Package ‘xrf’

March 31, 2022

Title eXtreme RuleFit
Version 0.2.1
Description An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and 'glmnet' is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.

URL https://github.com/holub008/xrf
BugReports https://github.com/holub008/xrf/issues
Depends R (>= 3.1.0)
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1
Imports Matrix, glmnet (>= 3.0), xgboost (>= 0.71.2), dplyr, fuzzyjoin, rlang, methods
Suggests testthat, covr
NeedsCompilation no
Author Karl Holub [aut, cre]
Maintainer Karl Holub <karljholub@gmail.com>
Repository CRAN
Date/Publication 2022-03-31 06:40:02 UTC

\textbf{R topics documented:}

coef.xrf .. 2
model.matrix.xrf ... 2

1
Description

Produce rules & coefficients for the RuleFit model.

Usage

```r
## S3 method for class 'xrf'
coef(object, lambda = "lambda.min", ...)
```

Arguments

- `object`: an object of class "xrf"
- `lambda`: the lasso penalty parameter to be applied as in 'glmnet'
- `...`: ignored arguments

Examples

```r
m <- xrf(Petal.Length ~ ., iris,
         xgb_control = list(nrounds = 2, max_depth = 2),
         family = 'gaussian')
linear_model_coefficients <- coef(m, lambda = 'lambda.1se')
```

Description

Generate the design matrix from an eXtreme RuleFit model.

Usage

```r
## S3 method for class 'xrf'
model.matrix(object, data, sparse = TRUE, ...)
```
Arguments

object an object of class "xrf"
data data to generate design matrix from
sparse a logical indicating whether a sparse design matrix should be used
... ignored arguments

Examples

m <- xrf(Petal.Length ~ ., iris,
 xgb_control = list(nrounds = 2, max_depth = 2),
 family = 'gaussian')
design <- model.matrix(m, iris, sparse = FALSE)

Description

Draw predictions from a RuleFit xrf model

Usage

S3 method for class 'xrf'
predict(
 object,
 newdata,
 sparse = TRUE,
 lambda = "lambda.min",
 type = "response",
 ...
)

Arguments

object an object of class "xrf"
newdata data to predict on
sparse a logical indicating whether a sparse design matrix should be used
lambda the lasso penalty parameter to be applied
type the type of predicted value produced
... ignored arguments
Examples

```r
m <- xrf(Petal.Length ~ ., iris,
         xgb_control = list(nrounds = 2, max_depth = 2),
         family = 'gaussian')
predictions <- predict(m, iris)
```

print.xrf | Print an eXtreme RuleFit model

Description

Print an eXtreme RuleFit model

Usage

```r
## S3 method for class 'xrf'
print(x, ...)
```

Arguments

- `x`: an object of class "xrf"
- `...`: ignored arguments

Examples

```r
m <- xrf(Petal.Length ~ ., iris,
         xgb_control = list(nrounds = 2, max_depth = 2),
         family = 'gaussian')
print(m)
```

summary.xrf | Summarize an eXtreme RuleFit model

Description

Summarize an eXtreme RuleFit model

Usage

```r
## S3 method for class 'xrf'
summary(object, ...)
```
xrf

Arguments

object an object of class "xrf"
...

Examples

m <- xrf(Petal.Length ~ ., iris,
 xgb_control = list(nrounds = 2, max_depth = 2),
 family = 'gaussian')
summary(m)

xrf Fit an eXtreme RuleFit model

Description

S3 method for building an "eXtreme RuleFit" model. See xrf.formula for preferred entry point

Usage

xrf(object, ...)

Arguments

object an object describing the model to be fit
...

Examples

m <- xrf(Petal.Length ~ ., iris,
 xgb_control = list(nrounds = 2, max_depth = 2),
 family = 'gaussian')

xrf.formula Fit an eXtreme RuleFit model

Description

See Friedman & Popescu (2008) for a description of the general RuleFit algorithm. This method uses XGBoost to fit a tree ensemble, extracts a ruleset as the conjunction of tree traversals, and fits a sparse linear model to the resulting feature set (including the original feature set) using glmnet.
Usage

```r
## S3 method for class 'formula'
xrf(
  object,
  data,
  family,
  xgb_control = list(nrounds = 100, max_depth = 3),
  glm_control = list(type.measure = "deviance", nfolds = 5),
  sparse = TRUE,
  prefit_xgb = NULL,
  deoverlap = FALSE,
  ...
)
```

Arguments

- `object`: a formula prescribing features to use in the model. Transformation of the response variable is not supported. When using transformations on the input features (not suggested in general) it is suggested to set `sparse=F`.
- `data`: a data frame with columns corresponding to the formula.
- `family`: the family of the fitted model. One of 'gaussian', 'binomial', 'multinomial'.
- `xgb_control`: a list of parameters for xgboost. Must supply an nrounds argument.
- `glm_control`: a list of parameters for the glmnet fit. Must supply a type.measure and nfolds arguments (for the lambda cv).
- `sparse`: whether a sparse design matrix should be used.
- `prefit_xgb`: an xgboost model (of class xgb.Booster) to be used instead of the model that `xrf` would normally fit.
- `deoverlap`: if true, the tree derived rules are deoverlapped, in that the deoverlapped rule set contains no overlapped rules.

... ignored arguments

References

Examples

```r
m <- xrf(Petal.Length ~ ., iris,
         xgb_control = list(nrounds = 2, max_depth = 2),
         family = 'gaussian')
```
Index

coeff.xrf, 2
model.matrix.xrf, 2
predict.xrf, 3
print.xrf, 4
summary.xrf, 4
xrf, 5
xrf.formula, 5, 5