auto**
 - logical. If TRUE, automatic detection of the steps given a line is carried out. Use with care
- **nPixel**
 - if `auto = TRUE`: number of pixels gives the line width
- **plotAuto**
 - if TRUE the automatic detection of the grayscale values is displayed
- **...**
 - further arguments to be passed to `loess`
combineFrag

Combine Fragments

Description

This function combines fragments by series

Usage

combineFrag(x, frag = NULL)

Arguments

x an "xRingList" object

frag integer, defines the character position within the series name that identifies fragments. If NULL the function considers series with names having one more character as fragments

Value

an object of class "xRingList" with merged fragments

Examples

if (interactive()) {
 # read a sample file
 im <- imRead(file = system.file("img", "AF01046.1200dpi.png", package = "xRing"))

 # display the image
 imDisplay(im)

 # calibrate the film:
 calibration <- calibrateFilm(im,
 thickness = stepIncrease(0.24, 7),
 density = 1.2922,
 plot = TRUE
)
}

Value

an object of class 'loess' representing the film calibration

See Also

getSteps
correctRings

Examples

data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
PaPi.merge <- combineFrag(PaPi, frag = 9)

correctRings Correct Tree-Ring Borders Interactively

Description
A Graphical User Interface (GUI) to correct tree-ring borders

Usage

correctRings(x, chrono = NULL)

Arguments

x an xRingList object
chrono a data.frame with a reference chronology, if NULL a reference chronology is calculated using tree-ring width series from x

Details
This function uses the tkRplot function (tkRplotR package) to interact with X-ray microdensity profiles.

Value
an xRingList object

Examples

if (interactive()) {
 data(PaPiRaw)
data(PaPiSpan)
 PaPi <- detectRings(PaPiRaw, PaPiSpan)
 PaPiCorrect <- correctRings(PaPi)
}
detectEwLw

Detect the Transition from Earlywood to Latewood

Description

This function detects the end of earlywood and the start of latewood

Usage

detectEwLw(x, ew = 0.5, lw = NULL)

Arguments

- **x**: an "xRingList" object
- **ew**: defines the end of earlywood as the ratio of the density range. The default value is 0.5, which means that the end of earlywood is placed at the point where the density is half the range between the minimum and maximum density values within an annual ring
- **lw**: defines the start of latewood, the default value is NULL. When ew is 0.5 and lw is NULL the boundary between earlywood and latewood is placed where the density is half the range between the minimum and maximum density values within an annual ring

Value

an "xRingList" object with limits.ew and limits.lw added.

Examples

data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
PaPi.merge <- combineFrag(PaPi, frag = 9)
PaPiRings <- detectEwLw(PaPi.merge, ew = 0.5)

detectRings

Detect Tree-Ring Borders

Description

This function identifies tree-ring borders on X-ray microdensity profiles.
Usage

detectRings(x, y = NULL, k = 3, minTrw = 3, threshold = 0.215)

Arguments

- **x**: a dataframe with X-ray microdensity profiles or an "xRingList" object
- **y**: a dataframe with the first and last year in columns and the series in rows, is NULL by default
- **k**: width of the rolling window to find the local maximum and minimum (for more details please see the help of `getBorders` function)
- **minTrw**: integer width of the narrowest tree-ring, rings narrower than this value will not be considered
- **threshold**: the minimum difference between local maximum and minimum density to identify a tree-ring border

Details

This function uses the `getBorders` function to identify tree-ring borders based on the difference between local maximum and minimum density.

Value

detectRings returns an "xRingList" object, an S3 class with "xRing" lists as members, with the following elements:

- **span**: first and last year
- **trw**: gives the tree-ring width
- **name**: a string giving the series name
- **limits**: a vector with the position of the tree-ring borders
- **years**: a vector with the calendar year
- **profile.raw**: a vector with the input

See Also

`getBorders`

Examples

data(PaPiRaw)
data(PaPiSpan)
PaPi <- toxRingList(PaPiRaw, PaPiSpan)
PaPi <- detectRings(PaPi)
give the same
PaPi <- detectRings(PaPiRaw, PaPiSpan)
Because the last year is not supplied the last year for all series is the last calendar year
as.numeric(format(Sys.time(), "%Y"))-1
PaPi <- detectRings(PaPiRaw)
fitCalibrationModel

Fit a Calibration Curve

Description

Fit a model to calibrate a film from X-ray densitometry.

Usage

```r
fitCalibrationModel(
  grayvalues,
  thickness = stepIncrease(0.24, 7),
  density = 1.2922,
  plot = TRUE,
  ...
)
```

Arguments

- `grayvalues`: a numeric vector containing the gray values of the steps of the calibration wedge at various thicknesses given by the argument ‘thickness’
- `thickness`: a vector specifying the thickness of the calibration wedge at each step.
- `density`: the density of the reference material
- `plot`: if TRUE the calibration model is displayed
- `...`: further arguments to be passed to `loess`

Value

an object of class ‘loess’ representing the film calibration

See Also

getSteps

Examples

```r
if (interactive()) {
  # read a sample file
  im <- imRead(file = system.file("img", "AF01046.1200dpi.png", package = "xRing"))

  # display the image
  imDisplay(im)

  # get the grayvalues from the calibration wedge on the film
  grayvalues <- getSteps(im, 7)

  # calibrate the film by fitting a model:
} 
```
calibration <- fitCalibrationModel(grayvalues,
 thickness = stepIncrease(0.24, 7),
 density = 1.2922,
 plot = TRUE
)
}

getBorders
Get Tree-Ring Borders

Description

Identify tree-ring borders

Usage

getBorders(x, k = 3, minTrw = 3, threshold = 0.215, addLastBorder = FALSE)

Arguments

- **x**: an object of class "xRing"
- **k**: integer; width of the rolling window
- **minTrw**: integer; width of the narrowest tree-ring, rings narrower than this value will not be considered
- **threshold**: the minimum difference between the local maximum and minimum density to detect tree-ring borders
- **addLastBorder**: logical; if FALSE the last border is not added. If TRUE the last border is placed at the position of the last value.

Details

This function uses local maximum and minimum densities in order to detect tree-ring borders.

Value

The getBorders function returns an object of class "xRing" including the following elements:

- **names**: string giving the series name
- **span**: the first and last year
- **trw**: a data.frame with tree-ring width
- **limits**: a vector with the position of the tree-ring borders
- **years**: a vector with the calendar year
- **profile.raw**: a vector with the raw X-ray values
- **profile**: a vector with the the smoothed X-ray values (if is supplied in the input)
getDensity

getDensity

Get Density Values

Description

Get wood density parameters by tree-ring.

Usage

getDensity(x)

Arguments

x

a "xRingList" or "xRing" object

Value

a "xRingList" or "xRing" object with density values \(\text{c}("D\text{mean}", "D\text{min}", "D\text{max}", "D\text{ew}", "D\text{lw}\)"

for each ring

Examples

data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
PaPi.merge <- combineFrag(PaPi, frag = 9)
PaPiRings <- detectEwLw(PaPi.merge, ew = 0.5)

PaPi <- detectRings(PaPiRaw, PaPiSpan)
PaPiRings <- detectEwLw(PaPi, ew = 0.5)

xRingList object
PaPiDen <- getDensity(PaPiRings)

PaPiDen$AF01001a[]
PaPiDen$AF01001a$density
getRwls

getRwls

Get Data-Frames With Ring Width and Density Values

Description

Produce a list with 8 data.frames (trw, ew, lw, Dmean, Dew, Dlw, Dmin, Dmax) that can be used by other packages (dplR, detrendeR)

Usage

getRwls(x)

Arguments

x an "xRingList" object

Value

a list with 8 elements:

trw a data.frame with tree-ring widths
ew a data.frame with earlywood widths
lw a data.frame with latewood widths
Dmean a data.frame with mean tree-ring density
Dew a data.frame with mean earlywood density
Dlw a data.frame with mean latewood density
Dmin a data.frame with the minimum ring density
Dmax a data.frame with the maximum ring density
getSteps

Select the Steps of a Calibration Wedge Interactively

Description

Obtain the Grayvalue of Each Step of a Calibration Wedge

Usage

getSteps(im, nSteps = NULL, auto = FALSE, nPixel = 50)

Arguments

im an image.

nSteps number of steps of the calibration wedge to obtain grayvalues from.

auto logical. If TRUE, automatic detection of the steps given a line is carried out. Use with care.

nPixel gives the line width when ‘auto = TRUE’

Value

a numeric vector

Examples

if (interactive()) {
 # read a sample file
 im <- imRead(file = system.file("img", "AFO1046.1200dpi.png", package = "xRing"))
 # display the image
 imDisplay(im)
 # get the grayvalues from the calibration wedge on the film
 getSteps(im)
 names(rwls)
 library(dplR)
 rwl.report(rwls$trw)
 library(detrendeR)
 RwlInfo(rwls$trw)
}
imCrop <- grayvalues <- getSteps(im, 7) # select 7 ROIs
steps1 <- grayvalues <- getSteps(im, 7, auto = TRUE) # select a single ROI
cor(steps, steps1)
}

imCrop

Crop Image Interactively

Description

A GUI for cropping an image

Usage

imCrop(im)

Arguments

- **im**
 - a cimg object

Value

- a cropped image

Examples

```r
if (interactive()) {
  file_path <- system.file("img", "AF01046.1200dpi.png", package = "xRing")
  im <- imRead(file_path)
  print(dim(im))
  im_crop <- imCrop(im)
  print(dim(im_crop))
}
```
imDisplay

Display Image Using tcltk Package

Description

xRing

Usage

```r
imDisplay(im, zoom = NULL, title = NULL)
```

Arguments

- `im`: an image (an object of class "cimg")
- `zoom`: the zoom factor (ratio), for zoom = 1 the image is shown with no zoom (original size), when zoom is less than 1 the image is zoomed out. The default value of zoom is NULL.
- `title`: the window title

Value

a tcltk object

Examples

```r
if (interactive()) {
  file_path <- system.file("img", "AFO1046.1200dpi.png", package = "xRing")
  im <- imRead(file_path)
  tkWin <- imDisplay(im, zoom = .25)
  tkWin$env$ZOOM # 4 means 25% zoom
}
```

imRead

Load Image From a File

Description

Load an image using the `load.image` function from `imager` package

Usage

```r
imRead(file)
```

Arguments

- `file`: path to file
Value

an object of class "cimg"

See Also

load.image

Examples

if (interactive()) {
 file_path <- system.file("img", "AFO1046.1200dpi.png", package = "xRing")
 im <- imRead(file_path)
 imDisplay(im)
}

measureProfiles

Measure Profiles Interactively

Description

Several profiles can be selected in an image and a calibration for that image is used to convert pixels into wood density

Usage

measureProfiles(im, nPixel = 50, cal = NULL)

Arguments

im an image
nPixel the line width
cal calibration

Value

an xRingList object with all xRing objects

Examples

if (interactive()) {
 # read a sample file
 im <- imRead(file = system.file("img", "AFO1046.1200dpi.png", package = "xRing"))

 # to display the image
 imDisplay(im)

 cal1 <- calibrateFilm(im, thickness = stepIncrease(0.24, 7), density = 1.2922, plot = TRUE)
profiles <- measureProfiles(im, cal = cal1)
}

PaPiRaw

Description

A dataframe with 44 series of wood density \(g/m^3\).

Usage

```r
data("PaPiRaw")
```

Format

A data.frame containing 44 series in columns and 3111 values of wood density in rows.

Examples

```r
data(PaPiRaw)
plot(na.omit(PaPiRaw[,1]), type="l", ann = FALSE)
```

PaPiSpan

Description

A dataframe giving the first and the last year of 44 series. The row names give the name of series.

Usage

```r
data("PaPiSpan")
```

Format

A data frame with 44 observations on the following 2 variables.

- `first` a numeric vector giving the first year
- `last` a numeric vector giving the last year

Examples

```r
data(PaPiSpan)
head(PaPiSpan)
```
plot

Plot xRing and xRingList Objects

Description

Plot method for objects of class "xRing" and "xRingList".

Usage

```r
## S3 method for class 'xRing'
plot(x, years = NULL, EwLw = TRUE, xlim = NULL, ylim = NULL, ...)

## S3 method for class 'xRingList'
plot(x, series = 1, years = NULL, EwLw = TRUE, xlim = NULL, ylim = NULL, ...)
```

Arguments

- **x**: an object of class "xRing" or "xRingList".
- **years**: the years to be plotted, if NULL the whole time span is plotted.
- **EwLw**: logical. If TRUE the earlywood and latewood boundaries and width is plotted.
- **xlim**: vector of length 2 giving the x limits for the plot.
- **ylim**: the y limits of the plot.
- **...**: other arguments to be passed to plotRings function
- **series**: gives the name (or the index) of the series to be plotted, by default is 1 (i.e., the first series)

Value

None.

See Also

- plotRings

Examples

```r
data(PaPiRaw)
data(PaPiSpan)

PaPi <- detectRings(PaPiRaw, PaPiSpan)
class(PaPi)

PaPiRings <- detectEwLw(PaPi, ew = 0.5)
plot(PaPiRings, series = "AF01001a")

PaPiRings1 <- detectEwLw(PaPi, ew = 0.35, lw = 0.55)
```
plot(PaPiRings1, series = "AFO1001a")

plot(PaPiRings, series = "AFO1001a", years = c(1990, 2000))
plot(PaPiRings$AFO1001a)

plotRings

Plot xRing Objects

Description

Plot "xRing" objects.

Usage

```r
plotRings(x, xlim = NULL, ylim = NULL, id = NULL, corr = NULL, EwLw = TRUE)
```

Arguments

- `x`: an object of class "xRing"
- `xlim`: the x limits of the plot. The default value, NULL, indicates that the whole profile will be plotted.
- `ylim`: the y limits of the plot.
- `id`: a suffix to be added to the name of the series (<series_name> [id])
- `corr`: value to be print at the top of the graph
- `EwLw`: logical. If TRUE the earlywood and latewood assignments are plotted, by default is TRUE

Value

None. A plot is produced.

See Also

`plot.xRing`

Examples

```r
if (interactive()) {
  data(PaPiRaw)
  data(PaPiSpan)

  PaPi <- detectRings(PaPiRaw[, 1, drop = FALSE], PaPiSpan)
  plotRings(PaPi$AFO1001a)
  plotRings(PaPi, series = "AFO1001a")
  plotRings(PaPi, series = "AFO1001a", xlim = c(120, 450))
```
print

PaPi1 <- detectEwLw(PaPi, ew = 0.5)
plotRings(PaPi1, series = "AF01001a", EwLw = FALSE)
plotRings(PaPi1, series = "AF01001a")
}

print

Print xRing and xRingList Objects

Description

Print method for objects of class "xRing" and "xRingList".

Usage

S3 method for class 'xRing'
print(x, ...)

S3 method for class 'xRingList'
print(x, ...)

Arguments

x the object of class "xRing" or "xRingList" to print
...

additional parameters

Value

None

Examples

data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
class(PaPi)
print(PaPi$AF01001a)
PaPi$AF01001a
PaPi$AF01001a[]
print(PaPi)
PaPi
removeRing
Remove Tree-Ring Border(s)

Description
Remove the closest tree-ring border

Usage
removeRing(object, x, series = NULL)

Arguments
object
an object of class "xRing" or "xRingList"
x
the position to delete the closest tree-ring border
series
the name of the series to be changed when the object is a "xRingList", by default is NULL

Value
an object of class "xRing" or "xRingList" without the tree-ring border at the position x for the series given by series argument

Examples
data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
plotRings(PaPi$AFO1001a)
abline(v = 60, lty = 2, col = 2)
PaPi$AFO1001a <- removeRing(PaPi$AFO1001a, x = 60)
PaPi$AFO1001a <- removeRing(PaPi$AFO1001a, x = locator(1)$x)
plotRings(PaPi$AFO1001a)

selectProfiles
Select Profile(s)

Description
Uses a line to select a profile (or a region of interest), when selecting a radius the line should start at the pith side and end at the bark side of the sample.

Usage
selectProfiles(im, nPixel = 50, cal = NULL, multiple = TRUE)
Arguments

im an image
nPixel the width of the line
cal calibration
multiple a single or several profiles

Value

da vector with the average grayvalue along the selected line when a multiple is TRUE and a list when multiple is FALSE

Examples

if (interactive()) {
 # read a sample file
 im <- imRead(file = system.file("img", "AFO1046.1200dpi.png", package = "xRing"))

 # to display the image
 imDisplay(im)

 # select a profile
 profile <- selectProfile(im)

 # to display the profile
 plot(profile, type = "l")
}

 setLastYear Set Last Year

Description

Changes the calendar year of the last ring for a specific series.

Usage

setLastYear(x, lastYear, series = NULL)

Arguments

x an "xRing" or "xRingList" object
lastYear the new calendar year for the last tree ring
series individual series to be changed when the object is a "xRingList", by default is NULL
stepIncrease

Value

the modified input object with new set last ring of the specified series.

Examples

data(PaPiRaw)
data(PaPiSpan)
PaPi <- detectRings(PaPiRaw, PaPiSpan)
plot(PaPi, series = "AFO1001b")
PaPi <- setLastYear(PaPi, 2005, series = "AFO1001b")
plot(PaPi, series = "AFO1001b")

stepIncrease

Calculate the Steps Thickness of the Calibration Wedge

Description

convenience function to calculate the thickness of each steps of the calibration wedge for wedges with continous step increase.

Usage

stepIncrease(step.increase = 0.24, nsteps = 7)

Arguments

step.increase height increase per wedge step
nsteps total number of steps (the first step has the thickness of 0 - the area beside the wedge. Mention that when setting nsteps)

Value

a numeric vector
toxRing

Create an "xRing" Object

Description

Converts a dataframe with X-ray microdensity profiles into an "xRing" object

Usage

```
toxRing(x, y = NULL, seriesName)
```

Arguments

- `x`: a dataframe with X-ray microdensity profiles
- `y`: a dataframe with the numerical values of the first and last year in columns. The individual series are specified as row names.
- `seriesName`: the name of series from `x` and `y` to be used to produce the "xRing" object.

Value

an "xRing" object, an S3 class with the following elements:
- `profile.raw`: a vector with the input density profile
- `span`: first and last year
- `name`: a string giving the series name

See Also

- `toxRingList`

Examples

```r
data(PaPiRaw)
data(PaPiSpan)
PaPi.AFO1001a <- toxRing(PaPiRaw, PaPiSpan, seriesName = "AFO1001a")
class(PaPi.AFO1001a)
```
Create a "xRingList" Object

Description
Converting a dataframe with X-ray microdensity profiles in an "xRingList" object

Usage
```
toxRingList(x, y = NULL)
```

Arguments
- **x**: a dataframe with X-ray microdensity profiles
- **y**: a dataframe with the numerical values of the first and last year in columns. The individual series are specified as row names. By default is NULL

Value
an "xRingList" object, an S3 class which list members are "xRing" objects containing:
- **profile.raw**: a vector with the input density profile
- **span**: first and last year
- **name**: a string giving the series name

See Also
- toxRing

Examples
```
data(PaPiRaw)
data(PaPiSpan)
PaPi <- toxRingList(PaPiRaw, PaPiSpan)
class(PaPi)
```
Index

* datasets
 PaPiRaw, 16
 PaPiSpan, 16

addRing, 2

calibrateFilm, 3
cimg, 14, 15
combineFrag, 4
correctRings, 5
detectEwLw, 6
detectRings, 6

fitCalibrationModel, 3, 8
getBorders, 7, 9
getDensity, 10
getRwls, 11
getSteps, 3, 4, 8, 12

imager, 14
imCrop, 13
imDisplay, 14
imRead, 14

load.image, 14, 15
loess, 3, 8

measureProfiles, 15

PaPiRaw, 16
PaPiSpan, 16
plot, 17
plot.xRing, 18
plotRings, 17, 18
print, 19

removeRing, 20

selectProfiles, 20
setLastYear, 21

stepIncrease, 22
toxRing, 23, 24
toxRingList, 23, 24