Package ‘xpose4’

March 8, 2018

Title Tools for Nonlinear Mixed-Effect Model Building and Diagnostics
Version 4.6.1
Depends R (>= 2.2.0), lattice
Imports Hmisc, survival, dplyr, methods, lazyeval, gam, splines, grid, readr
Suggests testthat
Description A collection of functions to be used as a model building aid for nonlinear mixed-effects (population) analysis using NONMEM. It facilitates data set checkout, exploration and visualization, model diagnostics, candidate covariate identification and model comparison.
LazyLoad yes
LazyData yes
ByteCompile true
License LGPL (>= 3)
URL http://xpose.sourceforge.net
RoxygenNote 6.0.1
NeedsCompilation no
Author Andrew C. Hooker [aut, cre, cph],
 Mats O. Karlsson [aut, cph],
 Justin J. Wilkins [aut],
 E. Niclas Jonsson [aut, trl, cph],
 Ron Keizer [ctb] (functionality for bootstrap of GAM and SCM)
Maintainer Andrew C. Hooker <andrew.hooker@farmbio.uu.se>
Repository CRAN
Date/Publication 2018-03-08 17:40:36 UTC
R topics documented:

xpose4-package .. 5
absval.cwres.vs.cov.bw ... 7
absval.cwres.vs.pred .. 9
absval.cwres.vs.pred.by.cov 10
absval.iwres.cwres.vs.ipred.pred 12
absval.iwres.vs.cov.bw ... 14
absval.iwres.vs.idv .. 15
absval.iwres.vs.ipred .. 16
absval.iwres.vs.ipred.by.cov 18
absval.iwres.vs.pred .. 20
absval.wres.vs.cov.bw .. 21
absval.wres.vs.idv .. 23
absval.wres.vs.pred .. 25
absval.wres.vs.pred.by.cov 27
absval_delta_vs_cov_model_comp 29
add.grid.table ... 31
add.model.comp ... 33
addit.gof .. 34
add_transformed_columns 36
autocorr.cwres .. 38
autocorr.iwres ... 39
basic.gof .. 41
basic.model.comp ... 42
boot.hist .. 44
bootgam.print .. 46
bootscm.import .. 47
cat.dv.vs.idv.sb .. 48
cat.pc .. 51
change.parm .. 53
change.var.name ... 54
change.xlabel ... 55
change.xvardef ... 56
change_graphical_parameters 58
change_misc_parameters 60
compute.cwres .. 63
cov.splom ... 70
create.xpose.plot.classes 73
createXposeClasses ... 73
cwres.dist.hist ... 74
cwres.dist.qq ... 75
cwres.vs.cov .. 76
cwres.vs.idv .. 78
cwres.vs.idv.bw .. 79
cwres.vs.pred .. 81
cwres.vs.pred.bw ... 82
R topics documented:

- `cwres_wres_vs_x` .. 83
- `data.checkout` .. 85
- `data_extract_or_assign` ... 87
- `db.names` ... 89
- `dOFV.vs.cov` .. 90
- `dOFV.vs.id` ... 91
- `dOFV1.vs.dOFV2` .. 93
- `dv.preds.vs.idv` ... 95
- `dv.vs.idv` ... 96
- `dv.vs.idpred` .. 98
- `dv.vs.idpred.by.cov` ... 99
- `dv.vs.idpred.by.idv` ... 100
- `dv.vs.pred` .. 102
- `dv.vs.pred.by.cov` .. 103
- `dv.vs.pred.by.idv` .. 104
- `dv.vs.pred.idpred` .. 106
- `export.graph.par` ... 107
- `export.variable.definitions` 108
- `GAM_summary_and_plot` ... 109
- `gof` .. 111
- `import.graph.par` .. 114
- `import.variable.definitions` 115
- `ind.plots` ... 116
- `ind.plots.cwres.hist` .. 119
- `ind.plots.cwres.qq` ... 122
- `ipred.vs.idv` ... 124
- `iwres.dist.hist` ... 126
- `iwres.dist.qq` .. 127
- `iwres.vs.idv` ... 128
- `kaplan.plot` .. 129
- `make.sb.data` ... 133
- `npc.coverage` .. 134
- `nsim` ... 136
- `parm.vs.cov` .. 137
- `parm.vs.parm` .. 138
- `par_cov_hist` ... 140
- `par_cov_qq` ... 142
- `par_cov_summary` ... 143
- `pred.vs.idv` ... 145
- `print.xpose.multiple.plot` 146
- `randtest.hist` .. 147
- `ranpar.vs.cov` ... 149
- `read.nm.tables` ... 150
- `read.npc.vpc.results` .. 152
- `read.TTE.sim.data` .. 153
- `read.vpctab` ... 154
- `read_NM_output` ... 155
- `read_nm_table` ... 156
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>reset.graph.par</td>
<td>157</td>
</tr>
<tr>
<td>runsum</td>
<td>158</td>
</tr>
<tr>
<td>simpraz.xpdb</td>
<td>160</td>
</tr>
<tr>
<td>simprazExample</td>
<td>160</td>
</tr>
<tr>
<td>tabulate.parameters</td>
<td>161</td>
</tr>
<tr>
<td>wres.dist.hist</td>
<td>162</td>
</tr>
<tr>
<td>wres.dist.qq</td>
<td>164</td>
</tr>
<tr>
<td>wres.vs.cov</td>
<td>165</td>
</tr>
<tr>
<td>wres.vs.idv</td>
<td>166</td>
</tr>
<tr>
<td>wres.vs.idv.bw</td>
<td>168</td>
</tr>
<tr>
<td>wres.vs.pred</td>
<td>169</td>
</tr>
<tr>
<td>wres.vs.pred.bw</td>
<td>170</td>
</tr>
<tr>
<td>xlabel</td>
<td>172</td>
</tr>
<tr>
<td>xp.boot.par.est</td>
<td>173</td>
</tr>
<tr>
<td>xp.boot.par.est.corr</td>
<td>174</td>
</tr>
<tr>
<td>xp.daic.npar.plot</td>
<td>175</td>
</tr>
<tr>
<td>xp.distr.mod.size</td>
<td>176</td>
</tr>
<tr>
<td>xp.dofv.npar.plot</td>
<td>177</td>
</tr>
<tr>
<td>xp.dofv.plot</td>
<td>178</td>
</tr>
<tr>
<td>xp.get.disp</td>
<td>178</td>
</tr>
<tr>
<td>xp.inc.cond.stab.cov</td>
<td>179</td>
</tr>
<tr>
<td>xp.inc.ind.cond.stab.cov</td>
<td>180</td>
</tr>
<tr>
<td>xp.inc.prob</td>
<td>181</td>
</tr>
<tr>
<td>xp.inc.prob.comb.2</td>
<td>181</td>
</tr>
<tr>
<td>xp.inc.stab.cov</td>
<td>182</td>
</tr>
<tr>
<td>xp.incl.index.cov</td>
<td>183</td>
</tr>
<tr>
<td>xp.incl.index.cov.comp</td>
<td>184</td>
</tr>
<tr>
<td>xp.incl.index.cov.ind</td>
<td>185</td>
</tr>
<tr>
<td>xp.scope3</td>
<td>186</td>
</tr>
<tr>
<td>xpose.bootgam</td>
<td>187</td>
</tr>
<tr>
<td>xpose.data</td>
<td>188</td>
</tr>
<tr>
<td>xpose.data-class</td>
<td>190</td>
</tr>
<tr>
<td>xpose.gam</td>
<td>191</td>
</tr>
<tr>
<td>xpose.license.citation</td>
<td>193</td>
</tr>
<tr>
<td>xpose.logTicks</td>
<td>194</td>
</tr>
<tr>
<td>xpose.multiple.plot</td>
<td>195</td>
</tr>
<tr>
<td>xpose.multiple.plot-class</td>
<td>196</td>
</tr>
<tr>
<td>xpose.multiple.plot.default</td>
<td>197</td>
</tr>
<tr>
<td>xpose.panel.bw</td>
<td>198</td>
</tr>
<tr>
<td>xpose.panel.default</td>
<td>201</td>
</tr>
<tr>
<td>xpose.panel.histogram</td>
<td>211</td>
</tr>
<tr>
<td>xpose.panel.qq</td>
<td>213</td>
</tr>
<tr>
<td>xpose.panel.splom</td>
<td>214</td>
</tr>
<tr>
<td>xpose.plot.bw</td>
<td>215</td>
</tr>
<tr>
<td>xpose.plot.default</td>
<td>218</td>
</tr>
<tr>
<td>xpose.plot.histogram</td>
<td>222</td>
</tr>
<tr>
<td>xpose.plot.qq</td>
<td>225</td>
</tr>
<tr>
<td>xpose.plot.splom</td>
<td>227</td>
</tr>
</tbody>
</table>
The Xpose Package

Description

Xpose is an R-based model building aid for population analysis using NONMEM. It facilitates data set checkout, exploration and visualization, model diagnostics, candidate covariate identification and model comparison.

Details

Xpose takes output from NONMEM output and/or PsN output and generates graphs or other analyses. It is assumed that each NONMEM run can be uniquely identified by a run number (see section below for how to generate the appropriate input to Xpose). Xpose is implemented using the lattice graphics library.

The Xpose package can be divided up into six subsections (functions associated with each of the different subsections are linked in the "See Also" section):

Data Functions Functions for managing the input data and manipulating the Xpose database.

Generic Functions Generic wrapper functions around the lattice functions. These functions can be invoked by the user but require quite detailed instructions to generate the desired output.

Specific Functions These functions are single purpose functions that generate specific output given only the Xpose database as input. The behavior can, to some extent, be influenced by the user.

Classic Functions Xpose has a text based menu interface to make it simple for the user to invoke the Xpose specific functions. This interface is called Xpose Classic. Given the limitations a text based interface imposes, Xpose Classic is not very flexible but may be useful for quick assessment of a model and for learning to use Xpose.

PsN Functions These functions are the interface between Xpose and PsN, i.e. they do not post-process NONMEM output but rather PsN output.

GAM Functions Functions take an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
How to make NONMEM generate input to Xpose

Xpose recognizes NONMEM runs, and files associated to a particular run, though the run number. This is a number that is used in the name of NONMEM model files, output files and table files. The fundamental input to Xpose is one or more NONMEM table files. These table files should be named as below followed by the run number, for example xptab1 for run number 1. Xpose looks for files according to the following pattern, where * is your run number:

- **sdtab** - Standard table file, containing ID, IDV, DV, PRED, IPRED, WRES, IWRES, RES, IRES, etc.
- **patab** - Parameter table, containing model parameters - THETAs, ETAs and EPSes
- **catab** - Categorical covariates, e.g. SEX, RACE
- **cotab** - Continuous covariates, e.g. WT, AGE
- **extra**, **mutab**, **mytab**, **xptab**, **cwtab** - Other variables you might need to have available to Xpose

run.mod Model specification file
run.lst NONMEM output

Strictly, only one table file is needed for xpose (for example sdtab* or xptab*). However, using patab*, catab*, cotab* will influence the way that Xpose interprets the data and are recommended to get full benefit from Xpose.

You can use code in NONMEM similar to the following to generate the tables you need. NONMEM automatically appends DV, PRED, WRES and RES unless NOAPPEND is specified. Don’t forget to leave at least one blank line at the end of the NONMEM model specification file.

```plaintext
$TABLE ID TIME IPRED IWRES EVID MDV NOPRINT ONEHEADER FILE=sdtab1 $TABLE ID CL V2 KA K SLP KENZ NOPRINT $TABLE ID WT HT AGE BMI PKG NOPRINT ONEHEADER FILE=cotab1 $TABLE ID SEX SMOK ALC NOPRINT ONEHEADER FILE
```

Author(s)

E. Niclas Jonsson, Mats Karlsson, Justin Wilkins and Andrew Hooker

References

PsN

See Also

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data.extract_or_assign, db.names, export.graph.par, export.variable.defint, import.graph.par, import.variable.defintions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read NM_output, read_nm_table, simprazExample, tabulate, parameters, xlabel, xpose.data, xpose.print, xsubset

Other generic functions: gof, xpose.multiple.plot

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.absval.iwres.vs.ipred.absval.iwres.vs.idv, absval.wres.vs.ipred.absval.iwres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred.absval.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb,
absval.cwres.vs.cov.bw

Absolute conditional weighted residuals vs covariates for Xpose 4

Description

This creates a stack of box and whisker plot of absolute population conditional weighted residuals (|CWRES|) vs covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `codexpose.plot.bw` function. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Usage

```
absval.cwres.vs.cov.bw(object, xlb = "|CWRES|", main = "Default", ...)
```
Arguments

object An xpose.data object.

xlb A string giving the label for the x-axis. NULL if none.

main The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

... Other arguments passed to xpose.plot.bw.

Details

Each of the covariates in the Xpose data object, as specified in object@Prefs@Xvardef$Covariates, is evaluated in turn, creating a stack of plots.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.

A wide array of extra options controlling box-and-whisker plots are available. See xpose.plot.bw for details.

Value

Returns a stack of box-and-whisker plots of |CWRES| vs covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.bw, xpose.panel.bw, compute.cwres, bwplot, xpose.prebs-class, xpose.data-class

Other specific functions: absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred, pred, absval.iwres.vs.cov, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov, absval.wres.vs.idv, absval.wres.vs.ipred, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.ipred, pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs_id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred, dv.vs.ipred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.ipred, wres.vs.preds, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

Here we load the example xpose database
xpd <- simpraz.xpdb

absval.cwres.vs.cov.bw(xpd)
Description

This is a plot of absolute population conditional weighted residuals (|CWRES|) vs population predictions (PRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

absval.cwres.vs.pred(object, idsdir = "up", type = "p", smooth = TRUE, ...)

Arguments

object An xpose.data object.
idsdir Direction for displaying point labels. The default is "up", since we are displaying absolute values.
type Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
smooth Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
... Other arguments passed to link(xpose.plot.default).

Details

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.

Value

Returns an xyplot of |CWRES| vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, compute.cwres, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.iwres.cwres.vs.ipred.p, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.idv, cwres.vs.ipred, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.predi, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.ipred, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## End(Not run)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
absval.cwres.vs.pred(xpdb)

## A conditioning plot
absval.cwres.vs.pred(xpdb, by="HCTZ")

## Custom heading and axis labels
absval.cwres.vs.pred(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")

## Custom colours and symbols, no IDs
absval.cwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
```

absval.cwres.vs.pred.by.cov

Absolute value of the conditional weighted residuals vs. population predictions, conditioned on covariates, for Xpose 4
Description

This is a plot of absolute population conditional weighted residuals (|CWRES|) vs population predictions (PRED) conditioned by covariates, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
absval.cwres.vs.pred.by.cov(object, ylb = "|CWRES|", type = "p",
smooth = TRUE, idsdir = "up", main = "Default", ...)
```

Arguments

- **object**: An xpose.data object.
- **ylb**: A string giving the label for the y-axis. NULL if none.
- **type**: Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **idsdir**: Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- **...**: Other arguments passed to link{xpose.plot.default}.

Details

Each of the covariates in the Xpose data object, as specified in object$Prefs$Xvardef$Covariates, is evaluated in turn, creating a stack of plots.

The main argument is not supported owing to the multiple plots generated by the function.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.

Value

Returns a stack of xyplots of |CWRES| vs PRED, conditioned on covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

- `absval.cwres.vs.pred.xpose.plot.default`, `xpose.panel.default`, `xyplot`, `xpose.prefs-class`, `compute.cwres`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv`, `cwres.vs.idv.cwres.vs.pred.bw`, `cwres.vs.pred`, `cwres.wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.pred.by.cov`, `dv.vs.pred.by.idv`, `dv.vs.pred.ipred`, `dv.vs.pred.gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred`.

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

## A vanilla plot
absval.cwres.vs.pred.by.cov(xpdb)
```

absval.iwres.cwres.vs.ipred.pred

Absolute population weighted residuals vs population predictions, and absolute individual weighted residuals vs individual predictions, for Xpose 4

Description

This is a matrix plot of absolute population weighted residuals (|CWRES|) vs population predictions (PRED) and absolute individual weighted residuals (|IWRES|) vs individual predictions (IPRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `absval.cwres.vs.pred` and `absval.iwres.vs.ipred` functions.

Usage

```r
absval.iwres.cwres.vs.ipred.pred(object, main = "Default", ...)

absval.iwres.wres.vs.ipred.pred(object, main = "Default", ...)
```
Arguments

object An xpose.data object.
main The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
...
... Other arguments passed to link{xpose.plot.default}.

Details

The plots created by the absval.wres.vs.pred and absval.iwres.vs.ipred functions are presented side by side for comparison.

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.

Value

Returns a compound plot.

Functions

• absval.iwres.wres.vs.ipred.pred: absolute population weighted residuals (|WRES|) vs population predictions (PRED) and absolute individual weighted residuals (|IWRES|) vs individual predictions (IPRED)

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

absval.wres.vs.pred, absval.iwres.vs.ipred, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.ipred, absval.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred, bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, dv.vs.pred.idv, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.ipred, bw, wres.vs.pred, xpose.VPC.both, xpose.VPC, categorical, xpose.VPC, xpose4-package

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.ipred, absval.wres.vs.pred, absval.wres.vs.pred.by.cov,
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

## A vanilla plot
absval.iwres.wres.vs.ipred.pred(xpdb)
absval.iwres.cwres.vs.ipred.pred(xpdb)

## Custom colours and symbols
absval.iwres.cwres.vs.ipred.pred(xpdb, cex=0.6, pch=8, col=1)
```

Description

box and whisker plots of the absolute value of the individual weighted residuals vs. covariates

Usage

```r
absval.iwres.vs.cov.bw(object, xlb = "[iWRES]", main = "Default", ...)
```

Arguments

- `object` An "xpose.data" object.
- `xlb` A string giving the label for the x-axis. NULL if none.
- `main` A string giving the plot title or NULL if none.
- `...` Other arguments passed to `xpose.panel.default`.

Value

An `xpose.multiple.plot` object
absval.iwres.vs.idv

See Also

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.vs.ipred.pred, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.idv, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.pred, absval.datala_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.ipred, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cow_hist, par_cow.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.ipred, wres.vs.idv, wres.vs.ipred, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC.xpose4-package

absval.iwres.vs.idv
absolute value of the individual weighted residuals vs. the independent variable

Description

absolute value of the individual weighted residuals vs. the independent variable

Usage

```r
absval.iwres.vs.idv(object, ylb = "|iwRES|", smooth = TRUE, idsdire = "up", type = "p", ...)
```

Arguments

- **object**: An "xpose.data" object.
- **ylb**: A string giving the label for the y-axis. NULL if none.
- **smooth**: A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.
- **idsdir**: a string indicating the directions of the extremes to include in labelling. Possible values are "up", "down" and "both".
- **type**: 1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c" for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.

Value

A lattice object
absval.iwres.vs.ipred

Description
This is a plot of absolute individual weighted residuals (|IWRES|) vs individual predictions (IPRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage
absval.iwres.vs.ipred(object, ylb = "|IWRES|", type = "p", ids = FALSE, idsdir = "up", smooth = TRUE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An xpose.data object.</td>
</tr>
<tr>
<td>ylb</td>
<td>A string giving the label for the y-axis. NULL if none.</td>
</tr>
<tr>
<td>type</td>
<td>Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.</td>
</tr>
<tr>
<td>ids</td>
<td>Should id values be displayed?</td>
</tr>
<tr>
<td>idsdir</td>
<td>Direction for displaying point labels. The default is "up", since we are displaying absolute values.</td>
</tr>
<tr>
<td>smooth</td>
<td>Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.</td>
</tr>
<tr>
<td>...</td>
<td>Other arguments passed to link{xpose.plot.default}.</td>
</tr>
</tbody>
</table>
Details

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` for details.

Value

Returns an xyplot of |IWRES| vs IPRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xpose.data-class, runsum`

Other specific functions: `absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.cwres.vs.ibv, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.pred, absval.wres.vs.pred, absval_delta_vs_cof_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.predicted.bw, cwres.vs.predicted, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.predicted.by.cov, dv.vs.predicted.by.idv, dv.vs.predicted, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cof.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.predicted.bw, wres.vs.predicted, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package`

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## End(Not run)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
absval.iwres.vs.ipred(xpdb)

## A conditioning plot
absval.iwres.vs.ipred(xpdb, by="HCTZ")
```
Description

This is a plot of absolute individual weighted residuals (|IWRES|) vs individual predictions (IPRED) conditioned by covariates, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```
absval.iwres.vs.ipred.by.cov(object, ylb = "|IWRES|", idsdir = "up",
                           type = "p", smooth = TRUE, main = "Default", ...)
```

Arguments

- `object`: An xpose.data object.
- `ylb`: A string giving the label for the y-axis. NULL if none.
- `idsdir`: Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- `type`: Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- `smooth`: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- `main`: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `...`: Other arguments passed to link{xpose.plot.default}.

Details

Each of the covariates in the Xpose data object, as specified in object@Prefs@Xvardef$Covariates, is evaluated in turn, creating a stack of plots.

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.
Value

Returns a stack of xyplots of |IWRES| vs IPRED, conditioned by covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

absval.iwres.vs.ipred.by.cov

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.iwres.vs.ipred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred, absval.iwres.vs.pred.absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.pred.absval_delta_vs_cov_model_comp.addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov.bw, cwres.vs.idv, cwres.vs.ipred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq.parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov.runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
absval.iwres.vs.ipred.by.cov(xpdb)

## Custom axis labels
absval.iwres.vs.ipred.by.cov(xpdb, ylb="|IWRES|", xlb="IPRED")

## Custom colours and symbols, no IDs
absval.iwres.vs.ipred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)

## End(Not run)
```
absval.iwres.vs.pred

Absolute individual weighted residuals vs population predictions or independent variable for Xpose 4

Description

This is a plot of absolute individual weighted residuals (|IWRES|) vs individual predictions (PRED) or independent variable (IDV), specific functions in Xpose 4. These functions are wrappers encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
absval.iwres.vs.pred(object, ylb = "|IWRES|", smooth = TRUE,
                        idsdir = "up", type = "p", ...)
```

Arguments

- **object**: An xpose.data object.
- **ylb**: A string giving the label for the y-axis. NULL if none.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **idsdir**: Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- **type**: Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- **...**: Other arguments passed to `link{xpose.plot.default}`.

Details

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` for details.

Value

Returns an xyplot of |IWRES| vs PRED or |IWRES| vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.idv, cwres.vs.ipred.bw, cwres.vs.ipred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.cov, wres.vs.idv, wres.vs.idv, wres.vs.ipred.bw, wres.vs.ipred, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## End(Not run)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
absval.iwres.vs.pred(xpdb)

## A conditioning plot
absval.iwres.vs.pred(xpdb, by="HCTZ")

## Custom heading and axis labels
absval.iwres.vs.pred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="PRED")

## Custom colours and symbols, no IDs
absval.iwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
```

absval.wres.vs.cov.bw Absolute weighted residuals vs covariates for Xpose 4
absval.wres.vs.cov.bw

Description

This creates a stack of box and whisker plot of absolute population weighted residuals (|WRES| or |IWRES|) vs covariates. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from the xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
absval.wres.vs.cov.bw(object, xlb = "|WRES|", main = "Default", ...)
```

Arguments

- `object` An xpose.data object.
- `xlb` A string giving the label for the x-axis. NULL if none.
- `main` The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `...` Other arguments passed to xpose.plot.bw.

Details

Each of the covariates in the Xpose data object, as specified in object@Prefs@Xvardef$Covariates, is evaluated in turn, creating a stack of plots.

A wide array of extra options controlling box-and-whisker plots are available. See xpose.plot.bw for details.

Value

Returns a stack of box-and-whisker plots of |WRES| vs covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.bw, xpose.panel.bw, bwplot, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.iwres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.idv, cwres.vs.ipred.by.cov, cwres.vs.ipred, cwres.vs.ipred.by.cov, cwres.vs.pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cog_hist, par_cog_qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum,
absval.wres.vs.idv

```
wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred,  
xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package
```

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
absval.wres.vs.cov.bw(xpdb)

## A custom plot
absval.wres.vs.cov.bw(xpdb, bwdotcol="white",  
  bwdotpch=15,  
  bwreccol="red",  
  bwrecfill="red",  
  bwumbcol="red",  
  bwoutpch=5,  
  bwoutcol="black")

## A vanilla plot using IWRES
absval.iwres.vs.cov.bw(xpdb)

## End(Not run)
```

absval.wres.vs.idv
Absolute value of (C)WRES vs. independent variable plot in Xpose4.

Description

This is a plot of the absolute value of the CWRES (default, other residuals as an option) vs independent variable, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.default` function. Most of the options take their default values from the xpose.data object but may be overridden by supplying them as arguments.

Usage

```
absval.wres.vs.idv(object, idv = "idv", wres = "Default", ylb = "Default",  
  smooth = TRUE, idsdir = "up", type = "p", ...)
```
Arguments

- **object**: An xpose.data object.
- **idv**: the independent variable.
- **wres**: Which weighted residual to use. "Default" is the CWRES.
- **ylb**: Y-axis label.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **idsdir**: Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- **type**: Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- **...**: Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.

Value

Returns an xyplot of |CWRES| vs idv (often TIME, defined by xvardef).

Author(s)

Andrew Hooker

See Also

xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, compute.cwres,
xpose.data-class help, ~~~

Other specific functions: absval.cwres.vs.cov bw.absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred.
absval.iwres.cwres.vs.ipred.pred.absval.iwres.vs.cov.bw.absval.iwres.vs.idv.absval.iwres.vs.ipred.by.
absval.iwres.vs.ipred.absval.iwres.vs.pred.absval.wres.vs.cov.bw.absval.wres.vs.ipred.by.
absval.wres.vs.pred.absval_delta_vs_cw_model_comp.addit.gof.autocorr.cwres.autocorr.iwres.
autocorr.wres.basic.gof.basic.model.comp.cat.dv.vs.idv.sb.cat.pc.cov.splom.cwres.dist.hist.
cwres.dist.qq.cwres.vs.cov.cwres.vs.idv.bw.cwres.vs.idv.cwres.vs.pred.bw.cwres.vs.pred.
cwres_wres_vs_x.dOFV.vs.cov.dOFV.vs.id.dOFV1.vs.dOFV2.data.checkout.dv.preds.vs.idv.
dv.vs.idv.dv.vs.ipred.by.cov.dv.vs.ipred.by.idv.dv.vs.ipred.dv.vs.pred.by.cov.
dv.vs.pred.by.idv.dv.vs.pred.ipred.dv.vs.pred.gof.ind.plots.cwres.hist.ind.plots.cwres.qq.
ind.plots.ipred.vs.idv.iwres.dist.hist.iwres.dist.qq.iwres.vs.idv.kaplan.plot.
par_cov_hist.par_cov.qq.parm.vs.cov.parm.vs.parm.pred.vs.idv.ranpar.vs.cov.runsum.
wres.dist.hist.wres.dist.qq.wres.vs.idv.bw.wres.vs.idv.wres.vs.pred.bw.wres.vs.pred.
xpose.VPC.both.xpose.VPC.categorical.xpose.VPC.xpose4-package
Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## End(Not run)

data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
absval.wres.vs.idv(xpdb)

## A conditioning plot
absval.wres.vs.idv(xpdb, by="HCTZ")

## Custom heading and axis labels
absval.wres.vs.idv(xpdb, main="Hello World", ylb="|CWRES|", xlb="IDV")

## Custom colours and symbols
absval.wres.vs.idv(xpdb, cex=0.6, pch=3, col=1)

## using the NPDEs instead of CWRES
absval.wres.vs.idv(xpdb, wres="NPDE")

## subsets
absval.wres.vs.idv(xpdb, subset="TIME<10")
```

Description

This is a plot of absolute population weighted residuals (|WRESI|) vs population predictions (PRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
absval.wres.vs.pred(object, ylb = "|WRES|", idsdir = "up", type = "p",
smooth = TRUE, ...)
```
Arguments

object An xpose.data object.
ylb A string giving the label for the y-axis. NULL if none.
idsdir Direction for displaying point labels. The default is "up", since we are dis-
 playing absolute values.
type Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are
 also available.
smooth Logical value indicating whether an x-y smooth should be superimposed. The
 default is TRUE.
... Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default for
details.

Value

Returns an xyplot of |WRES| vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.panel.default, xyplo t, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred,
absval.iwres.cwres.vs.ipred.pred.absval.iwres.vs.cov.bw, absval.iwres.vs.idv.absval.iwres.vs.ipred.by
absval.iwres.vs.ipred.absval.iwres.vs.cov.bw, absval.wres vs.idv,
absval.wres.vs.pred.by.cov, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres,
autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv vs.idv.sb, cat.pc,
cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv,
cwres.vs.pred.bw, cwres.vs.pred.cwres_wres_vs_x, doFV.vs.cov, d0FV.vs.id, d0FV1 vs.d0FV2,
data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv,
dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof,
ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist,
iwres.dist.qq, iwres vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm,
pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv,
wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC.xpose4-package

Examples

Not run:
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb5 <- xpose.data(5)
Description

This is a plot of absolute population weighted residuals (|WRES|) vs population predictions (PRED) conditioned by covariates, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
absval.wres.vs.pred.by.cov(object, ylb = "|WRES|", type = "p", smooth = TRUE, ids = FALSE, idsdir = "up", main = "Default", ...)
```

Arguments

- **object**: An xpose.data object.
- **ylb**: A string giving the label for the y-axis. NULL if none.
- **type**: Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **ids**: Logical. Should id labels on points be shown?
idsdir Direction for displaying point labels. The default is "up", since we are displaying absolute values.

main The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

... Other arguments passed to link(xpose.plot.default).

Details

Each of the covariates in the Xpose data object, as specified in object@Prefs@Xvardef$Covariates, is evaluated in turn, creating a stack of plots.

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.

Value

Returns a stack of xyplots of |WRES| vs PRED, conditioned on covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

absval.wres.vs.pred, xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xposedata-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.wres.vs.ipred.absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.absval_delta_vs_cov_model_comp.addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres,basic.gof,basic.model.comp,cat.dv.vs.idv.sb,cat.pc,cov.splom,cwres.dist.hist, cwres.dist.qq,cwres.vs.cov,cwres.vs.idv.bw,cwres.vs.idv, cwres.vs.ipred.by.cov, cwres.wres_vs_x, dOFV.vs.cov, dOFV1.vs.dOFV2.data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.idpred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist,par_cov_qq,parm.vs.cov,parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.ipred.by.cov, xpose.VPC both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

Not run:
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb5 <- xpose.data(5)

Here we load the example xpose database
data(simpraz.xpdb)
Model comparison plots, of absolute differences in goodness-of-fit predictors against covariates, for Xpose 4

Description

These functions plot absolute differences in PRED, IPRED, WRES, CWRES and IWRES against covariates for two specified model fits.

Usage

absval.dcwres.vs.cov.model.comp(object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "CWRES"))), main = "Default", ...)

absval.dipred.vs.cov.model.comp(object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "IPRED"))), main = "Default", ...)

absval.diwres.vs.cov.model.comp(object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "IWRES"))), main = "Default", ...)

absval.dpred.vs.cov.model.comp(object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "PRED"))), main = "Default", ...)

absval.dwres.vs.cov.model.comp(object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "WRES"))), main = "Default", ...)

Arguments

object An xpose.data object.
object.ref An xpose.data object. If not supplied, the user will be prompted.
type

1-character string giving the type of plot desired. The following values are possible, for details, see `plot`:
- "p" for points,
- "l" for lines,
- "o" for over-plotted points and lines,
- "b" and "c" for (empty if "c") points joined by lines,
- "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.

ylb

A string giving the label for the y-axis. NULL if none.

main

The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

Other arguments passed to link{xpose.plot.default}.

Details

Conditional weighted residuals (CWRES) may require some extra steps to calculate. See `compute.cwres` for details.

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` for details.

Value

Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.

Functions

- absval.dcwres.vs.cov.model.comp: The absolute differences in individual predictions against covariates for two specified model fits.
- absval.dipred.vs.cov.model.comp: The absolute differences in individual predictions against covariates for two specified model fits.
- absval.diwres.vs.cov.model.comp: The absolute differences in individual weighted residuals against covariates for two specified model fits.
- absval.dpred.vs.cov.model.comp: The absolute differences in population predictions against covariates for two specified model fits.
- absval.dwres.vs.cov.model.comp: The absolute differences in population weighted residuals against covariates for two specified model fits.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.default`, `xpose.panel.default`, `xyplot`, `compute.cwres`, `xposeprefs-class`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by`, `absval.wres.vs.pred`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`
add.grid.table

autocorr.wres,basic.gof,basic.model.comp,cat.dv.vs.idv.sb,cat.pc,cov.splom,cwres.dist.hist,
cwres.dist.qq,cwres.vs.cov,cwres.vs.idv,bw,cwres.vs.idv,cwres.vs.pred.bw,cwres.vs.pred,
cwres_wres_vs_x,dOFV.vs.cov,dOFV.vs.id,dOFV1.vs.dOFV2,data.checkout,dv.preds.vs.idv,
dv.vs.idv,dv.vs.ipred.by.cov,dv.vs.ipred.by.id,dv.vs.ipred,by.idv,dv.vs.pred.by.cov,
dv.vs.pred.by.id,dv.vs.pred.ipred,dv.vs.pred,gof,ind.plots.cwres.hist,ind.plots.cwres.qq,
ind.plots,ipred.vs.idv,iwres.dist.hist,iwres.dist.qq,iwres.vs.idv,kaplan.plot,
par_cov_hist,par_cov_qq,parm.vs.cov,parm.vs.parm,parm,pred.vs.idv,ranpar.vs.cov,runsum,
wres.dist.hist,wres.dist.qq,wres.vs.idv, bw,wres.vs.idv, wres.vs.pred.bw,wres.vs.pred,
xpose.VPC.both,xpose.VPC.categorical,xpose.VPC,xpose4-package

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for runs
## 5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)

## A basic dwres plot, without prompts
absval.dwres.vs.cov.model.comp(xpdb5, xpdb6)

## Custom colours and symbols, no user IDs
absval.dpred.vs.cov.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)

## End(Not run)
```

Description

These functions take an array of values and labels or an array of text and add it to one or many grid viewports in an orderly fashion.

Usage

```r
add.grid.table(txt, col.nams = NULL, ystart, xstart = unit(0, "npc"),
start.pt = 1, vp, vp.num = 1, minrow = 5, cell.padding = 0.5,
mult.col.padding = 1, col.optimize = TRUE, equal.widths = FALSE,
space.before.table = 1, center.table = FALSE, use.rect = FALSE,
fill.type = NULL, fill.col = "grey", cell.lines.lty = 0, ...)
```
Arguments

- **txt**: The text or table values to add to the grid object.
- **col.nams**: the column names of the table values
- **ystart**: The y location to start printing in the grid viewport
- **xstart**: The x location to start printing in the grid viewport
- **start.pt**: The start point (row) in the table array to start printing
- **vp**: The viewport(s) to add the table or text to
- **vp.num**: the viewport number in vp to start printing to
- **minrow**: The minimum rows before printing more columns to use in the table
- **cell.padding**: padding between cells in the table
- **mult.col.padding**: padding between multiple columns in the table
- **col.optimize**: should we column optimize (TRUE) or row optimize (FALSE)
- **equal.widths**: Should all columns have equal widths
- **space.before.table**: Should there be a space before the table
- **center.table**: should we center the table in the viewport?
- **use.rect**: Should we make rectangles with background color around the table entries TRUE or FALSE
- **fill.type**: Which rectangles should be filled. Allowed values are "all", "top", "side", "both" and NULL.
- **fill.col**: The color of the filled rectangles
- **cell.lines.lty**: The line-type for the lines between the cells, using the same values as lty.
- **...**: Other arguments passed to the various functions.

Value

A List is returned with the following components

- **ystart**: new starting point for new text
- **stop.pt**: null if everything gets printed
- **vp.num**: the viewport needed for next text printed
- **xpose.table**: A grob object that can be plotted.

Author(s)

Andrew Hooker

See Also

runsum, grid.text
add.model.comp

AddNmodelNcomp

Additional model comparison plots, for Xpose 4

Description

This creates a stack of four plots, comparing absolute values of PRED, absolute values of IPRED, delta CWRES (or WRES) and delta IWRES estimates for the two specified model fits.

Usage

```r
add.model.comp(object, object.ref = NULL, onlyfirst = FALSE,
                 inclZeroWRES = FALSE, subset = xsubset(object), main = "Default",
                 force.wres = FALSE, ...)
```

Arguments

- **object**
 An xpose.data object.

- **object.ref**
 An xpose.data object. If not supplied, the user will be prompted.

- **onlyfirst**
 Logical value indicating whether only the first row per individual is included in the plot.

- **inclZeroWRES**
 Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE.

- **subset**
 A string giving the subset expression to be applied to the data before plotting. See `xsubset`.

- **main**
 The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

- **force.wres**
 Should we use the WRES in the plots instead of CWRES (logical TRUE or FALSE)

- **...**
 Other arguments passed to `link{xposeNplotNdefault}`.

Details

Four model comparison plots are displayed in sequence.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See `compute.cwres` for details.

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` for details.

Value

Returns a stack of plots comprising comparisons of absolute values of PRED, absolute values of IPRED, absolute differences in CWRES (or WRES) and absolute differences in IWRES for the two specified runs.
Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.panel.default, xyplot, compute.cwres, xpose.prefs-class, xpose.data-class

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for runs
## 5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)

## A vanilla plot, without prompts
add.model.comp(xpdb5, xpdb6, prompt = FALSE)

## Custom colours and symbols, no user IDs
add.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)

## End(Not run)
```

Description

This is a compound plot consisting of plots of weighted population residuals (WRES) vs population predictions (PRED), absolute individual weighted residuals (|IWRES|) vs independent variable (IDV), WRES vs IDV, and weighted population residuals vs log(IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the wres.vs.pred, iwres.vs.idv and wres.vs.idv functions.

Usage

```r
addit.gof(object, type = "p", title.size = 0.02, title.just = c("center", "top"), main = "Default", force.wres = FALSE, ...)
```

Arguments

- `object` An xpose.data object.
type
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c" for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
title.size
Amount, in a range of 0-1, of how much space the title should take up in the plot
title.just
how the title should be justified
main
The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
force.wres
Plot the WRES even if other residuals are available.
...
Other arguments passed to link{xpose.plot.default}.

Details
Four additional goodness-of-fit plots are presented side by side for comparison.
A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.multiple.plot.default for details.

Value
Returns a compound plot comprising plots of weighted population residuals (WRES) vs population predictions (PRED), absolute individual weighted residuals (|IWRES|) vs independent variable (IDV), WRES vs IDV, and weighted population residuals vs log(IDV).

Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also
wres.vs.pred, iwres.vs.idv, wres.vs.idv, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.bw, absval.iwres.vs.ipred.absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, d0FV.vs.idv, d0FV1.vs.d0FV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots, cwres.hist, ind.plots, cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_c cov_hist, par_cov_qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package
Examples

```r
# Here we load the example xpose database
tax <- simpraz.xpdb

# A vanilla plot
add.gof(tax)
```

Description

These functions transform existing Xpose 4 data columns, adding new columns.

Usage

```r
add.absval(object, listall = TRUE, classic = FALSE)
add.dichot(object, listall = TRUE, classic = FALSE)
add.exp(object, listall = TRUE, classic = FALSE)
add.log(object, listall = TRUE, classic = FALSE)
add.tad(object, classic = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An xpose.data object.</td>
</tr>
<tr>
<td>listall</td>
<td>A logical operator specifying whether the items in the database should be listed.</td>
</tr>
<tr>
<td>classic</td>
<td>A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.</td>
</tr>
</tbody>
</table>

Details

These functions may be used to create new data columns within the Xpose data object by transforming existing ones.

Value

An `xpose.data` object (classic == FALSE) or null (classic == TRUE).
Functions

- add.absval: Create a column containing the absolute values of data in another column.
- add.dichot: Create a categorical data column based on a continuous data column
- add.exp: Create an exponentiated version of an existing variable
- add.log: Create a log transformation of an existing variable
- add.tad: Create a time-after-dose (TAD) data item based upon the dose and time variables in the dataset.

Author(s)

Niclas Jonsson, Justin Wilkins and Andrew Hooker

See Also

xpose.data

Other data functions: change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable_definitions, import.graph.par, import.variable_definitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

```r
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Create a column containing the absolute values of data in another column
add.absval(xpdb5)

## Create a categorical data column based on a continuous data column, and do not list variables
add.dichot(xpdb5, listall = FALSE)

## Create a column containing the exponentiated values of data in another column
add.exp(xpdb5)

## Create a column containing log-transformations of data in another column
add.log(xpdb5)

## Create a time-after-dose column
add.tad(xpdb5)
```
Description

This is an autocorrelation plot of conditional weighted residuals, a specific function in Xpose 4. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
autocorr.cwres(object, type = "p", smooth = TRUE, ids = F,
    main = "Default", ...)
```

Arguments

- `object`: An xpose.data object.
- `type`: 1-character string giving the type of plot desired. The following values are possible, for details, see `plot`: "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
- `smooth`: Logical value indicating whether a smooth should be superimposed.
- `ids`: A logical value indicating whether text labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab xpose data variable).
- `main`: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `...`: Other arguments passed to `link{xpose.plot.default}`.

Details

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` for details.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See `compute.cwres` for details.

Value

Returns an autocorrelation plot for conditional weighted population residuals (CWRES).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

xyplot, xpose_prefs-class, compute_cwres, xpose_data-class

Other specific functions: absval_cwres_vs_cov_bw, absval_cwres_vs_pred_by_cov, absval_cwres_vs_pred, absval_iwres_cwres_vs_ipred_pred, absval_iwres_vs_cov_bw, absval_iwres_vs_idv, absval_iwres_vs_ipred_by_idv, absval_iwres_vs_ipred, absval_iwres_vs_pred, absval_iwres_vs_pred_by_idv, absval_iwres_vs_idv, absval_wres_vs_pred_by_cov, absval_wres_vs_pred, absval_delta_vs_cov_model_comp, addit_gof, autocorr_iwres, autocorr_wres, basic_gof, basic_model_comp, cat_dv_vs_idv_sb, cat_pc, cov_splom, cwres_dist_hist, cwres_dist_qq, cwres_vs_cov, cwres_vs_idv_bw, cwres_vs_idv, cwres_vs_pred_bw, cwres_vs_pred_cwres_wres_vs_x, dOFV_vs_cov, dOFV_vs_id, dOFV1_vs_dOFV2, data_checkout, dv_preds_vs_idv, dv_vs_idv, dv_vs_ipred_by_cov, dv_vs_ipred_by_idv, dv_vs_ipred, dv_vs_pred_by_cov, dv_vs_pred_by_idv, dv_vs_pred_ipred, dv_vs_pred, gof, ind_plots_cwres_hist, ind_plots_cwres_qq, ind_plots_ipred_vs_idv, iwres_dist_hist, iwres_dist_qq, iwres_vs_idv, kaplan_plot, par_cov_hist, par_cov_qq, parm_vs_cov, parm_vs_parm, pred_vs_idv, ranpar_vs_cov, runsum, wres_dist_hist, wres_dist_qq, wres_vs_idv_bw, wres_vs_idv, wres_vs_pred_bw, wres_vs_pred, xpose_VPC_both, xpose_VPC_categorical, xpose_VPC, xpose4_package

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## End(Not run)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
autocorr_cwres(xpdb)

## A conditioning plot
autocorr_cwres(xpdb, dilution=TRUE)

## Custom heading and axis labels
autocorr_cwres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")

## Custom colours and symbols, IDs
autocorr_cwres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
```

autocorr.iwres autocorrelation of the individual weighted residuals
autocorr.iwres

Description
autocorrelation of the individual weighted residuals

Usage
autocorr.iwres(object, type = "p", smooth = TRUE, ids = F,
 main = "Default", ...)

Arguments

object An "xpose.data" object.
type 1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s", and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
smooth A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.
ids A logical value indicating whether text labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab xpose data variable).
main A string giving the plot title or NULL if none.
... Other arguments passed to xpose.panel.default.

Value
A Lattice object

See Also
Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.bw, absval.iwres.vs.ipred, absval.iwres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package
Description

This is an autocorrelation plot of weighted residuals. Most of the options take their default values from the xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
autocorr.wres(object, type = "p", smooth = TRUE, ids = F,
              main = "Default", ...)
```

Arguments

- **object**: An xpose.data object.
- **type**: 1-character string giving the type of plot desired. The following values are possible, for details, see `plot`: "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c")) points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
- **smooth**: Logical value indicating whether a smooth should be superimposed.
- **ids**: A logical value indicating whether text labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab xpose data variable).
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- **...**: Other arguments passed to `xpose.plot.default`.

Details

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` for details.

Value

Returns an autocorrelation plot for weighted population residuals (WRES) or individual weighted residuals (IWRES).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
See Also

`xyplot, xpose.prefs-class, xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absva1.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absva1.wres.vs.pred.by.cov, absval.wres.vs.pred, absva1.wres_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres-vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package`

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## End(Not run)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
autocorr.wres(xpdb)

## A conditioning plot
autocorr.wres(xpdb, dilution=TRUE)

## Custom heading and axis labels
autocorr.wres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")

## Custom colours and symbols, IDs
autocorr.wres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)

## A vanilla plot with IWRES
autocorr.iwres(xpdb)
```

basic.gof

Basic goodness-of-fit plots, for Xpose 4
Description
This is a compound plot consisting of plots of observations (DV) vs population predictions (PRED), observations (DV) vs individual predictions (IPRED), absolute individual weighted residuals (IWRES) vs IPRED, and weighted population residuals (CWRES) vs independent variable (IDV), a specific function in Xpose 4. WRES are also supported. It is a wrapper encapsulating arguments to the dv.vs.pred, dv.vs.ipred, absval.iwres.vs.ipred and wres.vs.idv functions.

Usage
basic.gof(object, force.wres = FALSE, main = "Default", use.log = FALSE, ...)

Arguments
object An xpose.data object.
force.wres Should the plots use WRES? Values can be TRUE/FALSE. Otherwise the CWRES are used if present.
main The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
use.log Should we use log transformations in the plots?
... Other arguments passed to xpose.plot.default.

Details
Four basic goodness-of-fit plots are presented side by side for comparison.
Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.
A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.
basic.gof.cwres is just a wrapper for basic.gof with use.cwres=TRUE.

Value
Returns a compound plot comprising plots of observations (DV) vs population predictions (PRED), DV vs individual predictions (IPRED), absolute individual weighted residuals (IWRES) vs IPRED, and weighted populations residuals (WRES) vs the independent variable (IDV).

Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also
dv.vs.pred, dv.vs.ipred, absval.iwres.vs.ipred, wres.vs.idv, cwres.vs.idv, xpose.plot.default, xpose.panel.default, xyplot, compute.cwres, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

basic.gof(xpdb)

## Custom colours and symbols, IDs of individuals in study
basic.gof(xpdb, cex=0.6, pch=8, col=1, ids=TRUE)
```

basic.model.comp
Basic model comparison plots, for Xpose 4

Description

This creates a stack of four plots, comparing PRED, IPRED, WRES (or CWRES), and IWRES estimates for the two specified model fits.

Usage

```r
basic.model.comp(object, object.ref = NULL, onlyfirst = FALSE,
inclZeroWRES = FALSE, subset = xsubset(object), main = "Default",
force.wres = FALSE, ...)
```

Arguments

- **object**: An xpose.data object.
- **object.ref**: An xpose.data object. If not supplied, the user will be prompted.
- **onlyfirst**: Logical value indicating whether only the first row per individual is included in the plot.
- **inclZeroWRES**: Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE.
- **subset**: A string giving the subset expression to be applied to the data before plotting. See `xsubset`.
main

The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

force.wres

Force function to use WRES?

... Other arguments passed to link{xpose.plot.default}.

Details

Four basic model comparison plots are displayed in sequence.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute cwres for details.

A wide array of extra options controlling xyplots are available. See xpose.plot.default for details.

Value

Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.panel.default, xyplot, compute.cwres, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.ipred, wres.vs.ipred, wres.vs.ipred, wres.vs.ipred, xpilot.cwres.hist, xpose.VPC, both, xpose.VPC, categorical, xpose.VPC, xpose4-package

Examples

Not run:
We expect to find the required NONMEM run and table files for runs
5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)
A vanilla plot, without prompts

basic.model.comp(xpdb5, xpdb6, prompt = FALSE)

Custom colours and symbols, no user IDs

basic.model.comp.cwres(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)

End(Not run)

boot.hist

Function to create histograms of results from the bootstrap tool in PsN

Note: Link to PsN documentation.

Description

Reads results from the bootstrap tool in PsN and then creates histograms.

Usage

```r
boot.hist(results.file = "raw_results_run1.csv",
        incl.ids.file = "included_individuals1.csv", min.failed = FALSE,
        cov.failed = FALSE, cov.warnings = FALSE, boundary = FALSE,
        showOriginal = TRUE, showMean = FALSE, showMedian = FALSE,
        showPCTS = FALSE, PCTS = c(0.025, 0.975), excl.id = c(),
        layout = NULL, sort.plots = TRUE, main = "Default", ...)
```

Arguments

- `results.file`: The location of the results file from the bootstrap tool in PsN
- `incl.ids.file`: The location of the included ids file from the bootstrap tool in PsN
- `min.failed`: Should NONMEM runs that had failed minimization be skipped? TRUE or FALSE
- `cov.failed`: Should NONMEM runs that had a failed covariance step be skipped? TRUE or FALSE
- `cov.warnings`: Should NONMEM runs that had covariance step warnings be skipped? TRUE or FALSE
- `boundary`: Should NONMEM runs that had boundary warnings be skipped? TRUE or FALSE
- `showOriginal`: Should we show the value from the original NONMEM run in the histograms? TRUE or FALSE
- `showMean`: Should we show the mean of the histogram data? TRUE or FALSE
- `showMedian`: Should we show the median of the histogram data? TRUE or FALSE
- `showPCTS`: Should we show the percentiles of the histogram data? TRUE or FALSE
- `PCTS`: the percentiles to show. Can be a vector of any length. For example, c(0.05, 0.2, 0.5, 0.7)
- `excl.id`: Vector of id numbers to exclude.
layout Layout of plots. A vector of number of rows and columns in each plot. c(3, 3) for example.

sort.plots Should the plots be sorted based on type of parameter. Sorting on parameters, standard errors, shrinkage and eigenvalues.

main The title of the plot.

... Additional arguments that can be passed to xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions.

Value
A lattice object

Author(s)
Andrew Hooker

References
PsN

See Also
xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions.

Other PsN functions: bootscm.import, npc.coverage, randtest.hist, read.npc.vpc.results, read.vpctab, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC.xpose4-package

Examples

```r
## Not run:
boot.hist(results.file="./boot1/raw_results_run1.csv",
          incl.ids.file="./boot1/included_individuals1.csv")

## End(Not run)
```

bootgam.print

Print summary information for a bootgam or bootscm

Description

This function prints some summary information for a bootgam performed in Xpose, or for a bootscm performed in PsN.

Usage

```r
bootgam.print(bootgam.obj = NULL)
```
Arguments

bootgam.obj The bootgam or bootscm object.

Value

No value returned

Author(s)

Ron Keizer

Examples

Not run:
bootgam.print(current.bootgam) # Print summary for the current Xpose bootgam object
bootscm.print(current.bootscm) # Print summary for the current Xpose bootscm object

End(Not run)

bootscm.import
Import bootscm data into R/Xpose

Description

This function imports data generated by the PsN boot_scm function into the Xpose / R environment.

Usage

bootscm.import(scm.folder = NULL, silent = FALSE, n.bs = NULL,
 cov.recoding = NULL, group.by.cov = NULL, skip.par.est.import = FALSE,
 dofv.forward = 3.84, dofv.backward = 6.64, runno = NULL,
 return.obj = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scm.folder</td>
<td>The folder in which the PsN-generated bootscm data are.</td>
</tr>
<tr>
<td>silent</td>
<td>Don’t output any progress report. Default is FALSE.</td>
</tr>
<tr>
<td>n.bs</td>
<td>The number of bootstraps performed. Defaults to 100.</td>
</tr>
<tr>
<td>cov.recoding</td>
<td>For categorical covariates that are recoded to dichotomous covariates within the bootscm configuration file, a list can be specified containing data frames for recoding. See the example below for details.</td>
</tr>
<tr>
<td>group.by.cov</td>
<td>Group inclusion frequencies by covariate, instead of calculating them per parameter-covariates relationship. Default is NULL, which means that the user will be asked to make a choice.</td>
</tr>
</tbody>
</table>
skip.par.est.import
Skip the import of all parameter estimates (in each final model in all scm's, as well as parameter estimates in first step of each scm). These data are required to make plot that show inclusion bias and correlation in parameter estimates. Importing these data takes a bit of time (may take a minute or so), so if you don’t intend to make these plots anyhow this step can be skipped. Default is FALSE.

dofv.forward dOFV value used in forward step of scm.
dofv.backward dOFV value used in backward step of scm.
runno The run-number of the base model for this bootSCM.
return.obj Should the bootscm object be returned by the function?

Author(s)
Ron Keizer

See Also
Other bootscm: xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.cond.stab.cov, xp.inc.ind.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov
Other PsN functions: boot.hist, npc.coverage, randtest.hist, read.npc.vpc.results, read.vpctab, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Description
Categorical observations vs. independent variable using stacked bars.

Usage
cat.dv.vs.idv.sb(object, dv = xvardef("dv", object), idv = xvardef("idv", object), by = NULL, groups = dv, force.by.factor = FALSE, recur = F, xlbd = idv, ylb = "Proportion", subset = NULL, vary.width = T, level.to.plot = NULL, refactor.levels = TRUE, main = xpose.create.title.text(dv, dv, "Proportions of", object, subset = subset, ...), stack = TRUE, horizontal = FALSE, strip = function(...), strip.default(...), strip.names = c(TRUE, TRUE)), scales = list(), inclZeroWRES = TRUE, onlyfirst = FALSE, samp = NULL, aspect = object@Prefs@Graph.prefs$aspect, auto.key = "Default", mirror = FALSE, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ...)

Categorical observations vs. independent variable using stacked bars.
Arguments

object Xpose data object.
dv The dependent variable (e.g. "DV" or "CP").
idv The independent variable (e.g. "TIME").
by Conditioning variable
by.groups How we should group values in each conditional plot.
force.by.factor Should we force the data to be treated as factors?
recur Not used.
xlb A string giving the label for the x-axis. NULL if none.
ylb A string giving the label for the y-axis. NULL if none.
subset Subset of data.
vary.width Should we vary the width of the bars to match amount of information?
level.to.plot Which levels of the DV to plot.
reformatter Should we reformat the levels?
main The title of the plot.
stack Should we stack the bars?
horizontal Should the bars be horizontal?
strip Defining how the strips should appear in the conditioning plots.
scales Scales argument to `xyplot`.
inclZeroWRES Include rows with WRES=0?
onlyfirst Only include first data point for each individual?
samp Sample to use in mirror plot (a number).
aspect Aspect argument to `xyplot`.
auto.key Make a legend.
mirror Mirror can be FALSE, TRUE, 1 or 3.
mirror.aspect Aspect for mirror.
pass.plot.list Should the plot list be passed back to user?
x.cex Size of x axis label.
y.cex Size of Y axis label.
main.cex Size of Title.
mirror.internal Internal stuff.
... Other arguments passed to function.

Author(s)

Andrew Hooker
See Also

Other specific functions: `absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred.cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov.hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred.xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
# Not run:
## read in table files
runno <- 45
xpdb <- xpose.data(runno)

## make some stacked bar plots
cat.dv.vs.idv.sb(xpdb, idv=NULL, stack=F)
cat.dv.vs.idv.sb(xpdb, idv=NULL, stack=F, by="DOSE")
cat.dv.vs.idv.sb(xpdb, idv="DOSE")
cat.dv.vs.idv.sb(xpdb, idv=NULL, stack=F, by="TIME")
cat.dv.vs.idv.sb(xpdb, idv="TIME")
cat.dv.vs.idv.sb(xpdb, idv="CAVH")
cat.dv.vs.idv.sb(xpdb, idv="TIME", by="DOSE", scales=list(x=list(rot=45)))

## make some mirror plots
cat.dv.vs.idv.sb(xpdb, idv="DOSE", mirror=1)
cat.dv.vs.idv.sb(xpdb, idv="CAVH", mirror=1, auto.key=F)
```

```r
## End(Not run)
```
Usage

```
cat.pc(object, dv = xvardef("dv", object), idv = xvardef("idv", object),
level.to.plot = NULL, subset = NULL, histo = T, median.line = F,
PI.lines = F, xlb = if (histo) {
    paste("Proportion of ", dv) } else {
    paste(idv) }, ylb = if (histo) {
    paste("Percent of Total") } else {
    paste("Proportion of Total") }, main = xpose.create.title.text(NULL, dv,
"Predictive check of", object, subset = subset, ...), strip = "Default",
...)
```

Arguments

- **object**: Xpose data object.
- **dv**: The dependent variable (e.g. "DV" or "CP").
- **idv**: The independent variable (e.g. "TIME").
- **level.to.plot**: The levels to plot.
- **subset**: Subset of data.
- **histo**: If FALSE then a VPC is created, given that idv is defined.
- **median.line**: Make a median line?
- **PI.lines**: Make prediction interval lines?
- **xlb**: Label for x axis.
- **ylb**: label for y axis.
- **main**: Main title.
- **strip**: Defining how the strips should appear in the conditioning plots.
- **...**: Extra arguments passed to the function.

Author(s)

Andrew C. Hooker

See Also

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred.
absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.
absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv,
absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof,
autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb,
cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov.cwres.vs.idv.bw, cwres.vs.idv,
cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2,
data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv,
dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof,
ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist,
iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov_qq, parm.vs.cov, parm.vs.parm,
pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv,
wres.vs.pred.bw, wres.vs.pred, xpose.VPC, both, xpose.VPC.categorical, xpose.VPC, xpose4-package
change.parm

Examples

```r
## Not run:
## read in table files
runno <- 45
xpdb <- xpose.data(runno)

## create proportion (visual) predictive check
cat.pc(xpdb, idv=NULL)
cat.pc(xpdb, idv="DOSE")
cat.pc(xpdb, idv="DOSE", histo=F)
cat.pc(xpdb, idv="TIME", histo=T, level.to.plot=1)

## End(Not run)
```

change.parm Change parameter scope.

Description

Function to change the parameter scope.

Usage

```r
change.parm(object, listall = TRUE, classic = FALSE)
```

Arguments

- `object` The xpose data object.
- `listall` whether we should list all the current parameters.
- `classic` true if used in the classic menu system (for internal use).

Value

If classic then return nothing. Otherwise return the new data object.

Author(s)

Andrew C. Hooker
change.var.name

Changes the name of an Xpose data item

Description

This function allows the names of data items in the Xpose database to be changed.

Usage

change.var.name(object, classic = FALSE)

Arguments

- object: An xpose.data object.
- classic: A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

Details

This function facilitates the changing of data item names in the object@Data slot.

Value

An xpose.data object.

Author(s)

Niclas Jonsson & Justin Wilkins

See Also

Data, SData, xpose.data

Examples

```r
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

xpdb5 <- change.var.name(xpdb5)

## End(Not run)
```
changexlabel

Changes the label of an Xpose data item

Description

This function allows the labels of data items in the Xpose database to be changed.

Usage

```r
change.xlabel(object, listall = TRUE, classic = FALSE)
```

Arguments

- `object`: An xpose.data object.
- `listall`: A logical operator specifying whether the items in the database should be listed.
- `classic`: A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

Details

This function facilitates the changing of data item labels in the object@Prefs@Labels slot.

Value

An xpose.data object.

Author(s)

Justin Wilkins

See Also

Data, SData, xpose.data

Examples

```r
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

xpdb5 <- change.xlabel(xpdb5)

## End(Not run)
```
change.xvardef

Change Xpose variable definitions.

Description

These functions allow for the changing of Xpose variable definitions like "idv" and "dv". These variable definitions are used to refer to columns of the observed data in a generic way, so that generic plotting functions can be created.

Usage

```r
change.xvardef(object, var = ".ask", def = ".ask", listall = TRUE,
               classic = FALSE, check.var = FALSE, ...)

change.xvardef(object, var, listall = FALSE, classic = FALSE,
               check.var = FALSE, ...) <- value
```

Arguments

- **object**: An xpose.data object.
- **var**: The Xpose variable you would like to change or add to the current object. A one-element character vector (e.g. "idv"). If ".ask" the user will be prompted to input a value.
- **def**: A vector of column names from NONMEM table files (names(object@Data)) that should be associated with this variable (e.g. c("TIME")). Multiple values are allowed. If ".ask" the user will be prompted to input values.
- **listall**: Should the function list the database values?
- **classic**: Is the function being used from the classic interface. This is an internal option.
- **check.var**: Should the variables be checked against the current variables in the object?
- **...**: Items passed to functions within this function.
- **value**: a vector of values

Value

If called from the the command line then this function returns an xpose database. If called from the classic interface this function updates the current xpose database (.cur.db).

Functions

- `change.xvardef<-`: Change the covariate scope of the xpose database object
Additional arguments

The default xpose variables are:

- **id**: Individual identifier column in dataset
- **idlab**: Values used for plotting ID values on data points in plots
- **occ**: The occasion variable
- **dv**: The dv variable
- **pred**: The pred variable
- **ipred**: The ipred variable
- **wres**: The wres variable
- **cwres**: The cwres variable
- **res**: The res variable
- **parms**: The parameters in the database
- **covariates**: The covariates in the database
- **ranpar**: The random parameters in the database

Author(s)

Andrew Hooker

See Also

`xvardef`, `xpose.data`

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

# Change the "id" variable to point to "PRED" in the xpose object
xpdb <- change.xvardef(xpdb, var="id", def="PRED")

# Check the value of the "id" variable
xvardef("id", xpdb)

# Change the "idv" variable
change.xvardef(xpdb, var="idv") <- "TIME"

# Change the covariate scope
change.xvardef(xpdb, var="covariates") <- c("SEX","AGE","WT")

## Not run:
# Use the interactive capabilities of the function
xpdb <- change.xvardef(xpdb)

## End(Not run)
```
Description

These functions allow customization of Xpose’s graphics settings.

Usage

```r
change.ab.graph.par(object, classic = FALSE)
change.bw.graph.par(object, classic = FALSE)
change.cond.graph.par(object, classic = FALSE)
change.dil.graph.par(object, classic = FALSE)
change.label.par(object, classic = FALSE)
change.lm.graph.par(object, classic = FALSE)
change.miss.graph.par(object, classic = FALSE)
change.pi.graph.par(object, classic = FALSE)
change.smooth.graph.par(object, classic = FALSE)
```

Arguments

- `object`: An `xpose.data` object.
- `classic`: A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

Details

Settings can be saved and loaded using `export.graph.par` and `import.graph.par`, respectively.

Value

An `xpose.data` object (classic == FALSE) or null (classic == TRUE).
change_graphical_parameters

Functions

- `change.ab.graph.par`: change settings for the line of identity.
- `change.bw.graph.par`: sets preferences for box-and-whisker plots
- `change.cond.graph.par`: sets preferences for conditioning
- `change.dil.graph.par`: responsible for dilution preferences
- `change.label.par`: responsible for labelling preferences
- `change.lm.graph.par`: responsible for linear regression lines.
- `change.misc.graph.par`: sets basic graphics parameters, including plot type, point type and size, colour, line type, and line width.
- `change.pi.graph.par`: responsible for prediction interval plotting preferences
- `change.smooth.graph.par`: sets preferences for loess smooths.

Author(s)

Niclas Jonsson & Justin Wilkins

See Also

xpose.plot.default, xpose.panel.default, xpose.plot.bw, xpose.panel.bw, xpose.plot.default, import.graph.par, export.graph.par, plot.default, par, import.graph.par, panel.abline, panel.lmline, lm, panel.loess, loess.smooth, loess, panel.bwplot, shingle, reorder.factor

Other data functions: add_transformed_columns, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variabledefinitions, import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nml_table, simprazexample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

```r
# Not run:
# xpdb5 is an Xpose data object
# We expect to find the required NONMEM run and table files for run
# 5 in the current working directory
xpdb5 <- xpose.data(5)

# Change default miscellaneous graphic preferences
xpdb5 <- change.misc.graph.par(xpdb5)

# Change default linear regression line preferences, creating a new object
xpdb5.a <- change.lm.graph.par(xpdb5)

# Change conditioning preferences
xpdb5 <- change.cond.graph.par(xpdb5)

# End(Not run)
```
change_misc_parameters

Functions changing miscellaneous parameter settings in Xpose 4

Description

These functions allow viewing and changing of settings relating to subsets, categorical threshold values, documentation and numbers indicating missing data values.

Usage

change.cat.cont(object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, change.type.vec = NULL, ...)

change.cat.cont(object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, ...) <- value

change.cat.levels(object, classic = FALSE, cat.limit = NULL, ...)

change.cat.levels(object, classic = FALSE, ...) <- value

change.dv.cat.levels(object, classic = FALSE, dv.cat.limit = NULL, ...)

change.dv.cat.levels(object, classic = FALSE, ...) <- value

change.miss(object, classic = FALSE)

change.subset(object, classic = FALSE)

get.doc(object, classic = FALSE)

set.doc(object, classic = FALSE)

Arguments

Object| An xpose.data object.

listall| A logical operator specifying whether the items in the database should be listed.

classic| A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

to.cat.vec| A vector of strings specifying the names of the categorical variables that should be transformed to continuous.
to.cont.vec A vector of strings specifying the names of the continuous variables that should be transformed to categorical.

to.cont.vec A vector of strings specifying the names of the variables that should be transformed to/from continuous/categorical.

change.type.vec A vector of strings specifying the names of the variables that should be transformed to/from continuous/categorical.

... arguments passed to other functions.

value This is the value that will be replaced in the xpose data object object. value is used in the “replacement function” version of these functions. That is the form where we have function.name(object) <- value. If value is NULL then the functions prompt the user for a value. For change.cat.levels, value is the categorical limit cat.limit. For change.dv.cat.levels, value is the DV categorical limit dv.cat.limit. For change.cat.cont, value is the change.type.vec. See the examples below.

cat.limit The limit for which we treat a list of values as categorical. If there are cat.limit or less unique values then the list is treated as categorical.

dv.cat.limit The limit for which we treat DV as categorical. If there are dv.cat.limit or less unique dv values then dv is treated as categorical.

Value

An xpose.data object, except get.doc, which returns the value of object@Doc.

Functions

- change.cat.cont: allows interchange between categorical and continuous data formats within the Xpose database. This in turn affects how plots are drawn.
- change.cat.cont<: allows interchange between categorical and continuous data formats within the Xpose database. This in turn affects how plots are drawn.
- change.cat.levels: change settings for the number of unique data values required in a variable in order to define it as continuous for ordinary variables.
- change.cat.levels<: change settings for the number of unique data values required in a variable in order to define it as continuous for ordinary variables.
- change.dv.cat.levels: change settings for the number of unique data values required in a variable in order to define it as continuous for the dependent variable.
- change.dv.cat.levels<: change settings for the number of unique data values required in a variable in order to define it as continuous for the dependent variable.
- change.miss: change the value to use as ‘missing’.
- change.subset: is used for setting the data item’s subset field. To specify a subset of the data to process, you use the variable names and the regular R selection operators. To combine a subset over two or more variables, the selection expressions for the two variables are combined using R’s unary logical operators.

The variable names are those that are specified in the NONMEM table files (e.g. PRED, TIME, SEX).

The selection operators are: == (equal) != (not equal) || (or) > (greater than) < (less than)
change_misc_parameters

For example, to specify that TIME less than 24 should be processed, you type the expression:
TIME < 24.
The unary logical operators are: & (and) \| (or)
For example, to specify TIME less than 24 and males (SEX equal to 1), you type the expres-
sion: TIME < 24 \& SEX == 1
This subset selection scheme works on all variables, including ID numbers.
The subset selection is not entirely stable. For example, there is no check that the user enters a
valid expression, nor that the user specifies existing variable names. An erroneous expression
will not become evident until a plot is attempted and the expression takes effect.

- get.doc: get the documentation field in the Xpose data object.
- set.doc: set the documentation field in the Xpose data object.

Author(s)
Andrew Hooker, Niclas Jonsson & Justin Wilkins

See Also
Data, SData, subset, xpose.data

Other data functions: add_transformed_columns, change_graphical_parameters, compute.cwres,
data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variabledefinitions,import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary,
read.TTE.sim.data, read.nm.tables, read_nm_output, read_nm_table, simprazExample, tabulate.parameters,
xlabel, xpose.data, xpose.print, xpose.print, xpose4-package, xsubset

Examples

```r
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Change default subset
xpdb5 <- change.subset(xpdb5)

## Set documentation field
xpdb5 <- set.doc(xpdb5)
## View it
view.doc(xpdb5)

## change the categorical limit for the dv variable
change.dv.cat.levels(xpdb5) <- 10

## change the categorical limit for non DV variables
change.cat.levels(xpdb5) <- 2
## or
xpdb5 <- change.cat.levels(xpdb5, cat.levels=2)
```
Description
This function computes the conditional weighted residuals (CWRES) from a NONMEM run. CWRES are an extension of the weighted residuals (WRES), but are calculated based on the first-order with conditional estimation (FOCE) method of linearizing a pharmacometric model (WRES are calculated based on the first-order (FO) method). The function requires a NONMEM table file and an extra output file that must be explicitly asked for when running NONMEM, see details below.

Usage
```r
compute.cwres(run.number, tab.prefix = "cwtab", sim.suffix = ".", 
est.tab.suffix = ".est", deriv.tab.suffix = ".deriv", 
old.file.convention = FALSE, id = "ALL", printTooutfile = TRUE, 
onlyNonZero = TRUE, 

xpose.calculate.cwres(object, cwres.table.prefix = "cwtab", tab.suffix = "", 
sim.suffix = "sim", est.tab.suffix = ".est", 
deriv.tab.suffix = ".deriv", old.file.convention = FALSE, id = "ALL", 
printTooutfile = TRUE, onlyNonZero = FALSE, classic = FALSE, 
```

Arguments
- **run.number**: The run number of the NONMEM from which the CWRES are to be calculated.
- **tab.prefix**: The prefix to two NONMEM file containing the needed values for the computation of the CWRES, described in the details section.
- **sim.suffix**: The suffix before the ".", of the NONMEM file containing the needed values for the computation of the CWRES, described in the details section. For example, the table files might be named cwtab1sim.est and cwtab1sim.deriv, in which case sim.suffix = "sim".
- **est.tab.suffix**: The suffix, after the ".", of the NONMEM file containing the estimated parameter values needed for the CWRES calculation.
- **deriv.tab.suffix**: The suffix, after the ".", of the NONMEM file containing the derivatives of the model with respect to the random parameters needed for the CWRES calculation.
old.file.convention
 For backwards compatibility. Use this if you are using the previous file convention for CWRES (table files named cwtab1, cwtab1.50, cwtab1.51, ..., cwtab.58 for example).

id
 Can be either "ALL" or a number matching an ID label in the datasetname. Value is fixed to "ALL" for xpose.calculate.cwres.

printTooutfile
 Logical (TRUE/FALSE) indicating whether the CWRES values calculated should be appended to a copy of the datasetname. Only works if id="ALL". If chosen the resulting output file will be datasetname.cwres. Value is fixed to TRUE for xpose.calculate.cwres.

onlyNonZero
 Logical (TRUE/FALSE) indicating if the return value (the CWRES values) of compute.cwres should include the zero values associated with non-measurement lines in a NONMEM data file.

... Other arguments passed to basic functions in code.

object
 An xpose.data object.

cwres.table.prefix
 The prefix to the NONMEM table file containing the derivative of the model with respect to the etas and epsilons, described in the details section.

tab.suffix
 The suffix to the NONMEM table file containing the derivative of the model with respect to the etas and epsilons, described in the details section.

classic
 Indicates if the function is to be used in the classic menu system.

Details
 The function reads in the following two files:
 paste(tab.prefix,run.number,sim.suffix,est.tab.suffix,sep="")
 paste(tab.prefix,run.number,sim.suffix,deriv.tab.suffix,sep="")
 Which might be for example:

 cwtab1.est cwtab1.deriv

 and (depending on the input values to the function) returns the CWRES in vector form as well as creating a new table file named:
 paste(tab.prefix,run.number,sim.suffix,sep="")
 Which might be for example:

 cwtab1

Value
 compute.cwres Returns a vector containing the values of the CWRES.
 xpose.calculate.cwres Returns an Xpose data object that contains the CWRES. If simulated data is present, then the CWRES will also be calculated for that data.
Functions

- **xpose.cwres**: This function is a wrapper around the function compute.cwres. It computes the CWRES for the model file associated with the Xpose data object input to the function. If possible it also computes the CWRES for any simulated data associated with the current Xpose data object. If you have problems with this function try using compute.cwres and then rereading your dataset into Xpose.

Setting up the NONMEM model file

In order for this function to calculate the CWRES, NONMEM must be run while requesting certain tables and files to be created. How these files are created differs depending on if you are using SPRED or ADVAN as well as the version of NONMEM you are using. These procedures are known to work for NONMEM VI but may be different for NONMEM V and NONMEM VII. We have attempted to indicate where NONMEM V may be different, but this has not been extensively tested! For NONMEM VII the CWRES are calculated internally so this function is rarely needed.

This procedure can be done automatically using Perl Speaks NONMEM (PsN) and we highly recommend using PsN for this purpose. After installing PsN just type `execute [modelName] -cwres`. See http://psn.sourceforge.net for more details.

There are five main insertions needed in your NONMEM control file:

1. **$ABB COMRES=X**.
 - Insert this line directly after your $DATA line. The value of X is the number of ETA() terms plus the number of EPS() terms in your model. For example for a model with three ETA() terms and two EPS() terms the code would look like this:

   ```
   $DATA temp.csv IGNORE=@
   $ABB COMRES=5
   $INPUT ID TIME DV MDV AMT EVID
   $SUB ADVAN2 TRANS2
   ```

2. **Verbatim code**.
 - Using ADVAN.
 - If you are using ADVAN routines in your model, then Verbatim code should be inserted directly after the SERROR section of your model file. The length of the code depends again on the number of ETA() terms and EPS() terms in your model. For each ETA(y) in your model there is a corresponding term G(y,1) that you must assign to a COM() variable. For each EPS(y) in your model, there is a corresponding HH(y,1) term that you must assign to a COM() variable.
 - For example for a model using ADVAN routines with three ETA() terms and two EPS() terms the code would look like this:

   ```
   "LAST
   "  COM(1)=G(1,1)
   "  COM(2)=G(2,1)
   "  COM(3)=G(3,1)
   "  COM(4)=HH(1,1)
   "  COM(5)=HH(2,1)
   ```
• Using PRED.
 If you are using $PRED, the verbatim code should be inserted directly after the $PRED
 section of your model file. For each ETA(y) in your model there is a corresponding term
 G(y,1) that you must assign to a COM() variable. For each EPS(y) in your model, there is
 a corresponding H(y,1) term that you must assign to a COM() variable. The code would
 look like this for three ETA() terms and two EPS() terms:

  ```
  LAST
  " COM(1)=G(1,1)
  " COM(2)=G(2,1)
  " COM(3)=G(3,1)
  " COM(4)=H(1,1)
  " COM(5)=H(2,1)
  ```

3. INFN routine.

• Using ADVAN with NONMEM VI and higher.
 If you are using ADVAN routines in your model, then an $INFN section should be placed
 directly after the $PK section using the following code. In this example we are assuming
 that the model file is named something like 'run1.mod', thus the prefix to these file names
 'cwtab' has the same run number attached to it (i.e. 'cwtab1’). This should be changed
 for each new run number.

  ```
  $INFN
  IF (ICALL.EQ.3) THEN
    OPEN(50,FILE='cwtab1.est')
    WRITE(50,*) 'ETAS'
    DO WHILE(DATA)
      IF (NEWIND.LE.1) WRITE (50,*) ETA
      ENDDO
    WRITE(50,*) 'THETAS'
    WRITE(50,*) THETA
    WRITE(50,*) 'OMEGAS'
    WRITE(50,*) OMEGA(BLOCK)
    WRITE(50,*) 'SIGMAS'
    WRITE(50,*) SIGMA(BLOCK)
  ENDF
  ```

• Using ADVAN with NONMEM V.
 If you are using ADVAN routines in your model, then you need to use an INFN subroutine. If we call the INFN subroutine 'myinfn.for' then the $SUBS line of your model file
 should include the INFN option. That is, if we are using ADVAN2 and TRANS2 in our
 model file then the $SUBS line would look like:

  ```
  $SUB ADVAN2 TRANS2 INFN=myinfn.for
  ```

 The 'myinfn.for' routine for 4 thetas, 3 etas and 1 epsilon is shown below. If your model
 has different numbers of thetas, etas and epsilons then the values of NTH, NETA, and
 NEPS, should be changed respectively. These vales are found in the DATA statement
 of the subroutine. additionally, in this example we are assuming that the model file is
 named something like 'run1.mod', thus the prefix to the output file names ('cwtab') in
 this subroutine has the same run number attached to it (i.e. 'cwtab1’). This number
 should be changed for each new run number (see the line beginning with 'OPEN’).

  ```
  SUBROUTINE INFN(ICALL, THETA, DATREC, INDXS, NEWIND)
  ```
• Using $PRED with NONMEM VI and higher.
 If you are using $PRED, then an the following code should be placed at the end of the
$PRED section of the model file (together with the verbatim code). In this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to these file names 'cwtab' has the same run number attached to it (i.e. 'cwtab1'). This should be changed for each new run number.

IF (ICALL.EQ.3) THEN
 OPEN(50,FILE='cwtab1.est')
 WRITE(50,*) 'ETAS'
 DO WHILE(DATA)
 IF (NEWIND.LE.1) WRITE (50,*) ETA
 ENDDO
 WRITE(50,*) 'THETAS'
 WRITE(50,*) THETA
 WRITE(50,*) 'OMEGAS'
 WRITE(50,*) OMEGA(BLOCK)
 WRITE(50,*) 'SIGMAS'
 WRITE(50,*) SIGMA(BLOCK)
ENDIF

• Using $PRED with NONMEM V.

If you are using $PRED with NONMEM V, then you need to add verbatim code immediately after the $PRED command. In this example we assume 4 thetas, 3 etas and 1 epsilon. If your model has different numbers of thetas, etas and epsilons then the values of NTH, NETA, and NEPS, should be changed respectively. These values are found in the DATA statement below.

$PRED
"FIRST"
" COMMON /ROCM6/ THETAF(40),OMEGAF(30,30),SIGMAF(30,30)
" COMMON /ROCM7/ SETH(40),SEOM(30,30),SESIG(30,30)
" COMMON /ROCM8/ OBJECT
" DOUBLE PRECISION THETAF, OMEGAF, SIGMAF
" DOUBLE PRECISION OBJECT
" REAL SETH,SEOM,SESIG
" INTEGER J,I
" INTEGER MODE
" INTEGER NTH,NETA,NEPS
" DATA NTH,NETA,NEPS/4,3,1/
"After this verbatim code you add all of the abbreviated code needed for the $PRED routine in your model file. After the abbreviated code more verbatim code is needed. This verbatim code should be added before the verbatim code discussed above under point 2. In the example below we are assuming that the model file is named something like 'run1.mod', thus the prefix to the output file names ('cwtab') has the same run number attached to it (i.e. 'cwtab1'). This number should be changed for each new run number (see the line beginning with 'OPEN').
" IF (ICALL.EQ.0) THEN
" "C open files here, if necessary
" " OPEN(50,FILE='cwtab1.est')
" ENDIF
" IF (ICALL.EQ.3) THEN
" " MODE=0
" CALL PASS(MODE)
" MODE=1
" WRITE(50,*) 'ETAS'
"20 CALL PASS(MODE)
" IF (MODE.EQ.0) GO TO 30
" IF (NEWIND.NE.2) THEN
" CALL GETETA(ETA)
" WRITE (50,97) (ETA(I),I=1,NETA)
" ENDIF
" GO TO 20
"30 CONTINUE
" WRITE (50,*) 'THETAS'
" WRITE (50,99) (THETA(J),J=1,NTH)
" WRITE (50,*) 'OMEGAS'
" DO 7000 I=1,NETA
"7000 WRITE (50,99) (OMEGA(I,J),J=1,NETA)
" WRITE (50,*) 'SIGMAS'
" DO 7999 I=1,NEPS
"7999 WRITE (50,99) (SIGMA(I,J),J=1,NEPS)
" ENDIF
"99 FORMAT (20E15.7)
"98 FORMAT (2I8)
"97 FORMAT (10E15.7)

A special table file needs to be created to print out the values contained in the COMRES variables. In addition the ID, IPRED, MDV, DV,PRED and RES data items are needed for the computation of the CWRES. The following code should be added to the NONMEM model file. In this example we continue to assume that we are using a model with three ETA() terms and two EPS() terms, extra terms should be added for new ETA() and EPS() terms in the model file. We also assume the model file is named something like 'run1.mod', thus the prefix to these file names `cwtab` has the same run number attached to it (i.e. `cwtab1`). This should be changed for each new run number.

$TABLE ID COM(1)=G11 COM(2)=G21 COM(3)=G31 COM(4)=H11 COM(5)=H21
 IPRED MDV NOPRINT ONEHEADER FILE=cwtab1.deriv

5. SESTIMATION.
To compute the CWRES, the NONMEM model file must use (at least) the FO method with the POSTHOC step. If the FO method is used and the POSTHOC step is not included then the CWRES values will be equivalent to the WRES. The CWRES calculations are based on the FOCE approximation, and consequently give an idea of the ability of the FOCE method to fit the model to the data. If you are using another method of parameter estimation (e.g. FOCE with interaction), the CWRES will not be calculated based on the same model linearization procedure.

Author(s)
Andrew Hooker
References

See Also

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definitions, import.graph.par, import.variable.definitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlab, xpose.data, xpose.print, xpose4-package, xsubset

Examples

```r
## Not run:
## Capture CWRES from cwtab5.est and cwtab5.deriv
cwres <- compute.cwres(5)
mean(cwres)
var(cwres)

## Capture CWRES from cwtab1.est and cwtab1.deriv, do not print out, allow zeroes
cwres <- compute.cwres("1", printToFile = FALSE, onlyNonZero = FALSE)

## Capture CWRES for ID==1
cwres.1 <- compute.cwres("1", id=1)

## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Compare WRES, CWRES
xpdb5 <- xpose.calculate.cwres(xpdb5)
cwres.wres.vs.idv(xpdb5)

## End(Not run)
```

cov.splom

Plot scatterplot matrices of parameters, random parameters or covariates
Description

These functions plot scatterplot matrices of parameters, random parameters and covariates.

Usage

```r
cov.splom(object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of covariates", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ...)
```

```r
parm.splom(object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of parameters", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ...)
```

```r
ranpar.splom(object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of random parameters", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ...)
```

Arguments

- `object` An xpose.data object.
- `main` A string giving the plot title or NULL if none.
- `varnames` A vector of strings containing labels for the variables in the scatterplot matrix.
- `onlyfirst` Logical value indicating if only the first row per individual is included in the plot.
- `smooth` A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.
- `lmline` logical variable specifying whether a linear regression line should be superimposed over an `xyplot`. NULL ~ FALSE. (y~x)
- `...` Other arguments passed to `xpose.plot.histogram`.

Details

The parameters or covariates in the Xpose data object, as specified in `object@Prefs@Xvardef$parms`, `object@Prefs@Xvardef$ranpar` or `object@Prefs@Xvardef$covariates`, are plotted together as scatterplot matrices.

A wide array of extra options controlling scatterplot matrices are available. See `xpose.plot.splom` for details.

To control the appearance of the labels and names in the scatterplot matrix plots you can try `varname.cex=0.5` and `axis.text.cex=0.5` (this changes the tick labels and the variable names to be half as large as normal).

Value

Delivers a scatterplot matrix.
Functions

- `cov.splom`: A scatterplot matrix of covariates
- `parm.splom`: A scatterplot matrix of parameters
- `ranpar.splom`: A scatterplot matrix of random parameters

Author(s)

Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.splom`, `xpose.panel.splom`, `splom`, `xpose.data-class`, `xposeprefs-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.ppred.by.cov`, `absval.cwres.vs.ppred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.iwres.vs.ppred`, `absval.iwres.vs.cov`, `absval.iwres.vs.idv`, `absval.wres.vs.ppred.by.cov`, `absval.wres.vs.ppred`, `absval.delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv.bw`, `cwres.vs.idv`, `cwres.vs.ppred.bw`, `cwres.vs.ppred`, `cwres_wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.ppred.by.cov`, `dv.vs.ppred.by.idv`, `dv.vs.ppred`, `dv.vs.ppred.ipred`, `dv.vs.ppred.gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred.vs.idv`, `iwmres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov_qq`, `parm.vs.cov`, `parm.vs.parm`, `pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv.bw`, `wres.vs.idv`, `wres.vs.ppred.bw`, `wres.vs.ppred`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

## A scatterplot matrix of parameters, grouped by sex
cov.splom(xpdb, groups="SEX")

## A scatterplot matrix of ETAs, grouped by sex
ranpar.splom(xpdb, groups="SEX")

## Covariate scatterplots, with text customization
cov.splom(xpdb, varname.cex=0.4, axis.text.cex=0.4, smooth=NULL, cex=0.4)
```
create.xpose.plot.classes

Create xpose.multiple.plot class.

Description

Creates a class for viewing and plotting xpose plots with multiple plots on the same page or multiple pages.

Usage

create.xpose.plot.classes()

Author(s)

Niclas Jonsson and Andrew C. Hooker

createXposeClasses

This function creates the Xpose data classes ("xpose.data" and "xposeprefs")

Description

This function defines and sets the Xpose data classes.

Usage

createXposeClasses(nm7 = F)

Arguments

nm7 FALSE if not using NONMEM 7.

Note

All the default settings are defined in this function.

Author(s)

Niclas Jonsson and Andrew C. Hooker

See Also

xpose.data-class,xposeprefs-class
Description

This is a histogram of the distribution of conditional weighted residuals (CWRES) in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.histogram` function.

Usage

```r
cwres.dist.hist(object, ...)
```

Arguments

- **object** An xpose.data object.
- **...** Other arguments passed to `xpose.plot.histogram`.

Details

Displays a histogram of the conditional weighted residuals (CWRES).

Value

Returns a histogram of conditional weighted residuals (CWRES).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

- `xpose.plot.histogram`, `xpose.panel.histogram`, `histogram`, `xpose.prefs-class`, `compute.cwres`, `xpose.data-class`
- Other specific functions: `absval.cwres.vs.cov`, `absval.cwres.vs.idv`, `absval.cwres.vs.ipred`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.cov`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.cwres.vs.cov`, `absval.wres.vs.idv`, `absval.wres.vs.ipred`, `autocorr.cwres`, `autocorr.iwres`, `cat.cWres`, `cat.dv.idv`, `cat.dv.idv.sb`, `cat.pc.cov.splom`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv`, `cwres.vs.ipred`, `cwres.vs.pred`, `cwres.vs.wres.vs.x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred`, `dv.vs.pred`, `dv.vs.ipred`, `dv.vs.ipred`, `dv.vs.pred`, `dv.vs.pred`, `gof`, `ind.plots`, `cwres.hist`, `ind.plots`, `cwres.qq`, `ind.plots`, `ipred.vs.idv`, `iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov.qq`, `parm.vs.cov`, `parm.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.ipred`, `wres.vs.pred`, `wres.vs.pred`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

## A vanilla plot
cwres.dist.hist(xpdb)
```

cwres.dist.qq

Quantile-quantile plot of conditional weighted residuals (CWRES), for Xpose 4

Description

This is a QQ plot of the distribution of conditional weighted residuals (CWRES) in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.qq` function.

Usage

```r
cwres.dist.qq(object, ...)
```

Arguments

- `object` An `xpose.data` object.
- `...` Other arguments passed to `link{xpose.plot.qq}`.

Details

Displays a QQ plot of the conditional weighted residuals (CWRES).

Value

Returns a QQ plot of conditional weighted residuals (CWRES).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.qq`, `xpose.panel.qq`, `qqmath`, `xposeprefs-class`, `compute.cwres`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred.absval`, `absval.iwres.cwres.vs.ipred.pred.absval`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.absval`, `absval.wres.vs.ipred.absval`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred.absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, ...
Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpd5 <- xpose.data(5)

## End(Not run)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
cwres.dist.qq(xpdb)

## A different plotting character
cwres.dist.qq(xpdb, pch=4)
```

cwres.vs.cov

Conditional Weighted residuals (CWRES) plotted against covariates, for Xpose 4

Description

This creates a stack of plots of conditional weighted residuals (CWRES) plotted against covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.default` and `xpose.plot.histogram` functions. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Usage

```r
cwres.vs.cov(object, ylb = "CWRES", smooth = TRUE, type = "p",
main = "Default", ...)
```
Arguments

object
An xpose.data object.

ylb
A string giving the label for the y-axis. NULL if none.

smooth
A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.

type
1-character string giving the type of plot desired. The following values are possible, for details, see `plot`: "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.

main
The title of the plot. If Default then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.

...
Other arguments passed to link{xposeNplotNdefault} or link{xposeNplotNhistogram}.

Details

Each of the covariates in the Xpose data object, as specified in object@Prefs@Xvardef@$Covariates, is evaluated in turn, creating a stack of plots.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.

A wide array of extra options controlling xyplots and histograms are available. See xpose.plot.default and xpose.plot.histogram for details.

Value

Returns a stack of xyplots and histograms of CWRES versus covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.plot.histogram, xyplot.histogram, xpose.prefs-class, compute.cwres, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.absval.iwres.ipred, absval.iwres.vs.idv, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.ipred.bw, cwres.vs.ipred, cwres.vs.pred, cwres.wres_vs_x, doFV.vs.cov, doFV.vs.id, doFV1.vs.dofv2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum,
Population conditional weighted residuals (CWRES) plotted against the independent variable (IDV) for Xpose 4

Description
This is a plot of population conditional weighted residuals (CWRES) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

cwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)

Arguments

- **object**: An xpose.data object.
- **abline**: Vector of arguments to the panel.abline function. No abline is drawn if NULL.
- **smooth**: A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.
- **...**: Other arguments passed to link{xpose.plot.default}.

Details
Conditional weighted residuals (CWRES) are plotted against the independent variable, as specified in object@Prefs$Xvardef$idv.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns an xyplot of CWRES vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also
xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, compute.cwres, xpose.data-class
Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.pred.bw, cwres.vs.pred.cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.iwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples
Here we load the example xpose database
x pdb <- simpraz.xpdb

A vanilla plot
cwres.vs.idv(xpdb)

A conditioning plot
cwres.vs.idv(xpdb, by="HCTZ")

cwres.vs.idv.bw Box-and-whisker plot of conditional weighted residuals vs the independent variable for Xpose 4

Description
This creates a box and whisker plot of conditional weighted residuals (CWRES) vs the independent variable (IDV), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage
cwres.vs.idv.bw(object, ...)

Arguments

object An xpose.data object.
... Other arguments passed to link(xpose.plot.bw).

Details

This creates a box and whisker plot of conditional weighted residuals (CWRES) vs the independent variable (IDV), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute cwres for details.

A wide array of extra options controlling bwplots are available. See xpose.plot.bw and xpose.panel.bw for details.

Value

Returns a stack of box-and-whisker plots of CWRES vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.bw, xpose.panel.bw, bwplot, xposeprefs-class, compute cwres, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.idv, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.idv, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.cwres.vs.cov, cwres.cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

Here we load the example xpose database
xpdb <- simpraz.xpdb

cwres.vs.idv.bw(xpdb)
Description

This is a plot of population conditional weighted residuals (cwres) vs population predictions (PRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
cwres.vs.pred(object, abline = c(0, 0), smooth = TRUE, ...)
```

Arguments

- `object`: An xpose.data object.
- `abline`: Vector of arguments to the panel.abline function. No abline is drawn if NULL.
- `smooth`: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- `...`: Other arguments passed to link{xpose.plot.default}.

Details

Conditional weighted residuals (CWRES) require some extra steps to calculate. See `compute.cwres` for details.

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` and `xpose.panel.default` for details.

Value

Returns an xyplot of CWRES vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

- `xpose.plot.default`, `xyplot`, `xposeprefs-class`, `compute.cwres`, `xpose.data-class`
- Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `...`
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

cwres.vs.pred(xpdb)

## A conditioning plot
cwres.vs.pred(xpdb, by="HCTZ")
```

This creates a box and whisker plot of conditional weighted residuals (CWRES) vs population predictions (PRED) for Xpose 4. It is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.bw` function. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Usage

```r
cwres.vs.pred.bw(object, ...)
```

Arguments

- `object`: An `xpose.data` object.
- `...`: Other arguments passed to `link(xpose.plot.bw)`.

Details

This creates a box and whisker plot of conditional weighted residuals (CWRES) vs population predictions (PRED), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.bw` function. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Conditional weighted residuals (CWRES) require some extra steps to calculate. See `compute.cwres` for details.
A wide array of extra options controlling bwplots are available. See `xpose.plot.bw` and `xpose.panel.bw` for details.

Value

Returns a box-and-whisker plot of CWRES vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.bw`, `xpose.panel.bw`, `bwplot`, `xposeprefs-class`, `compute.cwres`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv`, `cwres.vs.idv`, `cwres.vs.idv`, `cwres.vs.idv`, `cwres.vs.idv`, `cwres.vs.idv`, `dofv.vs.cov`, `dofv.vs.id`, `dofv1.vs.dofv2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.pred.by.cov`, `dv.vs.pred.by.idv`, `dv.vs.pred`, `gof`, `ind.plots.cwres.hist`, `ind.plots.iwres.dist.qq`, `ind.plots`, `ipred.vs.idv`, `iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov_qq`, `parm.vs.cov`, `parm.vs.parm`, `pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.pred`, `xpose.vpc.both`, `xpose.vpc.categorical`, `xpose.vpc`, `xpose4-package`

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

cwres.vs.pred.bw(xpdb)
```

Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the independent variable (IDV) or the population predictions (PRED) for Xpose 4

Description

These functions graphically compare WRES and CWRES as plotted against the independent variable or the population predictions.
Usage

cwres.wres.vs.idv(object, ylb = "Residuals", abline = c(0, 0),
 smooth = TRUE, scales = list(), ...)

cwres.wres.vs.pred(object, ylb = "Residuals", abline = c(0, 0),
 smooth = TRUE, scales = list(), ...)

Arguments

 object An xpose.data object.
 ylb A string giving the label for the y-axis. NULL if none.
 abline Vector of arguments to the panel.abline function. No abline is drawn if NULL.
 smooth A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.
 scales scales is passed to xpose.plot.default
 Other arguments passed to link{lattice}{xyplot}.

Details

This function creates plots of WRES and CWRES, presented side-by-side for comparison.
Conditional weighted residuals (CWRES) require some extra steps to calculate. See compute.cwres for details.
A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

A compound xyplot.

Functions

- `cwres.wres.vs.idv`: Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the independent variable (IDV)
- `cwres.wres.vs.pred`: Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the population predictions (PRED)

Author(s)

Niclas Jonsson & Andrew Hooker

See Also

xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xpose.data-class, compute.cwres

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

cwres.wres.vs.idv(xpdb)
```

Description

This function graphically "checks out" the dataset to identify errors or inconsistencies.

Usage

```r
data.checkout(obj = NULL, datafile = ".ask.", hlin = -99,
dotcol = "black", dotpch = 16, dotcex = 1, idlab = "ID", csv = NULL,
main = "Default", ...)
```

Arguments

- **obj**: NULL or an xpose.data object.
- **datafile**: A data file, suitable for import by `read.table`.
- **hlin**: An integer, specifying the line number on which the column headers appear.
- **dotcol**: Colour for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots.
- **dotpch**: Plotting character for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots.
- **dotcex**: Relative scaling for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots.
- **idlab**: The ID column label in the dataset. Input as a text string.
csv

Is the data file in CSV format (comma separated values)? If the value is NULL then the user is asked at the command line. If supplied to the function the value can be TRUE/FALSE.

main

The title to the plot. "default" means that Xpose creates a title.

... Other arguments passed to link{lattice}{dotplot}.

Details

This function creates a series of dotplots, one for each variable in the dataset, against individual ID. Outliers and clusters may easily be detected in this manner.

Value

A stack of dotplots.

Author(s)

Niclas Jonsson, Andrew Hooker & Justin Wilkins

See Also

dotplot, xpose.prefs-class, read.table

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data_extract_or_assign, db.names, export.graph.par, export.variable_definitions, import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.by.idv, absval.iwres.vs.ipred.by.idv, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.cov, absval.wres.vs.pred, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.by.idv, cwres.vs.pred, cwres.wres_vs_x, dOFV_vs.cov, dOFV_vs.id, dOFV1_vs.dOFV2, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred.by.idv, dv.vs.ipred.by.cov, dv.vs.vs.ipred.by.idv, dv.vs.vs.ipred, dv.vs.vs.ipred.by.idv, dv.vs.vs.ipred, dv.vs.vs.ipred, dv.vs.vs.ipred, dv.vs.vs.ipred, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.idv, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.by.idv, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC.xpose4-package

Examples

Not run:
We expect to find the required NONMEM run, table and data files for run
5 in the current working directory
xdb5 <- xpose.data(5)
Extract or assign data from an xpose.data object.

Description

Extracts or assigns the data from the Data or SData slots in an "xpose.data" object.

Usage

```r
Data(object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL)
Data(object, quiet = TRUE, keep.structure = F) <- value
SData(object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL, samp = NULL)
SData(object) <- value
```

Arguments

- `object`: An "xpose.data" object
- `inclZeroWRES`: Logical value indicating whether rows with WRES==0 should be included in the extracted data.
- `onlyfirst`: Logical value indicating whether only the first line per individual should be included in the extracted data.
- `subset`: Expression with which the extracted data should be subset (see `xsubset`)
- `quiet`: `TRUE` or `FALSE` if `FALSE` then some more information is printed out when adding data to an Xpose object.
- `keep.structure`: `TRUE` or `FALSE` if `FALSE` then values are converted to continuous or categorical according to the rules set up by xpose using `object@Prefs@Cat.levels`, `object@Prefs@DV.cat.levels` and the values in the "catab" file.
- `value`: An R data.frame.
- `samp`: An integer between 1 and `object@Nsim` (see `expose.data-class`) specifying which of the simulated data sets to extract from SData.
Details

When using Data to assign a data.frame to the Data slot in the "xpose.data" object a number of things happen:

Each column in the data.frame is checked and set to factor if the number of unique values are less than the value of Cat.levels (see \texttt{xpose_prefs-class}).

It is checked which of the predefined xpose data variables that exists in the data.frame. The variable definitions that does not exist are set to NULL.

The column identified by the \texttt{dv} xpose variable definition, is checked and set to factor if the number of unique values are less than or equal to the DV.Cat.levels (see \texttt{xpose_prefs-class}).

Finally, each column name in the data.frame is checked for a label (see \texttt{xpose_prefs-class}). If it is non-existent, the label is set to the column name.

When SData is used to assign a data.frame to the SData slot it is first checked that the number of rows in the SData data.frame is an even multiple of the number of rows in Data. Next, each column in the SData data.frame is assigned the same class as the corresponding column in the Data data.frame (it is required that the columns are the same in Data and SData). Finally, an extra column, "iter", is added to SData, which indicates the iteration number that each row belongs to. At the same time, the Nsim slot of the "xpose.data" object is set to the number of iterations (see \texttt{nsim}).

Value

Returns a data.frame from the Data or SData slots, excluding rows as indicated by the arguments.

Functions

\begin{itemize}
\item \texttt{Data}: Extract data
\item \texttt{Data<-}: assign data
\item \texttt{SData}: extract simulated data
\item \texttt{SData<-}: assign simulated data
\end{itemize}

Author(s)

Niclas Jonsson

See Also

\texttt{xpose_data-class,xpose_prefs-class}

Other data functions: \texttt{add_transformed_columns,change_graphical_parameters,change_misc_parameters,compute_cwres,data_checkout,db_names,export_graph_par,export_variable_definitions,import_graph_par,import_variable_definitions,make_sb_data,nsim,par_cov_summary,read_TTE_sim_data,read_nm_tables,read_NM_output,read_nm_table,simprazExample,tabulate_parameters,xlabel,xpose_data,xpose_print,xpose4_package,xsubset}
Examples

```r
xpdb <- simpraz.xpdb

## Extract data
my.dataframe <- Data(xpdb)

## Assign data
Data(xpdb) <- my.dataframe

## Extract simulated data
my.simulated.dataframe <- SData(xpdb)

## Assign simulated data
SData(xpdb) <- my.simulated.dataframe
```

db.names

Prints the contents of an Xpose data object

Description

These functions print a summary of the specified Xpose object to the R console.

Usage

```r
db.names(object)
```

Arguments

- `object` An xpose.data object.

Details

These functions return a detailed summary of the contents of a specified xpose.data object.

Value

A detailed summary of the contents of a specified xpose.data object.

Author(s)

Niclas Jonsson & Justin Wilkins
dOFV vs. cov

See Also

xpose.data

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, export.graph.par, export.variabledefinitions, import.graph.par, import.variable.definitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

db.names(simpraz.xpdb)

dOFV vs. cov Change in individual objective function value vs. covariate value.

Description

Change in individual objective function value vs. covariate value.

Usage

dOFV.vs.cov(xpdb1, xpdb2, covariates = xvardef("covariates", xpdb1),
 ylb = expression(paste(Delta, OFV[i])), main = "Default", smooth = TRUE,
 abline = c(0, 0), ablcol = "grey", abl1wd = 2, abl1ty = "dashed",
 max.plots.per.page = 1, ...)

Arguments

xpdb1 Xpose data object for first NONMEM run
xpdb2 Xpose data object for second NONMEM run
covariates Covariates to plot against
ylb Label for Y axis.
main Title of plot.
smooth Should we have a smooth?
abline abline description.
ablcol color of abline
abl1wd line width of abline
abl1ty type of abline
max.plots.per.page Plots per page.
... additional arguments to function
Author(s)
Andrew C. Hooker

See Also
Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.wres.vs.cov.bw, absval.wres.vs.cov, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.ipred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov.cwres.vs.idv, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred.cwres.wres_vs_x, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_covqq.parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.idv, wres.vs.idv, wres.vs.idv, wres.vs.idv, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
## Not run:
## read in table files
xpdb8 <- xpose.data(8)
xpdb11 <- xpose.data(11)

## Make some plots
dOFV.vs.cov(xpdb8, xpdb11,"AGE")
dOFV.vs.cov(xpdb8, xpdb11,c("AGE","SECR"))

## End(Not run)
```

Description
A plot showing the most and least influential individuals in determining a drop in OFV between two models.

Usage

```r
dOFV.vs.id(xpdb1, xpdb2, sig.drop = -3.81, decrease.label.number = 3, increase.label.number = 3, id.lab.cex = 0.6, id.lab.pos = 2, type = "o", xlb = "Number of subjects removed", ylb = expression(paste(Delta, "OFV")), main = "Default",
```

Change in Objective function value vs. removal of individuals.
Arguments

xpdb1
Xpose data object for first NONMEM run ("new" run)

xpdb2
Xpose data object for Second NONMEM run ("reference" run)

sig.drop
What is a significant drop of OFV?

decrease.label.number
How many points should be labeled with ID values for those IDs with a drop in iOFV?

increase.label.number
How many points should be labeled with ID values for those IDs with an increase in iOFV?

id.lab.cex
Size of ID labels.

id.lab.pos
ID label position.

type
Type of lines.

xlb
X-axis label.

ylb
Y-axis label.

main
Title of plot.

sig.line.col
Significant OFV drop line color.

sig.line.lty
Significant OFV drop line type.

tot.line.col
Total OFV drop line color.

tot.line.lty
Total OFV drop line type.

key
Legend for plot.

...
Additional arguments to function.

Author(s)

Andrew C. Hooker

See Also

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.iwres.vs.ipred.absval, absval.wres.vs.cov.bw, absval.wres.vs.cov, absval.wres.vs.ipred.by.cov, absval.wres.vs.ipred, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv,
Examples

```r
## Not run:
library(xpose4)

## first make sure that the iofv values are read into xpose
cur.dir <- getwd()
setwd(paste(cur.dir,"/LAG_TIME",sep=""))
xpdb1 <- xpose.data(1)
setwd(paste(cur.dir,"/TRANSIT_MODEL",sep=""))
xpdb2 <- xpose.data(1)
setwd(cur.dir)

## then make the plot
doFV1.vs.id(xpdb1,xpdb2)

## End(Not run)
```

dOFV1 vs. dOFV2

Change in individual objective function value 1 vs. individual objective function value 2.

Description

Change in individual objective function value 1 vs. individual objective function value 2.

Usage

```r
doFV1.vs.dOFV2(xpdb1, xpdb2, xpdb3, ylb = expression(paste(Delta, OFV1[i])),
               xlb = expression(paste(Delta, OFV2[i])), main = "Default",
               smooth = NULL, abline = c(0, 1), ablcol = "grey", abl1wd = 2,
               abl1ty = "dashed", lmline = TRUE, ...)
```

Arguments

- `xpdb1`: Xpose data object for first NONMEM run
- `xpdb2`: Xpose data object for second NONMEM run
- `xpdb3`: Xpose data object for third NONMEM run
y1b Label for Y axis.
x1b Label for X axis.
main Title of plot.
smooth Should we have a smooth?
abline abline description.
ablcol color of abline
abl1wd line width of abline
abl1ty type of abline
lmline Linear regression line?
... Additional arguments to function.

Author(s)
Andrew C. Hooker

See Also
Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.ipred, absval.iwres.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.cov.bw, cwres.vs.idv, cwres.vs.ipred.by.cov, dw.preds.vs.idv, dw.vs.idv, dw.vs.ipred.by.cov, dw.vs.ipred, dv.vs.ipred, dv.vs.ipred.by.cov, dw.vs.ipred.by.idv, dw.vs.ipred.ipred, dv.vs.ipred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.ipred.bw, wres.vs.ipred, wres.vs.pred, xpose.VPC, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
## Not run:
## read in table files
xpdb8 <- xpose.data(8)
xpdb8 <- xpose.data(9)
xpdb11 <- xpose.data(11)

## Make the plot
dOFV.vs.cov(xpdb8, xpdb9, xpdb11)

## End(Not run)
```
dv.preds.vs.idv Observations (DV), individual predictions (IPRED) and population predictions (IPRED) plotted against the independent variable (IDV), for Xpose 4

Description

This is a compound plot consisting of plots of observations (DV), individual predictions (IPRED), and population predictions (PRED) against the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function.

Usage

dv.preds.vs.idv(object, ylb = "Observations/Predictions", layout = c(3, 1),
smooth = TRUE, scales = list(), ...)

Arguments

 object An xpose.data object.
 ylb A string giving the label for the y-axis. NULL if none.
 layout A list controlling the number of columns and rows in a compound plot. The
default is 2 columns and 1 row.
 smooth Logical value indicating whether an x-y smooth should be superimposed. The
default is TRUE.
 scales A list to be used for the scales argument in xyplot.
 ... Other arguments passed to link(xpose.plot.default).

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns a compound plot comprising plots of observations (DV), individual predictions (IPRED), and population predictions (PRED) against the independent variable (IDV).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

dv.vs.idv, ipred.vs.idv, pred.vs.idv, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.cwres.vs.pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov_qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.pred, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

dv.preds.vs.idv(xpdb)
```

dv.vs.idv

Observations (DV) plotted against the independent variable (IDV) for Xpose 4

Description

This is a plot of observations (DV) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```r
dv.vs.idv(object, smooth = TRUE, ...)
```

Arguments

- **object**: An xpose.data object.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **...**: Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling `xyplot` are available. See `xpose.plot.default` and `xpose.panel.default` for details.

Value

Returns an `xyplot` of DV vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.default`, `xpose.panel.default`, `xyplot`, `xposeprefs-class`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.vs.cov.bw`, `absval.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv.bw`, `cwres.vs.idv`, `cwres.vs.pred.bw`, `cwres.vs.pred`, `cwres.wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.pred.by.cov`, `dv.vs.pred.by.idv`, `dv.vs.pred.idpred`, `dv.vs.pred.gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred.idv`, `ipred.vs.idv`, `iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov.qq`, `parm.vs.cov`, `parm.vs.parm`, `pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv.bw`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.pred.bw`, `wres.vs.pred`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

dv.vs.idv(xpdb)

## A conditioning plot
dv.vs.idv(xpdb, by="HCTZ")

## Logarithmic Y-axis
dv.vs.idv(xpdb, logy=TRUE)
```
dv.vs.ipred

Observations (DV) plotted against individual predictions (IPRED) for Xpose 4

Description

This is a plot of observations (DV) vs individual predictions (IPRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```
dv.vs.ipred(object, abline = c(0, 1), smooth = TRUE, ...)```

**Arguments**

- **object**: An xpose.data object.
- **abline**: Vector of arguments to the panel.abline function. No abline is drawn if NULL.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **...**: Other arguments passed to link{xpose.plot.default}.

**Details**

A wide array of extra options controlling xyplot are available. See xpose.plot.default and xpose.panel.default for details.

**Value**

Returns an xyplot of DV vs IPRED.

**Author(s)**

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

**See Also**

xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cwres, absval.iwres.vs.ipred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2.
Examples

## Here we load the example xpose database

```r
xpdb <- simpraz.xpdb
dv.vs.ipred(xpdb)
```

## A conditioning plot

```r
dv.vs.ipred(xpdb, by="HCTZ")
```

---

**dv.vs.ipred.by.cov**  
Dependent variable vs individual predictions, conditioned on covariates, for Xpose 4

---

**Description**

This is a plot of dependent variable (DV) vs individual predictions (IPRED) conditioned by covariates, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.default` function. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

**Usage**

```r
dv.vs.ipred.by.cov(object, abline = c(0, 1), smooth = TRUE,
main = "Default", ...)
```

**Arguments**

- **object**: An `xpose.data` object.
- **abline**: Vector of arguments to the `panel.abline` function. No abline is drawn if `NULL`.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is `TRUE`.
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or `NULL` for no plot title.
- **...**: Other arguments passed to `link{xpose.plot.default}`.
Details

Each of the covariates in the Xpose data object, as specified in object@Prefs@Xvardef$Covariates, is evaluated in turn, creating a stack of plots.

A wide array of extra options controlling xyplot are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns a stack of xyplots of DV vs IPRED, conditioned on covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

dv.vs.ipred, xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.cwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.idv, absval.iwres.vs.ipred, absval.iwres.vs.idv, absval.iwres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres.wres_vs_x, d0FV.vs.cov, d0FV.vs.idv, d0FV1.vs.d0FV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.ipred.by.idv, dv.vs.ipred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

dv.vs.ipred.by.idv(simpraz.xpdb)

dv.vs.ipred.by.idv  Dependent variable vs individual predictions, conditioned on independent variable, for Xpose 4

Description

This is a plot of the dependent variable (DV) vs individual predictions (IPRED) conditioned by the independent variable, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
Usage

dv.vs.ipred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)

Arguments

object  An xpose.data object.
abline  Vector of arguments to the panel.abline function. No abline is drawn if NULL.
smooth  Logical value indicating whether an x-y smooth should be superimposed. The
default is TRUE.
...     Other arguments passed to link(xpose.plot.default).

Details

A wide array of extra options controlling xyplot are available. See xpose.plot.default and
xpose.panel.default for details.

Value

Returns a stack of xyplots of DV vs IPRED, conditioned on the independent variable.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

dv.vs.ipred, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred,
absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by
absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov, absval.wres.vs.idv, absval.wres.vs.idv,
absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof,
autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb,
cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv,
cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2,
data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred, dv.vs.pred.by.cov,
dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq,
ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot,
par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum,
wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred,
xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

dv.vs.ipred.by.idv(simpraz.xpdb)
dv.vs.pred  

Observations (DV) plotted against population predictions (PRED) for Xpose 4

Description

This is a plot of observations (DV) vs population predictions (PRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

dv.vs.pred(object, abline = c(0, 1), smooth = TRUE, ...)

Arguments

object  
An xpose.data object.

abline  
Vector of arguments to the panel.abline function. No abline is drawn if NULL.

smooth  
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.

...  
Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns an xyplot of DV vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, doFV.vs.cov, doFV.vs.id, doFV1.vs.doFV2.
Examples

## Here we load the example xpose database
xdbh <- simpraz.xpdb

## A vanilla plot
dv.vs.pred(xdbh)

## A conditioning plot
dv.vs.pred(xdbh, by="HCTZ")

---

dv.vs.pred.by.cov  
**Dependent variable vs population predictions, conditioned on covariates, for Xpose 4**

Description

This is a plot of the dependent variable (DV) vs population predictions (PRED) conditioned by covariates, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

dv.vs.pred.by.cov(object, abline = c(0, 1), smooth = TRUE,  
main = "Default", ...)

Arguments

- **object**: An xpose.data object.
- **abline**: Vector of arguments to the panel.abline function. No abline is drawn if NULL.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- **...**: Other arguments passed to link{xpose.plot.default}. 
Details

Each of the covariates in the Xpose data object, as specified in `object@prefs@xvardef$Covariates`, is evaluated in turn, creating a stack of plots.

A wide array of extra options controlling `xyplot`s are available. See `xpose.plot.default` and `xpose.panel.default` for details.

Value

Returns a stack of `xyplot`s of DV vs PRED, conditioned on covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

dv.vs.pred, xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xposedata-class

Other specific functions:
absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

dv.vs.pred.by.cov(simpraz.xpdb)
Usage

dv.vs.pred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)

Arguments

  object  An xpose.data object.
  abline  Vector of arguments to the panel.abline function. No abline is drawn if NULL.
  smooth  Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
...

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns a stack of xyplots of DV vs PRED, conditioned on the independent variable.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also
dv.vs.pred, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.idv, absval.wres.vs.ipred.bw, absval.wres.vs.ipred, absval.wres.vs.pred, absval.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.ipred.bw, cwres.vs.ipred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.ipred.by.cov, dv.vs.ipred.ipred, dv.vs.ipred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov_qq, parm.vs.cov, parm.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.idv, wres.vs.ipred.bw, wres.vs.ipred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

dv.vs.pred.by.idv(simpraz.xpdb)
dv.vs.pred.ipred

Observations (DV) are plotted against individual predictions (IPRED) and population predictions (PRED), for Xpose 4

Description

This is a compound plot consisting of plots of observations (DV) against individual predictions (IPRED) and population predictions (PRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function.

Usage

\[
dv.vs.pred.ipred(object, xlb = "Predictions", layout = c(2, 1),
    abline = c(0, 1), lmline = TRUE, smooth = NULL, scales = list(), ...)
\]

Arguments

- **object**: An xpose.data object.
- **xlb**: A string giving the label for the x-axis. NULL if none.
- **layout**: A list giving the layout of the graphs on the plot, in columns and rows.
- **abline**: Vector of arguments to the panel.abline function. No abline is drawn if NULL.
- **lmline**: logical variable specifying whether a linear regression line should be superimposed over an xyplot. NULL ~ FALSE. (y~x)
- **smooth**: NULL or TRUE value indicating whether an x-y smooth should be superimposed.
- **scales**: A list to be used for the scales argument in xyplot.
- **...**: Other arguments passed to link{xpose.plot.default}.

Details

Plots of DV vs PRED and IPRED are presented side by side for comparison.

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns a compound plot comprising plots of observations (DV) against individual predictions (IPRED) and population predictions (PRED).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

dv.vs.pred, dv.vs.ipred, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.ipred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

dv.vs.pred.ipred(simpraz.xpdb)

--

export.graph.par          Exports Xpose graphics settings to a file.

Description

This function exports graphics settings for a specified Xpose data object to a file.

Usage

export.graph.par(object)

xpose.write(object, file = "xpose.ini")

Arguments

object          An xpose.data object.

file            The file to contain exported Xpose settings.

Details

This function exports the graphics settings (contents of object@Prefs@Graph.prefs) for a given xpose.data object to a file, typically 'xpose.ini'. It is a wrapper for xpose.write. Note that the file format is not the same as is used in import.variabledefinitions and export.variabledefinitions.
export.variable.definitions

Value

Null.

Functions

- `xpose.write`: export graphics settings for a specified Xpose data object to a file.

Author(s)

Niclas Jonsson & Justin Wilkins

See Also

`import.graph.par`, `xpose.prefs-class`

Other data functions: `add.transformed.columns`, `change_graphical_parameters`, `change_misc_parameters`, `compute.cwres`, `data.checkout`, `data.extract_or_assign`, `db.names`, `export.variable.definitions`, `import.graph.par`, `import.variable.definitions`, `make.sb.data`, `nsim`, `par_cov_summary`, `read.TTE.sim.data`, `read.nm.tables`, `read_NM_output`, `read_nm_table`, `simprazExample`, `tabulate.parameters`, `xlabel`, `xpose.data`, `xpose.print`, `xpose4-package`, `xsubset`

Examples

```r
Not run:
xpdb5 is an Xpose data object
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb5 <- xpose.data(5)

For a filename prompt
export.graph.par(xpdb5)

Command-line driven
xpose.write(xpdb5, "c:/XposeSettings/mytheme.ini")

End(Not run)
```

---

export.variable.definitions

Exports Xpose variable definitions to a file from an Xpose data object.

Description

This function exports variable definitions for a specified Xpose data object to a file.

Usage

```r
export.variable.definitions(object, file = "")
```
**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An xpose.data object.</td>
</tr>
<tr>
<td>file</td>
<td>A file name as a string.</td>
</tr>
</tbody>
</table>

**Details**

This function exports variable definitions (contents of object@Prefs@Xvardef) for a given xpose.data object to a file, typically 'xpose.vardefs.ini'. Note that file format is not the same as used for graphics settings. It is a wrapper for the R function `dput`. 

**Value**

Null.

**Author(s)**

Niclas Jonsson & Justin Wilkins

**See Also**

importNvariableNdefinitions, xpose.prefs-class dput

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, import.graph.par, import.variable_definitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nM_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

**Examples**

```r
od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory

export.variable_definitions(simpraz.xpdb, file="xpose.vardefs.ini")
(new.files <- dir()[(!(dir() %in% cur.files)]) # what files are new here?

file.remove(new.files) # remove this file
setwd(od) # restore working directory
```

---

**Description**

These are functions for summarizing and plotting the results of the generalized additive model within Xpose
Usage

```r
xp.akaike.plot(gamobj = NULL, title = "Default", xlb = "Akaike value", ylb = "Models", ...)

xp.cook(gam.object)

xp.ind.inf.fit(gamobj = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, title = "Default", recur = FALSE, xlb = NULL, ylb = NULL, ...)

xp.ind.inf.terms(gamobj = NULL, xlb = NULL, ylb = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, prompt = TRUE, ...)

xp.ind.stud.res(gamobj = NULL, title = "Default", recur = FALSE, xlb = NULL, ylb = NULL)

xp.plot(gamobj = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, prompt = TRUE, ...)

xp.summary(gamobj = NULL)
```

Arguments

- `gamobj`: A GAM object to use in the plot. If null then the user is asked to choose from a list of GAM objects in memory.
- `title`: A text string indicating plot title. If null, left blank.
- `xlb`: A text string indicating x-axis legend. If null, left blank.
- `ylb`: A text string indicating y-axis legend. If null, left blank.
- `...`: Other arguments passed to the GAM functions.
- `gam.object`: A GAM object (see `gam`).
- `plot.ids`: Logical, specifies whether or not ID numbers should be displayed.
- `idscex`: ID label size.
- `ptscex`: Point size.
- `recur`: If dispersion should be used in the GAM object.
- `prompt`: Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE.
- `object`: An xpose.data object.

Value

Plots or summaries.
gof

Functions

- `xp.akaike.plot`: An Akaike plot of the results.
- `xp.cook`: Individual parameters to GAM fit.
- `xp.ind.inf.fit`: Individual influence on GAM fit.
- `xp.ind.inf.terms`: Individual influence on GAM terms.
- `xp.ind.stud.res`: Studentized residuals.
- `xp.plot`: GAM residuals of base model vs. covariates.
- `xp.summary`: Summarize GAM.

Author(s)

Niclas Jonsson & Andrew Hooker

See Also

gam, dotplot

Other GAM functions: `xp.get.disp, xp.scope3, xpose.bootgam, xpose.gam, xpose4-package`

---

**gof**

*Structured goodness of fit diagnostics.*

Description

This is a template function for creating structured goodness of fit diagnostics using the functions in the Xpose specific library.

Usage

```r
gof(runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf",
 pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE,
 covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE,
 myTrace = xpPage)
```

Arguments

- `runno`  The run number fo Xpose to identify the appropriate files to read. In addition `runno` is used to construct the file name to save plots in. `runno` can also be NULL for cases in which the function is used for non-Xpose based code.
- `save` Logical. TRUE if the plot(s) is to be saved in a file. FALSE if the plot(s) is to be displayed on screen. The plot(s) will be saved in a file named with the function name followed by the word 'run', the run number, an order number followed by a file name extension appropriate for the selected `saveType`. For example 'gofrun1-01.pdf' for the first plot file created by a script called `gof` based on output from run 1 and `saveType="pdf"`. 
onefile Logical. TRUE if plots are to be save in a single file and FALSE if each plot should be saved as a separate file. In the latter case, each file will be have an incremented order number (01-99).

saveType The type of graphics file to produce if save=TRUE. Allowed values are 'pdf' (default), 'wmf' (only Windows) and 'png'.

pageWidth The width of the graphics device in inches.

pageHeight The height of the graphics device in inches.

structural Logical. TRUE if the code in the structural model section (see below) should be executed and FALSE if not.

residual Logical. TRUE if the code in the residual model section (see below) should be executed and FALSE if not.

covariate Logical. TRUE if the code in the covariate model section (see below) should be executed and FALSE if not.

iiv Logical. TRUE if the code in the IIV model section (see below) should be executed and FALSE if not.

iov Logical. TRUE if the code in the IOV model section (see below) should be executed and FALSE if not.

all Logical. TRUE if the code in all sections (see below) should be executed.

myTrace NULL or the name of a function. The value of myTrace can used with the lattice page= argument to annotate plots for traceability.

Details

The gof function is provided as a template to facilitate the (structured) use of the functions in the Xpose specific library. Xpose specific is extensively described in the 'Xpose Bestiary'.

The function can be renamed so that multiple scripts can be used in parallel.

The function is set up to make it easy to display plots on screen as well as to save them in files. In the latter case, plots are save in a sub-directory called 'Plots'.

The arguments structural, residual, covariate, iiv, iov and all are just "switches" to different parts of the code (if-blocks). These blocks can be removed or the default values of the arguments changed to better suit the needs of the user.

It is also possible to add tracing information to the produced plots. This is done via the myTrace argument. A non-NULL value should be a function that returns a panel.text object. The default is the xpPage function that will put a string concatenated from the device name, function name, working directory and date, in small, faint grey, font at the bottom of each graph page. Note that the user need to add page=myTrace as an argument to the Xpose functions for this to have an effect.

The function calls a support function called gofSetup, which is responsible for setting up the graphics device and determining the file names for saved graphs.

Value

Does not return anything unless the user specify a return value.


Author(s)

E. Niclas Jonsson, Mats Karlsson and Andrew Hooker

See Also

xpose4-package

Other generic functions: xposemultiple.plot, xpose4-package

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model.comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

## Not run:
## This is an example of how the function may be setup by a user.

library(xpose4)
mygof <- gof
fix(mygof)

mygof <- function (runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf",
        pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE,
        covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE, myTrace=xppage) {

        gofSetup(runno, save, onefile, saveType, pageWidth, pageHeight)
        xpdb <- xpose.data(runno)

        if (structural || all) {
            xplot <- dv.vs.pred.ipred(xpdb, page = myPage)
            print(xplot)
        }
        if (residual || all) {
            xplot <- absval.wres.vs.pred(xpdb, page = myPage)
            print(xplot)
        }
        if (covariate || all) {
        }
        if (iiv || all) {
        }
if (iov || all) {
    if (save) dev.off()
    invisible()
}

## The function can then be execute, e.g.:
mygof()

## End(Not run)

---

import.graph.par Imports Xpose graphics settings from a file to an Xpose data object.

**Description**

This function imports graphics settings for a specified Xpose data object from a file.

**Usage**

import.graph.par(object, classic = FALSE)

**Arguments**

- **object**: An xpose.data object.
- **classic**: A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

**Details**

This function imports graphics settings (contents of object@Prefs@Graph.prefs) for a given xpose.data object from a file, typically 'xpose.ini'. It is a wrapper for xpose.read. It returns an xpose.data object. Note that the file format is not the same as is used in import.variabledefinitions and export.variabledefinitions.

**Value**

An xpose.data object (classic = FALSE) or null (classic = TRUE).

**Author(s)**

Niclas Jonsson & Justin Wilkins
import.variable.definitions

See Also

export.graph.par, xpose.prefs-class

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variabledefinitions, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM.output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

```r
Not run:
xpdb5 is an Xpose data object
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb5 <- xpose.data(5)

Import graphics preferences you saved earlier using export.graph.par
xpdb5 <- import.graph.par(xpdb5)

Command-line driven
xpdb5 <- xpose.read(xpdb5, "c:/XposeSettings/mytheme.ini")

End(Not run)
```

import.variable.definitions

Imports Xpose variable definitions from a file to an Xpose data object.

Description

This function imports variable definitions for a specified Xpose data object from a file.

Usage

```r
import.variable.definitions(object, classic = FALSE)
```

Arguments

- `object` An xpose.data object.
- `classic` A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.
Details

This function imports variable definitions (contents of object@Prefs@Xvardef) for a given xpose.data object from a file, typically 'xpose.vardefs.ini'. It returns an xpose.data object. Note that file format is not the same as used for graphics settings. It is a wrapper for the R function dget.

Value

An xpose.data object (classic == FALSE) or null (classic == TRUE).

Author(s)

Niclas Jonsson & Justin Wilkins

See Also

export.variable definitions, xpose.prefs-class dget

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.default, import.graph.par, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.mm.tables, read.MM.output, read.mm_table, simpزواجExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

xpdb5 <- import.variable.definitions(xpdb5)

## End(Not run)

ind.plots

Observations (DV), individual predictions (IPRED) and population predictions (PRED) are plotted against the independent variable for every individual in the dataset, for Xpose 4

Description

This is a compound plot consisting of plots of observations (DV), individual predictions (IPRED) and population predictions (PRED) against the independent variable for every individual in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function.
Usage

```r
ind.plots(object, y.vals = c(xvardef("dv", new.obj), xvardef("ipred", new.obj), xvardef("pred", new.obj)), x.vals = xvardef("idv", new.obj), id.vals = xvardef("id", new.obj), key.text = y.vals, main = "Default", key = "Default", xlb = xlabel(xvardef("idv", object), object), ylb = NULL, layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), type = "o", grid = FALSE, col = c(1, 2, 4), lty = c(0, 1, 3), lwd = c(1, 1, 1), pch = c(21, 32, 32), cex = c(0.7, 0.7, 0.7), fill = c("lightgrey", 0, 0), prompt = FALSE, mirror = NULL, main.cex = 0.9, max.plots.per.page = 1, pch.ip.sp = c(21, 19, 18), cex.ip.sp = c(0.7, 0.4, 0.4), y.vals.subset = NULL, ...)
```

Arguments

- `object` An xpose.data object.
- `y.vals` The Y values to use.
- `x.vals` The X values to use.
- `id.vals` The ID values to use.
- `key.text` The text in the legend to use.
- `main` The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `key` Create a legend.
- `xlb` A string giving the label for the x-axis. NULL if none.
- `ylb` A string giving the label for the y-axis. NULL if none.
- `layout` A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4.
- `inclZeroWRES` Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE.
- `subset` A string giving the subset expression to be applied to the data before plotting. See `xsubset`.
- `type` 1-character string giving the type of plot desired. The default is 'o', for overplotted points and lines. See `xpose.plot.default`.
- `grid` Should the plots have a grid in each plot?
- `col` A list of three elements, giving plotting characters for observations, individual predictions, and population predictions, in that order. The default is black for DV, red for individual predictions, and blue for population predictions.
- `lty` A list of three elements, giving line types for observations, individual predictions, and population predictions, in that order.
- `lwd` A list of three elements, giving line widths for observations, individual predictions, and population predictions, in that order.
- `pch` A list of three elements, giving plotting characters for observations, individual predictions, and population predictions, in that order.
A list of three elements, giving relative point size for observations, individual predictions, and population predictions, in that order. The default is c(0.7, 0.7, 0.7).

Fill the circles in the points?

Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE.

Mirror plots are not yet implemented in this function and this argument must contain a value of NULL.

The size of the title.

Maximum number of plots per page.

If there is a panel with just one observation then this specifies the type of points for the DV, IPRED and PRED respectively.

If there is a panel with just one observation then this specifies the size of the points for the DV, IPRED and PRED respectively.

Used to subset on the DV, IPRED and PRED variables separately. Either NULL or a vector of three strings, corresponding to the subset of DV, IPRED and PRED respectively. See examples below.

Other arguments passed to `link{xpose.plot.default}`.

Matrices of individual plots are presented for comparison and closer inspection.

Returns a stack of plots observations (DV) against individual predictions (IPRED) and population predictions (PRED).

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` and `xpose.panel.default` for details.

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv.bw`, `cwres.vs.idv`, `cwres.vs.pred.bw`, `cwres.vs.pred`, `cwres_wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`. 
Examples

### Here we load the example xpose database

```r
tax <- simpraz.xpdb
```

### Monochrome, suitable for manuscript or report

```r
col = c(1, 1, 1),
strip = function(..., bg)
strip.default(..., bg = "grey")
```

### Not run:

#### If we simulate in NONMEM using a dense grid of time points

```r
ind.plots(xpdb, inclZeroWRES = TRUE, y.vals = c("DV! = 0", "NULL", "NULL")
```

#### To plot individual plots of multiple variables

```r
ind.plots(xpdb, subset = "FLAG=1")
ind.plots(xpdb, subset = "FLAG=2")
```

### End(Not run)

---

**ind.plots.cwres.hist**

*Histograms of weighted residuals for each individual in an Xpose data object, for Xpose 4*

---

**Description**

This is a compound plot consisting of histograms of the distribution of weighted residuals (any weighted residual available from NONMEM) for every individual in the dataset. It is a wrapper encapsulating arguments to the `xpose.plot.histogram` function.

**Usage**

```r
ind.plots.cwres.hist(object, wres = "cwres", ...)
```

```r
ind.plots.wres.hist(object, main = "Default", wres = "wres", ylb = NULL,
layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object),
scales = list(cex = 0.7, tck = 0.5), asp = "fill",
```
force.by.factor = TRUE, ids = F, as.table = TRUE,
hicol = object@prefs@Graph.prefs$hicol,
hilty = object@prefs@Graph.prefs$hilty,
hilwd = object@Prefs@Graph.prefs$hilwd,
hidcol = object@Prefs@Graph.prefs$hidcol,
hidlty = object@Prefs@Graph.prefs$hidlty,
hidlwd = object@Prefs@Graph.prefs$hidlwd,
hiborder = object@Prefs@Graph.prefs$hiborder, prompt = FALSE,
mirror = NULL, main.cex = 0.9, max.plots.per.page = 1, ...)

Arguments

object An xpose.data object.
wres Which weighted residual should we plot? Defaults to the WRES.
... Other arguments passed to xpose.plot.histogram.
main The title of the plot. If "default" then a default title is plotted. Otherwise the
value should be a string like "my title" or NULL for no plot title.
ylb A string giving the label for the y-axis. NULL if none.
layout A list giving the layout of the graphs on the plot, in columns and rows. The
default is 4x4.
inclZeroWRES Logical value indicating whether rows with WRES=0 is included in the plot.
The default is FALSE.
subset A string giving the subset expression to be applied to the data before plotting. See xsubset.
scales see xpose.plot.histogram
aspect see xpose.plot.histogram
force.by.factor see xpose.plot.histogram
ids see xpose.plot.histogram
as.table see xpose.plot.histogram
hicol the fill colour of the histogram - an integer or string. The default is blue (see histogram).
hilwd the border line width of the histogram - an integer. The default is 1 (see histogram).
hidcol the fill colour of the density line - an integer or string. The default is black (see histogram).
hidlwd the border line width of the density line - an integer. The default is 1 (see histogram).
hiborder the border colour of the histogram - an integer or string. The default is black (see histogram).
prompt
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is FALSE.

mirror
Mirror plots are not yet implemented in this function and this argument must contain a value of NULL.

main.cex
The size of the title.

maxplots.per.page
Maximum number of plots per page.

Details
Matrices of histograms of weighted residuals in each included individual are displayed. ind.plots.cwres.hist is just a wrapper for ind.plots.wres.hist(object, wres = "cwres").

Value
Returns a compound plot comprising histograms of weighted residual conditioned on individual.

Functions
• ind.plots.cwres.hist: Histograms of conditional weighted residuals for each individual

Author(s)
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker

See Also
xpose.plot.histogram, xpose.panel.histogram, histogram, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov, absval.wres.vs.idv, absval.wres.vs.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.ipred, cwres.vs.ipred.by.cov, cwres.vs.ipred.by.idv, cwres.vs.ipred.by.pred, d0fV2.vs.id, d0fV2.vs.id, d0fV2.vs.d0fV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dw.vs.pred.by.idv, dw.vs.preds.vs.idv, dw.vs.preds.vs.idv, dw.vs.preds.vs.idv, dw.vs.preds.vs.idv, dw.vs.preds.vs.idv, dw.vs.preds.vs.idv, dw.vs.preds.vs.idv, indplots.cwres.qq, indplots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, iwres.vs.idv, kaplan.plot, par_cov.hist, par_cov.qq, parm.vs.cov, parm.vs.idv, parm.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.ipred, wres.vs.ipred.by.cov, wres.vs.ipred.by.idv, wres.vs.ipred.by.pred, wres.vs.ipred.by.pred, wres.vs.preds.vs.idv, wres.vs.preds.vs.idv, wres.vs.preds.vs.idv, wres.vs.preds.vs.idv, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb

## A vanilla plot
ind.plots.wres.hist(xpdb)
## subsets

```
ind.plots.wres.hist(xpdb, subset="ID<10 | ID>45",grid=TRUE)
```

## plot the CWRES instead

```
ind.plots.cwres.hist(xpdb)
```

---

### Description

This is a compound plot consisting of QQ plots of the distribution of weighted residuals (any weighted residual produced by NONMEM) for every individual in the dataset. The function is a wrapper encapsulating arguments to the `xpose.plot.qq` function.

### Usage

```
ind.plots.cwres.qq(object, wres = "cwres", ...)
```

### Arguments

- `object`: An `xpose.data` object.
- `wres`: Which weighted residual should we plot? Defaults to the WRES.
- `...`: Other arguments passed to `link{xpose.plot.qq}`.
- `main`: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `layout`: A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4.
- `inclZeroWRES`: Logical value indicating whether rows with WRES=0 is included in the plot. The default is FALSE.
- `subset`: A string giving the subset expression to be applied to the data before plotting. See `xsubset`.
- `scales`: See `xpose.plot.qq`. 

---

**ind.plots.cwres.qq**  
Quantile-quantile plots of weighted residuals for each individual in an Xpose data object, for Xpose 4
aspect

See `xpose.plot.qq`.

force.by.factor

See `xpose.plot.qq`.

ids

See `xpose.plot.qq`.

as.table

See `xpose.plot.qq`.

type

1-character string giving the type of plot desired. The following values are possible, for details, see `plot`: "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.

pch

The plotting character, or symbol, to use. Specified as an integer. See R help on `points`. The default is an open circle.

col

The color for lines and points. Specified as an integer or a text string. A full list is obtained by the R command `colours()`. The default is blue (col=4).

cex

The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'.

abllty

Line type of the line of identity.

abllwd

Line width of the line of identity.

abcol

Line colour of the line of identity.

prompt

Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is FALSE.

main.cex

The size of the title.

mirror

Mirror plots are not yet implemented in this function and this argument must contain a value of NULL.

max.plots.per.page

Maximum number of plots per page

Details

Matrices of Q-Q plots of weighted residuals in each included individual are displayed.

A wide array of extra options controlling Q-Q plots are available. See `xpose.plot.qq` for details.

Value

Returns a compound plot comprising QQ plots of weighted residuals conditioned on individual.

Functions

- `ind.plots.cwres.qq`: Q-Q plots of conditional weighted residuals for each individual

Author(s)

E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
ipred.vs.idv

Individual predictions (IPRED) plotted against the independent variable (IDV) for Xpose 4

Description

This is a plot of Individual predictions (IPRED) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

ipred.vs.idv(object, smooth = TRUE, ...)

See Also

xpose.plot.qq, xpose.panel.qq, qqplot, qqmath, xposeprefs-class, xposedata-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc.cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.ipred.idv, iwres.dist hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

## Here we load the example xpose database
xpdb <- simpraz.xpdb

ind.plots.wres.qq(xpdb)

## Use CWRES instead
ind.plots.cwres.qq(xpdb, grid=TRUE, subset="ID<10")

## Use NPDEs instead
ind.plots.wres.qq(xpdb, grid=TRUE, subset="ID<10", wres="NPDE")

### ipred.vs.idv

Individual predictions (IPRED) plotted against the independent variable (IDV) for Xpose 4
Arguments

- **object**: An xpose.data object.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **...**: Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling `xyplot` are available. See `xpose.plot.default` and `xpose.panel.default` for details.

Value

Returns an `xyplot` of IPRED vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

- `xpose.plot.default`, `xpose.panel.default`, `xyplot`, `xposeprefs-class`, `xpose.data-class`
- Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by`, `absval.iwres.vs.ipred`, `absval.iwres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.idv`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv`, `cwres.vs.pred.bw`, `cwres.vs.pred.cwres_wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.pred.by.cov`, `dv.vs.pred.by.idv`, `dv.vs.pred.ipred`, `dv.vs.pred.gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov.qq`, `parm.vs.cov`, `parm.vs.parm`, `pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `wres.vs.idv`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`

Examples

```r
Here we load the example xpose database
xpdb <- simpraz.xpdb
ipred.vs.idv(xpdb)

A conditioning plot
ipred.vs.idv(xpdb, by="HCTZ")

Logarithmic Y-axis
ipred.vs.idv(xpdb, logy=TRUE)
```
iwcres.dist.hist

## Custom colours and symbols, IDs
ipred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)

---

iwcres.dist.hist  
*Histogram of individual weighted residuals (IWRES), for Xpose 4*

### Description

This is a histogram of the distribution of individual weighted residuals (IWRES) in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.histogram function.

### Usage

```r
iwcres.dist.hist(object, ...)
```

### Arguments

- `object`  
  An xpose.data object.

- `...`  
  Other arguments passed to `xpose.plot.histogram`.

### Details

Displays a histogram of the individual weighted residuals (IWRES).

### Value

Returns a histogram of individual weighted residuals (IWRES).

### Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

### See Also

- `xpose.plot.histogram`, `xpose.panel.histogram`, `histogram`, `xpose.prefs-class`, `xpose.data-class`

Other specific functions:  
- `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`,  
- `absval.iwcres.cwres.vs.ipred.pred`, `absval.iwcres.vs.cov.bw`, `absval.iwcres.vs.idv`, `absval.iwcres.vs.ipred.by`,  
- `absval.iwcres.vs.ipred`, `absval.iwcres.vs.pred`,  
- `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`,  
- `absval_delta_vs_cov_model_comp`, `addit.gof`,  
- `autocorr.cwres`, `autocorr.iwcres`,  
- `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`,  
- `cat.pc`, `cov.splo`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv`,  
- `cwres.vs.pred.bw`, `cwres.vs.pred`, `cwres_wres_vs_x`,  
- `dOFV.vs.cov`, `dOFV.vs.id`,  
- `dOFV1.vs.dOFV2`,  
- `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`,  
- `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`,  
- `dv.vs.ipred`, `dv.vs.pred.by.cov`, `dv.vs.pred.by.idv`, `dv.vs.pred.ipred`, `dv.vs.pred.gof`,  
- `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred.vs.idv`, `iwcres.dist.qq`, `iwcres.vs.idv`,  
- `kaplan.plot`, `par.cov_hist`, `par.cov.qq`, `parm.vs.cov`, `parm.vs.par`, `pred.vs.idv`, `ranpar.vs.cov`,
iwres.dist.qq

- runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv bw, wres.vs.idv, wres.vs.pred bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

iwres.dist.hist(simpraz.xpdb)

---

### Description

This is a QQ plot of the distribution of individual weighted residuals (IWRES) in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.qq function.

### Usage

```
iwres.dist.qq(object, ...)
```

### Arguments

- **object**: An xpose.data object.
- **...**: Other arguments passed to `xpose.plot.qq`.

### Details

Displays a QQ plot of the individual weighted residuals (IWRES).

### Value

Returns a QQ plot of individual weighted residuals (IWRES).

### Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

### See Also

```
xpose.plot.qq, xpose.panel.qq, qqmath, xposeprefs-class, xpose.data-class
```

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv bw`, `cwres.vs.idv`, `cwres.vs.pred bw`, `cwres.vs.pred`, `cwres.wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`. 
data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, 
dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, 
ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, 
iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, 
ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, 
wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

iwres.dist.qq(simpraz.xpdb)

iwres.vs.idv

Individual weighted residuals (IWRES) plotted against the independent variable (IDV) for Xpose 4

Description

This is a plot of individual weighted residuals (IWRES) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

iwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)

Arguments

object An xpose.data object.
abline Vector of arguments to the panel.abline function. No abline is drawn if NULL. Here, the default is c(0,0), specifying a horizontal line at y=0.
smooth Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
... Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns an xyplot of IWRES vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.cov.bw, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
Here we load the example xpose database
xpdb <- simpraz.xpdb

iwres.vs.idv(xpdb)

A conditioning plot
iwres.vs.idv(xpdb, by="HCTZ")
```

---

**kaplan.plot**

*Kaplan-Meier plots of (repeated) time-to-event data*

**Description**

Kaplan-Meier plots of (repeated) time-to-event data. Includes VPCs.

**Usage**

```r
kaplan.plot(x = "TIME", y = "DV", id = "ID", data = NULL, evid = "EVID", by = NULL, xlab = "Time", ylab = "Default", object = NULL, events.to.plot = "All", sim.data = NULL, sim.zip.file = NULL, VPC = FALSE, nsim.lab = "simNumber", sim.evct.lab = "counter", probs = c(0.025, 0.975), addbaseline = T, add.last.area = T, subset = NULL, main = "Default", main.sub = "Default", main.sub.cex = 0.8, nbins = NULL, real.type = "l", real.lty = 1, real.lwd = 1, real.col = "blue", real.se = if (!is.null(sim.data)) T else F, real.se.type = "l", real.se.lty = 2, real.se.lwd = 0.5, real.se.col = "red", cens.type = "l", cens.lty = 1, cens.col = "black", cens.lwd = 1,
```
inclZeroRES = TRUE, onlyfirst = FALSE, samp = NULL, poly.alpha = 1,
poly.fill = "lightgreen", poly.line.col = "darkgreen", poly.lty = 2,
censor.lines = TRUE, ylim = c(-5, 105), cov = NULL, cov.fun = "mean",
...

Arguments

x The independent variable.
y The dependent variable. event (>0) or no event (0).
id The ID variable in the dataset.
data A dataset can be used instead of the data in an Xpose object. Must have the
same form as an xpose data object xpdb@data.
evid The EVID data item. If not present then all rows are considered events (can be
censored or an event). Otherwise, EVID!=0 are dropped from the data set.
by A vector of conditioning variables.
xlab X-axis label
ylab Y-axis label
object An Xpose object. Needed if no data is supplied.

events.to.plot Vector of events to be plotted. "All" means that all events are plotted.
sim.data The simulated data file. Should be a table file with one header row and have, at
least, columns with headers corresponding to x, y, id, by (if used), nsim.lab
and sim.evct.lab.
sim.zip.file The sim.data can be in .zip format and xpose will unzip the file before reading
in the data. Must have the same structure as described above in sim.data.
VPC TRUE or FALSE. If TRUE then Xpose will search for a zipped file with name
paste("simtab",object@runno,".zip",sep=""), for example "simtab42.zip".
nsim.lab The column header for sim.data that contains the simulation number for that
row in the data.
sim.evct.lab The column header for sim.data that contains the individual event counter in-
formation. For each individual the event counter should increase by one for each
event (or censored event) that occurs.
probs The probabilities (non-parametric percentiles) to use in computation of the pre-
diction intervals for the simulated data.
add.baseline Should a (x=0,y=1) baseline measurement be added to each individual in the
dataset. Otherwise each plot will begin at the first event in the dataset.
add.last.area Should an area be added to the VPC extending the last PI?
subset The subset of the data and sim.data to use.
main The title of the plot. Can also be NULL or "Default".
main.sub The title of the subplots. Must be a list, the same length as the number of sub-
plots (actual graphs), or NULL or "Default".
main.sub.cex The size of the title of the subplots.
nbins
The number of bins to use in the VPC. If NULL, the number of unique x values in sim.data is used.

real.type
Type for the real data.

real.lty
Line type (lty) for the curve of the original (or real) data.

real.lwd
Line width (lwd) for the real data.

real.col
Color for the curve of the original (or real) data.

real.se
Should the standard errors of the real (non simulated) data be plotted? Calculated using \texttt{survfit}.

real.se.type
Type for the standard errors.

real.se.lty
Line type (lty) for the standard error lines.

real.se.lwd
Line width (lwd) for the standard error lines.

real.se.col
Color for the standard error lines.

cens.type
Type for the censored lines.

cens.lty
Line type (lty) for the censored lines.

cens.col
Color for the censored lines.

cens.lwd
Line width for the censored lines.

inclzerowres
Include WRES=0 rows from the real data set in the plots?

onlyfirst
Include only the first measurement for the real data in the plots?

samp
Simulated data in the xpose data object can be used as the "real" data. samp is a number selecting which simulated data set to use.

poly.alpha
The transparency of the VPC shaded region.

poly.fill
The fill color of the VPC shaded region.

poly.line.col
The line colors for the VPC region.

poly.lty
The line type for the VPC region.

censor.lines
Should censored observations be marked on the plot?

ylim
Limits for the y-axes

cov
The covariate in the dataset to plot instead of the survival curve.

cov.fun
The summary function for the covariate in the dataset to plot instead of the survival curve.

... Additional arguments passed to the function.

Value
returns an object of class "xpose.multiple.plot".

Author(s)
Andrew C. Hooker
See Also

survfit, Surv, xpose.multiple.plot.

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.iwres.hist, ind.plots.wres.hist, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, par_c Cov_hist, par_c Cov_qq, parm.vs.cov, parm.vs.idv, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4.package

Examples

```r
Not run:
library(xpose4)

Read in the data
runno <- "57"
xpdb <- xpose.data(runno)

cccccc

here are the real data plots

kaplan.plot(x="TIME", y="DV", object=xpdb)
kaplan.plot(x="TIME", y="DV", object=xpdb, events.to.plot=c(1,2),
by=c("DOSE==0", "DOSE==10000"))
kaplan.plot(x="TIME", y="DV", object=xpdb, events.to.plot=c(1,2),
by=c("DOSE==50", "DOSE==200"))

cccc

make a PDF of the plots
pdf(file=paste("run", runno, "_kaplan.pdf", sep=""))
kaplan.plot(x="TIME", y="DV", object=xpdb,
by=c("DOSE==0", "DOSE==10000",
"DOSE==50", "DOSE==200"))

dev.off()

cccc

VPC plots

kaplan.plot(x="TIME", y="DV", object=xpdb, VPC=T, events.to.plot=c(1))
```
make.sb.data

Make stacked bar data set.

Description

Function to make stacked bar data set for categorical data plots.

Usage

make.sb.data(data, idv, dv, nbins = 6, by = NULL, by.nbins = 6, ...)

Arguments

data            Data set to transform.
idv             the independent variable.
dv              the dependent variable.
nbins           the number of bins.
by              Conditioning variable.
by.nbins        by.nbins.
...             additional arguments.

Author(s)

The Xpose team.

See Also

Other data functions: add_transformed_columns, change-graphical-parameters, change-misc-parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definite, import.graph.par, import.variable.definite, nsim.par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset
npc.coverage  
*Function to plot the coverage of the Numerical Predictive Check*

**Description**

This function takes the output from the `npc` command in Perl Speaks NONMEM (PsN) and makes a coverage plot. A coverage plot for the NPC looks at different prediction intervals (PIs) for each data point and calculates the total number of data points in the data set lying outside of these PIs. The plot shows the relative amount of data points outside of their PI compared to the expected amount at that PI. In addition a confidence interval around these values are computed based on the simulated data.

**Usage**

```
npc.coverage(npc.info = "npc_results.csv", main = "Default",
 main.sub = NULL, main.sub.cex = 0.85, ...)
```

**Arguments**

- `npc.info`  
The results file from the `npc` command in PsN, for example ‘npc\_results.csv’, or if the file is in a separate directory ‘./npc\_dir/npc\_results.csv’.

- `main`  
A string giving the plot title or NULL if none. "Default" creates a default title.

- `main.sub`  
Used for names above each plot when using multiple plots. Should be a vector c("Group 1","Group 2")

- `main.sub.cex`  
The size of the main.sub titles.

- `...`  
Other arguments passed to `xpose.multiple.plot.default`, `xyplot` and others. Please see these functions for more descriptions of what you can do.

**Value**

A list of plots

**Additional arguments for the NPC coverage plots**

**Additional plot features**

- `list("CI = "both", \"area\" or \"lines\")`  
Specifies whether confidence intervals (as lines, a shaded area or both) should be added to the plot. NULL means no CI.

- `list("mark.outside.data = TRUE or FALSE ")`  
Should the points outside the CI be marked in a different color to identify them.

- `list("abline = TRUE")`  
Should there be a line to mark the value of y=1? Possible values are TRUE, FALSE and NULL.

Should there be a line to mark the value of y=1? Possible values are TRUE, FALSE and NULL.

**Line and area control.** See `plot`, `grid.polygon` and `xyplot` for more details.
list("CI.area.col = "blue\""")  # What color should the area for the CI be? Defaults to "blue".
list("CI.area.alpha = 0.3")   # How much transparency should the CI.area.col have? Defaults to 0.3.
list("ab.lwd=1")             # The width of the abline.
list("ab.lty="dashed\""")    # How should the abline look?
list("CI.upper.lty="dotted\""")  # What should the line at the upper edge of the CI look like when using CI = "both" or "lines"?
list("CI.upper.col="brown\""")  # What color should the line at the upper edge of the CI have when using CI = "both" or "lines"?
list("CI.upper.lwd="2\""")    # The line width of the line at the upper edge of the CI when using CI = "both" or "lines"?
list("CI.lower.lty="dotted\""")  # What should the line at the lower edge of the CI look like when using CI = "both" or "lines"?
list("CI.lower.col="brown\""")  # What color should the line at the lower edge of the CI have when using CI = "both" or "lines"?
list("CI.lower.lwd="2\""")    # The line width of the line at the lower edge of the CI when using CI = "both" or "lines"?
list("obs.col="black\""")    # The color of the observed values.
list("obs.pch=19")           # The type of point to use for the observed values.
list("obs.lty="solid\""")    # The type of line to use for the observed values.
list("obs.type=\"b\"")       # The combination of lines and points to use for the observed values.
list("obs.cex=1")           # The size of the points to use for the observed values.
list("obs.lwd=1")           # The line width to use for the observed values.
list("out.col="red\""")      # The color of the observed values that lie outside of the CI. Only used if mark.outside.data = TRUE.
list("out.pch=8")           # The type of point to use for the observed values that lie outside of the CI. Only used if mark.outside.data = TRUE.
list("out.cex=1.3")         # The size of the points of the observed values that lie outside of the CI. Only used if mark.outside.data = TRUE.
list("out.lwd=1")           # The line width of the observed values that lie outside of the CI. Only used if mark.outside.data = TRUE.

Author(s)
Andrew Hooker

See Also
read.npc.vpc.results xpose.multiple.plot.default xyplot
Other P$n$ functions: boot.hist, bootscm.import, randtest.hist, read.npc.vpc.results, read.vpctab, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package
Examples

```r
Not run:
library(xpose4)
npc.coverage()

to read files in a directory different than the current working directory
npc.file <- "./another_directory/npc_results.csv"
npc.coverage(npc.info=npc.file)
End(Not run)
```

---

**nsim**  
*Extract or set the value of the Nsim slot.*

**Description**

Extract or set the value of the Nsim slot of an "xpose.data" object.

**Usage**

```r
nsim(object)
```

**Arguments**

- `object` An "xpose.data" object.

**Author(s)**

Niclas Jonsson

**See Also**

`xpose.data-class`

Other data functions:  
`add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable_definitions, import.graph.par, import.variable_definitions, make.sb.data, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset`
Examples

```r
Not run:
xpdb5 is an Xpose data object
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb5 <- xpose.data(5)

Report number of simulations
nsim(xpdb5)

End(Not run)
```

parm.vs.cov  Parameters plotted against covariates, for Xpose 4

Description

This creates a stack of plots of Bayesian parameter estimates plotted against covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.default` function. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Usage

```r
parm.vs.cov(object, onlyfirst = TRUE, smooth = TRUE, type = "p",
 main = "Default", ...)
```

Arguments

- **object**: An `xpose.data` object.
- **onlyfirst**: Logical value indicating whether only the first row per individual is included in the plot.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **type**: The plot type - defaults to points only.
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or `NULL` for no plot title.
- **...**: Other arguments passed to `link{xpose.plot.default}`.

Details

Each of the parameters in the Xpose data object, as specified in `object$Prefs$Xvardef$parms`, is plotted against each covariate present, as specified in `object$Prefs$Xvardef$covariates`, creating a stack of plots.

A wide array of extra options controlling `xyplots` are available. See `xpose.plot.default` and `xpose.panel.default` for details.
Value

Returns a stack of xyplots and histograms of parameters against covariates.

Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also
xpose.plot.default, xpose.plot.histogram, xplot, histogram, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.by.cov, absval.iwresворот.cwres.vs.pred.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred, absval.iwres.vs.cov.bw, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc,cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.idv, cwres.vs.ipred, cwres.vs.ipred.by.cov, d0fV.vs.cov, d0fV.vs.id, d0fV1.vs.d0fV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.ipred, dv.vs.ipred, dv.vs.ipred, dv.vs.ipred, dv.vs.ipred, gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_c cov hist, par_c cov qq, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```R
Not run:
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb <- xpose.data(5)

A vanilla plot
parm.vs.cov(xpdb)

Custom colours and symbols, IDs
parm.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)

End(Not run)
```

---

parm.vs.parm       Plot parameters vs other parameters

Description

This function plots the parameter values stored in an Xpose data object versus each other in a series of graphs. The mirror functionality is available for this function.
parm.vs.parm

Usage

parm.vs.parm(object, onlyfirst = TRUE, abline = FALSE, smooth = TRUE,
   type = "p", main = "Default", ...)

Arguments

object     An xpose.data object.
onlyfirst   Logical value indicating whether only the first row per individual is included in
            the plot.
abline     Allows for a line of identity.
smooth     Logical value indicating whether an x-y smooth should be superimposed. The
            default is TRUE.
type       The plot type - defaults to points only.
main       The title of the plot. If "Default" then a default title is plotted. Otherwise the
            value should be a string like "my title" or NULL for no plot title.
...        Other arguments passed to xpose.plot.default.

Details

Each of the parameters in the Xpose data object, as specified in object@Prefs@Xvardef$parms, is
plotted against the rest, creating a stack of plots.

A wide array of extra options controlling xyplots are available. See xpose.plot.default and
xpose.panel.default for details.

Value

Returns a stack of xyplots and histograms of parameters against parameters.

Author(s)

Andrew Hooker

See Also

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred.bw,
absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.bw,
absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.cwres.vs.cov.bw, absval.wres.vs.idv,
absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof,
aucotr.cwres, aucotr.iwres, aucotr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb,
cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv,
cwres.vs.prev.bw, cwres.vs.prev, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2,
data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv,
dv.vs.ipred, dv.vs.ipred, dv.vs.ipred.by.cov, dv.vs.ipred.idv, dv.vs.pred.idp, dv.vs.pred.gof,
indplots, cwres.hist, indplots, cwres.qq, indplots, ipred.vs.idv, iwres.dist.hist,
iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, pred.vs.idv,
ranchap.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.ipred, wres.vs.ipred.by.idv,
wres.vs.ipred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package
Examples

```r
Not run:
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb <- xpose.data(5)
	parm.vs.parm(xpdb)

parm.vs.parm(xpdb,mirror=3)
End(Not run)
```

par_cov_hist

Plot the parameter or covariate distributions using a histogram

Description

These functions plot the parameter or covariate values stored in an Xpose data object using histograms.

Usage

```r
cov.hist(object, onlyfirst = TRUE, main = "Default", ...)

parm.hist(object, onlyfirst = TRUE, main = "Default", ...)

ranpar.hist(object, onlyfirst = TRUE, main = "Default", ...)
```

Arguments

- `object`: An xpose.data object.
- `onlyfirst`: Logical value indicating if only the first row per individual is included in the plot.
- `main`: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `...`: Other arguments passed to `xpose.plot.histogram`.

Details

Each of the parameters or covariates in the Xpose data object, as specified in `object@Prefs@Xvardef$parms`, `object@Prefs@Xvardef$covariates` or `object@Prefs@Xvardef$ranpar` is evaluated in turn, creating a stack of histograms.

A wide array of extra options controlling histograms are available. See `xpose.plot.histogram` for details.
par_cov_hist

Value

Delivers a stack of histograms.

Functions

- `cov.hist`: Covariate distributions
- `parm.hist`: parameter distributions
- `ranpar.hist`: random parameter distributions

Author(s)

Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.histogram`, `xpose.panel.histogram`, `histogram`, `xpose.data-class`, `xpose.prefs-class`

Other specific functions:
- `absval.cwres.cov bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.iwres.vs.predict`, `absval.wres.vs.cov bw`, `absval.wres.vs.idv`, `absval.wres.vs.ipred.by.cov`, `absval.wres.vs.ipred`, `absval.wres.vs.predict`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov bw`, `cwres.vs.idv`, `cwres.vs.ipred bw`, `cwres.vs.predict`, `cwres_wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.predict.by.cov`, `dv.vs.predict.by.idv`, `dv.vs.predict`, `dv.vs.predict.ipred`, `dv.vs.predict.gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred`, `ipred.vs.idv`, `iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov.qq`, `parm.vs.cov`, `parm.vs.parm`, `parm.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv bw`, `wres.vs.idv`, `wres.vs.predict`, `xpsoe.VPC.both`, `xpsoe.VPC.categorical`, `xpsoe.VPC`, `xpsoe4-package`

Examples

```r
Here we load the example xpose database
xpdb <- simpraz.xpdb

Parameter histograms
parm.hist(xpdb)

Covariate distribution, in green
cov.hist(xpdb, hicol=11, hidcol="DarkGreen", hiborder="White")

Random parameter histograms
ranpar.hist(xpdb)
```
Description

These functions plot the parameter or covariate values stored in an Xpose data object using Q-Q plots.

Usage

```r
cov.qq(object, onlyfirst = TRUE, main = "Default", ...)
parm.qq(object, onlyfirst = TRUE, main = "Default", ...)
ranpar.qq(object, onlyfirst = TRUE, main = "Default", ...)
```

Arguments

- `object`: An xpose.data object.
- `onlyfirst`: Logical value indicating if only the first row per individual is included in the plot.
- `main`: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- `...`: Other arguments passed to `xpose.plot.qq`.

Details

Each of the parameters or covariates in the Xpose data object, as specified in `object@prefs@xvardef$parms`, `object@prefs@xvardef$ranpar` or `object@prefs@xvardef$covariates`, is evaluated in turn, creating a stack of Q-Q plots.

A wide array of extra options controlling Q-Q plots are available. See `xpose.plot.qq` for details.

Value

Delivers a stack of Q-Q plots.

Functions

- `cov.qq`: Covariate distributions
- `parm.qq`: parameter distributions
- `ranpar.qq`: random parameter distributions

Author(s)

Andrew Hooker & Justin Wilkins
par_cov_summary

Summarize individual parameter values and covariates

Description

These functions produce tables, printed to the screen, summarizing the individual parameter values or covariates from a dataset in Xpose 4.

Usage

cov.summary(object, onlyfirst = TRUE, subset = xsubset(object),
inclZeroWRES = FALSE, out.file = ".screen", main = "Default",
fill = "gray", values.to.use = xvardef("covariates", object),
value.name = "Covariate", ...)
parm_summary(object, onlyfirst = TRUE, subset = xsubset(object),
  inclZeroWRES = FALSE, out.file = ".screen", main = "Default",
  fill = "gray", values.to.use = xvardef("parms", object),
  value.name = "Parameter", max.plots.per.page = 1, ...)

Arguments

object  An xpose.data object.
onlyfirst Logical value indicating if only the first row per individual is included in the
plot.
subset  A string giving the subset expression to be applied to the data before plotting.
See xsubset.
inclZeroWRES Logical value indicating whether rows with WRES=0 are included in the plot.
The default is FALSE.
out.file  Where the results should be output to. Can be ".screen", ".ask", ".graph" or a
filename in quotes.
main  The title of the plot. If "Default" then a default title is plotted. Otherwise the
value should be a string like "my title" or NULL for no plot title.
fill  The color to fill the boxes in the table if the table is printed to ".graph"
values.to.use  Which values should be summarized
value.name  The name of the values
...  Other arguments passed to Data and SData.
max.plots.per.page  Maximum plots per page.

Value

Returned is the matrix of values from the table. parm_summary and cov_summary produce summaries of parameters and covariates, respectively. parm_summary produces less attractive output but supports mirror functionality.

parm_summary and cov_summary utilize print.char.matrix to print the information to the screen.

Functions

- cov.summary: Covariate summary
- parm.summary: Parameter summary

Author(s)

Andrew Hooker & Justin Wilkins
See Also

Data, SData, xpose.data-class, print.char.matrix

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.default, import.graph.par, import.variable_definitions, make.sb.data, nsm, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

## Here we load the example xpose database
xpdb <- simpraz.xpdb

parm.summary(xpdb)
cov.summary(xpdb)

---

tpred vs idv

*Population predictions (PRED) plotted against the independent variable (IDV) for Xpose 4*

Description

This is a plot of population predictions (PRED) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

pred.vs.idv(object, smooth = TRUE, ...)

Arguments

- **object**: An xpose.data object.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **...**: Other arguments passed to link(xpose.plot.default).

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.
print.xpose.multiple.plot

Print an Xpose multiple plot object.

Value

Returns an xyplot of PRED vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.panel.default, xyplot, xposeprefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.bw, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.iwres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.ipred.cwres, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred, gof, ind.plots.cwres.hist, ind.plots.iwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov_qq, parm.vs.cov, parm.vs.parm, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.idv, wres.vs.ipred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```
Here we load the example xpose database
xpdb <- simpraz.xpdb

pred.vs.idv(xpdb)

A conditioning plot
pred.vs.idv(xpdb, by="HCTZ")

Logarithmic Y-axis
pred.vs.idv(xpdb, logy=TRUE)

Custom colours and symbols, IDs
pred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
```
Description

Print an Xpose multiple plot object, which is the output from the function `xpose.multiple.plot`.

Usage

```r
S3 method for class 'xpose.multiple.plot'
print(x, ...)
```

Arguments

- `x`: Output object from the function `xpose.multiple.plot`.
- `...`: Additional options passed to function.

Details

Print method for a plot class.

Author(s)

Niclas Jonsson and Andrew C. Hooker

See Also

`xpose.multiple.plot`.

---

**randtest.hist**

Function to create a histogram of results from the randomization test tool (randtest) in

[R](https://uupharmacometrics.github.io/PsN/PsN)

Description

Reads results from the randtest tool in PsN and then creates a histogram.

Usage

```r
randtest.hist(results.file = "raw_results_run1.csv", df = 1, p.val = 0.05,
 main = "Default", xlim = NULL, PCTSlcol = "black", vcol = c("red",
 "orange"), ...)
```
Arguments

`results.file`  The location of the results file from the `randtest` tool in `PsN`.

`df`  The degrees of freedom between the full and reduced model used in the randomization test.

`p.val`  The p-value you would like to use.

`main`  The title of the plot.

`xlim`  The limits of the x-axis

`pctslcol`  Color of the empirical line

`vlcol`  Colors of the original and nominal line

`...`  Additional arguments that can be passed to `xpose.plot.histogram`, `xpose.panel.histogram`, `histogram` and other `lattice-package` functions.

Value

A lattice object

Author(s)

Andrew Hooker

References

`PsN`

See Also

`xpose.plot.histogram`, `xpose.panel.histogram`, `histogram` and other `lattice-package` functions.

Other `PsN` functions: `boot.hist`, `bootscm.import`, `npc.coverage`, `read.npc.vpc.results`, `read.vpctab`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`

Examples

```r
Not run:
randtest.hist(results.file="randtest_dirl/raw_results_run1.csv",df=2)

End(Not run)```
ranpar.vs.cov

Random parameters plotted against covariates, for Xpose 4

Description

This creates a stack of plots of Bayesian random parameter estimates plotted against covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

ranpar.vs.cov(object, onlyfirst = TRUE, smooth = TRUE, type = "p", main = "Default", ...)

Arguments

- **object**: An xpose.data object.
- **onlyfirst**: Logical value indicating whether only the first row per individual is included in the plot.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **type**: The plot type - defaults to points only.
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or NULL for no plot title.
- ... Other arguments passed to link{xpose.plot.default}.

Details

Each of the random parameters (ETAs) in the Xpose data object, as specified in object@Prefs@Xvardef$ranpar, is plotted against each covariate present, as specified in object@Prefs@Xvardef$covariates, creating a stack of plots.

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns a stack of xyplots and histograms of random parameters against covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also

xpose.plot.default, xpose.plot.histogram, xyplot.histogram, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.wres.vs.cov.bw, absval.wres.vs.cwres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred, absval.wres.vs.idv, absval.wres.vs.ipred, absval.wres.vs.cwres.vs.cwres.vs.idv, bw, bvres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres.wres_vs_x, dv.vs.cwres.vs.idv, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.ipred.dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.ipred.dv.vs.pred.by.idv, dv.vs.ipred.dv.vs.ipred, dv.vs.ipred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par.cov.hist, par.cov.qq, par.cov.parm, parm.vs.cov, parm.vs.parm, pred.vs.idv, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.idv, wres.vs.pred, wres.vs.pred, wres.vs.pred, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)

## A vanilla plot
ranpar.vs.cov(xpdb)

## Custom colours and symbols, IDs
ranpar.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)

## End(Not run)
```

Description

Reads one or more NONMEM table files, removes duplicated columns and merges the data into a data.frame.

Usage

```r
read.nm.tables(table.files = NULL, runno = NULL, tab.suffix = "",
    table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab",
    "extra", "xptab"), cwres.name = c("cwtab"), cwres.suffix = "",
    quiet = FALSE, new.methods = TRUE, ...)
```
Arguments

table.files Exact names of table files to read. If not provided then the exact names are created using the other arguments to the function.
runno Run-number to identify sets of table files.
tab.suffix Table file name suffix.
table.names Vector of template table file names to read.
cwres.name Vector of CWRES table file names to read.
cwres.suffix CWRES table file name suffix.
quiet Logical value to indicate whether some warnings should be quiet or not.
new_methods Should faster methods of reading tables be used (uses readr package)?
... Additional arguments passed to this function

Details

Reads one or more table files, removes duplicate columns and merges the data. The function also checks to see if the table files are of the same length (required).

If there are header lines in the table files (for example if your data are simulated with NSUB>1), these are removed.

The table file names to read are constructed from the file name templates of table.names. The runno and tab.suffix are appended to the file name template before checking if the file is readable.

Xpose expects, by default, to find the following NONMEM tables in the working directory to be able to create an Xpose data object (using a run number of 5 as an example):

sdtab5: The 'standard' parameters, including IWRE, IPRE, TIME, and the NONMEM default items (DV, PRED, RES and WRES) that are added when NOAPPEND is not present in the $TABLE record.

$TABLE ID TIME IPRE IWRE NOPRINT ONEHEADER FILE=sdtab5

patab5: The empirical Bayes estimates of individual model parameter values, or posthoc estimates. These are model parameters, such as CL, V2, ETA1, etc.

$TABLE ID CL V2 KA K F1 ETA1 ETA2 ETA3 NOPRINT NOAPPEND ONEHEADER FILE=patab5
catab5: Categorical covariates, e.g. SEX, RACE.

$TABLE ID SEX HIV GRP NOPRINT NOAPPEND ONEHEADER FILE=catab5
cotab5: Continuous covariates, e.g. WT, AGE.

$TABLE ID WT AGE BSA HT GGT HB NOPRINT NOAPPEND ONEHEADER FILE=cotab5
mutab5, mytab5, extra5, xptab5: Additional variables of any kind. These might be useful if there are more covariates than can be accommodated in the covariates tables, for example, or if you have other variables that should be added, e.g. CMAX, AUC.

Value

A dataframe.

Author(s)

Niclas Jonsson, Andrew Hooker
See Also

xpose.data-class, compute.cwres

Other data functions: add_transformed_columns, change_graphical_parameters, change_m misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export. variable_definitions, import.graph.par, import.variable_definitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

```
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory, and that the table files have
## a suffix of '.dat', e.g. sdbtab5.dat

my.dataframe <- read.nn_tables(5, tab.suffix = "\dat")
```

read.npc.vpc.results

Read the results file from a Numerical or Visual Predictive Check run in PsN

Description

This function reads in a results file from running either the PsN command vpc or npc. The function then parses the file and passes the result to plotting functions.

Usage

\[
\text{read.npc.vpc.results}(\text{vpc.results} = \text{NULL}, \text{npc.results} = \text{NULL}, \\
\text{verbose} = \text{FALSE}, \ldots)
\]

Arguments

- **vpc.results**
The name of the results file from running the PsN command vpc. Often this is named `vpc_results.csv`. If the file is in a directory different then the working directory then you can define a relative or absolute path to the file by, for example, `./vpc_strat_WT_4_mirror_5/vpc_results.csv`.

- **npc.results**
The name of the results file from running the PsN command npc. Often this is named `npc_results.csv`. relative or absolute paths to the file are allowed as for vpc.results.

- **verbose**
Text messages passed to screen or not.

- **...**
arguments passed to other functions.
Details

One of vpc.results or npc.results are necessary. If both or none are defined then the function does nothing and a NULL is returned from the function.

Value

A list of values is returned.

- **model.file**: The model file that PsN ran either the npc or vpc with
- **dv.var**: The dependent variable used in the calculations.
- **idv.var**: The independent variable used in the calculations. NULL if npc.results is used.
- **num.tables**: The number of separate tables in the results file.
- **by.interval**: The conditioning interval for the stratification variable, only returned if vpc.results is used.
- **result.tables**: The results tables from the results file. this is a list.

Author(s)

Andrew Hooker

See Also

xpose.VPC npc.coverage

Other PsN functions: boot.hist.bootscm.import.npc.coverage.randtest.hist.read.vpctab.xpose.VPC.both.xpose.VPC.categorical.xpose.VPC.xpose4-package

read.TTE.sim.data Read (repeated) time-to-event simulation data files.

Description

Read (repeated) time-to-event simulation data files.

Usage

```
read.TTE.sim.data(sim.file, subset = NULL, headers = c("REP", "ID", "DV", "TIME", "FLAG2", "DOSE"), xpose.table.file = FALSE, ...)
```

Arguments

- **sim.file**: Name of the simulated file.
- **subset**: subset to extract.
- **headers**: headers in file.
- **xpose.table.file**: xpose table files.
- **...**: Extra arguments passed to function.
Author(s)

Andrew C. Hooker

See Also

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definition, import.graph.par, import.variable definitions, make.sb.data, nsim, par_cov_summary, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Description

This function reads in the vpctab file created from PsN and gathers the information needed to make a vpc plot.

Usage

read.vpctab(vpctab = NULL, object = NULL, vpc.name = "vpctab",
 vpc.suffix = "", tab.suffix = "", inclZeroWRES = FALSE,
 verbose = FALSE, ...)

Arguments

vpctab The vpctab file from a 'vpc' run in PsN.
object An xpose data object. Created from xpose.data. One of object or vpctab is required. If both are present then the information from the vpctab will over-ride the xpose data object (i.e. the values from the vpctab will replace any matching values in the object@data portion of the xpose data object). If only object is present then the function will look for a vpctab with the same run number as the one associated with the object.
vpc.name The default name of the vpctab file. Used if only object is supplied.
vpc.suffix The suffix of the vpctab file. Used if only object is supplied.
tab.suffix The table suffix of the vpctab file. Used if only object is supplied. Final order of the file would be then paste(vpc.name, object@Runno, vpc.suffix, tab.suffix)
inclZeroWRES If there are no zero valued weighted residuals in the object then this should be TRUE.
verbose Text messages passed to screen or not.
... Other arguments passed to other functions.

Value

Returned is an xpose data object with vpctab information included.
read NM output

Author(s)
Andrew Hooker

See Also
- `xpose.VPC`

Other PsN functions: `boot.hist, bootscm.import, npc.coverage, randtest.hist, read.npc.vpc.results, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package`

Description
These are functions that read in a NONMEM output file (a '*.lst' file) and then format the input.

Usage
- `calc.npar(object)`
- `create.parameter.list(listfile)`
- `read.lst(filename)`

Arguments
- `object` The return value of `read.lst(filename)`
- `listfile` A NONMEM output file.
- `filename` A NONMEM output file.
- `...` Items passed to functions within this function.

Value
lists of read values.

Functions
- `calc.npar`: calculates the number and type of parameters included in a NONMEM output file
- `create.parameter.list`: Reads parameters, uncertainty and termination messages included in a NONMEM output file
- `read.lst`: parses information out of NONMEM output.

Author(s)
Niclas Jonsson, Andrew Hooker & Justin Wilkins
read_nm_table

Read NONMEM table files produced from simulation.

Description

The function reads in NONMEM table files produced from the SIM line in a NONMEM model file.

Usage

```r
read_nm_table(nm_table, only_obs = FALSE, method = "default",
quiet = TRUE, sim_num = FALSE, sim_name = "NSIM")
```

Arguments

- `nm_table`: The NONMEM table file to read. A text string.
- `only_obs`: Should the non-observation lines in the data set be removed? Currently filtered using the expected MDV column. TRUE or FALSE.
- `method`: The methods to use for reading the tables, Can be "readr_1", "readr_2", readr_3" or "slow".
- `quiet`: Should the error message be verbose or not?
- `sim_num`: Should a simulation number be added to simulation tables?
- `sim_name`: What name should one use to name the column of the simulation number?

Details

Currently the function expects the $TABLE$ to have a header for each new simulation. This means that the NOHEADER option or ONEHEADER option in the table file is not allowed.

Value

Returns a data frame of the simulated table with an added column for the simulation number. The data frame is given class `c("tbl_df", "tbl", "data.frame")` for easy use with `dplyr`.

See Also

Other data functions: `add_transformed_columns`, `change_graphical_parameters`, `change_misc_parameters`, `compute.cwres`, `data.checkout`, `data.extract_or_assign`, `db.names`, `export.graph.par`, `export.variable.definit`, `import.graph.par`, `import.variabledefinitions`, `make.sb.data`, `nsim`, `par_cov_summary`, `read.TTE.sim.data`, `read.nn.tables`, `read_nm_table`, `simprazExample`, `tabulate.parameters`, `xlabel`, `xpose.data`, `xpose.print`, `xpose4-package`, `xsubset`
See Also

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable_definitions, import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

reset.graph.par Resets Xpose variable definitions to factory settings

Description

Function to reset Xpose’s graphics parameters definitions to the default.

Usage

reset.graph.par(object, classic = FALSE)

Arguments

object An xpose.data object.

classic A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line.

Details

This function is used to reset Xpose’s graphic settings definitions to their default values. Graphical settings are read from the file ‘xpose.ini’ in the root of the ‘xpose4’ package.

Value

An xpose.data object (classic == FALSE) or null (classic == TRUE).

Author(s)

Niclas Jonsson & Justin Wilkins

See Also

xpose.prefs-class, import.graph.par, change.xvardef
Examples

```r
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Import graphics preferences you saved earlier using export.graph.par
xpdb5 <- import.graph.par(xpdb5)

## Reset to default values
xpdb5 <- reset.graph.par(xpdb5)

## Change WRES definition
xpdb5 <- change.wres(xpdb5)
```

Description

Function to build Xpose run summaries.

Usage

```r
runsum(object, dir = "", modfile = paste(dir, "run", object@Runno, ".mod", sep = ""), listfile = paste(dir, "run", object@Runno, ".lst", sep = ""), main = NULL, subset = xsubset(object), show.plots = TRUE, txt.cex = 0.7, txt.font = 1, show.ids = FALSE, param.table = TRUE, txt.columns = 2, force.wres = FALSE, ...)
```

Arguments

- `object` An xpose.data object.
- `dir` The directory to look for the model and output file of a NONMEM run.
- `modfile` The name of the NONMEM control stream associated with the current run.
- `listfile` The name of the NONMEM output file associated with the current run.
- `main` A string giving the main heading. NULL if none.
- `subset` A string giving the subset expression to be applied to the data before plotting. See `xsubset`.
- `show.plots` Logical indicating if GOF plots should be shown in the run summary.
- `txt.cex` Number indicating the size of the txt in the run summary.
Font of the text in the run summary.

Logical indicating if IDs should be plotted in the plots for the run summary.

Logical indicating if the parameter table should be shown in the run summary.

The number of text columns in the run summary.

Plot the WRES even if other residuals are available.

Other arguments passed to the various functions.

A compound plot containing an Xpose run summary is created.

Niclas Jonsson and Andrew Hooker

Other specific functions: absval.cwres.vs.cov.bw.absval.cwres.vs.pred.by.cov.absval.cwres.vs.pred.absval.iwres.cwres.vs.ipred.pred.absval.iwres.vs.cov.bw.absval.iwres.vs.idv.absval.iwres.vs.ipred.by.absval.iwres.vs.ipred.absval.iwres.vs.pred.absval.wres.vs.cov.bw.absval.wres.vs.idv.absval.wres.vs.pred.by.cov.absval.wres.vs.pred.absval_delta_vs_cov_model_comp.addit.gof.autocorr.cwres.autocorr.iwres.autocorr.wres.basic.gof.basic.model.comp.cat.dv.vs.idv.sb.cat.pc.cov.splom.cwres.dist.hist.cwres.dist.qq.cwres.vs.cov.cwres.vs.idv.bw.cwres.vs.idv.cwres.vs.pred.bw.cwres.vs.pred.cwres_wres_vs_x.dOFV.vs.cov.dOFV.vs.id.dOFV1.vs.dOFV2.data.checkout.dv.preds.vs.idv.dv.vs.idv.dv.vs.ipred.by.cov.dv.vs.ipred.by.idv.dv.vs.ipred.dv.vs.pred.by.cov.dv.vs.pred.by.idv.dv.vs.pred.ipred.dv.vs.pred.gof.ind.plots.cwres.hist.ind.plots.cwres.qq.ind.plots.ipred.vs.idv.iwres.dist.hist.iwres.dist.qq.iwres.vs.idv.kaplan.plot.par_cov_hist.par_cov qq.parm.vs.cov.parm.vs.parm.pred.vs.idv.ranpar.vs.cov.wres.dist.hist.wres.dist.qq.wres.vs.idv.bw.wres.vs.idv.wres.vs.pred.bw.wres.vs.pred.xpose.VPC.both.xpose.VPC.categorical.xpose.VPC.xpose4-package

od = setwd(tempdir()) # move to a temp directory
cur.files <- dir() # current files in temp directory

simprazExample(overwrite=TRUE) # write files

(new.files <- dir()!([!dir() %in% cur.files])) # what files are new here?

xpdb <- xpose.data(1)
runsum(xpdb)

file.remove(new.files) # remove these files
setwd(od) # restore working directory
Description

Xpose database from the NONMEM output of a model for prazosin using simulated data (and NONMEM 7.3).

Usage

simpraz.xpdb

Format

an xpose.data object

Details

The database can be used to test functions in Xpose 4. This database is slightly different than the database that is created when reading in the files created by simprazExample using xpose.data.

See Also

simprazExample

Examples

```r
xpose.print(simpraz.xpdb)
Data(simpraz.xpdb)
str(simpraz.xpdb)
```

Function to create files for the simulated prazosin example in Xpose

Description

Creates NONMEM data, model and output files for a model of prazosin using simulated data.

Usage

```r
simprazExample(overwrite = FALSE)
```
Arguments

overwrite Logical. Should the function overwrite files with the same names already in the current working directory?

Details

Creates files in the current working directory named: run1.ext run1.lst run1.mod simpraz.dta xptab1

Author(s)

Niclas Jonsson and Andrew Hooker

See Also

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres.data.checkout.data_extract_or_assign.db.names.export.graph.par.export.variable.definit import.graph.par.import.variable.definitions, make.sb.data, nsm, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory

simprazExample(overwrite=TRUE) # write files

(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?

file.remove(new.files) # remove these files

setwd(od) # restore working directory

tabulate.parameters
Tabulate the population parameter estimates

Description

This function provides a summary of the model's parameter estimates and precision.

Usage

`tabulate.parameters(object, prompt = FALSE, outfile = NULL, dir = "")`
wres.dist.hist

Description

This is a histogram of the distribution of weighted residuals (WRES) in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.histogram function.

Arguments

- **object**: An xpose.data object.
- **prompt**: Ask before printing.
- **outfile**: file to output to (NULL means screen).
- **dir**: Which directory is the NONMEM output file located. "" means the current working directory getwd().

Value

A table summarizing the parameters and their precision.

Author(s)

Niclas Jonsson, Andrew Hooker & Justin Wilkins

See Also

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definites, import.graph.par, import.variable.definites, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, xlabel, xpose.data, xpose.print, xpose4-package, xsubset

Examples

od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory

simprazExample(overwrite=TRUE) # write files
(new.files <- dir()[(dir() %in% cur.files)]) # what files are new here?

xpdb <- xpose.data(1) # read in files to xpose database

tabulate.parameters(xpdb)

file.remove(new.files) # remove these files

setwd(od) # restore working directory
Usage

```r
wres.dist.hist(object, ...)```

Arguments

- **object**
  - An `xpose.data` object.
- **...**
  - Other arguments passed to `xpose.plot.histogram`.

Details

Displays a histogram of the weighted residuals (WRES).

Value

Returns a histogram of weighted residuals (WRES).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

- `xpose.plot.histogram`, `xpose.panel.histogram`, `histogram`, `xposeprefs-class`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`, `absval.iwres.vs.ipred`, `absval.iwres.vs.idv`, `absval.wres.vs.ipred`, `absval.wres.vs.predict`, `absval.wres.vs.cov.bw`, `absval.wres.vs.cov`, `addit.gof`, `autocorr.cwres`, `autocorr.cwres.ipred`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv.bw`, `cwres.vs.idv`, `cwres.vs.ipred`, `cwres.vs.predict`, `cwres.vs.x`, `dOFV`, `dv.cov`, `dOFV.id`, `dOFV1`, `dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred`, `dv.vs.ipred`, `dv.vs.predict`, `dv.vs.predict`, `dv.vs.predict`, `gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots`, `ipred.vs.idv`, `iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov.hist`, `par_cov.qq`, `parm.vs.cov`, `parm.vs.cov`, `parm.vs.parm`, `pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.qq`, `wres.vs.idv.bw`, `wres.vs.idv`, `wres.vs.parn`, `wres.vs.parn`, `wres.vs.pred`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`

Examples

```r
Here we load the example xpose database
xpdb <- simpraz.xpdb

wres.dist.hist(xpdb)```
Quantile-quantile plot of weighted residuals (WRES), for Xpose 4

Description

This is a QQ plot of the distribution of weighted residuals (WRES) in the dataset, a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.qq function.

Usage

wres.dist.qq(object, ...)

Arguments

object

An xpose.data object.

... Other arguments passed to link{xpose.plot.qq}.

Details

Displays a QQ plot of the weighted residuals (WRES).

Value

Returns a QQ plot of weighted residuals (WRES).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.qq, xpose.panel.qq, qcmath, xpose.prefs-class, compute.cwres, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.absval.iwres.vs.ipred, absval.iwres.vs.ipred, absval.iwres.vs.ipred.absval.iwres.vs.cov.by.absval.iwres.vs.cov.by.absval.iwres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred.absval.delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred, cwres.vs.pred.det, cwres.wres_vs_x, dOFV.vs.cov, dOFV.vs.idv, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.idv, dv.vs.pred.ipred, dv.vs.pred.gof, indplots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par.cov_hist, par.cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.vs.idv, bw, wres.vs.idv, wres.vs.ipred, wres.vs.pred, wres.vs.pred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

wres.dist.qq(xpdb)
```

wres.vs.cov
Weighted residuals (WRES) plotted against covariates, for Xpose 4

Description

This creates a stack of plots of weighted residuals (WRES) plotted against covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.default` and `xpose.plot.histogram` functions. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Usage

```r
wres.vs.cov(object, ylb = "WRES", smooth = TRUE, type = "p",
             main = "Default", ...)
```

Arguments

- **object**: An `xpose.data` object.
- **ylb**: A string giving the label for the y-axis. `NULL` if none.
- **smooth**: A `NULL` value indicates that no superposed line should be added to the graph. If `TRUE` then a smooth of the data will be superimposed.
- **type**: 1-character string giving the type of plot desired. The following values are possible, for details, see `plot`: "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
- **main**: The title of the plot. If "Default" then a default title is plotted. Otherwise the value should be a string like "my title" or `NULL` for no plot title.
- **...**: Other arguments passed to `link{xpose.plot.default}` or `link{xpose.plot.histogram}`.

Details

Weighted residuals (WRES) are plotted against each covariate present, as specified in `object@Prefs@Xvardef$covariates`, creating a stack of plots.

A wide array of extra options controlling xyplots and histograms are available. See `xpose.plot.default` and `xpose.plot.histogram` for details.
Value

Returns a stack of xyplots and histograms of CWRES versus covariates.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xpose.plot.histogram, xyplot, histogram, xpose.prefs-class, xpose.data-class

Examples

```r
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb

## A vanilla plot
wres.vs.cov(xpdb)

## Custom colours and symbols, IDs
wres.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)

## End(Not run)
```

wres.vs.idv

Population weighted residuals (WRES) plotted against the independent variable (IDV) for Xpose 4

Description

This is a plot of population weighted residuals (WRES) vs the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

`wres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)`
Arguments

- **object**: An xpose.data object.
- **abline**: Vector of arguments to the `panel.abline` function. No abline is drawn if NULL.
- **smooth**: A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.
- ... Other arguments passed to `link{xpose.plot.default}`.

Details

Weighted residuals (WRES) are plotted against the independent variable, as specified in `object@prefs@xvar$idv`. A wide array of extra options controlling xyplots are available. See `xpose.plot.default` and `xpose.panel.default` for details.

Value

Returns an xyplot of WRES vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

`xpose.plot.default`, `xpose.panel.default`, `xyplot`, `xposeprefs-class`, `xpose.data-class`

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`, `absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.idv`, `absval.iwres.vs.ipred`, `absval.iwres.vs.pred`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`, `absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`, `autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`, `cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv.bw`, `cwres.vs.idv`, `cwres.vs.pred.bw`, `cwres.wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`, `data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred`, `dv.vs.pred.by.cov`, `dv.vs.pred.by.idv`, `dv.vs.pred.ipred`, `dv.vs.pred.gof`, `ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred.vs.idv`, `iwres.dist.hist`, `iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov.qq`, `parm.vs.cov`, `parm.vs.parm`, `pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv.bw`, `wres.vs.pred.bw`, `wres.vs.pred`, `xpose.VPC.both`, `xpose.VPC.categorical`, `xpose.VPC`, `xpose4-package`

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

wres.vs.idv(xpdb)

## A conditioning plot
wres.vs.idv(xpdb, by="HCTZ")
```
Description

This creates a box and whisker plot of weighted residuals (WRES) vs the independent variable (IDV), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

wres.vs.idv.bw(object, ...)

Arguments

object An xpose.data object.
... Other arguments passed to \{xpose.plot.bw\}.

Details

This creates a box and whisker plot of weighted residuals (WRES) vs the independent variable (IDV), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

A wide array of extra options controlling bwplots are available. See \{xpose.plot.bw\} and \{xpose.panel.bw\} for details.

Value

Returns a stack of box-and-whisker plots of WRES vs IDV.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

\{xpose.plot.bw\}, \{xpose.panel.bw\}, \{bwplot\}, \{xposeprefs-class\}, \{xposedata-class\}

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.pred.absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2.
Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

wres.vs.idv.bw(xpdb)
```

Description

This is a plot of population weighted residuals (WRES) vs population predictions (PRED), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the `xpose.plot.default` function. Most of the options take their default values from `xpose.data` object but may be overridden by supplying them as arguments.

Usage

```r
wres.vs.pred(object, smooth = TRUE, abline = c(0, 0), ...)
```

Arguments

- **object**: An `xpose.data` object.
- **smooth**: Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- **abline**: Vector of arguments to the `panel.abline` function. No abline is drawn if NULL.
- **...**: Other arguments passed to `link{xpose.plot.default}`.

Details

A wide array of extra options controlling xyplots are available. See `xpose.plot.default` and `xpose.panel.default` for details.

Value

Returns an xyplot of WRES vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.default, xyplot, xpose.prefs-class, compute.cwres, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.ipred, absval.wres.vs.pred, absval.wres.vs.idv, absval.wres.vs.idv, absval.wres.vs.by.cov, absval.wres.vs.by.idv, absval.wres.vs.ipred.by.cov, absval.wres.vs.ipred, absval.wres.vs.ipred.by.idv, absval.wres.vs.idv, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.dists.cwres.vs.cov, cwres.dists.cwres.vs.idv, cwres.dists.cwres.vs.idv, d0fvs.cov, d0fvs.id, d0fvs1.cwvs.idf0v2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, Kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dists.cwres.vs.idv, wres.dists.cwres.vs.idv, wres.dists.cwres.vs.idv, wres.dists.cwres.vs.idv, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC.xpose4-package

Examples

```r
## Here we load the example xpose database
xpdb <- simpraz.xpdb

wres.vs.pred(xpdb)

## A conditioning plot
wres.vs.pred(xpdb, by="HCTZ")
```

wres.vs.pred.bw

Box-and-whisker plot of weighted residuals vs population predictions for Xpose 4

Description

This creates a box and whisker plot of weighted residuals (WRES) vs population predictions (PRED), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

Usage

```
wres.vs.pred.bw(object, ...)
```
Arguments

object

An xpose.data object.

... Other arguments passed to link(xpose.plot.bw).

Details

This creates a box and whisker plot of weighted residuals (WRES) vs population predictions (PRED), and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.

A wide array of extra options controlling bwplots are available. See xpose.plot.bw and xpose.panel.bw for details.

Value

Returns a box-and-whisker plot of WRES vs PRED.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.bw, xpose.panel.bw, bwplot, xposeprefs-class, xposedata-class

Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred.idv, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.iwres.vs.pred.by.cov, absval.iwres.vs.pred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic_model.comp, cat.dv_vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.ppred.idv, dv.vs.ppred.gof, ind.plots.cwres.hist, ind.plots.iwres.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.cov, wres.vs.idv, wres.vs.ppred, xpose.VPC.both, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

Here we load the example xpose database
xpdb <- simpraz.xpdb

wres.vs.pred.bw(xpdb)
xlabel

Extract and set labels for Xpose data items.

Description

This function extracts and sets label definitions in Xpose data objects.

Usage

`xlabel(x, object)`

`xlabel(object) <- value`

Arguments

- `x` Name of the variable to assign a label to.
- `object` An `xpose.data` object.
- `value` A two element vector of which the first element is the name of the variable and the second the label

Details

`x` should be a string exactly matching the name of a column in the `data.frame` in the `Data` slot of an `xpose.data` object. The name of columns defined through `xpose` variable definitions (see `xpose.data`) can be extracted using the `xvardef` function and to be used in the `xlabel` function, e.g. `xlabel(xvardef("dv", object), object)`, which would give the label for the `dv` variable.

Value

The label of the specified column.

Functions

- `xlabel<-`: sets label definitions in Xpose data objects. assigned value should be a two-element vector of which the first element is the name of the variable and the second the label

Author(s)

Niclas Jonsson

See Also

`xpose.prefs-class, xvardef`

Other data functions: `add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definition, import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xpose.data, xpose.print, xpose4-package, xsubset`
Examples

```r
xpdb <- simpraz.xpdb

## Display label for dependent variable in the Xpose data object
xlab("DV", xpdb)

## Set label for dependent variable
xlab(xpdb) <- c("DV", "Concentration (mg/L)")
xlab("DV", xpdb) # how has this changed?
```

xp.boot.par.est Compare parameter estimates for covariate coefficients

Description

This function creates a plot of the estimates for covariate coefficients, obtained from the first step (univariate testing) in each scm performed in the bootscm. When normalized for their standard deviation, these plots can be used to compare the strength of the covariate relationship. Coloring is based on the covariate being included in the final model (blue) not being included (red).

Usage

```r
xp.boot.par.est(bootgam.obj = NULL, sd.norm = TRUE, by.cov.type = FALSE,
               abs.values = FALSE, show.data = TRUE, show.means = TRUE,
               show.bias = TRUE, dotpch = c(1, 19), labels = NULL, pch.mean = ",",
               xlab = NULL, ylab = NULL, col = c(rgb(0.8, 0.5, 0.5),
               rgb(0.2, 0.2, 0.7), rgb(0.2, 0.2, 0.7), rgb(0.6, 0.6, 0.6)), ...)
```

Arguments

- **bootgam.obj** The object created using bootscm.import(), which hold the data for plotting.
- **sd.norm** Perform normalization of the covariate coefficients (default is TRUE). When TRUE, the estimated covariate coefficients will be multiplied by the standard deviation of the specific covariate (both for continuous and categorical covariates).
- **by.cov.type** Split the plot for continuous and dichotomous covariates. Default is FALSE.
- **abs.values** Show the covariate coefficient in absolute values. Default is FALSE.
- **show.data** Show the actual covariate coefficients in the plot. Default is TRUE.
- **show.means** Show the means of included covariates (blue) and all covariates (grey) in the plot. Default is TRUE.
- **show.bias** Show estimated bias as text in the plot. Default is TRUE.
- **dotpch** The character used for plotting.
- **labels** Custom labels for the parameter-covariate relationships, (character vector)
- **pch.mean** The character used for plotting the mean.
Details

Optionally, estimated bias is plotted in the graph (as text). Bias is also shown by the difference in mean of parameter estimates when the covariate is included (blue diamond), as opposed to the mean of all parameter estimates (grey diamond).

Note: For dichotomous covariates, the default PsN implementation is to use the most common covariate value as base, while the effect of the other value, is estimated by a theta. Xpose (bootscm.import) however recalculates the estimated parameters, to the parametrization in which the lowest value of the dichotomous covariate is the base (e.g. 0), and the estimated THETA denotes the proportional change, when the covariate has the other value (e.g. 1).

Value

No value returned.

Author(s)

Ron Keizer

Examples

xp.boot.par.est()
Arguments

- **bootgam.obj**: The object created using `bootscm.import()`, which hold the data for plotting.
- **sd.norm**: Perform normalization of the covariate coefficients (default is `TRUE`). When `TRUE`, the estimated covariate coefficients will be multiplied by the standard deviation of the specific covariate (both for continuous and categorical covariates).
- **by.cov.type**: Split the plot for continuous and dichotomous covariates. Default is `FALSE`.
- **cov.plot**: A character vector which lists the covariates to include in the plot. If none are specified (NULL), all covariate coefficients will be included in the plot.
- **ask.covs**: Ask the user which covariates to include in the plot. Default is `FALSE`.
- **dotpch**: The character used for plotting.
- **col**: The colors used for plotting.
- **...**: Additional plotting arguments may be passed to this function.

Value

No value returned.

Author(s)

Ron Keizer

Examples

```r
## Not run:
xp.boot.par.est.corr(current.bootscm, sd.norm = TRUE,
                      cov.plot = c("CLSEX", "VSEX", "CLWT"))
## End(Not run)
```

Description

Distribution of difference in AIC

Usage

```r
xp.daic.npar.plot(bootscm.obj = NULL, main = NULL,
                  xlb = "Difference in AIC", ylb = "Density", ...)
```
The function `xp.distr.mod.size` creates a kernel smoothed plot of the number of covariates included in the final model in each gam/scm in the bootgam/bootscm procedure.

Usage

```r
xp.distr.mod.size(bootgam.obj = NULL, boot.type = NULL, main = NULL,
                   bw = 0.5, xlb = NULL, ...)```

### Arguments

- **bootgam.obj**: The bootgam or bootscm object.
- **boot.type**: Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
- **main**: Plot title.
- **bw**: The smoothing bandwidth to be used for the kernel.
- **xlb**: The x-axis label.
- **...**: Additional plotting parameter may be passed to this function.

### Value

A lattice plot object will be returned.
xp.dofv.npar.plot

Author(s)

Ron Keizer

---

xp.dofv.npar.plot  Distribution of difference in OFV

Description

Distribution of difference in OFV

Usage

xp.dofv.npar.plot(bootscm.obj = NULL, main = NULL, xlb = "Difference in OFV", ylb = "Density", ...)

Arguments

- `bootscm.obj`  a bootscm object.
- `main`  The title of the plot
- `xlb`  The x-label of the plot
- `ylb`  The y-label of the plot
- `...`  Additional parameters passed to panel.xyplot and xyplot.

Value

A lattice plot object.

See Also

Other bootgam: xp.daic.npar.plot, xp.inc.cond.stab.cov, xp.inc.ind.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov

Other bootscm: bootscm.import, xp.daic.npar.plot, xp.inc.cond.stab.cov, xp.inc.ind.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov
xp.dofv.plot

OFV difference (optimism) plot.

Description
A plot of the difference in OFV between final bootscm models and the reference final scm model.

Usage
xp.dofv.plot(bootscm.obj = NULL, main = NULL, xlb = "Difference in OFV", ylb = "Density", ...)

Arguments
bootscm.obj The bootgam or bootscm object.
main Plot title.
xlb Label for x-axis.
ylb Label for y-axis.
... Additional plotting parameters.

Value
A lattice plot object is returned.

Author(s)
Ron Keizer

xp.get.disp

Default function for calculating dispersion in xpose.gam.

Description
Default function for calculating dispersion in xpose.gam.

Usage
xp.get.disp(gamdata, parnam, covnams, family = "gaussian", ...)

Arguments
gamdata the data used for a GAM
parnam ONE (and only one) model parameter name.
covnams Covariate names to test on parameter.
family Assumption for the parameter distribution.
... Used to pass arguments to more basic functions.
xp.inc.cond.stab.cov

Value

a list including the dispersion

See Also

Other GAM functions: GAM_summary_and_plot, xp.scope3, xpose.bootgam, xpose.gam, xpose4-package

xp.inc.cond.stab.cov Trace plots for conditional indices

Description

Trace plots for conditional indices

Usage

xp.inc.cond.stab.cov(bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Bootstrap replicate number", ylb = "Conditional inclusion frequency", normalize = TRUE, split.plots = FALSE, ...)

Arguments

bootgam.obj The bootgam or bootscm object.
boot.type Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
main The title of the plot
xlb The x-label of the plot
ylb The y-label of the plot
normalize Should one normalize?
split.plots Should the plots be split?
... Additional parameters passed to panel.xyplot and xyplot.

Value

A lattice plot object.

See Also

Other bootgam: xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.ind.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov

Other bootscm: bootscm.import, xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.ind.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov
xp.inc.ind.cond.stab.cov

Trace plots for conditional indices rper replicate number

Description

Trace plots for conditional indices rper replicate number

Usage

xp.inc.ind.cond.stab.cov(bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Bootstrap replicate number", ylb = "Conditional inclusion frequency", limits = c(0.2, 0.8), normalize = TRUE, split.plots = FALSE, start = 25, ...)

Arguments

- bootgam.obj: The bootgam or bootscm object.
- boot.type: Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
- main: The title of the plot
- xlb: The x-label of the plot
- ylb: The y-label of the plot
- limits: Limits for the inclusion index.
- normalize: Should one normalize?
- split.plots: Should the plots be split?
- start: When to start.
- ... Arguments passed to other functions.

Value

A lattice plot object.

See Also

Other bootgam: xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov

Other bootscm: bootscm.import, xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.cond.stab.cov, xp.inc.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov
Description

Plot the inclusion frequencies of covariates in the final models obtained in a bootgam or bootscm. Covariates are ordered by inclusion frequency.

Usage

xp.inc.prob(bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate", ...)

Arguments

- bootgam.obj: The bootgam or bootscm object.
- boot.type: Either “bootgam” or "bootscm". Default is NULL, which means the user will be asked to make a choice.
- main: Plot title
- col: Color used for the plot.
- xlb: Label for x-axis.
- ylb: Label for y-axis.
- ...: Additional plotting parameters.

Value

A lattice plot object will be returned.

Author(s)

Ron Keizer

Description

Plot the inclusion frequency of the most common 2-covariate combinations.

Usage

xp.inc.prob.comb.2(bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate combination", ...)

Description

Plot the inclusion frequency of the most common 2-covariate combinations.

Usage

xp.inc.prob.comb.2(bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate combination", ...)
Arguments

bootgam.obj  The bootgam or bootscm object.
boot.type    Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
main         Plot title
col          Color used for plot.
xlb          Label for x-axis.
ylb          Label for y-axis.
...          Additional plotting parameters.

Value

A lattice plot object will be returned.

Author(s)

Ron Keizer

Description

Inclusion stability plot

A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.

Usage

xp.inc.stab.cov(bootgam.obj = NULL, boot.type = NULL, main = NULL, normalize = TRUE, split.plots = FALSE, xlb = "Bootstrap replicate number", ylb = "Difference of estimate with final", ...)

Arguments

bootgam.obj  The bootgam or bootscm object.
boot.type    Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
main         Plot title
normalize    Should the plot be normalized?
split.plots  Should the plots be split?
xp.incl.index.cov

| xlb | The label for the x-axis. |
| ylb | The label for the y-axis. |
| ... | Additional plotting parameters |

**Value**

A lattice plot object is returned.

**Author(s)**

Ron Keizer

**See Also**

Other bootgam: xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.cond.stab.cov, xp.inc.ind.cond.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov

Other bootscm: bootscm.import, xp.daic.npar.plot, xp.dofv.npar.plot, xp.inc.cond.stab.cov, xp.inc.ind.cond.stab.cov, xp.incl.index.cov.ind, xp.incl.index.cov

```
Description

Covariate inclusion indices show the correlation in inclusion of a covariate in the final model in a bootgam or bootscm.

Usage

xp.incl.index.cov(bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Index", ylb = "Covariate", add.ci = FALSE, incl.range = NULL, return_plot = TRUE, results.tab = NULL, ...)

Arguments

bootgam.obj The bootgam or bootscm object.
boot.type Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
main Plot title.
xlb Label for the x-axis.
ylb Label for the y-axis.
add.ci Add a confidence interval to the plotted data.
incl.range Included range
return_plot Should the function return a plot?
results.tab Specify your own results table.
... Additional plotting information.
```
A lattice plot object is returned.

Author(s)
Ron Keizer

See Also
Other bootgam: `xp.daic.npar.plot`, `xp.dofv.npar.plot`, `xp.inc.cond.stab.cov`, `xp.inc.ind.cond.stab.cov`, `xp.inc.stab.cov`, `xp.incl.index.cov.ind`

Other bootscm: `bootscm.import`, `xp.daic.npar.plot`, `xp.dofv.npar.plot`, `xp.inc.cond.stab.cov`, `xp.inc.ind.cond.stab.cov`, `xp.inc.stab.cov`, `xp.incl.index.cov.ind`

---

**xp.incl.index.cov.comp**

*Inclusion index individuals, compare between covariates.*

Description

A plot showing the range of inclusion indices for individuals for all covariates. This plot can be used to evaluate whether there were covariates which were more influenced by the constituency of the bootstrapped dataset than others.

Usage

```r
xp.incl.index.cov.comp(bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Individual inclusion index", ylb = "ID", ...)
```

Arguments

- `bootgam.obj`: A bootgam or bootscm object.
- `boot.type`: Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
- `main`: The title of the plot.
- `xlb`: The label for the x-axis.
- `ylb`: The label for the y-axis.
- `...`: Additional plotting parameters.

Value

A lattice plot object is returned.

Author(s)
Ron Keizer
**xp.incl.index.cov.ind**  

*Individual inclusion index*

---

**Description**

This function will generate a plot of individual inclusion indexes for a specific covariate, which can be used to identify influential individuals for inclusion of that covariate. The index for an individual is calculated as the observed number of inclusions of that individual when the specific covariate was included minus the expected number of inclusions (based on the total bootstrap inclusions), divided by expected.

**Usage**

```r
xp.incl.index.cov.ind(bootgam.obj = NULL, boot.type = NULL, cov.name = NULL, main = NULL, ylb = "ID", xlb = "Individual inclusion index", return_plot = TRUE, results.tab = NULL, ...)
```

**Arguments**

- `bootgam.obj` A bootgam or bootscm object.
- `boot.type` Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice.
- `cov.name` The name of the covariate for which to create the plot.
- `main` The title of the plot.
- `ylb` The label for the x-axis.
- `xlb` The label for the y-axis.
- `return_plot` Should a plot object be returned?
- `results.tab` Supply your own results table.
- `...` Additional plotting parameters.

**Value**

A lattice plot object is returned.

**Author(s)**

Ron Keizer

**See Also**

Other bootgam: `xp.daic.npar.plot`, `xp.dofv.npar.plot`, `xp.inc.cond.stab.cov`, `xp.inc.ind.cond.stab.cov`, `xp.inc.stab.cov`, `xp.incl.index.cov`

Other bootscm: `bootscm.import`, `xp.daic.npar.plot`, `xp.dofv.npar.plot`, `xp.inc.cond.stab.cov`, `xp.inc.ind.cond.stab.cov`, `xp.inc.stab.cov`, `xp.incl.index.cov`
xp.scope3

Define a scope for the gam. Used as default input to the scope argument in xpose.gam

Description

Define a scope for the gam. Used as default input to the scope argument in xpose.gam

Usage

xp.scope3(object, covnam = xvardef("covariates", object), nmods = 3, smoother1 = 0, arg1 = NULL, smoother2 = 1, arg2 = NULL, smoother3 = "ns", arg3 = "df=2", smoother4 = "ns", arg4 = "df=3", excl1 = NULL, excl2 = NULL, excl3 = NULL, excl4 = NULL, extra = NULL, subset = xsubset(object), ...)

Arguments

object An xpose.data object.
covnam Covariate names to test.
nmods Number of models to examine.
smoother1 Smoother for each model.
arg1 Argument for model 1.
smoother2 Smoother for each model.
arg2 Argument for model 2.
smoother3 Smoother for each model.
arg3 Argument for model 3.
smoother4 Smoother for each model.
arg4 Argument for model 4.
excl1 Covariate exclusion from model 1.
excl2 Covariate exclusion from model 2.
excl3 Covariate exclusion from model 3.
excl4 Covariate exclusion from model 4.
extra Extra exclusion criteria.
subset Subset on data.
... Used to pass arguments to more basic functions.

See Also

Other GAM functions: GAM_summary_and_plot, xp.get.disp, xpose.bootgam, xpose.gam, xpose4-package
Examples

xp.scope3(simpraz.xpdb)

---

### xpose.bootgam

#### Title

Title

#### Description

Title

#### Usage

```r
xpose.bootgam(object, n = n, id = object@Prefs@Xvardef$id, oid = "OID",
 seed = NULL, parnam = xvardef("parms", object)[1],
 covnams = xvardef("covariates", object),
 conv.value = object@Prefs@Bootgamprefs$conv.value,
 check.interval = as.numeric(object@Prefs@Bootgamprefs$check.interval),
 start.check = as.numeric(object@Prefs@Bootgamprefs$start.check),
 algo = object@Prefs@Bootgamprefsalgo,
 start.mod = object@Prefs@Bootgamprefs$start.mod,
 liif = as.numeric(object@Prefs@Bootgamprefs$liif),
 ljif.conv = as.numeric(object@Prefs@Bootgamprefs$ljif.conv),
 excluded.ids = as.numeric(object@Prefs@Bootgamprefs$excluded.ids), ...)
```

#### Arguments

- **object**: An xpose.data object.
- **n**: number of bootstrap iterations
- **id**: column name of id
- **oid**: create a new column with the original ID data
- **seed**: random seed
- **parnam**: ONE (and only one) model parameter name.
- **covnams**: Covariate names to test on parameter.
- **conv.value**: Convergence value
- **check.interval**: How often to check the convergence
- **start.check**: When to start checking
- **algo**: Which algorithm to use
- **start.mod**: which start model
- **liif**: The liif value
- **ljif.conv**: The convergence value for the liif
- **excluded.ids**: ID values to exclude.
- **...**: Used to pass arguments to more basic functions.
Value

a list of results from the bootstrap of the GAM.

See Also

Other GAM functions: GAM_summary_and_plot, xp.get.disp, xp.scope3, xpose.gam, xpose4-package

Examples

```r
filter out occasion as a covariate as only one value
all_covs <- xvardef("covariates",simpraz.xpdb)
some_covs <- all_covs[!(all_covs %in% "OCC")]

here only running n=5 replicates to see that things work
use something like n=100 for resonsable results
boot_gam_obj <- xpose.bootgam(simpraz.xpdb,5,parnam="KA",covnams=some_covs,seed=1234)
```

---

`xpose.data`  
Create an Xpose data object

Description

Creates an xpose.data object.

Usage

```r
xpose.data(runno, tab.suffix = "", sim.suffix = "sim", cwres.suffix = "",
 directory = "", quiet = TRUE, table.names = c("sdtab", "mutab", "patab",
 "catab", "cotab", "mytab", "extra", "xptab", "cwtab"),
 cwres.name = c("cwtab"), mod.prefix = "run", mod.suffix = ".mod",
 phi.suffix = ".phi", phi.file = NULL, nm7 = NULL, ...)
```

Arguments

- **runno**: Run number of the table files to read.
- **tab.suffix**: Suffix to be appended to the table file names for the "real" data.
- **sim.suffix**: Suffix to be appended to the table file names for any simulated data.
- **cwres.suffix**: Suffix to be appended to the table file names for any CWRES data.
- **directory**: Where the files are located.
- **quiet**: A logical value indicating if more diagnostic messages should be printed when running this function.
- **table.names**: Default text that Xpose looks for when searching for table files.
- **cwres.name**: default text that xpose looks for when searching for CWRES table files.
mod.prefix       Start of model file name.
mod.suffix       End of model file name.
phi.suffix       End of .phi file name.
phi.file         The name of the .phi file. If not NULL then supersedes paste(mod.prefix,runno,phi.suffix,sep="").
m7               T/F if table files are for NONMEM 7/6, NULL for undefined.
...              Extra arguments passed to function.

Details

Xpose expects, by default, to find at least one of the following NONMEM tables in the working directory to be able to create an Xpose data object (using a run number of ‘5’ as an example):

- **sdtab5**: The ‘standard’ parameters, including IWRE, IPRE, TIME, and the NONMEM default items (DV, PRED, RES and WRES) that are added when NOAPPEND is not present in the $TABLE record.

  \$TABLE ID TIME IPRE IWRE NOPRINT ONEHEADER FILE=sdtab5

- **patab5**: The empirical Bayes estimates of individual model parameter values, or posthoc estimates. These are model parameters, such as CL, V2, ETA1, etc.

  \$TABLE ID CL V2 KA K F1 ETA1 ETA2 ETA3 NOPRINT NOAPPEND ONEHEADER FILE=patab5

- **catab5**: Categorical covariates, e.g. SEX, RACE.

  \$TABLE ID SEX HIV GRP NOPRINT NOAPPEND ONEHEADER FILE=catab5

- **cotab5**: Continuous covariates, e.g. WT, AGE.

  \$TABLE ID WT AGE BSA HT GGT HB NOPRINT NOAPPEND ONEHEADER FILE=cotab5

- **mutab5, mytab5, extra5, xptab5**: Additional variables of any kind. These might be useful if there are more covariates than can be accommodated in the covariates tables, for example, or if you have other variables that should be added, e.g. CMAX, AUC.

The default names for table files can be changed by changing the default values to the function. The files that Xpose looks for by default are:

  paste(table.names, runno, tab.suffix, sep="")

The default CWRES table file name is called:

  paste(cwres.name,runno,cwres.suffix,tab.suffix,sep="")

If there are simulation files present then Xpose looks for the files to be named:

  paste(table.names, runno, sim.suffix, tab.suffix, sep="")

This is basically a wrapper function for the read.nm.tables, Data and SData functions. See them for further information.

Also reads in the .phi file associated with the run (Individual OFVs, parameters, and variances of those parameters.)

Value

An xpose.data object. Default values for this object are created from a file called ‘xpose.ini’. This file can be found in the root directory of the ‘xpose4’ package:

  system.file("xpose.ini",package="xpose4").

It can be modified to fit the users wants and placed in the home folder of the user or the working directory, to override default settings.
Author(s)
Niclas Jonsson, Andrew Hooker

See Also
xpose.data-class, Data, SData, read.nm.tables, compute.cwres
Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable_definitions, import.graph.par, import.variable_definitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.print, xpose4-package, xsubset

Examples

# Here we create files from an example NONMEM run

od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory

SimprazExample(overwrite=TRUE) # write files
(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?

xpdb <- xpose.data()

file.remove(new.files) # remove these files
setwd(od) # restore working directory

## Not run:

# We expect to find the required NONMEM run and table files for run
# 5 in the current working directory, and that the table files have
# a suffix of '.dat', e.g. sdtab5.dat

xpdb5 <- xpose.data(5, tab.suffix = ".dat")

## End(Not run)

xpose.data-class  

Class xpose.data

Description

The xpose.data class is the fundamental data object in Xpose 4. It contains the data and preferences used in the creation of the Xpose plots and analyses.
Objects from the Class

Objects are most easily created by the `xpose.data` function, which reads the appropriate NON-MEM table files and populates the slots of the object.

Author(s)

Niclas Jonsson and Andrew Hooker

See Also

`xpose.data`, `Data.SData`, `read.nm.tables`, `xpose.prefs-class`

---

**xpose.gam**

*Stepwise GAM search for covariates on a parameter (Xpose 4)*

Description

Function takes an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.

Usage

```r
xpose.gam(object, parnam = xvardef("parms", object)[1],
 covnams = xvardef("covariates", object),
 trace = TRUE, scope = NULL,
 disp = object@Prefs@Gam.prefs$disp,
 start.mod = object@Prefs@Gam.prefs$start.mod,
 family = "gaussian",
 wts.data = object@Data.firstonly, wts.col = NULL,
 steppit = object@Prefs@Gam.prefs$steppit,
 subset = xsubset(object),
 onlyfirst = object@Prefs@Gam.prefs$onlyfirst,
 medianNorm = object@Prefs@Gam.prefs$medianNorm,
 nmods = object@Prefs@Gam.prefs$nmods,
 smoother1 = object@Prefs@Gam.prefs$smoother1,
 smoother2 = object@Prefs@Gam.prefs$smoother2,
 smoother3 = object@Prefs@Gam.prefs$smoother3,
 smoother4 = object@Prefs@Gam.prefs$smoother4,
 arg1 = object@Prefs@Gam.prefs$args1,
 arg2 = object@Prefs@Gam.prefs$args2,
 arg3 = object@Prefs@Gam.prefs$args3,
 arg4 = object@Prefs@Gam.prefs$args4,
 excl1 = object@Prefs@Gam.prefs$excl1,
 excl2 = object@Prefs@Gam.prefs$excl2,
 excl3 = object@Prefs@Gam.prefs$excl3,
 excl4 = object@Prefs@Gam.prefs$excl4,
 extra = object@Prefs@Gam.prefs$extra, ...)
```
Arguments

object  
parnam  
 covnams  
 trace  
 scope  
disp  
 start.mod  
 family  
wts.data  
wts.col  
 steppit  
 subset  
 onlyfirst  
 medianNorm  
nmods  
 smoother1  
 smoother2  
 smoother3  
 smoother4  
 arg1  
 arg2  
 arg3  
 arg4  
 excl1  
 excl2  
 excl3  
 excl4  
 extra  
...  

Value

Returned is a step.Gam object. In this object the step-wise-selected model is returned, with up to two additional components. There is an "anova" component corresponding to the steps taken in the search, as well as a "keep" component if the "keep=" argument was supplied in the call.
Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

step.gam

Other GAM functions: GAM_summary_and_plot, xp.get.disp, xp.scope3, xpose.bootgam, xpose4-package

Examples

```r
Run a GAM using the example xpose database
gam_ka <- xpose.gam(simpraz.xpdb, parnam="KA")

Summarize GAM
xp.summary(gam_ka)

GAM residuals of base model vs. covariates
xp.plot(gam_ka)

An Akaike plot of the results
xp.akaike.plot(gam_ka)

Studentized residuals
xp.ind.stud.res(gam_ka)

Individual influence on GAM fit
xp.ind.inf.fit(gam_ka)

Individual influence on GAM terms
xp.ind.inf.terms(gam_ka)

Individual parameters to GAM fit
xp.cook(gam_ka)
```

Display the Xpose license and citation information

This function displays a copy of Xpose’s end user license agreement (EULA).
**Value**

The EULA.

**Author(s)**

Andrew Hooker

**Examples**

```r
xpose.license.citation()
```

---

### xpose.logTicks

*Functions to create nice looking axes when using Log scales.*

**Description**

The functions are used to create standard tic marks and axis labels when the axes are on the log scale.

**Usage**

```r
xpose.logTicks(lim, loc = c(1, 5))
xpose.yscale.components.log10(lim, ...)
xpose.xscale.components.log10(lim, ...)
```

**Arguments**

- `lim`: Limits
- `loc`: Locations
- `...`: Additional arguments passed to the function.

**Details**

These functions create log scales that look like they should (not the default R scales). These functions are used as input to the `xscale.components` argument in a lattice plot.

**Functions**

- `xpose.logTicks`: Make log tic marks
- `xpose.xscale.components.log10`: Make log scale on x-axis

**Author(s)**

Andrew Hooker
See Also

xpose.plot.default xscale.components

Examples

```r
Not run:
xpdb5 <- xpose.data(5)
xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T)
xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T,
 yscale.components = xpose.yscale.components.log10,
 xscale.components = xpose.xscale.components.log10)

both give the same result

End(Not run)
```

---

**xpose.multiple.plot**  
Create object with class "xpose.multiple.plot".

**Description**

Create and object with class "xpose.multiple.plot".

**Usage**

```r
xpose.multiple.plot(plotList, plotTitle = NULL, nm7 = TRUE,
 prompt = FALSE, new.first.window = FALSE, max.plots.per.page = 4,
 title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"),
 title gp = gpar(cex = 1.2, fontface = "bold"),
 title.just = c("center", "center")),
 mirror = FALSE, bql.layout = FALSE, ...)
```

**Arguments**

- `plotList`: A list of lattice plots.
- `plotTitle`: Main title for plots.
- `nm7`: TRUE if we are using NONMEM 7.
- `prompt`: When printing should we prompt for each new page in plot?
- `new.first.window`: TRUE or FALSE.
- `max.plots.per.page`: A number. Max value is 9.
- `title`: Title properties.
- `mirror`: Are there mirror plots in plot list?
- `bql.layout`: Should we use layout optimized for plots with BQL (below limit of quantification) measurements?
- `...`: Additional options passed to function.
Value

An object of class "xpose.multiple.plot".

Author(s)

Niclas Jonsson and Andrew C. Hooker

See Also

print.xpose.multiple.plot, xpose.multiple.plot.default

Other generic functions: gof, xpose4-package

---

xpose.multiple.plot-class

Class for creating multiple plots in xpose

Description

Class for creating multiple plots in xpose

Slots

plotlist A list of lattice plots
plotTitle The plot title
prompt Should prompts be used
new.first.window Create a new first window?
max.plots.per.page How many plots per page?
title The title
mirror Are there mirror plots to create
bql.layout Should we use bql.layout
xpose.multiple.plot.default

Xpose 4 generic function for plotting multiple lattice objects on one page

Description

Function takes a list of lattice plot objects and prints them in a multiple plot layout with a title.

Usage

xpose.multiple.plot.default(plotList, plotTitle = NULL, prompt = FALSE,
   new.first.window = FALSE, max.plots.per.page = 4, title = list(title.x =
   unit(0.5, "npc"), title.y = unit(0.5, "npc"), title_gp = gpar(cex = 1.2,
   fontface = "bold"), title.just = c("center", "center")), mirror = FALSE,
   bql.layout = FALSE, page.numbers = TRUE, ...)

Arguments

plotList A list of lattice plot objects such that plot object i can be called with plotList[[i]]
plotTitle The title used for the multiple plot layout
prompt If more than one page is needed do you want a prompt at the command line before the next page is printed
new.first.window Should the first page of this plot be in the already opened window or should a new window be created
max.plots.per.page Maximum number of plots per page in the multiple layout
title Look of title using grid.
mirror if the list contains mirror plots
bql.layout should we use layout optimized for BQL measurements?
page.numbers Should we add page numbers to multiple page plots?
... Other arguments passed to the code in this function

Details

Additional arguments:

title.x Where the title should be placed in the title grid region
title.y Where the title should be placed in the title grid region
title.just how the title should be justified
title_gp The par parameters for the title (see grid)
Value

returns nothing

Author(s)

Andrew Hooker

See Also

grid, basic.gof, parm.vs.parm, parm.vs.cov,

---

xpose.panel.bw Default box-and-whisker panel function for Xpose 4

Description

This is the box-and-whisker panel function for Xpose 4. This is not intended to be used outside the xpose.plot.bw function. Most of the arguments take their default values from xpose.data object but this can be overridden by supplying them as arguments to xpose.plot.bw.

Usage

xpose.panel.bw(x, y, object, subscripts, groups = NULL, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, xvarnam = NULL, yvarnam = NULL, type = object@Prefs@Graph.prefs$type, col = object@Prefs@Graph.prefs$col, pch = object@Prefs@Graph.prefs$pch, cex = object@Prefs@Graph.prefs$cex, lty = object@Prefs@Graph.prefs$lty, fill = object@Prefs@Graph.prefs$col, ids = NULL, ids.mode = object@Prefs@Graph.prefs$ids.mode, ids.col = object@Prefs@Graph.prefs$ids.col, ids.cex = object@Prefs@Graph.prefs$ids.cex, ids.dir = object@Prefs@Graph.prefs$ids.dir, bwhoriz = object@Prefs@Graph.prefs$bwhoriz, bwratio = object@Prefs@Graph.prefs$bwratio, bwvarwid = object@Prefs@Graph.prefs$bwvarwid, bwdotpch = object@Prefs@Graph.prefs$wdotpch, bwdotcol = object@Prefs@Graph.prefs$wdotcol, bwdotcex = object@Prefs@Graph.prefs$wdotcex, bwecol = object@Prefs@Graph.prefs$bwecol, bwefill = object@Prefs@Graph.prefs$bwefill, bwecty = object@Prefs@Graph.prefs$bwecty, bwecwd = object@Prefs@Graph.prefs$bwecwd, bwmbcol = object@Prefs@Graph.prefs$bwmbcol, bwmbly = object@Prefs@Graph.prefs$bwmbly, bwmbwd = object@Prefs@Graph.prefs$bwmbwd, bworcol = object@Prefs@Graph.prefs$bworcol, bworcex = object@Prefs@Graph.prefs$bworcex,
bwoutpch = object@Prefs@Graph.prefs$bwoutpch,
grid = object@Prefs@Graph.prefs$grid, logy = FALSE, logx = FALSE,
force.x.continuous = TRUE, binvar = NULL, bins = 10, ...)

Arguments

x Name(s) of the x-variable.
y Name(s) of the y-variable.
object An xpose.data object.
subscripts The standard Trellis subscripts argument (see xyplot).
groups Name of the variable used for superpose plots.
inclZeroWRES Logical value indicating whether rows with WRES=0 is included in the plot.
onlyfirst Logical value indicating whether only the first row per individual is included in the plot.
samp An integer between 1 and object@Nsim (see xpose.data-class) specifying which of the simulated data sets to extract from SData.
xvarnam Character string with the name of the x-variable.
yvarnam Character string with the name of the y-variable.
type Character value indicating the type of display to use: "l"=lines, "p"=points, "b"=both points and lines.
col Colour of lines and plot symbols.
pch Plot character to use.
cex Size of the plot characters.
lty Line type.
fill Fill colour.
ids Character value with the name of the variable to label data points with.
idsmode Determines the way text labels are added to plots. NULL means that only extreme points are labelled. Non-NULL means all data points are labelled. (See link{xpose.plot.default})
idsext See link{xpose.plot.bw}
idscex Size of text labels.
idsdir A value of "both" (the default) means that both high and low extreme points are labelled while "up" and "down" labels the high and low extreme points respectively. See xpose.plot.bw

bwhoriz logical value indicating whether box and whiskers should be horizontal or not. The default is FALSE.
bwratio Ratio of box height to inter-box space. The default is 1.5. An argument for panel.bwplot.
bwvarwid Logical. If TRUE, widths of boxplots are proportional to the number of points used in creating it. The default is FALSE. An argument for panel.bwplot.
bwdotpch
Graphical parameter controlling the dot plotting character 'bwdotpch="|"' is treated specially, by replacing the dot with a line. The default is 16. An argument for panel.bwplot.

bwdotcol
Graphical parameter controlling the dot colour - an integer or string. See 'col'. The default is black. An argument for panel.bwplot.

bwdotcex
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. An argument for panel.bwplot.

bwreccol
The colour to use for the box rectangle - an integer or string. The default is blue. See trellis.par.get and "box.rectangle".

bwrecfill
The colour to use for filling the box rectangle - an integer or string. The default is transparent (none). See trellis.par.get and "box.rectangle".

bwreclty
The line type for the box rectangle - an integer or string. The default is solid. See trellis.par.get and "box.rectangle".

bwreclwd
The width of the lines for the box rectangle - an integer. The default is 1. See trellis.par.get and "box.rectangle".

bwumbcol
The colour to use for the umbrellas - an integer or string. The default is blue. See trellis.par.get and "box.umbrella".

bwumblty
The line type for the umbrellas - an integer or string. The default is solid. See trellis.par.get and "box.umbrella".

bwumbldw
The width of the lines for the umbrellas - an integer. The default is 1. See trellis.par.get and "box.umbrella".

bwoutcol
The colour to use for the outliers - an integer or string. The default is blue. See trellis.par.get and "box.symbol".

bwoutcex
The amount by which outlier points should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. The default is 0.8. See trellis.par.get and "box.symbol".

bwoutpch
The plotting character, or symbol, to use for outlier points. Specified as an integer. See R help on 'points'. The default is an open circle. See trellis.par.get and "box.symbol".

grid
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc).

logy
Logical value indicating whether the y-axis should be logarithmic.

logx
Logical value indicating whether the x-axis should be logarithmic.

force.x.continuous
Logical value indicating whether x-values should be taken as continuous, even if categorical.

binvar
Variable to be used for binning.

bins
The number of bins to be used. The default is 10.

... Other arguments that may be needed in the function.

Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.panel.default

See Also

xpose.data-class, Cross-references above.

---

xpose.panel.default  Default panel function for Xpose 4

Description

This is the panel function for Xpose 4. This is not intended to be used outside the xpose.plot.default function. Most of the arguments take their default values from xpose.data object but this can be overridden by supplying them as argument to xpose.plot.default.

Usage

xpose.panel.default(x, y, object, subscripts,
groups = object@Prefs@Xvardef$id, grp.col = NULL, iplot = NULL,
inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, xvarnam = NULL,
yvarnam = NULL, PI = NULL, PI.subset = NULL, PI.bin.table = NULL,
PI.real = NULL, PI.mirror = NULL, PI.ci = NULL, PPI = NULL,
PI.mean = FALSE, PI.delta.mean = FALSE, PI.x.median = TRUE,
PI.rug = "Default", PI.rug.col = "orange", PI.rug.lwd = 3,
PI.identify.outliers = TRUE, PI.outliers.col = "red",
PI.outliers.pch = 8, PI.outliers.cex = 1, PI.limits = c(0.025, 0.975),
PI.arcol = "lightgreen", PI.up.lty = 2, PI.up.type = "l",
PI.up.col = "black", PI.up.lwd = 2, PI.down.lty = 2,
PI.down.type = "l", PI.down.col = "black", PI.down.lwd = 2,
PI.med.lty = 1, PI.med.type = "l", PI.med.col = "black",
PI.med.lwd = 2, PI.mean.lty = 3, PI.mean.type = "l",
PI.mean.col = "black", PI.mean.lwd = 2, PI.delta.mean.lty = 3,
PI.delta.mean.type = "l", PI.delta.mean.col = "black",
PI.delta.mean.lwd = 2, PI.real.up.lty = 2, PI.real.up.type = "l",
PI.real.up.col = "red", PI.real.up.lwd = 2, PI.real.down.lty = 2,
PI.real.down.type = "l", PI.real.down.col = "red", PI.real.down.lwd = 2,
PI.real.med.lty = 1, PI.real.med.type = "l", PI.real.med.col = "red",
PI.real.med.lwd = 2, PI.real.mean.lty = 3, PI.real.mean.type = "l",
PI.real.mean.col = "red", PI.real.mean.lwd = 2,
PI.real.delta.mean.lty = 3, PI.real.delta.mean.type = "l",
PI.real.delta.mean.col = "red", PI.real.delta.mean.lwd = 2,
PI.mirror.up.lty = 2, PI.mirror.up.type = "l",
PI.mirror.up.col = "darkgreen", PI.mirror.up.lwd = 1,
PI.mirror.down.lty = 2, PI.mirror.down.type = "l",
PI.mirror.down.col = "darkgreen", PI.mirror.down.lwd = 1,
PI.mirror.med.lty = 1, PI.mirror.med.type = "l",
PI.mirror.med.col = "darkgreen", PI.mirror.med.lwd = 1,
PI.mirror.mean.lty = 3, PI.mirror.mean.type = "l",
PI.mirror.mean.col = "darkgreen", PI.mirror.mean.lwd = 1,
PI.mirror.delta.mean.lty = 3, PI.mirror.delta.mean.type = "l",
PI.mirror.delta.mean.col = "darkgreen", PI.mirror.delta.mean.lwd = 1,
PI.ci.up.arcol = "blue", PI.ci.up.lty = 3, PI.ci.up.type = "l",
PI.ci.up.col = "darkorange", PI.ci.up.lwd = 2,
PI.ci.down.arcol = "blue", PI.ci.down.lty = 3, PI.ci.down.type = "l",
PI.ci.down.col = "darkorange", PI.ci.down.lwd = 2,
PI.ci.med.arcol = "red", PI.ci.med.lty = 4, PI.ci.med.type = "l",
PI.ci.med.col = "darkorange", PI.ci.med.lwd = 2,
PI.ci.mean.arcol = "purple", PI.ci.mean.lty = 4, PI.ci.mean.type = "l",
PI.ci.mean.col = "darkorange", PI.ci.mean.lwd = 2,
PI.ci.delta.mean.arcol = "purple", PI.ci.delta.mean.lty = 4,
PI.ci.delta.mean.type = "l", PI.ci.delta.mean.col = "darkorange",
PI.ci.delta.mean.lwd = 2, PI.ci.area.smooth = FALSE,
type = object@Prefs@Graph.prefs$type, col = object@Prefs@Graph.prefs$col,
pch = object@Prefs@Graph.prefs$pch, cex = object@Prefs@Graph.prefs$cex,
lty = object@Prefs@Graph.prefs$lty, lwd = object@Prefs@Graph.prefs$lwd,
fill = object@Prefs@Graph.prefs$fill, ids = NULL,
idsmode = object@Prefs@Graph.prefs$idsmode,
idsext = object@Prefs@Graph.prefs$idsext,
idsccex = object@Prefs@Graph.prefs$idsccex,
idssdir = object@Prefs@Graph.prefs$idssdir,
abline = object@Prefs@Graph.prefs$abline,
ablwd = object@Prefs@Graph.prefs$ablwd,
ablty = object@Prefs@Graph.prefs$ablty,
abcol = object@Prefs@Graph.prefs$abcol,
smooth = object@Prefs@Graph.prefs$smooth,
smlwd = object@Prefs@Graph.prefs$smlwd,
smlty = object@Prefs@Graph.prefs$smlty,
smcol = object@Prefs@Graph.prefs$smcol,
smspan = object@Prefs@Graph.prefs$smspan,
smdgr = object@Prefs@Graph.prefs$smdgr, smooth.for.groups = NULL,
lmline = object@Prefs@Graph.prefs$lmline,
lmlwd = object@Prefs@Graph.prefs$lmlwd,
lmty = object@Prefs@Graph.prefs$lmty,
lmcol = object@Prefs@Graph.prefs$lmcol,
suline = object@Prefs@Graph.prefs$suline,
sulwd = object@Prefs@Graph.prefs$sulwd,
sulty = object@Prefs@Graph.prefs$sulty,
sucol = object@Prefs@Graph.prefs$sucol,
suspan = object@Prefs@Graph.prefs$suspan,
sudegr = object@Prefs@Graph.prefs$sudegr,
grid = object@Prefs@Graph.prefs$grid, logy = FALSE, logx = FALSE,
force.x.continuous = FALSE, bwhoriz = object@Prefs@Graph.prefs$bwhoriz,
bwratio = object@Prefs@Graph.prefs$bwratio,
bwvarwid = object@Prefs@Graph.prefs$bwvarwid,
bwdotpch = object@Prefs@Graph.prefs$bwdotpch,
bwdotcol = object@Prefs@Graph.prefs$bwdotcol,
bwdotcex = object@Prefs@Graph.prefs$bwdotcex,
bwreccol = object@Prefs@Graph prefs$bwreccol,
bwrecfill = object@Prefs@Graph prefs$bwrecfill,
bwreclty = object@Prefs@Graph prefs$bwreclty,
bwreclwd = object@Prefs@Graph prefs$bwreclwd,
bwumbcol = object@Prefs@Graph prefs$bwumbcol,
bwumbltty = object@Prefs@Graph prefs$bwumbltty,
bwumblwd = object@Prefs@Graph prefs$bwumblwd,
bwoutcol = object@Prefs@Graph prefs$bwoutcol,
bwoutcex = object@Prefs@Graph prefs$bwoutcex,
bwoutpch = object@Prefs@Graph prefs$bwoutpch, autocorr = FALSE,
vline = NULL, vllwd = 3, vllty = 2, vlcol = "grey", hline = NULL,
hllwd = 3, hllty = 1, hlcol = "grey", pch.ip.sp = pch,
cex.ip.sp = cex, ...

Arguments

x Name(s) of the x-variable.
y Name(s) of the y-variable.
object An xpose.data object.
subscripts The standard Trellis subscripts argument (see xyplot)
groups Name of the variable used for superpose plots.
grp.col Logical value indicating whether or not to use colour highlighting when groups
are specified. NULL means no highlighting, while TRUE will identify group
members by colour.
iplot Is this an individual plots matrix? Internal use only.
inclzerowres Logical value indicating whether rows with WRES=0 is included in the plot.
onlyfirst Logical value indicating whether only the first row per individual is included in
the plot.
samp An integer between 1 and object@Nsim (see xpose.data-class) specifying
which of the simulated data sets to extract from SData.
xvarnam Character string with the name of the x-variable.
yvarnam Character string with the name of the y-variable.
PI Either "lines", "area" or "both" specifying whether prediction intervals (as lines,
as a shaded area or both) should be computed from the data in SData and added
to the display. NULL means no prediction interval.
PI.subset The subset to be used for the PI.
PI.bin.table The table used to create VPC plots. Has a specific format created by read.npc.vpc.results
PI.real Plot the percentiles of the real data in the various bins. values can be NULL or
TRUE. Note that for a bin with few actual observations the percentiles will be
approximate. For example, the 95th percentile of 4 data points will always be
the largest of the 4 data points.
PI.mirror Plot the percentiles of one simulated data set in each bin. values allowed are
NULL, TRUE or AN.INTEGER.VALUE. TRUE takes the first mirror from PI.bin.table
and AN.INTEGER.VALUE can be 1, 2, ...{n} where n is the number of mirror's output in the PI.bin.table. Used mainly by xpose.VPC.
PL.ci
Plot the prediction interval of the simulated data’s percentiles for each bin. Values can be “both”, “area” or “lines”. This can be thought of as a prediction interval about the PL.real or a confidence interval about the PI. However, note that with increasing number of simulations the CI will not go towards zero because the interval is also dependent on the size of the data set.

PI
The plot prediction interval. Has a specific format that must be followed. See setup.PPI.

PI.mean
Should the mean be plotted in the VPCs? TRUE or FALSE.

PI.delta.mean
Should the delta mean be plotted in the VPCs? TRUE or FALSE.

PI.x.median
Should the x-location of percentile lines in a bin be marked at the median of the x-values? (TRUE or FALSE)

PI.rug
Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)?

PI.rug.col
Color of the PI.rug.

PI.rug.lwd
Linw width of the PI.rug.

PI.identify.outliers
Should outlying percentiles of the real data be highlighted? (TRUE of FALSE)

PI.outliers.col
Color of PI.identify.outliers points

PI.outliers.pch
pch of PI.identify.outliers points

PI.outliers.cex
cex of PI.identify.outliers points

PI.limits
A vector of two values that describe the limits of the prediction interval that should be displayed. For example c(0.025, 0.975). These limits should be found in the 'PI.bin.table' table. These limits are also used as the percentages for the PI.real, PI.mirror and PI.ci. However, the confidence interval in PI.ci is always the one defined in the PI.bin.table.

PI.arcol
The color of the PI area

PI.up.lty
The upper line type. can be “dotted” or “dashed”, etc.

PI.up.type
The upper type used for plotting. Defaults to a line.

PI.up.col
The upper line color

PI.up.lwd
The upper line width

PI.down.lty
The lower line type. can be “dotted” or “dashed”, etc.

PI.down.type
The lower type used for plotting. Defaults to a line.

PI.down.col
The lower line color

PI.down.lwd
The lower line width

PI.med.lty
The median line type. can be “dotted” or “dashed”, etc.

PI.med.type
The median type used for plotting. Defaults to a line.

PI.med.col
The median line color
PI.med.lwd  The median line width
PI.mean.lty  The mean line type. can be "dotted" or "dashed", etc.
PI.mean.type The mean type used for plotting. Defaults to a line.
PI.mean.col  The mean line color
PI.mean.lwd  The mean line width
PI.delta.mean.lty     The delta.mean line type. can be "dotted" or "dashed", etc.
PI.delta.mean.type    The delta.mean type used for plotting. Defaults to a line.
PI.delta.mean.col     The delta.mean line color
PI.delta.mean.lwd     The delta.mean line width
PI.real.up.lty        The upper line type. can be "dotted" or "dashed", etc.
PI.real.up.type       The upper type used for plotting. Defaults to a line.
PI.real.up.col        The upper line color
PI.real.up.lwd        The upper line width
PI.real.down.lty      The lower line type. can be "dotted" or "dashed", etc.
PI.real.down.type     The lower type used for plotting. Defaults to a line.
PI.real.down.col      The lower line color
PI.real.down.lwd      The lower line width
PI.real.med.lty       The median line type. can be "dotted" or "dashed", etc.
PI.real.med.type      The median type used for plotting. Defaults to a line.
PI.real.med.col       The median line color
PI.real.med.lwd       The median line width
PI.real.mean.lty      The mean line type. can be "dotted" or "dashed", etc.
PI.real.mean.type     The mean type used for plotting. Defaults to a line.
PI.real.mean.col      The mean line color
PI.real.mean.lwd      The mean line width
PI.real.delta.mean.lty The delta.mean line type. can be "dotted" or "dashed", etc.
PI.real.delta.mean.type
The delta.mean type used for plotting. Defaults to a line.

PI.real.delta.mean.col
The delta.mean line color

PI.real.delta.mean.lwd
The delta.mean line width

PI.mirror.up.lty
The upper line type. can be "dotted" or "dashed", etc.

PI.mirror.up.type
The upper type used for plotting. Defaults to a line.

PI.mirror.up.col
The upper line color

PI.mirror.up.lwd
The upper line width

PI.mirror.down.lty
The lower line type. can be "dotted" or "dashed", etc.

PI.mirror.down.type
The lower type used for plotting. Defaults to a line.

PI.mirror.down.col
The lower line color

PI.mirror.down.lwd
The lower line width

PI.mirror.med.lty
The median line type. can be "dotted" or "dashed", etc.

PI.mirror.med.type
The median type used for plotting. Defaults to a line.

PI.mirror.med.col
The median line color

PI.mirror.med.lwd
The median line width

PI.mirror.mean.lty
The mean line type. can be "dotted" or "dashed", etc.

PI.mirror.mean.type
The mean type used for plotting. Defaults to a line.

PI.mirror.mean.col
The mean line color

PI.mirror.mean.lwd
The mean line width

PI.mirror.delta.mean.lty
The delta.mean line type. can be "dotted" or "dashed", etc.

PI.mirror.delta.mean.type
The delta.mean type used for plotting. Defaults to a line.

PI.mirror.delta.mean.col
The delta.mean line color

PI.mirror.delta.mean.lwd
The delta.mean line width
PI.ci.up.arcol  The color of the upper PI.ci.
PI.ci.up.lty   The upper line type. can be "dotted" or "dashed", etc.
PI.ci.up.type  The upper type used for plotting. Defaults to a line.
PI.ci.up.col   The upper line color
PI.ci.up.lwd   The upper line width
PI.ci.down.arcol  The color of the lower PI.ci.
PI.ci.down.lty  The lower line type. can be "dotted" or "dashed", etc.
PI.ci.down.type The lower type used for plotting. Defaults to a line.
PI.ci.down.col  The lower line color
PI.ci.down.lwd  The lower line width
PI.ci.med.arcol The color of the median PI.ci.
PI.ci.med.lty  The median line type. can be "dotted" or "dashed", etc.
PI.ci.med.type The median type used for plotting. Defaults to a line.
PI.ci.med.col  The median line color
PI.ci.med.lwd  The median line width
PI.ci.mean.arcol The color of the mean PI.ci.
PI.ci.mean.lty  The mean line type. can be "dotted" or "dashed", etc.
PI.ci.mean.type The mean type used for plotting. Defaults to a line.
PI.ci.mean.col  The mean line color
PI.ci.mean.lwd  The mean line width
PI.ci.delta.mean.arcol The color of the delta.mean PI.ci.
PI.ci.delta.mean.lty  The delta.mean line type. can be "dotted" or "dashed", etc.
PI.ci.delta.mean.type The delta.mean type used for plotting. Defaults to a line.
PI.ci.delta.mean.col  The delta.mean line color
PI.ci.delta.mean.lwd  The delta.mean line width
PI.ci.area.smooth Should the "area" for PI.ci be smoothed to match the "lines" argument? Allowed values are TRUE/FALSE. The "area" is set by default to show the bins used in the PI.ci computation. By smoothing, information is lost and, in general, the confidence intervals will be smaller than they are in reality.

type  1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
col The color for lines and points. Specified as an integer or a text string. A full list is obtained by the R command `colours()`. The default is blue (col=4).

pch The plotting character, or symbol, to use. Specified as an integer. See R help on `points`. The default is an open circle.

cex The amount by which plotting text and symbols should be scaled relative to the default. ’NULL’ and ’NA’ are equivalent to ’1.0’.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings ”blank”, ”solid”, ”dotted”, ”dotdash”, ”longdash”, or ”twodash”, where ”blank” uses ’invisible lines’ (i.e., doesn’t draw them).

lwd the width for lines. Specified as an integer. The default is 1.

fill fill for areas in plot

ids Logical value specifying whether to label data points.

idsmode Determines the way text labels are added to plots. NULL means that only extreme points are labelled. Non-NULL means all data points are labelled. (See link{xposeNplotNdefault})

idsext specifies the extent of the extremes to be used in labelling points. The default is 0.05 (only the most extreme 5% of points are labelled).

idscex the amount by which labels should be scaled relative to the default. ’NULL’ and ’NA’ are equivalent to ’1.0’.

idsdir a string indicating the directions of the extremes to include in labelling. Possible values are ”up”, ”down” and ”both”.

abline Vector of arguments to the `panel.abline` function. No abline is drawn if NULL.

abllwd Line width of any abline.

abllty Line type of any abline.

ablcol Line colour of any abline.

smooth A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.

smlwd Line width of the x-y smooth.

smlty Line type of the x-y smooth.

smcol Line color of the x-y smooth.

smspan The smoothness parameter for the x-y smooth. The default is 0.667. An argument to `panel.loess`.

smdegr The degree of the polynomials to be used for the x-y smooth, up to 2. The default is 1. An argument to `panel.loess`.

smooth.for.groups Should a smooth for each group be drawn?

lmline logical variable specifying whether a linear regression line should be superimposed over an `xyplot`. NULL ~ FALSE. (y~x)

lmlwd Line width of the lmline.
lmlty Line type of the lmline.
lmcol Line colour of the lmline.
suline A NULL value indicates that no superposed line should be added to the graph. If non-NULL then this should be the vector (the same length as y) of data points to be used for the smoothed superposed line.
sulwd Line width of the superposed smooth.
sulty Line type of the superposed smooth.
sucol Line color of the superposed smooth.
suspan The smoothness parameter. The default is 0.667. An argument to panel.loess.
sudegr The degree of the polynomials to be used, up to 2. The default is 1. An argument to panel.loess.
grid logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc).
logy Logical value indicating whether the y-axis should be logarithmic.
logx Logical value indicating whether the y-axis should be logarithmic.
force.x.continuous Logical value indicating whether x-values should be taken as continuous, even if categorical.
bwhoriz logical value indicating whether box and whiskers should be horizontal or not. The default is FALSE.
bwratio Ratio of box height to inter-box space. The default is 1.5. An argument for panel.bwplot.
bwvarwid Logical. If TRUE, widths of boxplots are proportional to the number of points used in creating it. The default is FALSE. An argument for panel.bwplot.
bwdotpch Graphical parameter controlling the dot plotting character in boxplots. 'bwdotpch="|"' is treated specially, by replacing the dot with a line. The default is 16. An argument for panel.bwplot.
bwdotcol Graphical parameter controlling the dot colour in boxplots - an integer or string. See 'col'. The default is black. An argument for panel.bwplot.
bwdotcex The amount by which plotting text and symbols should be scaled relative to the default in boxplots. 'NULL' and 'NA' are equivalent to 1.0. An argument for panel.bwplot.
bwreccol The colour to use for the box rectangle in boxplots - an integer or string. The default is blue. See trellis.par.get and "box.rectangle".
bwrecfill The colour to use for filling the box rectangle in boxplots - an integer or string. The default is transparent (none). See trellis.par.get and "box.rectangle".
bwreclty The line type for the box rectangle in boxplots - an integer or string. The default is solid. See trellis.par.get and "box.rectangle".
bwreclwd The width of the lines for the box rectangle in boxplots - an integer. The default is 1. See trellis.par.get and "box.rectangle".
bwumbcol The colour to use for the umbrellas in boxplots - an integer or string. The default is blue. See trellis.par.get and "box.umbrella".
bwumblty

The line type for the umbrellas in boxplots - an integer or string. The default is solid. See `trellis.par.get` and "box.umbrella".

bwumblwd

the width of the lines for the umbrellas in boxplots - an integer. The default is 1. See `trellis.par.get` and "box.umbrella".

bwoutcol

The colour to use for the outliers in boxplots - an integer or string. The default is blue. See `trellis.par.get` and "box.symbol".

bwoutcex

The amount by which outlier points should be scaled relative to the default in boxplots. 'NULL' and 'NA' are equivalent to '1.0'. The default is 0.8. See `trellis.par.get` and "box.symbol".

bwoutpch

The plotting character, or symbol, to use for outlier points in boxplots. Specified as an integer. See R help on 'points'. The default is an open circle. See `trellis.par.get` and "box.symbol".

autocorr

Is this an autocorrelation plot? Values can be TRUE/FALSE.

vline

Add a vertical line to the plot at the values specified.

vllwd

Width (lwd) of vertical line

vllty

Line type (lty) for vertical line

vlcol

Color (col) of vertical line

hline

Add a horizontal line to the plot at the values specified.

hllwd

Width (lwd) of horizontal line

hllty

Line type (lty) for horizontal line

hlcol

Color (col) of horizontal line

pch.ip.sp

If there is a panel with just one observation then this specifies the type of points for the DV, IPRED and PRED respectively.

cex.ip.sp

If there is a panel with just one observation then this specifies the size of the points for the DV, IPRED and PRED respectively.

... Other arguments that may be needed in the function.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Justin Wilkins and Andrew Hooker

See Also

xpose.data-class, Cross-references above.
Description

This is the histogram panel function for Xpose 4. This is not intended to be used outside the xpose.plot.histogram function. Most of the arguments take their default values from xpose.data object but this can be overridden by supplying them as argument to xpose.plot.histogram.

Usage

xpose.panel.histogram(x, object, breaks = NULL, dens = TRUE,
  hidlty = object@Prefs@Graph.prefs$hidelty,
  hidcol = object@Prefs@Graph.prefs$hidelcol,
  hdlwd = object@Prefs@Graph.prefs$hidelwd,
  hiborder = object@Prefs@Graph.prefs$hidelborder,
  hilty = object@Prefs@Graph.prefs$hidelty,
  hicol = object@Prefs@Graph.prefs$hidelcol,
  hilwd = object@Prefs@Graph.prefs$hidelwd,
  mathNdens = NULL, vline = NULL,
  vllwd = 3, vllty = 1, vllcol = "grey", hline = NULL, hllwd = 3,
  hllty = 1, hcol = "grey", bins.per.panel.equal = TRUE,
  showMean = FALSE, meanllwd = 3, meanllty = 1, meanlcol = "orange",
  showMedian = FALSE, medianllwd = 3, medianllty = 1,
  medianlcol = "black", showPCTS = FALSE, PCTS = c(0.025, 0.975),
  PCTSlld = 2, PCTSlty = hdyty, PCTSlcol = "black", vline = NULL,
  vdllwd = 3, vdllty = 1, vdllcol = "red", ..., groups)

Arguments

x   Name(s) of the x-variable.
object An xpose.data object.
breaks The breakpoints for the histogram.
dens Density plot on top of histogram?
hidy Density line type.
hidcol Color of density line.
hidlwd Width of density line.
hiborder Colour of the bar borders.
hilty Line type for the bar borders.
hicol Fill colour for the bars.
hidlwd Width for the bar borders.
mathNdens Should a density line be drawn. Values are NULL or TRUE.
vline NULL or a vector of locations for the vertical lines to be drawn. For example, vline=c(50,60) will draw two vertical lines. The function panel.abline is used.
vllwd
Line width of the vertical lines defined with vline. Can be a vector or a single value, for example vllwd=2 or vllwd=c(2,3).

vllty
Line type of the vertical lines defined with vline. Can be a vector or a single value, for example vllty=1 or vllty=c(1,2).

vlcol
Line color of the vertical lines defined with vline. Can be a vector or a single value, for example vlcol="red" or vlcol=c("red","blue").

hline
NULL or a vector of locations for the horizontal lines to be drawn. For example, hline=c(50,60) will draw two horizontal lines. The function panel.abline is used.

hllwd
Line width of the horizontal lines defined with hline. Can be a vector or a single value, for example hllwd=2 or hllwd=c(2,3).

hllty
Line type of the horizontal lines defined with hline. Can be a vector or a single value, for example hllty=1 or hllty=c(1,2).

hlcol
Line color of the horizontal lines defined with hline. Can be a vector or a single value, for example hlcol="red" or hlcol=c("red","blue").

bins.per.panel.equal
Allow for different bins in different panels for continuous data? TRUE or FALSE.

showMean
Should the mean of the data in the histogram be shown?

meanllwd
Line width of mean line.

meanllty
The line type for the mean

meanlcol
Color for the mean line

showMedian
Should the median of the data for the histogram be shown as a vertical line?

medianllwd
line width of median line.

medianllty
line type of median line.

medianlcol
color of median line.

showPCTS
Should percentiles of the data for the histogram be shown?

PCTS
A vector of percentiles to show. Can be any length.

PCTSllwd
line width of percentiles. Can be a vector of same length as PCTS.

PCTSllty
Line type of the percentiles. Can be a vector of same length as PCTS.

PCTSlcol
Color of the percentiles. Can be a vector of same length as PCTS.

vline
vertical line different for each histogram. Must be a vector.

vdllwd
line widths

vdllty
line types

vdllcol
line colors

Other arguments that may be needed in the function.

groups
used to pass the conditioning variable into this function.

Author(s)

Andrew Hooker, Mats Karlsson, Justin Wilkins & E. Niclas Jonsson
xpose.panel.qq

**See Also**

xpose.data-class, Cross-references above.

---

**Description**

This is the QQ panel function for Xpose 4. This is not intended to be used outside the xpose.plot.qq function. Most of the arguments take their default values from xpose.data object but this can be overridden by supplying them as argument to xpose.plot.qq.

**Usage**

```r
xpose.panel.qq(x, object, pch = object@Prefs@Graph.prefs$pch,
col = object@Prefs@Graph.prefs$col, cex = object@Prefs@Graph.prefs$cex,
ablty = object@Prefs@Graph.prefs$ablty,
abl1wd = object@Prefs@Graph.prefs$abl1wd,
ablcol = object@Prefs@Graph.prefs$ablcol,
grid = object@Prefs@Graph.prefs$grid, ...)
```

**Arguments**

- `x` Name(s) of the x-variable.
- `object` An xpose.data object.
- `pch` Plot character to use.
- `col` Colour of lines and plot symbols.
- `cex` Amount to scale the plotting character by.
- `ablty` Line type.
- `abl1wd` Line width.
- `ablcol` Line colour.
- `grid` logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc).
- `...` Other arguments that may be needed in the function.

**Author(s)**

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

**See Also**

xpose.plot.qq, qqmath, panel.qqmathline, xpose.data-class
xpose.panel.splom  Scatterplot matrix panel function for Xpose 4

Description

This is the scatterplot matrix panel function for Xpose 4. This is not intended to be used outside the xpose.plot.splom function. Most of the arguments take their default values from xpose.data object but this can be overridden by supplying them as argument to xpose.plot.splom.

Usage

xpose.panel.splom(x, y, object, subscripts, onlyfirst = TRUE, inclZeroWRES = FALSE, type = "p", col = object@prefs@Graph.prefs$col, pch = object@prefs@Graph.prefs$pch, cex = object@prefs@Graph.prefs$cex, lty = object@prefs@Graph.prefs$lty, lwd = object@prefs@Graph.prefs$lwd, smooth = TRUE, smlwd = object@prefs@Graph.prefs$smlwd, smlty = object@prefs@Graph.prefs$smlty, smcol = object@prefs@Graph.prefs$smcol, smspan = object@prefs@Graph.prefs$smspan, smdegr = object@prefs@Graph.prefs$smdegr, lmline = NULL, lmlwd = object@prefs@Graph.prefs$lmlwd, lmlty = object@prefs@Graph.prefs$lmlty, lmcol = object@prefs@Graph.prefs$lmcol, grid = object@prefs@Graph.prefs$grid, groups = NULL, ...)

Arguments

x  Name(s) of the x-variable.
y  Name(s) of the y-variable.
object  An xpose.data object.
subscripts  The standard Trellis subscripts argument (see xyplot)
onlyfirst  Logical value indicating whether only the first row per individual is included in the plot.
inclZeroWRES  Logical value indicating whether rows with WRES=0 is included in the plot.
type  1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': "p" for points, "l" for lines, "o" for over-plotted points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.

col  The color for lines and points. Specified as an integer or a text string. A full list is obtained by the R command colours(). The default is blue (col=4).
pch  The plotting character, or symbol, to use. Specified as an integer. See R help on points. The default is an open circle.
cex  The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'.

The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash", where "blank" uses 'invisible lines' (i.e., doesn't draw them).

The width for lines. Specified as an integer. The default is 1.

A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.

Line width of the x-y smooth.

Line type of the x-y smooth.

Line color of the x-y smooth.

The smoothness parameter for the x-y. The default is 0.667. An argument to panel.loess.

The degree of the polynomials to be used for the x-y smooth, up to 2. The default is 1. An argument to panel.loess.

logical variable specifying whether a linear regression line should be superimposed over an xyplot. NULL ~ FALSE. (y~x)

Line width of the lmline.

Line type of the lmline.

Line colour of the lmline.

logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc).

Name of the variable used for superpose plots.

Other arguments that may be needed in the function.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.plot.splom, xpose.data-class, xyplot splom, panel.splom, panel.pairs

Description

This is a wrapper function for the lattice bwpplot function.
Arguments

x     Name(s) of the x-variable.
y     Name(s) of the y-variable.
object An xpose.data object.
inclZeroWRES A logical value indicating whether rows with WRES=0 should be plotted.
onlyfirst A logical value indicating whether only the first row per individual should be included in the plot.
samp An integer between 1 and object@Nsim (see xpose.data-class) specifying which of the simulated data sets to extract from SData.
panel The name of the panel function to use. This should in most cases be left as xpose.panel.bw.
groups A string with the name of any grouping variable (used as the groups argument to panel.xyplot).
ids A logical value indicating whether text labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab Xpose data variable).
logy Logical value indicating whether the y-axis should be logarithmic.
logx Logical value indicating whether the x-axis should be logarithmic.
aspect The aspect ratio of the display (see bwplot).
funy String with the name of a function to apply to the y-variable before plotting, e.g. "abs".
funx String with the name of a function to apply to the x-variable before plotting, e.g. "abs".
Either "lines", "area" or "both" specifying whether prediction intervals (as lines, as a shaded area or both) should be computed from the data in SData and added to the display. NULL means no prediction interval.

by
A string or a vector of strings with the name(s) of the conditioning variables.

force.by.factor
Logical value. If TRUE, and by is not NULL, the variable specified by by is taken as categorical.

ordby
A string with the name of a variable to be used to reorder any factor conditioning variables (by). The variable is used in a call to the reorder function.

byordfun
The name of the function to be used when reordering a factor conditioning variable (see argument ordby).

shingnum
The number of shingles ("parts") a continuous conditioning variable should be divided into.

shingol
The amount of overlap between adjacent shingles (see argument shingnum)

strip
The name of the function to be used as the strip argument to the bwplot.

subset
A string giving the subset expression to be applied to the data before plotting. See xsubset.

main
A string giving the plot title or NULL if none.

xlb
A string giving the label for the x-axis. NULL if none.

ylb
A string giving the label for the y-axis. NULL if none.

scales
A list to be used for the scales argument in bwplot.

suline
A string giving the variable to be used to construct a smooth to superpose on the display. NULL if none. This argument is used if you want to add a superpose line of a variable not present in the y list of variables.

binvar
Variable to be used for binning.

bins
The number of bins to be used. The default is 10.

mirror
Should we create mirror plots from simulation data? Value can be FALSE, TRUE or 1 for one mirror plot, or 3 for three mirror plots.

max.plots.per.page
The maximum number of plots per page that can be created with the mirror plots.

mirror.aspect
The aspect ratio of the plots used for mirror functionality.

pass.plot.list
Should we pass the list of plots created with mirror or should we print them directly. Values can be TRUE/FALSE.

x.cex
The size of the x-axis label.

y.cex
The size of the y-axis label.

main.cex
The size of the title.

mirror.internal
an internal mirror argument used in create.mirror. Checks if the strip argument from bwplot has been used.

... Other arguments passed to xpose.panel.bw.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.data-class, Cross-references above.

Examples

## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(data)

## Box & whisker plot of WRES vs PRED
xpose.plot.bw("WRES", "PRED", xpdb5, binvar="PRED")

## End(Not run)

xpose.plot.default The Xpose 4 generic functions for continuous y-variables.

Description

This function is a wrapper for the lattice xyplot function.

Usage

xpose.plot.default(x, y, object, inclzerowres = FALSE, onlyfirst = FALSE,
samp = NULL, panel = xpose.panel.default,
groups = object@Prefs@Xvardef$id, ids = object@Prefs@Graph.prefs$ids,
logy = FALSE, logx = FALSE, yscale.components = "default",
yscale.components = "default", aspect = object@Prefs@Graph.prefs$aspect,
funx = NULL, funy = NULL, iplot = NULL, PI = NULL,
by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE,
ordby = object@Prefs@Graph.prefs$ordby,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol, by.interval = NULL,
strip = function(...) 
{ strip.default(..., strip.names = c(TRUE, TRUE)) }
), use.xpose.factor.strip.names = TRUE, subset = xsubset(object),
autocorr = FALSE, main = xpose.create.title(x, y, object, subset, funx,
funy, ...), xlb = xpose.create.label(x, object, funx, logx, autocorr.x =
autocorr, ...), ylb = xpose.create.label(y, object, funy, logy, autocorr.y =
autocorr, ...), scales = list(), suline = object@Prefs@Graph.prefs$suline,
Arguments

x A string or a vector of strings with the name(s) of the x-variable(s).
y A string or a vector of strings with the name(s) of the y-variable(s).
object An "xpose.data" object.
inclzerowres A logical value indicating whether rows with WRES=0 should be plotted.
onlyfirst A logical value indicating whether only the first row per individual should be included in the plot.
samp An integer between 1 and object@Nsim (see xpose.data-class) specifying which of the simulated data sets to extract from SData.
panel The name of the panel function to use.
groups A string with the name of any grouping variable (used as the groups argument to panel.xyplot).
ids A logical value indicating whether text labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab xpose data variable).
logy Logical value indicating whether the y-axis should be logarithmic.
logx Logical value indicating whether the x-axis should be logarithmic.
yscale.components Used to change the way the axis look if logy is used. Can be a user defined function or link(xpose.yscale.components.log10). If the axes are not log transformed then yscale.components.default is used.
xscale.components Used to change the way the axis look if logx is used. Can be a user defined function or link(xpose.xscale.components.log10). If the axes are not log transformed then xscale.components.default is used.
aspect The aspect ratio of the display (see xyplot).
funx String with the name of a function to apply to the x-variable before plotting, e.g. "abs".
funy String with the name of a function to apply to the y-variable before plotting, e.g. "abs".
iplot Is this an individual plots matrix? Internal use only.
PI Either "lines", "area" or "both" specifying whether prediction intervals (as lines, as a shaded area or both) should be computed from the data in SData and added to the display. NULL means no prediction interval.
by A string or a vector of strings with the name(s) of the conditioning variables.
force.by.factor
Logical value. If TRUE, and by is not NULL, the variable specified by by is taken as categorical.

ordby
A string with the name of a variable to be used to reorder any factor conditioning variables (by). The variable is used in a call to the reorder.factor function.

byordfun
The name of the function to be used when reordering a factor conditioning variable (see argument ordby)

shingnum
The number of shingles ("parts") a continuous conditioning variable should be divided into.

shingol
The amount of overlap between adjacent shingles (see argument shingnum)

by.interval
The intervals to use for conditioning on a continuous variable with by.

strip
The name of the function to be used as the strip argument to the xyplot. An easy way to change the strip appearance is to use strip.custom. For example, if you want to change the text in the strips you can use strip=strip.custom(factor.levels=c("Hi","There") if the by variable is a factor and strip=strip.custom(var.name=c("New Name")) if the by variable is continuous.

use.xpose.factor.strip.names
Use factor names in strips of conditioning plots.

subset
A string giving the subset expression to be applied to the data before plotting. See xsubset.

autocorr
Is this an autocorrelation plot? Values can be TRUE/FALSE.

main
A string giving the plot title or NULL if none.

xlb
A string giving the label for the x-axis. NULL if none.

ylb
A string giving the label for the y-axis. NULL if none.

scales
A list to be used for the scales argument in xyplot.

suline
A string giving the variable to be used to construct a smooth to superpose on the display. NULL if none. This argument is used if you want to add a superpose line of a variable not present in the y list of variables.

bwhoriz
A logical value indicating if box and whiskers bars should be plotted horizontally or not. Used when the x-variable(s) is categorical.

dilution
Logical value indicating whether data dilution should be used.

dilfrac
Dilution fraction indicating the expected fraction of individuals to display in the plots. The exact meaning depends on the type of dilution (see below).

diltype
Indicating what type of dilution to apply. NULL means random dilution without stratification. A nonNULL value means stratified dilution.

dilci
A number between 0 and 1 giving the range eligible for dilution in a stratified dilution (see below).

seed
Seed number used for random dilution. NULL means no seed.

mirror
Should we create mirror plots from simulation data? Value can be FALSE, TRUE or 1 for one mirror plot, or 3 for three mirror plots.

max.plots.per.page
The maximum number of plots per page that can be created with the mirror plots.
mirror.aspect  The aspect ratio of the plots used for mirror functionality.

cex  The size of the x-axis label.

cex  The size of the y-axis label.

cex  The size of the title.

mirror.internal  an internal mirror argument used in create.mirror. Checks if the strip argument from xyplot has been used.

...  Other arguments passed to xpose.panel.default.

Details

y must be numeric (continuous) while x can be either numeric or factor. If x is numeric then a regular xy-plot is drawn. If x is a factor, on the other hand, a box and whiskers plot is constructed.

x and y can be either single valued strings or vector of strings. x and y can not both be vectors in the same call to the function.

If ids is TRUE, text labels are added to the plotting symbols. The labels are taken from the idlab xpose data variable. The way the text labels are plotted is governed by the idsmode argument (passed down to the panel function). idsmode=NULL (the default) means that only extreme data points are labelled while a non-NULL value adds labels to all data points (the default in Xpose 3).

xpose.plot.default identifies extreme data points by fitting a loess smooth (y~x) and looking at the residuals from that fit. Points that are associated with the highest/lowest residuals are labelled. "High" and "low" are judged by the panel function parameter idsext, which gives the fraction of the total number of data points that are to be judged extreme in the "up" and "down" direction. The default value for idsext is 0.05 (see xposeprefs-class). There is also a possibility to label only the high or low extreme points. This is done through the idsdir argument to xpose.plot.default. A value of "both" (the default) means that both high and low extreme points are labelled while "up" and "down" labels the high and low extreme points respectively.

Data dilution is useful is situations when there is an excessive amount of data. xpose.plot.default can dilute data in two different ways. The first is a completely random dilution in which all individuals are eligible for exclusion from the plot. In this case the argument dilfrac determines the fraction of individuals that are excluded from the plot. The second type of dilution uses stratification to make sure that none of the extreme individuals are omitted from the plot. Extreme individuals are identified in a similar manner as extreme data points are identified for text labelling. A smooth is fitted to the data and the extreme residuals from that fit is used to inform about extremeness. What is judged as extreme is determined by the argument dilci, which defaults to 0.95 (Note that the meaning of this is the opposite to idsext). dilci give the confidence level of the interval outside of which points are deemed to be extreme. Extreme individuals are those that have at least one point in the "extremeness" interval. Individuals that do not have any extreme points are eligible for dilution and dilfrac give the number of these that should be omitted from the graph. This means that dilfrac should usually be greater for stratified dilution than in completely random dilution. Any smooths added to a diluted plot is based on undiluted data.

More graphical parameters may be passed to xpose.panel.default.
Value

Returns a xyplot graph object.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.panel.default, xyplot, panel.xyplot, xpose.prefs-class, xpose.data-class

Examples

## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

## A spaghetti plot of DV vs TIME
xpose.plot.default("TIME", "DV", xpdb5)

## A conditioning plot
xpose.plot.default("TIME", "DV", xpdb5, by = "SEX")

## Multiple x-variables
xpose.plot.default(c("WT", "SEX"), "CL", xpdb5)

## Multiple y-variables
xpose.plot.default("WT", c("CL", "V"), xpdb5)
xpose.plot.default("WT", c("CL", "V"), xpdb5, by=c("SEX", "HCTZ"))

## determining the interval for the conditioning variable
wt.ints <- matrix(c(50,60,60,70,70,80,80,90,90,100,100,150),nrow=6,ncol=2,byrow=T)
xpose.plot.default("TIME","DV",xpdb5,by="WT", by.interval=wt.ints)

## End(Not run)
xpose.plot.histogram

Usage

xpose.plot.histogram(x, object, inclZeroWRES = FALSE, onlyfirst = FALSE,
  samp = NULL, type = "density", aspect = object@Prefs@Graph.prefs$aspect,
  scales = list(), by = object@Prefs@Graph.prefs$condvar,
  force.by.factor = FALSE, ordby = object@Prefs@Graph.prefs$ordby,
  byordfun = object@Prefs@Graph.prefs$byordfun,
  shingnum = object@Prefs@Graph.prefs$shingnum,
  shingol = object@Prefs@Graph.prefs$shingol, strip = function(...)
  strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object),
  main = xpose.create.title.hist(x, object, subset, ...), xlb = NULL,
  ylb = "Density", hicol = object@Prefs@Graph.prefs$hicol,
  hilty = object@Prefs@Graph.prefs$hilty, 
  hilwd = object@Prefs@Graph.prefs$hilwd,
  hidcol = object@Prefs@Graph.prefs$hidcol,
  hidlty = object@Prefs@Graph.prefs$hidlty,
  hidlwd = object@Prefs@Graph.prefs$hidlwd,
  hiborder = object@Prefs@Graph.prefs$hiborder, mirror = FALSE,
  max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE,
  x.cex = NULL, y.cex = NULL, main.cex = NULL,
  mirror.internal = list(strip.missing = missing(strip)), ...)

Arguments

x        A string or a vector of strings with the name(s) of the x-variable(s).
object   An "xpose.data" object.
inclZeroWRES A logical value indicating whether rows with WRES=0 should be plotted.
onlyfirst A logical value indicating whether only the first row per individual should be
           included in the plot.
samp     An integer between 1 and object@Nsim (see xpose.data-class) specifying
           which of the simulated data sets to extract from SData.
type     The type of histogram to make. See histogram.
aspect    The aspect ratio of the display (see histogram).
scales   A list to be used for the scales argument in histogram.
by        A string or a vector of strings with the name(s) of the conditioning variables.
force.by.factor Logical value. If TRUE, and by is not NULL, the variable specified by by is taken
                  as categorical.
ordby     A string with the name of a variable to be used to reorder any factor conditioning
           variables (by). The variable is used in a call to the reorder.factor function.
byordfun The name of the function to be used when reordering a factor conditioning vari-
           able (see argument ordby)
shingnum The number of shingles ("parts") a continuous conditioning variable should be
           divided into.
shingol  The amount of overlap between adjacent shingles (see argument shingnum)
strip  The name of the function to be used as the strip argument to the \texttt{xyplot}.
subset  A string giving the subset expression to be applied to the data before plotting. See \texttt{xsubset}.
main  A string giving the plot title or NULL if none.
xlb  A string giving the label for the x-axis. NULL if none.
ylb  A string giving the label for the y-axis. NULL if none.
hicol  the fill colour of the histogram - an integer or string. The default is blue (see \texttt{histogram}).
hilty  the border line type of the histogram - an integer. The default is 1 (see \texttt{histogram}).
hilwd  the border line width of the histogram - an integer. The default is 1 (see \texttt{histogram}).
hidcol  the fill colour of the density line - an integer or string. The default is black (see \texttt{histogram}).
hidlty  the border line type of the density line - an integer. The default is 1 (see \texttt{histogram}).
hidlwd  the border line width of the density line - an integer. The default is 1 (see \texttt{histogram}).
hiborder  the border colour of the histogram - an integer or string. The default is black (see \texttt{histogram}).
mirror  Should we create mirror plots from simulation data? Value can be FALSE, TRUE or 1 for one mirror plot, or 3 for three mirror plots.
max.plots.per.page  The maximum number of plots per page that can be created with the mirror plots.
mirror.aspect  The aspect ratio of the plots used for mirror functionality.
pass.plot.list  Should we pass the list of plots created with mirror or should we print them directly. Values can be TRUE/FALSE.
x.cex  The size of the x-axis label.
y.cex  The size of the y-axis label.
main.cex  The size of the title.
mirror.internal  an internal mirror argument used in \texttt{create_mirror}. Checks if the strip argument from \texttt{xyplot} has been used.
...  Other arguments passed to \texttt{xpose.plot.histogram}.

Details

\( x \) can be either numeric or factor, and can be either single valued strings or vectors of strings.

Value

Returns a histogram.
Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.panel.histogram, histogram, panel.histogram, xposeprefs-class, xpose.data-class

Examples

## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)

xpose.plot.histogram("AGE", xpdb5, onlyfirst = TRUE)
xpose.plot.histogram(c("SEX", "AGE"), xpdb5, onlyfirst = TRUE)

## End(Not run)

xpose.plot.qq  The generic Xpose functions for QQ plots

Description

This is a wrapper function for the lattice qqmath function.

Usage

xpose.plot.qq(x, object, inclZeroWRES = FALSE, onlyfirst = FALSE, 
samp = NULL, aspect = object@prefs@Graph.prefs$aspect, scales = list(), 
by = object@Prefs@Graph.prefs$condivar, force.by.factor = FALSE, 
ordby = object@Prefs@Graph.prefs$ordby, 
byordfun = object@Prefs@Graph.prefs$byordfun, 
shingnum = object@Prefs@Graph.prefs$shingnum, 
shingol = object@Prefs@Graph.prefs$shingol, strip = function(...)
strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), 
main = xpose.create.title.hist(x, object, subset, ...), 
xlb = "Quantiles of Normal", ylb = paste("Quantiles of ", xlabel(x, 
object), sep = ""), pch = object@Prefs@Graph.prefs$pch, 
col = object@Prefs@Graph.prefs$col, cex = object@Prefs@Graph.prefs$cex, 
abllty = object@Prefs@Graph.prefs$abllty, 
ablwd = object@Prefs@Graph.prefs$ablwd, 
ablcol = object@Prefs@Graph.prefs$ablcol, mirror = FALSE, 
max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE,
\[ x.cex = \text{NULL}, \quad y.cex = \text{NULL}, \quad \text{main.cex} = \text{NULL}, \]
\[ \text{mirror.internal} = \text{list}(\text{strip.missing} = \text{missing}(\text{strip})), \ldots) \]

### Arguments

- **x**: A string or a vector of strings with the name(s) of the x-variable(s).
- **object**: An "xpose.data" object.
- **inclZeroWRES**: A logical value indicating whether rows with WRES=0 should be plotted.
- **onlyfirst**: A logical value indicating whether only the first row per individual should be included in the plot.
- **samp**: An integer between 1 and object@Nsim (see \texttt{xpose.data-class}) specifying which of the simulated data sets to extract from SData.
- **aspect**: The aspect ratio of the display (see \texttt{qqmath}).
- **scales**: A list to be used for the \texttt{scales} argument in \texttt{qqmath}.
- **by**: A string or a vector of strings with the name(s) of the conditioning variables.
- **force.by.factor**: Logical value. If TRUE, and \texttt{by} is not \texttt{NULL}, the variable specified by \texttt{by} is taken as categorical.
- **ordby**: A string with the name of a variable to be used to reorder any factor conditioning variables (\texttt{by}). The variable is used in a call to the \texttt{reorder} function.
- **byordfun**: The name of the function to be used when reordering a factor conditioning variable (see argument \texttt{ordby}).
- **shingnum**: The number of shingles ("parts") a continuous conditioning variable should be divided into.
- **shingol**: The amount of overlap between adjacent shingles (see argument \texttt{shingnum}).
- **strip**: The name of the function to be used as the strip argument to the \texttt{xyplot}.
- **subset**: A string giving the subset expression to be applied to the data before plotting. See \texttt{xsubset}.
- **main**: A string giving the plot title or \texttt{NULL} if none.
- **xlb**: A string giving the label for the x-axis. \texttt{NULL} if none.
- **ylb**: A string giving the label for the y-axis. \texttt{NULL} if none.
- **pch**: Plotting symbol.
- **col**: Color of plotting symbol.
- **cex**: Amount to scale the plotting character by.
- **abllty**: Line type for \texttt{qqline}.
- **abllwd**: Line width for \texttt{qqline}.
- **abllcol**: Color for \texttt{qqline}.
- **mirror**: Should we create mirror plots from simulation data? Value can be \texttt{FALSE}, \texttt{TRUE} or 1 for one mirror plot, or 3 for three mirror plots.
- **max.plots.per.page**: The maximum number of plots per page that can be created with the mirror plots.
The aspect ratio of the plots used for mirror functionality.

Should we pass the list of plots created with mirror or should we print them directly. Values can be TRUE/FALSE.

The size of the x-axis label.

The size of the y-axis label.

The size of the title.

an internal mirror argument used in create.mirror. Checks if the strip argument from qqmath has been used.

Other arguments passed to xpose.plot.qq.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.panel.qq, qqmath, panel.qqmathline, xpose.data-class

Examples

```r
Not run:
xpd5 is an Xpose data object
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpd5 <- xpose.data(5)

A QQ plot of WRES
xpose.plot.qq("WRES", xpd5)

End(Not run)
```

The Xpose 4 generic functions for scatterplot matrices.

This function is a wrapper for the lattice splom function.
Usage

xpose.plot.splom(plist, object, varnames = NULL,
main = "Scatterplot Matrix", xlb = NULL, ylb = NULL, scales = list(),
onlyfirst = TRUE, inclZeroWRES = FALSE, subset = xsubset(object),
by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE,
include.cat.vars = FALSE, ordby = NULL,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol, strip = function(...)
strip.default(..., strip.names = c(TRUE, TRUE)), groups = NULL,
ids = object@Prefs@Graph.prefs$ids, smooth = TRUE, lmline = NULL,
panel = xpose.panel.splom, aspect = object@Prefs@Graph.prefs$aspect,
samp = NULL, max.plots.per.page = 4, mirror = FALSE,
mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL,
y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing =
missing(strip)), ...)

Arguments

plist A vector of strings containing variable names for the scatterplot matrix.
object An "xpose.data" object.
varnames A vector of strings containing labels for the variables in the scatterplot matrix.
main A string giving the plot title or NULL if none.
xlb A string giving the label for the x-axis. NULL if none.
ylb A string giving the label for the y-axis. NULL if none.
scales A list to be used for the scales argument in xyplot.
onlyfirst A logical value indicating whether only the first row per individual should be
included in the plot.
inclZeroWRES A logical value indicating whether rows with WRES=0 should be plotted.
subset A string giving the subset expression to be applied to the data before plotting. See
xsubset.
by A string or a vector of strings with the name(s) of the conditioning variables.
force.by.factor Logical value. If TRUE, and by is not NULL, the variable specified by by is taken
as categorical.
include.cat.vars Logical value.
ordby A string with the name of a variable to be used to reorder any factor conditioning
variables (by). The variable is used in a call to the reorder.factor function.
byordfun The name of the function to be used when reordering a factor conditioning vari-
able (see argument ordby)
shingnum The number of shingles ("parts") a continuous conditioning variable should be
divided into.
shingol The amount of overlap between adjacent shingles (see argument shingnum)
strip

The name of the function to be used as the strip argument to the xyplot.

groups

A string with the name of any grouping variable (used as the groups argument to panel.xyplot).

ids

A logical value indicating whether text labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab xpose data variable).

smooth

A NULL value indicates that no superposed line should be added to the graph. If TRUE then a smooth of the data will be superimposed.

lmline

logical variable specifying whether a linear regression line should be superimposed over an xyplot. NULL ~ FALSE. (y~x)

panel

The name of the panel function to use.

aspect

The aspect ratio of the display (see xyplot).

samp

An integer between 1 and object@Nsim (see xpose.data-class) specifying which of the simulated data sets to extract from SData.

max.plots.per.page

The maximum number of plots per page that can be created with the mirror plots.

mirror

Should we create mirror plots from simulation data? Value can be FALSE, TRUE or 1 for one mirror plot, or 3 for three mirror plots.

mirror.aspect

The aspect ratio of the plots used for mirror functionality.

pass.plot.list

Should we pass the list of plots created with mirror or should we print them directly. Values can be TRUE/FALSE.

x.cex

The size of the x-axis label.

y.cex

The size of the y-axis label.

main.cex

The size of the title.

mirror.internal

an internal mirror argument used in create.mirror. Checks if the strip argument from qqmath has been used.

... Other arguments passed to xpose.panel.default.

Details

If ids is TRUE, text labels are added to the plotting symbols. The labels are taken from the idlab xpose data variable. The way the text labels are plotted is governed by the idsmode argument (passed down to the panel function). idsmode=NULL (the default) means that only extreme data points are labelled while a non-NULL value adds labels to all data points (the default in Xpose 3). xpose.panel.default identifies extreme data points by fitting a loess smooth (y~x) and looking at the residuals from that fit. Points that are associated with the highest/lowest residuals are labelled. "High" and "low" are judged by the panel function parameter idsx, which gives the fraction of the total number of data points that are to be judged extreme in the "up" and "down" direction. The default value for idsx is 0.05 (see link(xpose.prefs-class)). There is also a possibility to label only the high or low extreme points. This is done through the idsdir argument to xpose.panel.default. A value of "both" (the default) means that both high and low extreme points are labelled while "up" and "down" labels the high and low extreme points respectively.

More graphical parameters may be passed to xpose.panel.splom. for example, if you want to adjust the size of the varnames and axis tick labels you can use the parameters varname.cex=0.5 and axis.text.cex=0.5.
Value

Returns a scatterplot matrix graph object.

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

xpose.panel.splom, splom, panel.splom, xpose.prefs-class, xpose.data-class

Examples

```r
Not run:
xpdb5 is an Xpose data object
We expect to find the required NONMEM run and table files for run
5 in the current working directory
xpdb5 <- xpose.data(5)

CL, WT, HT, SEX with a regression line
xpose.plot.splom(c("CL", "WT", "HT", "SEX"), xpdb5, lmline = TRUE)

End(Not run)
```

---

xpose.prefs-class  Class "xpose.prefs"

Description

An object of the "xpose.prefs" class holds information about all the variable and graphical preferences for a particular "xpose.data" object.

Objects from the Class

Objects can be created by calls of the form new("xpose.prefs", ...) but this is usually not necessary since the "xpose.prefs" object is created at the same time as the "xpose.data" object.

Author(s)

Niclas Jonsson & Andrew Hooker

See Also

xvardef, xlabel, xsubset, Data, SData, xpose.data, read.nm.tables, xpose.data-class, xpose.gam
xpose.print  

Summarize an xpose database

Description
Summarize an xpose database

Usage
xpose.print(object, long = TRUE)

Arguments
object  An xpose data object
long  long format or not.

Value
"

See Also
Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definition, import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose4-package, xsubset

Examples
xpose.print(simpraz.xpdb)

xpose.string.print  

Print a pretty string.

Description
Print a string with a certain number of characters per row.

Usage
xpose.string.print(value, fill = 60, file = "")
Arguments

- **value**: The text to print.
- **fill**: How wide should the text be per row.
- **file**: Where to print. "" means to the screen.

Author(s)

Niclas Jonsson and Andrew C. Hooker

xpose.NVPC

Visual Predictive Check (VPC) using XPOSE

Description

This Function is used to create a VPC in xpose using the output from the vpc command in Pearl Speaks NONMEM (PsN). The function reads in the output files created by PsN and creates a plot from the data. The dependent variable, independent variable and conditioning variable are automatically determined from the PsN files.

Usage

```r
xpose.NVPC(vpc.info = "vpc_results.csv", vpctab = dir(pattern =
"*vpctab")[[1]], object = NULL, ids = FALSE, type = "p", by = NULL,
PI = NULL, PI.ci = "area", PI.ci.area.smooth = FALSE, PI.real = TRUE,
subset = NULL, main = "Default", main.sub = NULL, main.sub.cex = 0.85,
inclZeroWRES = FALSE, force.x.continuous = FALSE, funy = NULL,
logy = FALSE, ylb = "Default", verbose = FALSE, PI.x.median = TRUE,
PI.rug = "Default", PI.identify.outliers = TRUE, ...)
```

Arguments

- **vpc.info**: The results file from the vpc command in PsN. For example 'vpc_results.csv', or if the file is in a separate directory './vpc_dir1/vpc_results.csv'.
- **vpctab**: The 'vpctab' from the vpc command in PsN. For example 'vpctab5', or if the file is in a separate directory './vpc_dir1/vpctab5'. Can be NULL. The default looks in the current working directory and takes the first file that starts with 'vpctab' that it finds. Note that this default can result in the wrong files being read if there are multiple 'vpctab' files in the directory. One of object or vpctab is required. If both are present then the information from the vpctab will over-ride the xpose data object object (i.e. the values from the vpctab will replace any matching values in the object\@Data portion of the xpose data object).
- **object**: An xpose data object. Created from xpose.data. One of object or vpctab is required. If both are present then the information from the vpctab will over-ride the xpose data object object (i.e. the values from the vpctab will replace any matching values in the object\@Data portion of the xpose data object).
A logical value indicating whether text ID labels should be used as plotting symbols (the variable used for these symbols indicated by the idlab xpose data variable). Can be FALSE or TRUE.

**type**
Character string describing the way the points in the plot will be displayed. For more details, see `plot`. Use type="n" if you don’t want observations in the plot.

**by**
A string or a vector of strings with the name(s) of the conditioning variables. For example by = c("SEX", "WT"). Because the function automatically determines the conditioning variable from the PsN input file specified in vpc.info, the by command can control if separate plots are created for each condition (by=NULL), or if a conditioning plot should be created (by="WT" for example). If the vpc.info file has a conditioning variable then by must match that variable. If there is no conditioning variable in vpc.info then the PI for each conditioned plot will be the PI for the entire data set (not only for the conditioning subset).

**PI**
Either "lines", "area" or "both" specifying whether prediction intervals (as lines, a shaded area or both) should be added to the plot. NULL means no prediction interval.

**PI.ci**
Plot the confidence interval for the simulated data’s percentiles for each bin (for each simulated data set compute the percentiles for each bin, then, from all of the percentiles from all of the simulated datasets compute the 95% CI of these percentiles). Values can be "both", "area" or "lines". These CIs can be used to assess the PI.real values for model misspecification. Note that with few observations per bin the CIs will be approximate because the percentiles in each bin will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points.

**PI.ci.area.smooth**
Should the "area" for PI.ci be smoothed to match the "lines" argument? Allowed values are TRUE/FALSE. The "area" is set by default to show the bins used in the PI.ci computation. By smoothing, information is lost and, in general, the confidence intervals will be smaller than they are in reality.

**PI.real**
Plot the percentiles of the real data in the various bins. values can be NULL or TRUE. Note that for a bin with few actual observations the percentiles will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points.

**subset**
A string giving the subset expression to be applied to the data before plotting. See xsubset.

**main**
A string giving the plot title or NULL if none. "Default" creates a default title.

**main.sub**
Used for names above each plot when using multiple plots. Should be a vector c("Group 1", "Group 2")

**main.sub.cex**
The size of the main.sub titles.

**inclZeroWRES**
Logical value indicating whether rows with WRES=0 is included in the plot.

**force.x.continuous**
Logical value indicating whether x-values should be converted to continuous variables, even if they are defined as factors.

**funy**
String of function to apply to Y data. For example "abs"

**logy**
Logical value indicating whether the y-axis should be logarithmic, base 10.
ylb  Label for the y-axis
verbose  Should warning messages and other diagnostic information be passed to screen? (TRUE or FALSE)
PI.x.median  Should the x-location of percentile lines in a bin be marked at the median of the x-values? (TRUE or FALSE)
PI.rug  Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)?
PI.identify.outliers  Should outlying percentiles of the real data be highlighted? (TRUE or FALSE)
...  Other arguments passed to xpose.panel.default, xpose.plot.default and others. Please see these functions for more descriptions of what you can do.

Value

A plot or a list of plots.

Additional arguments

Below are some of the additional arguments that can control the look and feel of the VPC. See xpose.panel.default for all potential options.

Additional graphical elements available in the VPC plots.

PI.mirror = NULL, TRUE or AN.INTEGER.VALUE  Plot the percentiles of one simulated data set in each bin. TRUE takes the first mirror from ‘vpc_results.csv’ and AN.INTEGER.VALUE can be 1, 2, ..., n where n is the number of mirror’s output in the ‘vpc_results.csv’ file.

PI.limits = c(0.025, 0.975)  A vector of two values that describe the limits of the prediction interval that should be displayed. These limits should be found in the ‘vpc_results.csv’ file. These limits are also used as the percentages for the PI.real, PI.mirror and PI.ci. However, the confidence interval in PI.ci is always the one defined in the ‘vpc_results.csv’ file.

Additional options to control the look and feel of the PI. See grid.polygon and plot for more details.

PI.arcol  The color of the PI area
PI.up.lty  The upper line type. can be "dotted" or "dashed", etc.
PI.up.type  The upper type used for plotting. Defaults to a line.
PI.up.col  The upper line color
PI.up.lwd  The upper line width
PI.down.lty  The lower line type. can be "dotted" or "dashed", etc.
PI.down.type  The lower type used for plotting. Defaults to a line.
PI.down.col  The lower line color
PI.down.lwd  The lower line width
PI.med.lty  The median line type. can be "dotted" or "dashed", etc.
PI.med.type  The median type used for plotting. Defaults to a line.
PI.med.col  The median line color
PI.med.lwd  The median line width

Additional options to control the look and feel of the PI.ci. See See grid.polygon and plot for more details.

PI.ci.up.arcol  The color of the upper PI.ci.
PI.ci.med.arcol  The color of the median PI.ci.
PI.ci.down.arcol  The color of the lower PI.ci.
PI.ci.up.lty  The upper line type. can be "dotted" or "dashed", etc.
PI.ci.up.type  The upper type used for plotting. Defaults to a line.
PI.ci.up.col  The upper line color
PI.ci.up.lwd  The upper line width
PI.ci.down.lty  The lower line type. can be "dotted" or "dashed", etc.
PI.ci.down.type  The lower type used for plotting. Defaults to a line.
PI.ci.down.col  The lower line color
PI.ci.down.lwd  The lower line width
PI.ci.med.lty  The median line type. can be "dotted" or "dashed", etc.
PI.ci.med.type  The median type used for plotting. Defaults to a line.
PI.ci.med.col  The median line color
PI.ci.med.lwd  The median line width
PI.ci.area.smooth  Should the "area" for PI.ci be smoothed to match the "lines" argument? Allowed values are TRUE/FALSE. The "area" is set by default to show the bins used in the PI.ci computation. By smoothing, information is lost and, in general, the confidence intervals will be smaller than they are in reality.

Additional options to control the look and feel of the PI.real. See See grid.polygon and plot for more details.

PI.real.up.lty  The upper line type. can be "dotted" or "dashed", etc.
PI.real.up.type  The upper type used for plotting. Defaults to a line.
PI.real.up.col  The upper line color
PI.real.up.lwd  The upper line width
PI.real.down.lty  The lower line type. can be "dotted" or "dashed", etc.
PI.real.down.type  The lower type used for plotting. Defaults to a line.
PI.real.down.col  The lower line color
PI.real.down.lwd  The lower line width
PI.real.med.lty  The median line type. can be "dotted" or "dashed", etc.
PI.real.med.type  The median type used for plotting. Defaults to a line.
PI.real.med.col  The median line color
PI.real.med.lwd  The median line width

Additional options to control the look and feel of the PI.mirror. See plot for more details.

PI.mirror.up.lty  The upper line type. can be "dotted" or "dashed", etc.
PI.mirror.up.type  The upper type used for plotting. Defaults to a line.
PI.mirror.up.col  The upper line color
PI.mirror.up.lwd  The upper line width
PI.mirror.down.lty  The lower line type. can be "dotted" or "dashed", etc.
PI.mirror.down.type  The lower type used for plotting. Defaults to a line.
PI.mirror.down.col  The lower line color
PI.mirror.down.lwd  The lower line width
PI.mirror.med.lty  The median line type. can be "dotted" or "dashed", etc.
PI.mirror.med.type  The median type used for plotting. Defaults to a line.
PI.mirror.med.col  The median line color
PI.mirror.med.lwd  The median line width

Author(s)
Andrew Hooker

See Also
read.vpctab read.npc.vpc.results xpose.panel.default xpose.plot.default
Other PsN functions: boot.hist, bootscm.import, npc.coverage, randtest.hist, read.npc.vpc.results, read.vpctab, xpose.VPC.both, xpose.VPC.categorical, xpose4-package
Other specific functions: absval.cwres.vs.cov.bw, absval.cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.bw, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, absval.wres.vs.pred.by.cov, absval.wres.vs.ipred, absval_delta_vs_cov_model_comp, addit.gof, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv, cwres.vs.pred, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots.ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov.qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv, wres.vs.idv, wres.vs.ipred.by.cov, wres.vs.ipred.by.idv, wres.vs.ipred, xpose.VPC.both, xpose.VPC.categorical, xpose4-package
Examples

```r
Not run:
library(xpose4)
xpose.VPC()

to be more clear about which files should be read in
vpc.file <- "vpc_results.csv"
vpctab <- "vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab)

with lines and a shaded area for the prediction intervals
xpose.VPC(vpc.file,vpctab=vpctab,PI="both")

with the percentages of the real data
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T)

with mirrors (if supplied in 'vpc.file')
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.mirror=5)

with CIs
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area")
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area",PI=NULL)

stratification (if 'vpc.file' is stratified)
cond.var <- "WT"
xpose.VPC(vpc.file,vpctab=vpctab)
xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var)
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var,type="n")

with no data points in the plot
xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var,PI.real=T,PI.ci="area",PI=NULL,type="n")

with different DV and IDV, just read in new files and plot
vpc.file <- "vpc_results.csv"
vpctab <- "vpctab5"
cond.var <- "WT"
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var)
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both")

to use an xpose data object instead of vpctab
##
In this example
we expect to find the required NONMEM run and table files for run
5 in the current working directory
runnumber <- 5
xpdb <- xpose.data(runnumber)
xpose.VPC(vpc.file,object=xpdb)

to read files in a directory different than the current working directory
vpc.file <- "./vpc_strat_WT_4_mirror_5/vpc_results.csv"
```
Xpose Visual Predictive Check (VPC) for both continuous and Limit of Quantification data.

Usage

```r
xpose.VPC.both(vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab"[1], object = NULL, subset = NULL, main = "Default",
main.sub = NULL, inclZeroWRES = FALSE, cont.logy = F,
hline = "default", add.args.cont = list(), add.args.cat = list(), ...)
```

Arguments

- `vpc.info`: Name of PSN file to use. File will come from VPC command in PsN.
- `vpctab`: Name of vpctab file produced from PsN.
- `object`: Xpose data object.
- `subset`: Subset of data to look at.
- `main`: Title for plot.
- `main.sub`: Used for names above each plot when using multiple plots. Should be a vector, e.g. c("title 1","title 2").
- `inclZeroWRES`: Include WRES=0 rows in the computations for these plots?
- `cont.logy`: Should the continuous plot y-axis be on the log scale?
- `hline`: Horizontal line marking the limits of quantification. If they are defined, they must be a vector of values.
- `add.args.cont`: Additional arguments to the continuous plot. `xpose.VPC`
- `add.args.cat`: Additional arguments to the categorical plot. `xpose.VPC.categorical`
- `...`: Additional arguments to both plots.
Author(s)
Andrew C. Hooker

See Also
xpose.VPC, xpose.VPC.categorical.

Other PsN functions: boot.hist, bootscm.import, npc.coverage, randtest.hist, read.npc.vpc.results, read.vpctab, xpose.VPC, xpose.VPC.categorical, xpose.VPC, xpose4-package

Other specific functions: absval.cwres.vs.cov.bw, absval cwres.vs.pred.by.cov, absval.cwres.vs.pred, absval.iwres.cwres.vs.ipred.pred, absval.iwres.vs.cov.bw, absval.iwres.vs.idv, absval.iwres.vs.ipred.by.cov, absval.iwres.vs.ipred, absval.iwres.vs.pred, absval.wres.vs.cov.bw, absval.wres.vs.idv, autocorr.cwres, autocorr.iwres, autocorr.wres, basic.gof, basic.model.comp, cat.dv.vs.idv.sb, cat.pc, cov.splom, cwres.dist.hist, cwres.dist.qq, cwres.vs.cov, cwres.vs.idv.bw, cwres.vs.idv, cwres.vs.pred.bw, cwres.vs.pred, cwres_wres_vs_x, dOFV.vs.cov, dOFV.vs.id, dOFV1.vs.dOFV2, data.checkout, dv.preds.vs.idv, dv.vs.idv, dv.vs.ipred.by.cov, dv.vs.ipred.by.idv, dv.vs.ipred, dv.vs.pred.by.cov, dv.vs.pred.by.idv, dv.vs.pred.ipred, dv.vs.pred.gof, ind.plots.cwres.hist, ind.plots.cwres.qq, ind.plots, ipred.vs.idv, iwres.dist.hist, iwres.dist.qq, iwres.vs.idv, kaplan.plot, par_cov_hist, par_cov qq, parm.vs.cov, parm.vs.parm, pred.vs.idv, ranpar.vs.cov, runsum, wres.dist.hist, wres.dist.qq, wres.vs.idv.bw, wres.vs.idv, wres.vs.pred.bw, wres.vs.pred, xpose.VPC.categorical, xpose.VPC, xpose4-package

Examples

```r
Not run:
library(xpose4)

move to the directory where results from PsN
are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep=""))

xpose.VPC()
xpose.VPC.categorical(censored=T)

xpose.VPC.both()

xpose.VPC.both(subset="DV>1.75")

xpose.VPC.both(add.args.cont=list(ylim=c(0,80)))

xpose.VPC.both(add.args.cont = list(ylim = c(0, 0))
add.args.cat = list(ylim = c(0, 0.4), cont.logy = T)

xpose.VPC.both(cont.logy=T)

End(Not run)
```
Xpose visual predictive check for categorical data.

**Description**

Xpose visual predictive check for categorical data (binary, ordered categorical and count data).

**Usage**

```r
xpose.VPC.categorical(vpc.info = "vpc_results.csv", vpctab = dir(pattern =
"^vpctab")[1], object = NULL, subset = NULL, main = "Default",
main.sub = "Default", main.sub.cex = 0.85, real.col = 4,
real.lty = "b", real.cex = 1, real.lwd = 1, median.line = FALSE,
median.col = "darkgrey", median.lty = 1, ci.lines = FALSE,
ci.col = "blue", ci.lines.col = "darkblue", ci.lines.lty = 3,
xlb = "Default", ylb = "Proportion of Total",
force.x.continuous = FALSE, level.to.plot = NULL,
max.plots.per.page = 1, rug = TRUE, rug.col = "orange",
censored = FALSE, ...)
```

**Arguments**

- **vpc.info** Name of PSN file to use. File will come from `VPC` command in PsN.
- **vpctab** Name of vpctab file produced from PsN.
- **object** Xpose data object.
- **subset** Subset of data to look at.
- **main** Title for plot.
- **main.sub** Used for names above each plot when using multiple plots. Should be a vector, e.g. `c("title 1","title 2")`.
- **main.sub.cex** Size of main.sub
- **real.col** Color of real line.
- **real.lty** Real line type.
- **real.cex** Size of real line.
- **real.lwd** Width of real line.
- **median.line** Dray a median line?
- **median.col** Color of median line.
- **median.lty** median line type.
- **ci.lines** Lines marking confidence interval?
- **ci.col** Color of CI area.
- **ci.lines.col** Color of CI lines.
- **ci.lines.lty** Type of CI lines.
xlb         X-axis label. If other than "default" passed directly to `xyplot`.
ylb         Y-axis label. Passed directly to `xyplot`.
force.x.continuous
For the x variable to be continuous.
level.to.plot Which levels of the variable to plot. Smallest level is 1, largest is number_of_levels.
For example, with 4 levels, the largest level would be 4, the smallest would be 1.
max.plots.per.page The number of plots per page.
rug         Should there be markings on the plot showing where the intervals for the VPC are?
rug.col     Color of the rug.
censored    Is this censored data? Censored data can be both below and above the limit of quantification.
...         Additional information passed to function.

Author(s)
Andrew C. Hooker

See Also
xpose.VPC.both.

Other specific functions: `absval.cwres.vs.cov.bw`, `absval.cwres.vs.pred.by.cov`, `absval.cwres.vs.pred`,
`absval.iwres.cwres.vs.ipred.pred`, `absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.iwres.vs.ipred.by.cov`,
`absval.iwres.vs.ipred.absval.iwres.vs.cov.bw`, `absval.iwres.vs.idv`, `absval.wres.vs.cov.bw`, `absval.wres.vs.idv`,
`absval.wres.vs.pred.by.cov`, `absval.wres.vs.pred`, `absval_delta_vs_cov_model_comp`, `addit.gof`,
`autocorr.cwres`, `autocorr.iwres`, `autocorr.wres`, `basic.gof`, `basic.model.comp`, `cat.dv.vs.idv.sb`,
`cat.pc`, `cov.splom`, `cwres.dist.hist`, `cwres.dist.qq`, `cwres.vs.cov`, `cwres.vs.idv`, `cwres.vs.idv`,
`cwres.vs.preds`, `cwres.vs.pred`, `cwres_wres_vs_x`, `dOFV.vs.cov`, `dOFV.vs.id`, `dOFV1.vs.dOFV2`,
`data.checkout`, `dv.preds.vs.idv`, `dv.vs.idv`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`,
`dv.vs.ipred`, `dv.vs.ipred.by.cov`, `dv.vs.ipred.by.idv`, `dv.vs.ipred.ipred`, `dv.vs.ipred.gof`,
`ind.plots.cwres.hist`, `ind.plots.cwres.qq`, `ind.plots.ipred.vs.idv`, `iwres.dist.hist`,
`iwres.dist.qq`, `iwres.vs.idv`, `kaplan.plot`, `par_cov_hist`, `par_cov_qq`, `parm.vs.cov`, `parm.vs.parm`,
`pred.vs.idv`, `ranpar.vs.cov`, `runsum`, `wres.dist.hist`, `wres.dist.qq`, `wres.vs.idv`, `wres.vs.idv`,
`wres.vs.ipred`, `wres.vs.ipred`, `xpose.VPC.both`, `xpose.VPC`, `xpose4-package`

Other PsN functions: `boot.hist`, `bootscm.import`, `npc.coverage`, `randtest.hist`, `read.npc.vpc.results`,
`read.vpctab`, `xpose.VPC.both`, `xpose.VPC`, `xpose4-package`

Examples

```r
Not run:
library(xpose4)

move to the directory where results from PsN
are found
```
cur.dir <- getwd()
setwd(paste(cur.dir,"/binary/vpc_35",sep=""))

xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4)
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4,by="DOSE")

## ordered categorical plots
setwd(paste(cur.dir,"/ordered_cat/vpc_45",sep=""))
xpose.VPC.categorical()

## count
setwd(paste(cur.dir,"/count/vpc65b",sep=""))
xpose.VPC.categorical()

setwd(paste(cur.dir,"/count/vpc65a",sep=""))
xpose.VPC.categorical()

## End(Not run)

---

**xpose4**

*Classic menu system for Xpose 4*

**Description**

Classic menu system for Xpose 4

**Usage**

`xpose4()`

**Author(s)**

Andrew Hooker

**See Also**

Other classic functions: *xpose4-package*

**Examples**

```
Not run:
xpose4()

End(Not run)
```
xsubset

Extract or set the value of the Subset slot.

Description

Extract or set the value of the Subset slot of an "xpose.data" object.

Usage

xsubset(object)

xsubset(object) <- value

Arguments

object An "xpose.data" object.
value A string with the subset expression.

Details

The subset string has the same syntax as the subset argument to, e.g. panel.xyplot. Note, however, that the "xpose.data" subset is not used as an argument to panel.xyplot. It is intended as the subset argument to the Data and SData functions.

Value

A string representing the subset expression.

Functions

- xsubset<-. assign value with a string representing the subset expression

Author(s)

Niclas Jonsson

See Also

Data, SData

Other data functions: add_transformed_columns, change_graphical_parameters, change_misc_parameters, compute.cwres, data.checkout, data_extract_or_assign, db.names, export.graph.par, export.variable.definit, import.graph.par, import.variabledefinitions, make.sb.data, nsim, par_cov_summary, read.TTE.sim.data, read.nm.tables, read_NM_output, read_nm_table, simprazExample, tabulate.parameters, xlabel, xpose.data, xpose.print, xpose4-package
Examples

```r
xpdb <- simpraz.xpdb
xsubset(xpdb) <- "DV > 0"
xsubset(xpdb)
```

---

#### `xvardef`  
*Extract and set Xpose variable definitions.*

**Description**

This function extracts and set Xpose variable definitions in "xpose.data" objects.

**Usage**

```r
xvardef(x, object)
xvardef(object) <- value
```

**Arguments**

- `x`: The name of an xpose variable (see below).
- `object`: An xpose.data object.
- `value`: A two element vector of which the first element is the name of the variable and the second the column name in the Data slot of the object.

**Details**

The Xpose variable definitions are used to map particular variable types to column names in the data.frame in the Data slot of the "xpose.data" object. The single-valued Xpose variable definitions are: `id`, `idlab`, `idv`, `occ`, `dv`, `pred`, `ipred`, `iwres`, `res`. The (potentially) vector-valued Xpose variable definitions are: `parms`, `covariates`, `ranpar`, `tvpars` (parameters, covariates, random effects parameters=etas, typical value parameters). The default values of these can be found in the `createXposeClasses` function.

**Value**

Returns a string with the name of the data variable defined as the Xpose data variable.

**Functions**

- `xvardef<-`: reset the which column the label `dv` points to in the Data slot of the xpose database object

**Author(s)**

Niclas Jonsson
See Also

`xpose.data-class`, `xposeprefs-class`

Examples

```r
xpdb <- simpraz.xpdb

get the column name in the Data slot of object xpdb
corresponding to the label dv
xvardef("dv", xpdb)

reset the which column the label dv points to in the Data slot of
object xpdb
xvardef(xpdb) <- c("dv", "DVA")
```
Index

*Topic `\textasciitilde bootgam`
- bootgam.print, 47
- xp.distr.mod.size, 176
- xp.dofv.plot, 178
- xp.inc.prob, 181
- xp.inc.prob.comb.2, 181
- xp.incl.index.cov.comp, 184

*Topic `\textasciitilde bootscm`
- bootgam.print, 47
- xp.boot.par.est, 173
- xp.boot.par.est.corr, 174
- xp.distr.mod.size, 176
- xp.dofv.plot, 178
- xp.inc.prob, 181
- xp.inc.prob.comb.2, 181
- xp.incl.index.cov.comp, 184

*Topic `\textasciitilde classes`
- xpose.data-class, 190
- xpose.prefs-class, 230

*Topic `\textasciitilde datasets`
- simpraz.xpdb, 160

*Topic `\textasciitilde methods`
- absval.cwres.vs.cov.bw, 7
- absval.cwres.vs.pred, 9
- absval.cwres.vs.pred.by.cov, 10
- absval.iwres.vs.ipred.by.cov, 16
- absval.iwres.vs.ipred.by.cov, 18
- absval.iwres.vs.pred, 20
- absval.wres.vs.cov.bw, 21
- absval.wres.vs.idv, 23
- absval.wres.vs.pred, 25
- absval_delta_vs_cov_model_comp, 29
- add.grid.table, 31
- add.model.comp, 33
- addit.gof, 34
- autocorr.cwres, 38
- autocorr.wres, 41
- basic.model.comp, 44
- boot.hist, 46

- cat.dv.vs.idv.sb, 49
- cat.pc, 51
- change.parm, 53
- change.var.name, 54
- change.xlabel, 55
- change.xvardef, 56
- change_misc_parameters, 60
- compute.cwres, 63
- createXposeClasses, 73
- cwres.dist.hist, 74
- cwres.dist.qq, 75
- cwres.vs.cov, 76
- cwres.vs.idv, 78
- cwres.vs.idv.bw, 79
- cwres.vs.pred, 81
- cwres.vs.pred.bw, 82
- data.checkout, 85
- data_extract_or_assign, 87
- db.names, 89
- dOFV.vs.cov, 90
- dOFV.vs.id, 91
- dOFV1.vs.dOFV2, 93
- dv.preds.vs.idv, 95
- dv.vs.idv, 96
- dv.vs.ipred, 98
- dv.vs.ipred.by.cov, 99
- dv.vs.ipred.by.idv, 100
- dv.vs.pred, 102
- dv.vs.pred.by.cov, 103
- dv.vs.pred.by.idv, 104
- dv.vs.pred.ipred, 106
- export.graph.par, 107
- export.variable.definitions, 108
- gof, 111
- import.variable.definitions, 115
- ind.plots, 116
- ind.plots.cwres.qq, 122
- ipred.vs.idv, 124
- iwres.dist.hist, 126
iwres.dist.qq, 127
iwres.vs.idv, 128
make.sb.data, 133
npc.coverage, 134
nsim, 136
par_cov_hist, 140
par_cov_qq, 142
par_cov_summary, 143
parm.vs.cov, 137
parm.vs.parm, 138
pred.vs.idv, 145
randtest.hist, 147
ranpar.vs.cov, 149
read.nn.tables, 150
read.npc.vpc.results, 152
read.vpctab, 154
reset.graph.par, 157
runsum, 158
simprazExample, 160
tabulate.parameters, 161
wres.dist.hist, 162
wres.dist.qq, 164
wres.vs.cov, 165
wres.vs.idv.bw, 168
wres.vs.pred, 169
wres.vs.pred.bw, 170
xlabel, 172
xpose.data, 188
xpose.license.citation, 193
xpose.logTicks, 194
xpose.panel.bw, 198
xpose.panel.default, 201
xpose.panel.histogram, 211
xpose.panel.qq, 213
xpose.panel.splom, 214
xpose.plot.bw, 215
xpose.plot.default, 218
xpose.plot.histogram, 222
xpose.plot.qq, 225
xpose.plot.splom, 227
xpose.string.print, 231
xpose.VPC, 232
xpose.VPC.both, 238
xpose.VPC.categorical, 240
xpose4, 242
xpose4-package, 5
xsubset, 243

*Topic package

xpose4-package, 5


absval.cwres.vs.pred, 6, 8, 9, 12, 13, 15–17, 19, 21, 22, 24, 26, 28, 30, 35, 39, 40, 42, 43, 45, 51, 52, 72, 74, 75, 77, 79–81, 83, 84, 86, 91, 92, 94, 96–98, 100–102, 104, 105, 107, 113, 118, 121, 124–127, 129, 132, 138, 139, 141, 143, 146, 150, 159, 163, 164, 167, 168, 170, 171, 236, 239, 241

absval.cwres.vs.pred.by.cov, 6, 8, 10, 12, 13, 15–17, 19, 21, 22, 24, 26, 28, 30, 35, 39, 40, 42, 43, 45, 51, 52, 72, 74, 75, 77, 79–81, 83, 84, 86, 91, 92, 94, 96–98, 100–102, 104, 105, 107, 113, 118, 121, 124–127, 129, 132, 138, 139, 141, 143, 146, 150, 159, 163, 164, 167, 168, 170, 171, 236, 239, 241

absval.dcwres.vs.cov.model.comp
(absval_delta_vs_cov_model_comp).

absval.dipred.vs.cov.model.comp
(absval_delta_vs_cov_model_comp).

absval.diwres.vs.cov.model.comp
(absval_delta_vs_cov_model_comp).

absval.dpred.vs.cov.model.comp
(absval_delta_vs_cov_model_comp).

absval.dwres.vs.cov.model.comp
(absval_delta_vs_cov_model_comp).

absval.iwres.cwres.vs.ipred.pred, 6, 8, 10, 12, 15–17, 19, 21, 22, 24, 26, 28, 30, 35, 39, 40, 42, 43, 45, 51, 52, 72, 74, 75, 77, 79–81, 83, 84, 86, 91, 92, 94, 96–98, 100–102, 104, 105, 107, 113, 118, 121, 124–127, 129, 132, 138, 139, 141, 143, 146, 150, 159, 163, 164, 167, 168, 170, 171, 236, 239, 241
INDEX

absval\_iwres.wres.vs.ipred
(absval\_iwres.wres.cwres.vs.ipred), 12

absval\_wres.vs.cov.bw, 6, 8, 10, 12, 13,
15–17, 19, 21, 22, 24, 26, 28, 30, 35,
39, 40, 42, 44, 45, 51, 52, 72, 74, 75,
77, 79–81, 83, 85, 86, 91, 92, 94,
96–98, 100–102, 104, 105, 107, 113,
118, 121, 124–127, 129, 132, 138,
139, 141, 143, 146, 150, 159, 163,
164, 167, 168, 170, 171, 236, 239, 241

absval\_wres.vs.idv, 6, 8, 10, 12, 13, 15,
15, 17, 19, 21, 22, 24, 26, 28, 30, 35,
39, 40, 42, 44, 45, 51, 52, 72, 74, 75,
77, 79–81, 83, 84, 86, 91, 92, 94,
96–98, 100–102, 104, 105, 107, 113,
118, 121, 124–127, 129, 132, 138,
139, 141, 143, 146, 150, 159, 163,
164, 167, 168, 170, 171, 236, 239, 241

absval\_wres.vs.ipred, 6, 8, 10, 12, 13, 15,
16, 16, 19, 21, 22, 24, 26, 28, 30, 35,
39, 40, 42–45, 51, 52, 72, 74, 75, 77,
79–81, 83, 85, 86, 91, 92, 94, 96–98,
100–102, 104, 105, 107, 113, 118,
121, 124–127, 129, 132, 139, 141,
143, 146, 150, 159, 163, 164,
167, 168, 170, 171, 236, 239, 241

absval\_wres.vs.ipred.by.cov, 6, 8, 10,
12, 13, 15–17, 18, 21, 22, 24, 26, 28,
30, 35, 39, 40, 42, 44, 45, 51, 52, 72,
74, 75, 77, 79–81, 83, 84, 86, 91, 92,
94, 96–98, 100–102, 104, 105, 107,
113, 118, 121, 124–127, 129, 132,
139, 139, 141, 143, 146, 150, 159,
163, 164, 167, 168, 170, 171, 236,
239, 241

absval\_wres.vs.pred, 6, 8, 10, 12, 13,
15–17, 19, 20, 22, 24, 26, 28, 30, 35,
39, 40, 42, 44, 45, 51, 52, 72, 74, 75,
77, 79–81, 83, 85, 86, 91, 92, 94,
96–98, 100–102, 104, 105, 107, 113,
118, 121, 124–127, 129, 132, 138,
139, 141, 143, 146, 150, 159, 163,
164, 167, 168, 170, 171, 236, 239, 241

absval\_wres.wres.vs.ipred
(absval\_wres.wres.cwres.vs.ipred), 12

add.absval (add_transformed_columns), 36
add.dichot (add_transformed_columns), 36
add.exp(add_transformed_columns), 36
add.grid.table, 31
add.grid.text(add.grid.table), 31
add.log(add_transformed_columns), 36
add.model.comp, 33
add.tad(add_transformed_columns), 36
change.ab.graph.par
  (change_graphical_parameters), 58
change.bw.graph.par
  (change_graphical_parameters), 58
change.cat.cont
  (change_misc_parameters), 60
change.cat.cont<-
  (change_misc_parameters), 60
change.cat.levels
  (change_misc_parameters), 60
change.cat.levels<-
  (change_misc_parameters), 60
boot.hist, 7, 46, 49, 135, 148, 153, 155, 236, 239, 241
bootgam.print, 47
bootscm.import, 7, 47, 48, 135, 148, 153, 155, 176, 177, 179, 180, 183–185, 236, 239, 241
bwplot, 8, 22, 80, 83, 168, 171, 215–217
calc.npar (read_NM_output), 155
change.ab.graph.par
  (change_graphical_parameters), 58
change.bw.graph.par
  (change_graphical_parameters), 58
change.cat.cont
  (change_misc_parameters), 60
change.cat.cont<-
  (change_misc_parameters), 60
change.cat.levels
  (change_misc_parameters), 60
change.cat.levels<-
  (change_misc_parameters), 60
change.cond.graph.par
(change_graphical_parameters), 58

cache.dill.graph.par
(change_graphical_parameters), 58

cache.dv.cat.levels
(change_mis_parameters), 60

cache.dv.cat.levels<-
(change_mis_parameters), 60

cache.label.par
(change_graphical_parameters), 58

cache.lm.graph.par
(change_graphical_parameters), 58

cache.misc.graph.par
(change_graphical_parameters), 58

cache.miss
(change_mis_parameters), 60

cache.p1.graph.par
(change_graphical_parameters), 58

cache.smooth.graph.par
(change_graphical_parameters), 58

cachesubset
(change_mis_parameters), 60

cache.var.name, 54

cache.xlab, 55

cache.xvardef, 56, 157

cache.xvardef<-
(change.xvardef), 56

cache_graphical_parameters, 6, 37, 58,
62, 70, 86, 88, 90, 108, 109, 115,
116, 133, 136, 145, 152, 154, 156,
157, 161, 162, 172, 190, 231, 243

cache_mis_parameters, 6, 37, 59, 60, 70,
86, 88, 90, 108, 109, 115, 116, 133,
136, 145, 152, 154, 156, 157, 161,
162, 172, 190, 231, 243

cache_or_NULL-class
(xpose.multiple.plot-class), 196

cache_or_numeric-class
(xpose.prefs-class), 230

call.compute.cwres, 6, 8–12, 24, 30, 33, 34,
37–39, 43, 45, 59, 62, 63, 74, 75,
<table>
<thead>
<tr>
<th>Packages</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.frame_or_NULL-class</td>
<td>103</td>
</tr>
<tr>
<td>(xpose.data-class)</td>
<td>104</td>
</tr>
<tr>
<td>Data&lt;- (data_extract_or_assign)</td>
<td>105</td>
</tr>
<tr>
<td>data_extract_or_assign</td>
<td>106</td>
</tr>
<tr>
<td>6, 37, 59, 62, 70</td>
<td>107</td>
</tr>
<tr>
<td>86, 87, 90, 108, 109, 115, 116, 133</td>
<td>108</td>
</tr>
<tr>
<td>136, 145, 152, 154, 156, 157, 161</td>
<td>109</td>
</tr>
<tr>
<td>162, 172, 190, 231, 243</td>
<td>110</td>
</tr>
<tr>
<td>db.names</td>
<td>111</td>
</tr>
<tr>
<td>6, 37, 59, 62, 70, 86, 88, 89, 108</td>
<td>112</td>
</tr>
<tr>
<td>109, 115, 116, 133, 136, 145, 152</td>
<td>113</td>
</tr>
<tr>
<td>154, 156, 157, 161, 162, 172, 190</td>
<td>114</td>
</tr>
<tr>
<td>231, 243</td>
<td>115</td>
</tr>
<tr>
<td>dget</td>
<td>116</td>
</tr>
<tr>
<td>118</td>
<td></td>
</tr>
<tr>
<td>dOVF vs.cov</td>
<td>119</td>
</tr>
<tr>
<td>7, 8, 10, 12–17, 19, 21, 22, 24, 26, 28, 31, 35, 39, 40, 42, 44, 45</td>
<td>120</td>
</tr>
<tr>
<td>51, 52, 72, 74, 76, 77, 79, 80, 81, 83</td>
<td>121</td>
</tr>
<tr>
<td>dOVF vs.id</td>
<td>123</td>
</tr>
<tr>
<td>dOVF1 vs.dOVF2</td>
<td>125</td>
</tr>
<tr>
<td>dotplot</td>
<td>127</td>
</tr>
<tr>
<td>86, 111</td>
<td>128</td>
</tr>
<tr>
<td>dplyr</td>
<td>129</td>
</tr>
<tr>
<td>156</td>
<td>130</td>
</tr>
<tr>
<td>dput</td>
<td>131</td>
</tr>
<tr>
<td>109</td>
<td>132</td>
</tr>
<tr>
<td>dv.preds.vs.idv</td>
<td>133</td>
</tr>
<tr>
<td>Data</td>
<td>135</td>
</tr>
<tr>
<td>54, 55, 62, 145, 190, 191, 230, 243</td>
<td>136</td>
</tr>
<tr>
<td>Data (data_extract_or_assign)</td>
<td>137</td>
</tr>
<tr>
<td>87</td>
<td>138</td>
</tr>
<tr>
<td>data.checkout</td>
<td>139</td>
</tr>
<tr>
<td>152, 154, 156, 157, 159, 161–164, 167, 169–172, 190, 231, 236, 239, 241, 243</td>
<td>141</td>
</tr>
<tr>
<td>INDEX</td>
<td>251</td>
</tr>
<tr>
<td>dv.vs.ipred</td>
<td>7, 8, 10, 12–17, 19, 21, 22, 24, 26, 28, 31, 35, 39, 40, 42–45, 51, 52, 72, 74, 76, 77, 79, 80, 82, 83, 85, 86, 91, 93, 94, 96, 97, 98, 100, 101, 103–105, 107, 113, 119, 121, 124–126, 128, 139, 141, 143, 146, 150, 159, 163, 164, 167, 169–171, 236, 239, 241</td>
</tr>
<tr>
<td>export.graph.par</td>
<td>6, 37, 39, 58, 59, 62, 70, 86, 88, 90, 107, 110, 115, 116, 133, 136, 145, 152, 154, 156, 157, 161, 162, 172, 190, 231, 243</td>
</tr>
<tr>
<td>gam</td>
<td>110, 111</td>
</tr>
<tr>
<td>GAM_summary_and_plot</td>
<td>7, 109, 179, 186, 188, 193</td>
</tr>
<tr>
<td>get.doc</td>
<td>change_misc_parameters</td>
</tr>
<tr>
<td>gofSetup</td>
<td>gof</td>
</tr>
<tr>
<td>grid.polygon</td>
<td>134, 234, 235</td>
</tr>
<tr>
<td>grid.text</td>
<td>32</td>
</tr>
<tr>
<td>help</td>
<td>24</td>
</tr>
</tbody>
</table>
INDEX

histogram, 47, 74, 77, 120, 121, 126, 138, 141, 148, 150, 163, 166, 223–225

import.graph.par, 6, 37, 58, 59, 62, 70, 86, 88, 90, 108, 109, 114, 116, 133, 136, 145, 152, 154, 156, 157, 161, 162, 172, 190, 231, 243


ind.cwres(computecwres), 63


ind.plots.wres.hist
(indplots.cwres.hist), 119

ind.plots.wres.qq(indplots.cwres.qq), 122


is.cwres.readable.file(computecwres), 63


lattice-package, 47, 148
list_or_NULL-class
(xpose.multiple.plot-class), 196
lm, 59
loess, 59
loess.smooth, 59
logical_or_numeric-class
(xpose.multiple.plot-class), 196

make.sb.data, 6, 37, 59, 62, 70, 86, 88, 90, 108, 109, 115, 116, 133, 136, 145,
INDEX

152, 154, 156, 157, 161, 162, 172, 190, 231, 243

npc.coverage, 7, 47, 49, 134, 148, 153, 155, 236, 239, 241


nsim<- (nsim), 136

numeric_or_NULL-class (xpose.data-class), 190

panel.abline, 59, 78, 81, 84, 98, 99, 101–103, 105, 106, 128, 167, 169, 208, 211, 212

panel.bwplot, 59, 199, 200, 209

panel.histogram, 225

panel.imline, 59

panel.loess, 59, 208, 209, 215

panel.pairs, 215

panel.qqmathline, 213, 227

panel.splom, 215, 230

panel.xploplot, 216, 222

par, 59


par$ cov splom (cov$ splom), 70


par$ hist (par$ cov_hist), 140

parm.hist (par$ cov_hist), 140

parm$ qq (par$ cov$ qq), 142

parm$ splom (cov$ splom), 70

parm.summary (par$ cov$ summary), 143


plot, 38, 41, 134, 233–236

plot.default, 59

points, 123, 208, 214


print, xpose$ multiple.plot.method (create.xpose.plot.classes), 73

print, char$ matrix, 144, 145

print, xpose$ multiple.plot, 146, 196

qqmath, 75, 124, 127, 143, 164, 213, 225–227, 229

qqplot, 124

randtest.hist, 7, 47, 49, 135, 147, 153, 155, 236, 239, 241

ranpar.hist (par$ cov$ hist), 140

ranpar$ qq (par$ cov$ qq), 142

ranpar$ splom (cov$ splom), 70

INDEX

141, 143, 146, 149, 159, 163, 164, 167, 169–171, 236, 239, 241
read.cwres.data (compute.cwres), 63
read.lst (read_NM_output), 155
read.npc.vpc.results, 7, 47, 49, 135, 148, 152, 155, 203, 236, 239, 241
read.table, 85, 86
read.vpc.tab, 7, 47, 49, 135, 148, 153, 154, 236, 239, 241
read_nm_table, 6, 37, 59, 62, 70, 86, 88, 90, 108, 109, 115, 116, 133, 136, 145, 152, 154, 156, 156, 161, 162, 172, 190, 231, 243
reset.graph.par, 157
SDData, 54, 55, 62, 145, 190, 191, 230, 243
SDData (data_extract_or_assign), 87
SDData (data_extract_or_assign), 87
set.doc (change_misc_parameters), 60
setup.PPI, 204
shingle, 59
simpraz.xpdb, 160
splom, 72, 215, 230
sqrtn (compute.cwres), 63
step.Gam, 192
step.gam, 193
strip.custom, 220
strip.default, 118
subset, 62
Surv, 132
survfit, 131, 132
trellis.par.get, 200, 209, 210
wres.vs.cov, 165
wres.vs.pred, 7, 8, 10, 12–17, 19, 21, 23, 24, 26, 28, 31, 35, 39, 40, 42, 44, 45, 51, 52, 72, 74, 76, 78–80, 82, 83, 85, 86,

xres<-xlabel(), 172
xp.akaike.plot (GAM_summary_and_plot), 109
xp.boot.par.est, 173
xp.boot.par.est.corr, 174
xp.cook (GAM_summary_and_plot), 109
xp.daic.npar.plot, 49, 175, 177, 179, 180, 183–185
xp.distr.mod.size, 176
xp.dofv.npar.plot, 49, 176, 177, 179, 180, 183–185
xp.dofv.plot, 178
xp.get.disp, 7, 111, 178, 186, 188, 193
xp.inc.cond.stab.cov, 49, 176, 177, 179, 180, 183–185
xp.inc.ind.cond.stab.cov, 49, 176, 177, 179, 180, 183–185
xp.inc.prob, 181
xp.inc.prob.comp.2, 181
xp.inc.stab.cov, 49, 176, 177, 179, 180, 182, 184, 185
xp.incl.index.cov, 49, 176, 177, 179, 180, 183, 185
xp.incl.index.cov.comp, 184
xp.incl.index.cov.ind, 49, 176, 177, 179, 180, 183, 184, 185
xp.ind.inf.fit (GAM_summary_and_plot), 109
xp.ind.inf.terms (GAM_summary_and_plot), 109
xp.plot (GAM_summary_and_plot), 109
xp.plot.histogram, 47, 71, 74, 77, 119–121, 126, 138, 140, 141, 148, 150, 163, 165, 166, 222, 224
xpose.plot.qq, 75, 122–124, 127, 142, 143, 164, 213, 225, 227
xpose.plot.splom, 71, 72, 215, 227
xposeprefs-class, 230
xpose.read (import.graph.par), 114
xpose.string.print, 231
xpose.write (export.graph.par), 107
xpose.xscale.components.log10
(xpose.logTicks), 194
xpose.yscale.components.log10
(xpose.logTicks), 194
xpose4, 7, 242
xpose4-package, 5
xpPage (gof), 111
xscale.components, 194, 195
xscale.components.default, 219
xsubset<= (xsubset), 243
xvardef, 24, 57, 172, 230, 244
xvardef<= (xvardef), 244
xyplot, 10, 12, 13, 17, 19, 21, 24, 26, 28, 30, 34, 35, 39, 42, 43, 45, 50, 71, 77, 79, 81, 84, 96–98, 100–102, 104–107, 118, 125, 129, 134, 135, 138, 146, 150, 166, 167, 170, 199, 203, 208, 214, 215, 219–222, 224, 226, 229, 241
yscale.components.default, 219