Package ‘xxIRT’

March 22, 2019

Type Package
Title Item Response Theory and Computer-Based Testing in R
Version 2.1.2
Date 2019-3-21
Author Xiao Luo [aut, cre]
Maintainer Xiao Luo <xluo1986@gmailNcom>
Description A suite of psychometric analysis tools for research and operation, including:
(1) computation of probability, information, and likelihood for the 3PL, GPCM, and GRM;
(2) parameter estimation using joint or marginal likelihood estimation method;
(3) simulation of computerized adaptive testing using built-in or customized algorithms;
(4) assembly and simulation of multistage testing.
The full documentation and tutorials are at <https://github.com/xluo11/xxIRT>.
License GPL (>= 3)
Depends R (>= 3.5.0)
URL https://github.com/xluo11/xxIRT
BugReports https://github.com/xluo11/xxIRT/issues
Imports ggplot2, glpkAPI, lpSolveAPI, reshape2, stats
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2019-03-22 10:00:03 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ata</td>
<td>2</td>
</tr>
<tr>
<td>cat_sim</td>
<td>5</td>
</tr>
<tr>
<td>cronbach_alpha</td>
<td>8</td>
</tr>
<tr>
<td>expected_raw_score_dist</td>
<td>8</td>
</tr>
<tr>
<td>freq</td>
<td>9</td>
</tr>
</tbody>
</table>
ata

Automated Test Assembly (ATA)

Description

ata initiates an ATA model
ata_obj_relative adds a relative objective to the model
ata_obj_absolute adds an absolute objective to the model
ata_constraint adds a constraint to the model
ata_item_use limits the minimum and maximum usage for items
ata_item_enemy adds an enemy-item constraint to the model
ata_item_fixedvalue forces an item to be selected or not selected
ata_solve solves the MIP model

Usage

ata(pool, num_form = 1, len = NULL, max_use = NULL, ...)

S3 method for class 'ata'
print(x, ...)

S3 method for class 'ata'
plot(x, ...)

ata_obj_relative(x, coef, mode = c("max", "min"), tol = NULL,
negative = FALSE, forms = NULL, collapse = FALSE,
internal_index = FALSE, ...)

ata_obj_absolute(x, coef, target, equal_tol = FALSE, tol_up = NULL,
tol_down = NULL, forms = NULL, collapse = FALSE,
internal_index = FALSE, ...)

ata_constraint(x, coef, min = NA, max = NA, level = NULL,
forms = NULL, collapse = FALSE, internal_index = FALSE)

ata_item_use(x, min = NA, max = NA, items = NULL)
ata_item_enemy(x, items)

ata_item_fixedvalue(x, items, min = NA, max = NA, forms)

ata_solve(x, solver = c("lp.solve", "glpk"), as.list = TRUE, details = TRUE, time_limit = 10, message = FALSE, ...)

Arguments

pool item pool, a data.frame
num_form number of forms to be assembled
len test length of each form
max_use maximum use of each item
... options, e.g. group, common_items, overlap_items
x an ATA object
coef coefficients of the objective function
mode optimization mode: 'max' for maximization and 'min' for minimization
tol the tolerance paraemter
negative TRUE when the objective function is expected to be negative
forms forms where objectives are added. NULL for all forms
collapse TRUE to collapse into one objective function
internal_index TRUE to use internal form indices
target the target values of the objective function
equal_tol TRUE to force upward and downward tolerance to be equal
tol_up the range of upward tolerance
tol_down the range of downward tolerance
min the lower bound of the constraint
max the upper bound of the constraint
level the level of a categorical variable to be constrained
items a vector of item indices, NULL for all items
solver use 'lp.solve' for lp_solve 5.5 or 'glpk' for GLPK
as.list TRUE to return results in a list; otherwise, a data frame
details TRUE to print detailed information
time_limit the time limit in seconds passed along to solvers
message TRUE to print messages from solvers
Details

The ATA model stores the definition of a MIP model. `ata_solve` converts the model definition to a real MIP object and attempts to solve it.

`ata_obj_relative`: when `mode='max'`, maximize \((y-tol)\), subject to \(y \leq \text{sum}(x) \leq y+tol\); when `mode='min'`, minimize \((y+tol)\), subject to \(y-tol \leq \text{sum}(x) \leq y\). When `negative` is `TRUE`, \(y < 0\), \(tol > 0\). `coef` can be a numeric vector that has the same length with the pool or forms, or a variable name in the pool, or a numeric vector of theta points. When `tol` is `NULL`, it is optimized; when `FALSE`, ignored; when a number, fixed; when a range, constrained with lower and upper bounds.

`ata_obj_absolute` minimizes \(y_0+y_1\) subject to \(t-y_0 \leq \text{sum}(x) \leq t+y_1\).

When `level` is `NA`, it is assumed that the constraint is on a quantitative item property; otherwise, a categorical item property. `coef` can be a variable name, a constant, or a numeric vector that has the same size as the pool.

`ata_solve` takes control options in: For lpSolve, see `lpSolveAPI::lp.control.options`. For glpk, see `glpkAPI::glpkConstants`.

Once the model is solved, additional data are added to the model. `status` shows the status of the solution, optimum the optimal value of the objective function found in the solution, `obj-vars` the values of two critical variables in the objective function, `result` the assembly results in a binary matrix, and `items` the assembled items.

Examples

```r
# Not run:
# generate a pool of 100 items
n_items <- 100
pool <- with(model_3pl.gendata(1, nItems), data.frame(id=1:n_items, a=a, b=b, c=c))
pool$content <- sample(1:3, n_items, replace=TRUE)
pool$time <- round(rlnorm(n_items, log(60), .2))
pool$group <- sort(sample(1:round(n_items/3), n_items, replace=TRUE))

# ex. 1: four 10-item forms, maximize b parameter
x <- ata(pool, 4, len=10, max_use=1)
x <- ata_obj_relative(x, "b", "max")
x <- ata_solve(x, timeout=5)
data.frame(form=1:4, b=sapply(x$items, function(x) mean(x$b))))

# ex. 2: four 10-item forms, minimize b parameter
x <- ata(pool, 4, len=10, max_use=1)
x <- ata_obj_relative(x, "b", "min", negative=TRUE)
x <- ata_solve(x, as.list=FALSE, timeout=5)
with(x$items, aggregate(b, by=list(form=form), mean))

# ex. 3: two 10-item forms, mean(b)=0, sd(b)=1
# content = (3, 3, 4), avg. time = 58--62 seconds
constr <- data.frame(name='content', level=1:3, min=c(3,3,4), max=c(3,3,4), stringsAsFactors=F)
constr <- rbind(constr, c('time', NA, 58*10, 62*10))
x <- ata(pool, 2, len=10, max_use=1)
x <- ata_obj_absolute(x, pool$b, 0*10)
x <- ata_obj_absolute(x, (pool$b-0)^2, 1*10)
for(i in 1:nrow(constr))
```

cat_sim

Description

cat_sim runs a simulation of CAT. Use theta in options to set the starting value of theta estimate.
cat_estimate_mle is the maximum likelihood estimation rule. Use map_len to apply MAP to the
cat_estimate_eap is the expected a posteriori estimation rule, using eap_mean and eap_sd option
parameters as the prior
cat_estimate_hybrid is a hybrid estimation rule, which uses MLE for mixed responses and EAP
for all 1’s or 0’s responses

cat_stop_default is a three-way stopping rule. When stop_se is set in the options, it uses the
standard error stopping rule. When stop_mi is set in the options, it uses the minimum information
stopping rule. When stop_cut is set in the options, it uses the confidence interval (set by ci_width)
stopping rule.
cat_select_maxinfo is the maximum information selection rule. Use group (a numeric vector)
to group items belonging to the same set. Use info_random to implement the random-esque item
exposure control method.
cat_select_ccat is the constrained CAT selection rule. Use ccat_var to set the content variable
in the pool. Use ccat_perc to set the desired content distribution, with the name of each element
being the content code and true value of each element being the percentage. Use ccat_random to
add randomness to initial item selections.
cat_select_shadow is the shadow-test selection rule. Use shadow_id to group item sets. Use
constraints to set constraints. Constraints should be in a data.frame with four columns: var
(variable name), level (variable level, NA for quantitative variable), min (lower bound), and max
(upper bound).
cat_stop_projection is the projection-based stopping rule. Use projection_method to choose
the projection method (‘info’ or ‘diff’). Use stop_cut to set the cut score. Use constraints to
set the constraints. Constraints should be a data.frame with columns: var (variable name), level
(variable level, NA for quantitative variable), min (lower bound), max (upper bound)
Usage

cat_sim(true, pool, ...)

cat_estimate_mle(len, theta, stats, admin, pool, opts)

cat_estimate_eap(len, theta, stats, admin, pool, opts)

cat_estimate_hybrid(len, theta, stats, admin, pool, opts)

cat_stop_default(len, theta, stats, admin, pool, opts)

cat_select_maxinfo(len, theta, stats, admin, pool, opts)

cat_select_ccat(len, theta, stats, admin, pool, opts)

cat_select_shadow(len, theta, stats, admin, pool, opts)

S3 method for class 'cat'
print(x, ...)

S3 method for class 'cat'
plot(x, ...)

cat_stop_projection(len, theta, stats, admin, pool, opts)

Arguments

ture the true theta
pool the item pool (data.frame)
... option/control parameters
len the current test length
theta the current theta estimate
stats a matrix of responses, theta estimate, information and std error
admin a data frame of administered items
opts a list of option/control parameters
x a cat object

Details

... takes a variety of option/control parameters for the simulations from users. \texttt{min} and \texttt{max} are mandatory for setting limits on the test length. User-defined selection, estimation, and stopping rules are also passed to the simulator via options.

To write a new rule, the function signature must be: \texttt{function(len, theta, stats, admin, pool, opts)}. See built-in rules for examples.
Value

cat_sim returns a cat object

an estimation rule should return a theta estimate

a stopping rule should return a boolean: TRUE to stop the CAT, FALSE to continue

a selection rule should return a list of (a) the selected item and (b) the updated pool

Examples

```r
## Not run:
## generate a 100-item pool
num_items <- 100
pool <- with(model_3pl_gendata(1, num_items), data.frame(a=a, b=b, c=c))
pool$set_id <- sample(1:30, num_items, replace=TRUE)
pool$content <- sample(1:3, num_items, replace=TRUE)
pool$time <- round(rlnorm(num_items, mean=4.1, sd=.2))

## MLE, EAP, and hybrid estimation rule
cat_sim(pool, min=10, max=20, estimate_rule=cat_estimate_mle)
cat_sim(pool, min=10, max=20, estimate_rule=cat_estimate_eap)
cat_sim(pool, min=10, max=20, estimate_rule=cat_estimate_hybrid)

## SE, MI, and CI stopping rule
cat_sim(pool, min=10, max=20, stop_se=.3)
cat_sim(pool, min=10, max=20, stop_mi=.6)
cat_sim(pool, min=10, max=20, stop_cut=0)
cat_sim(pool, min=10, max=20, stop_cut=0, ci_width=2.58)

## maximum information selection with item sets
cat_sim(pool, min=10, max=20, group="set_id")$admin

## maximum information with item exposure control
cat_sim(pool, min=10, max=20, info_random=5)$admin

## Constrained-CAT selection rule with and without initial randomness

cat_sim(pool, min=10, max=20, select_rule=cat_select_ccat, ccat_var="content", ccat_perc=c("1"=.2, "2"=.3, "3"=.5))
cat_sim(pool, min=10, max=20, select_rule=cat_select_ccat, ccat_random=5, ccat_var="content", ccat_perc=c("1"=.2, "2"=.3, "3"=.5))

## Shadow-test selection rule
cons <- data.frame(var='content', level=1:3, min=c(3,3,4), max=c(3,3,4))
cons <- rbind(cons, data.frame(var='time', level=NA, min=55*10, max=65*10))
cat_sim(pool, min=10, max=10, select_rule=cat_select_shadow, constraints=cons)

## Projection-based stopping rule
cons <- data.frame(var='content', level=1:3, min=5, max=15)
cons <- rbind(cons, data.frame(var='time', level=NA, min=60*20, max=60*40))
cat_sim(pool, min=20, max=20, select_rule=cat_select_shadow, stop_rule=cat_stop_projection, projection_method="diff", stop_cut=0, constraints=cons)

## End(Not run)
```
cronbach_alpha Cronbach’s alpha

Description

cronbach_alpha computes Cronbach’s alpha internal consistency reliability

Usage

cronbach_alpha(responses)

Arguments

responses the observed responses, 2d matrix

Examples

cronbach_alpha(model_3pl_gendata(1000, 20)$u)

expected_raw_score_dist
 #' Distribution of Expected Raw Scores

Description

Calculate the distribution of expected raw scores

Usage

expected_raw_score_dist(t, a, b, c)

Arguments

t the ability parameters, 1d vector
a the item discrimination parameters, 1d vector
b the item difficulty parameters, 1d vector
c the item guessing parameters, 1d vector
freq

Frequency Counts

Description
Frequency counts of a vector

Usage
```r
freq(x, values = NULL, rounding = NULL)
```

Arguments
- **x**: a numeric or character vector
- **values**: valid values, NULL to include all values
- **rounding**: round percentage to n-th decimal places

model_3pl

3-parameter-logistic model

Description
Routine functions for the 3PL model

Usage
```r
model_3pl_prob(t, a, b, c, D = 1.702)
model_3pl_info(t, a, b, c, D = 1.702)
model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE)
model_3pl_rescale(t, a, b, c, param = c("t", "b"), mean = 0, sd = 1)
model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.7), c_dist = c(5, 46), missing = NULL)
model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"), total = FALSE, xaxis = seq(-4, 4, 0.1))
model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1), show_mle = FALSE)
```
Arguments

t | ability parameters, 1d vector
a | discrimination parameters, 1d vector
b | difficulty parameters, 1d vector
c | guessing parameters, 1d vector
d | the scaling constant, 1.702 by default
u | observed responses, 2d matrix
log | True to return log-likelihood
param | the parameter of the new scale: 't' or 'b'
mean | the mean of the new scale
sd | the standard deviation of the new scale
n_p | the number of people to be generated
n_i | the number of items to be generated
t_dist | parameters of the normal distribution used to generate t-parameters
a_dist | parameters of the lognormal distribution used to generate a-parameters
b_dist | parameters of the normal distribution used to generate b-parameters
c_dist | parameters of the beta distribution used to generate c-parameters
missing | the proportion or number of missing responses
type | the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC)
total | TRUE to sum values over items
xaxis | the values of x-axis
show_mle | TRUE to print maximum likelihood estimates

Examples

with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c))
model_3pl_gendata(10, 5)
model_3pl_gendata(10, 5, a=1, c=0, missing=.1)
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob"))
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE))
with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c, show_mle=TRUE))
model_gpcm

Generalized Partial Credit Model

Description
Routine functions for the GPCM

Usage

model_gpcm_prob(t, a, b, d, D = 1.702, insert_d0 = NULL)

model_gpcm_info(t, a, b, d, D = 1.702, insert_d0 = NULL)

model_gpcm_lh(u, t, a, b, d, D = 1.702, insert_d0 = NULL,
 log = FALSE)

model_gpcm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
 d = NULL, D = 1.702, sort_d = FALSE, t_dist = c(0, 1),
 a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), missing = NULL)

model_gpcm_rescale(t, a, b, d, param = c("t", "b"), mean = 0, sd = 1)

model_gpcm_plot(a, b, d, D = 1.702, insert_d0 = NULL,
 type = c("prob", "info"), by_item = FALSE, total = FALSE,
 xaxis = seq(-6, 6, 0.1))

model_gpcm_plot_loglh(u, a, b, d, D = 1.702, insert_d0 = NULL,
 xaxis = seq(-6, 6, 0.1), show_mle = FALSE)

Arguments

t ability parameters, 1d vector
a discrimination parameters, 1d vector
b item location parameters, 1d vector
d item category parameters, 2d vector
D the scaling constant, 1.702 by default
insert_d0 insert an initial category value
u the observed scores (starting from 0), 2d matrix
log TRUE to return log-likelihood
n_p the number of people to be generated
n_i the number of items to be generated
n_c the number of score categories
sort_d TRUE to sort d parameters for each item
model_gpcm

t_dist parameters of the normal distribution used to generate t-parameters
a_dist parameters of the lognormal distribution parameters of a-parameters
b_dist parameters of the normal distribution used to generate b-parameters
missing the proportion or number of missing responses
param the parameter of the new scale: 't' or 'b'
mean the mean of the new scale
sd the standard deviation of the new scale
type the type of plot, prob for ICC and info for IIFC
by_item TRUE to combine categories
total TRUE to sum values over items
xaxis the values of x-axis
show_mle TRUE to print maximum likelihood values

Details

Use NA to represent unused category.

Examples

```r
with(model_gpcm_gendata(10, 5, 3), model_gpcm_prob(t, a, b, d))
with(model_gpcm_gendata(10, 5, 3), model_gpcm_info(t, a, b, d))
with(model_gpcm_gendata(10, 5, 3), model_gpcm_lh(u, t, a, b, d))
model_gpcm_gendata(10, 5, 3, missing=.1)
# Figure 1 in Muraki, 1992 (APM)
b <- matrix(c(-2,0,2,-5,0,2,-5,0,2), nrow=3, byrow=TRUE)
model_gpcm_plot(a=c(1,1,.7), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, insert_d0=0)
# Figure 2 in Muraki, 1992 (APM)
b <- matrix(c(.5,0,NA,0,0,0), nrow=2, byrow=TRUE)
model_gpcm_plot(a=.7, b=rowMeans(b, na.rm=TRUE), d=rowMeans(b, na.rm=TRUE)-b, D=1.0, insert_d0=0)
# Figure 3 in Muraki, 1992 (APM)
b <- matrix(c(1.759,-1.643,3.970,-2.764), nrow=2, byrow=TRUE)
model_gpcm_plot(a=c(.778,.946), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, insert_d0=0)
# Figure 1 in Muraki, 1993 (APM)
b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,0,2), nrow=5, byrow=TRUE)
model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0)
# Figure 2 in Muraki, 1993 (APM)
b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,0,-2), nrow=5, byrow=TRUE)
model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0, type='info', by_item=TRUE)
with(model_gpcm_gendata(5, 50, 3), model_gpcm_plot_loglh(u, a, b, d))
```
model_grm

Graded Response Model

Description
Routine functions for the GRM

Usage

model_grm_prob(t, a, b, D = 1.702, raw = FALSE)
model_grm_info(t, a, b, D = 1.702)
model_grm_lh(u, t, a, b, D = 1.702, log = FALSE)
model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
 D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0,
 0.8), missing = NULL)
model_grm_rescale(t, a, b, param = c("t", "b"), mean = 0, sd = 1)
model_grm_plot(a, b, D = 1.702, type = c("prob", "info"),
 by_item = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1),
 raw = FALSE)
model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1),
 show_mle = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>ability parameters, 1d vector</td>
</tr>
<tr>
<td>a</td>
<td>discrimination parameters, 1d vector</td>
</tr>
<tr>
<td>b</td>
<td>item location parameters, 2d matrix</td>
</tr>
<tr>
<td>D</td>
<td>the scaling constant, 1.702 by default</td>
</tr>
<tr>
<td>raw</td>
<td>TRUE to return P*</td>
</tr>
<tr>
<td>u</td>
<td>the observed scores (starting from 0), 2d matrix</td>
</tr>
<tr>
<td>log</td>
<td>TRUE to return log-likelihood</td>
</tr>
<tr>
<td>n_p</td>
<td>the number of people to be generated</td>
</tr>
<tr>
<td>n_i</td>
<td>the number of items to be generated</td>
</tr>
<tr>
<td>n_c</td>
<td>the number of score categories</td>
</tr>
<tr>
<td>t_dist</td>
<td>parameters of the normal distribution used to generate t-parameters</td>
</tr>
<tr>
<td>a_dist</td>
<td>parameters of the lognormal distribution used to generate a-parameters</td>
</tr>
<tr>
<td>b_dist</td>
<td>parameters of the normal distribution used to generate b-parameters</td>
</tr>
</tbody>
</table>
mst_sim

Simulation of Multistage Testing

Description

mst_sim simulates a MST administration

Usage

mst_sim(x, true, rdp = NULL, ...)

S3 method for class 'mst_sim'
print(x, ...)

S3 method for class 'mst_sim'
plot(x, ...)

Arguments

x the assembled MST
true the true theta parameter (numeric)
rdp routing decision points (list)
... additional option/control parameters
Examples

```r
## Not run:
## assemble a MST

nitems <- 200
pool <- with(model_3pl_gendata(1, nitems), data.frame(a=a, b=b, c=c))
pool$content <- sample(1:3, nrow(pool), replace=TRUE)
x <- mst(pool, "1-2-2", 2, 'topdown', len=20, max_use=1)
x <- mst_obj(x, theta=-1, indices=1)
x <- mst_obj(x, theta=0, indices=2:3)
x <- mst_obj(x, theta=1, indices=4)
x <- mst_constraint(x, "content", 6, 6, level=1)
x <- mst_constraint(x, "content", 6, 6, level=2)
x <- mst_constraint(x, "content", 8, 8, level=3)
x <- mst_stage_length(x, 1:2, min=5)
x <- mst_assemble(x)

## ex. 1: administer the MST using fixed RDP for routing
x_sim <- mst_sim(x, .5, list(stage1=0, stage2=0))
plot(x_sim)

## ex. 2: administer the MST using the max. info. for routing
x_sim <- mst_sim(x, .5)
plot(x_sim, ylim=c(-5, 5))

## End(Not run)
```

rmse

Root Mean Squared Error

Description

Root mean squared error (RMSE) of two numeric vectors/matrices

Usage

`rmse(x, y)`

Arguments

- `x`: a numeric vector/matrix
- `y`: a numeric vector/matrix
spearman_brown

Description
Use Spearman-brown formula to compute the predicted reliability when the test length is extended to n-fold or reversely the n-fold extension of test length in order to reach the targeted reliability.

Usage

```
spearman_brown(n, rho)
spearman_brown_reverse(rho, target)
```

Arguments

- `n`: extend the test length to n-fold
- `rho`: the reliability of current test
- `target`: the targeted reliability

Examples

```
spearman_brown(2, .70)
spearman_brown_reverse(.70, .85)
```
Index

ata, 2
ata_constraint (ata), 2
ata_item_enemy (ata), 2
ata_item_fixedvalue (ata), 2
ata_item_use (ata), 2
ata_obj_absolute (ata), 2
ata_obj_relative (ata), 2
ata_solve (ata), 2

model_grm, 13
model_grm_gendata (model_grm), 13
model_grm_info (model_grm), 13
model_grm_lh (model_grm), 13
model_grm_plot (model_grm), 13
model_grm_plot_loglh (model_grm), 13
model_grm_prob (model_grm), 13
model_grm_rescale (model_grm), 13
mst_sim, 14

plot.ata (ata), 2
plot.cat (cat_sim), 5
plot.mst_sim (mst_sim), 14
print.ata (ata), 2
print.cat (cat_sim), 5
print.mst_sim (mst_sim), 14

rmse, 15

spearman_brown, 16
spearman_brown_reverse (spearman_brown), 16

freq, 9

model_3pl, 9
model_3pl_gendata (model_3pl), 9
model_3pl_info (model_3pl), 9
model_3pl_lh (model_3pl), 9
model_3pl_plot (model_3pl), 9
model_3pl_plot_loglh (model_3pl), 9
model_3pl_prob (model_3pl), 9
model_3pl_rescale (model_3pl), 9
model_gpcm, 11
model_gpcm_gendata (model_gpcm), 11
model_gpcm_info (model_gpcm), 11
model_gpcm_lh (model_gpcm), 11
model_gpcm_plot (model_gpcm), 11
model_gpcm_plot_loglh (model_gpcm), 11
model_gpcm_prob (model_gpcm), 11
model_gpcm_rescale (model_gpcm), 11

expected_raw_score_dist, 8

cronbach_alpha, 8

plotNata (ata), 2
plotNcat (cat_sim), 5
plotNmst_sim (mst_sim), 14
printNata (ata), 2
printNcat (cat_sim), 5
printNmst_sim (mst_sim), 14