Package ‘xergm’

August 24, 2018

Version 1.8.3
Date 2018-08-23
Title Extensions of Exponential Random Graph Models

Description Extensions of Exponential Random Graph Models (ERGM): Temporal Exponential Random Graph Models (TERGM), Generalized Exponential Random Graph Models (GERGM), Temporal Network Autocorrelation Models (TNAM), and Relational Event Models (REM). This package acts as a meta-package for several sub-packages on which it depends.

URL http://github.com/leifeld/xergm

Imports utils

Depends R (>= 2.14.0), xergm.common (>= 1.7.7), btergm (>= 1.9.3), tnam (>= 1.6.5), rem (>= 1.2.8), GERGM (>= 0.13.0)

License GPL (>= 2)

NeedsCompilation no

Author Philip Leifeld [aut, cre], Skyler J. Cranmer [aut], Bruce A. Desmarais [aut]

Maintainer Philip Leifeld <philip.leifeld@glasgow.ac.uk>

Repository CRAN

Date/Publication 2018-08-24 13:00:03 UTC

R topics documented:

xergm-package ... 2

Index 4
xergm-package

Extensions of Exponential Random Graph Models (ERGM)

Description

Extensions of Exponential Random Graph Models (ERGM).

Details

The xergm package implements extensions of exponential random graph models, in particular Temporal ERGMs (btergm), Generalized ERGMs (GERGM), Temporal Network Autocorrelation Models (tnam), and Relational Event Models. This package acts as a meta-package for the packages btergm, GERGM, tnam, and rem. To display citation information, type citation("xergm").

Author(s)

Philip Leifeld (http://www.philipleifeld.com)
Skyler J. Cranmer (http://www.skylercranmer.net)
Bruce A. Desmarais (https://sites.psu.edu/desmaraisgroup/)

Examples

not run:
example 1: temporal exponential random graph model (see ?btergm)
library("statnet")
set.seed(5)

networks <- list()
for(i in 1:10){ # create 10 random networks with 10 actors
 mat <- matrix(rbinom(100, 1, .25), nrow = 10, ncol = 10)
diag(mat) <- 0 # loops are excluded
 nw <- network(mat) # create network object
 networks[[i]] <- nw # add network to the list
}
covariates <- list()
for (i in 1:10) { # create 10 matrices as covariate
 mat <- matrix(rnorm(100), nrow = 10, ncol = 10)
covariates[[i]] <- mat # add matrix to the list
}

fit <- btergm(networks ~ edges + istar(R) +
 edgecov(covariates), R = 100)
summary(fit) # show estimation results

example R: temporal network autocorrelation model (see ?tnam)
data("knecht")
delinquency <- as.data.frame(delinquency)
rownames(delinquency) <- letters
friendship[[3]][friendship[[3]] == 10] <- NA
friendship[[4]][friendship[[4]] == 10] <- NA
for (i in 1:length(friendship)) {
 rownames(friendship[[i]]) <- letters
}
sex <- demographics$sex
names(sex) <- letters
sex <- list(t1 = sex, t2 = sex, t3 = sex, t4 = sex)
religion <- demographics$religion
names(religion) <- letters
religion <- list(t1 = religion, t2 = religion, t3 = religion,
 t4 = religion)
model1 <- tnam(
 delinquency ~
 covariate(sex, coefname = "sex") +
 covariate(religion, coefname = "religion") +
 covariate(delinquency, lag = 1, exponent = 1) +
 netlag(delinquency, friendship) +
 netlag(delinquency, friendship, pathdist = 2, decay = 1) +
 netlag(delinquency, friendship, lag = 1) +
 degredummy(friendship, deg = 0, reverse = TRUE) +
 centrality(friendship, type = "betweenness"),
 re.node = TRUE, time.linear = TRUE
)
summary(model1)

End(not run)
Index

xergm-package, 2