Package ‘yhat’

February 20, 2015

Type Package
Title Interpreting Regression Effects
Version 2.0-0
Date 2013-09-10
Author Kim Nimon <kim.nimon@gmail.com>, Fred Oswald, and J. Kyle Roberts.
Maintainer Kim Nimon <kim.nimon@gmail.com>
Depends R (>= 2.7.0)
Imports yacca, miscTools, plotrix, boot
Suggests MBESS
Description The purpose of this package is to provide methods to interpret multiple linear regression and canonical correlation results including beta weights, structure coefficients, validity coefficients, product measures, relative weights, all-possible-subsets regression, dominance analysis, commonality analysis, and adjusted effect sizes.
License GPL (>= 2)
URL http://www.r-project.org
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-09-16 00:43:36

R topics documented:
yhat-package .. 2
aps ... 3
boot.yhat .. 4
booteval.yhat .. 5
calc.yhat .. 7
canonCommonality .. 9
canonVariate ... 10
ci.yhat .. 11
Description

The purpose of this package is to provide methods to interpret multiple linear regression and canonical correlation results including beta weights, structure coefficients, validity coefficients, product measures, relative weights, all-possible-subsets regression, dominance analysis, commonality analysis, and adjusted effect sizes.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>yhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>2.0-0</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-09-10</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Kim Nimon <kim.nimon@gmail.com>, Fred L. Oswald, J. Kyle Roberts

References

See Also

`regr commonalityCoefficients canonCommonality calc.yhat boot.yhat booteval.yhat plotCI.yhat aps commonality dominance dombin rlw`

Description

The function runs all possible subsets regression and returns data needed to run commonality and dominance analysis.

Usage

```r
aps(dataMatrix, dv, ivlist)
```

Arguments

- `dataMatrix` Dataset containing the dependent and independent variables
- `dv` The dependent variable named in the dataset
- `ivlist` List of independent variables named in the dataset

Details

Function returns all possible subset information that is used by `commonality` and `dominance`. If data are missing, non-missing data are eliminated based on listwise deletion for full model.

Value

- `ivID` Matrix containing independent variable IDS.
- `PredBitMap` All possible subsets predictor bit map.
- `apsBitMap` Index into all possible subsets predictor bit map.
- `APSMatrix` Table containing the number of predictors and Multiple R^2 for each possible set of predictors.
Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

calc.yhat commonality dominance rlw

Examples

```r
## APS regression predicting miles per gallon based
## on vehicle weight, type of
## carborator, & number of engine cylinders
apsOut<-aps(mtcars,"mpg",list("wt","carb","cyl"))

## APS regression predicting paragraph comprehension based
## on three verbal tests: general info, sentence comprehension,
## & word classification

## Use HS dataset in MBESS
require ("MBESS")
data(HS.data)

## APS
apsOut<-aps(HS.data,"paragrap",list("general","sentence",
                                      "wordc"))
```

boot.yhat

Bootstrap metrics produced from /codecalc.yhat

Description

This function is input to `boot` to bootstrap metrics computed from `calc.yhat`.

Usage

`boot.yhat(data, indices, lmOut, regrout0)`

Arguments

data

Original dataset

indices

Vector of indices which define the bootstrap sample

lmOut

Output of `codelm`

regrout0

Output of `/codecalc.yhat`
This function is input to boot to bootstrap metrics computed from calc.yhat.

The output of boot.yhat when used in conjunction with boot is of class boot and is not further described here. The output is designed to be useful as input for booteval.yhat.

Author(s)
Kim Nimon <kim.nimon@gmail.com>

References

See Also
lm calc.yhat boot booteval.yhat

Examples

```r
## Bootstrap regression results predicting paragraph comprehension based on three verbal tests: general info, sentence comprehension, & word classification

## Use HS dataset in MBESS
require("MBESS")
data(HS.data)

## Regression
lm.out<-lm(paragrap~general+sentence+wordc, data=HS.data)

## Calculate regression metrics
regrOut<-calc.yhat(lm.out)

## Bootstrap results
require("boot")
boot.out<-boot(HS.data,boot.yhat,100,lmOut=lm.out,regout0=regrOut)
```

booteval.yhat

Evaluate bootstrap metrics produced from /codecalc.yhat

Description
This function evaluates the bootstrap metrics produced from /codeboot.yhat.
booteval.yhat

Usage

booteval.yhat(regrOut, boot.out, bty, level, prec)

Arguments

regrOut Output from calc.yhat
boot.out Output from boot in conjunction with boot.yhat
bty Type of confidence interval. Only types "perc", "norm", "basic", and "bca" supported.
level Confidence level (e.g., .95)
prec Integer indicating number of decimal places to be used.

Details

This function evaluates the bootstrap metrics produced from boot.yhat.

Value

Confidence intervals are reported for predictor and all possible subset metrics as well as differences between appropriate predictors and all possible subset metrics. The function also output the means, standard errors, probabilites, and reproducibility metrics for the dominance comparisons. Means and standard deviations are reported for Kendall’s tau correlation between sample predictor metrics and the bootstrap statistics of like metrics.

combCIpm Upper and lower CIs for predictor metrics
lowerCIpm Lower CIs for predictor metrics
upperCIpm Upper CIs for predictor metrics
combCIaps Upper and lower CIs for APS metrics
lowerCIaps Lower CIs for APS metrics
upperCIaps Upper CIs for APS metrics
domBoot Dominance analysis bootstrap results
tauDS Descriptive statistics for Kendall’s tau
combCIpmDiff Upper and lower CIs for differences between predictor metrics
lowerCIpmDiff Lower CIs for differences between predictor metrics
upperCIpmDiff Upper CIs for differences between predictor metrics
combCIapsDiff Upper and lower CIs for differences between APS metrics
lowerCIapsDiff Lower CIs for differences between APS metrics
upperCIapsDiff Upper CIs for differences between APS metrics
combCIincDiff Upper and lower CIs for differences between incremental validity metrics
lowerCIincDiff Lower CIs for differences between incremental validity metrics
upperCIincDiff Upper CIs for differences between incremental validity metrics
Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

`lm`, `calc.yhat`, `boot`, `plotCl.yhat`

Examples

```r
## Bootstrap regression results predicting paragraph comprehension based on four verbal tests: general info, sentence comprehension, & word classification

## Use HS dataset in MBESS
require("MBESS")
data(HS.data)

## Regression
lm.out<-lm(paragrap~general+sentence+wordc,data=HS.data)

## Calculate regression metrics
regrOut<-calc.yhat(lm.out)

## Bootstrap results
require("boot")
boot.out<-boot(HS.data,boot.yhat,100,lmOut=lm.out,regrout0=regrOut)

## Evaluate bootstrap results
result<-booteval.yhat(regrOut,boot.out,bty="perc")
```

Description

Reports beta weights, validity coefficients, structure coefficients, product measures, commonality analysis coefficients, and dominance analysis weights for `lm` class objects.

Usage

`calc.yhat(lm.out, prec=3)`
Arguments

- `lm.out` lm class object
- `prec` level of precision for rounding, defaults to 3

Details

Takes the lm class object and reports beta weights, validity coefficients, structure coefficients, product measures, commonality analysis coefficients, and dominance analysis weights.

Value

- `PredictorMetrics` Predictor metrics associated with lm class object
- `OrderedPredictorMetrics` Rank order of predictor metrics
- `PairedDominanceMetrics` Dominance analysis for predictor pairs
- `APSRelatedMetrics` APS metrics associated with lm class object

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

Examples

```r
## Predict paragraph comprehension based on three verbal tests: general info, sentence comprehension, & word classification

## Use HS dataset in MBESS
require("MBESS")
data(HS.data)

## Regression
lm.out<-lm(paragraph~general+sentence+wordc, data=HS.data)

## Regression Indices
regr.out<-calc.yhat(lm.out)
```
canonCommonality

Commonality Coefficients for Canonical Correlation

Description

The canonCommonality function produces commonality data for both canonical variables sets. Variables in a given canonical set are used to partition the variance of the canonical variates produced from the other canonical set and vica versa. Commonality data is supplied for the number of canonical functions requested.

Usage

canonCommonality(A, B, nofns = 1)

Arguments

A Matrix containing variable set A
B Matrix containing variable set B
nofns Number of canonical functions to analyze

Details

The function canonCommonality has two required arguments and one optional argument. The first two arguments contain the two variable sets. The third argument is optional and defines the number of canonical functions to analyze. Unless specified, the number of canonical functions defaults to 1.

The function canonCommonality calls a function canonVariate to decompose canonical variates twice: the first time for the variable set identified in the first argument, the second time for the variable set identified in the second argument.

Value

The function canonCommonality returns commonality data for both canonical variable sets. For the number of functions requested, both canonical variates are analyzed. For each canonical variate analyzed, two tables are returned. The first table lists the commonality coefficients and their contribution to the total effect, while the second table lists the unique and common effects for each regressor. The function returns the resulting output ordering the output according to the function’s parameters.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

canonVariate

Examples

```r
## Example parallels the R builtin cancor and the
## yacca cca example
data(LifeCycleSavings)
pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
## Perform Commonality Coefficient Analysis
canonCommonData <- canonCommonality(pop, oec, 1)

## Use HS dataset in MBESS
require("MBESS")
data(HS.data)
attach(HS.data)
## Create canonical variable sets
MATH_REASON <- HS.data[, c("deduct","problem")]
MATH_FUND <- HS.data[, c("numeric","arithmet","addition")]
## Perform Commonality Coefficient Analysis
canonCommonData <- canonCommonality(MATH_FUND, MATH_REASON, 1)
detach(HS.data)
```

canonVariate
Canonical Commonality Analysis

Description

The canonCommonality function produces commonality data for a given canonical variable set. Using the variables in a given canonical set to partition the variance of the canonical variates produced from the other canonical set, commonality data is supplied for the number of canonical functions requested.

Usage

canonVariate(A, B, nofns)

Arguments

A
Matrix containing variable set A

B
Matrix containing variable set B

nofns
Number of canonical functions to analyze
Details

For each canonical function, the function `canonVariate` performs the following tasks:

(a) creates a dataset that combines the matrix of variables for a given canonical set and the canonical variate for the other canonical set;
(b) calls `commonalityCoefficients`, passing the dataset, the name of the canonical variate, and the names of the variates in a given canonical set;
(c) saves resultant output.

Value

The function `canonVariate` returns commonality data for the canonical variable set input. For the number of functions requested, two tables are returned. The first table lists the commonality coefficients for each canonical function together with its contribution to the total effect, while the second table lists the unique and common effects for each regressor.

Note

This function is internal to `canonCommonality`, called during runtime and passed the appropriate parameters. This is not an end-user function.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

`canonCommonality`

ci.yhat

Compute CI

Description

This function retrieves the proper elements from boot.ci.

Usage

`ci.yhat(bty, CI)`

Arguments

<table>
<thead>
<tr>
<th>bty</th>
<th>Type of CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>CI</td>
</tr>
</tbody>
</table>
combCI

Details
This function retrieves the proper elements from boot.ci.

Value
This function returns the proper elements from boot.ci.

Note
This function is internal to the yhat package and not intended to be an end-user function.

Author(s)
Kim Nimon <kim.nimon@gmail.com>

References

combCI
Combine upper and lower confidence intervals

description
This function combines upper and lower confidence intervals along with sample statistics and optionally stars intervals that do not contain 0.

Usage
combCI(lowerCI, upperCI, est, star=FALSE)

Arguments

lowerCI Lower CI
upperCI Upper CI
est Estimate
star Boolean to indicate whether CIs that do not contain zero should be starred.

Details
This function evaluates the bootstrap metrics produced from /codeboot.yhat.

Value
Returns estimate with confidence interval in (). Optionally, confidence interval not containing 0 is starred.
Note
This function is internal to the yhat package and not intended to be an end-user function.

Author(s)
Kim Nimon <kim.nimon@gmail.com>

References

commonality

Commonality Analysis

Description
This function conducts commonality analyses based on an all-possible-subsets regression.

Usage
commonality(apsOut)

Arguments
apsOut	Output from /codeaps

Details
This function conducts commonality analyses based on an all-possible-subsets regression.

Value
The function returns a matrix containing commonality coefficients and percentage of regression effect for each each possible set of predictors.

Author(s)
Kim Nimon <kim.nimon@gmail.com>

References

Commonality Coefficients

Description

Commonality Coefficients returns a list of two tables. The first table contains the list of commonality coefficients and the percent variance for each effect. The second totals the unique and common effects for each independent variable.

Usage

commonalityCoefficients(dataMatrix, dv, ivlist, imat=FALSE)

Arguments

dataMatrix Dataset containing the dependent and independent variables
dv The dependent variable named in the dataset
ivlist List of independent variables named in the dataset
imat Echo flag, default to FALSE

Details

When echo flag is true, transitional matrices during commonality coefficient calculation are sent to output window. Default for this option is false. When set to true, the intermediate matrices for each commonality coefficient and regression combinations are printed in the output window.
Value

- **CC** Matrix containing commonality coefficients and percentage of variance for each effect.
- **CCTotalByVar** Table of unique and common effects for each independent variable.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also
canonCommonality genList odd setBits

Examples

```r
# Predict miles per gallon based on vehicle weight, type of carborator, & number of engine cylinders
communityCoefficients(mtcars, "mpg", list("wt", "carb", "cyl"))

# Predict paragraph comprehension based on four verbal tests: general info, sentence comprehension, word classification, & word type
# Use HS dataset in MBESS
require("MBESS")
data(HS.data)
# Commonality Coefficient Analysis
communityCoefficients(HS.data, "paragrap", list("general", "sentence", "wordc", "wordm"))
```

dombin
Dominance Analysis

Description

For each level of dominance and pairs of predictors in the full model, this function indicates whether a predictor "x1" dominates "x2", predictor "x2" dominates "x1", or that dominance cannot be established between predictors.

Usage

dombin(domOut)
Arguments

domOut Output from /codedominance

Details

For each level of dominance and pairs of predictors in the full model, this function indicates whether a predictor "x1" dominates "x2", predictor "x2" dominates "x1", or that dominance cannot be established between predictors.

Value

The function return a matrix that contains dominance level decisions (complete, conditional, and general) for each pair of predictors in the full model.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

aps calc.yhat commonality dominance rlw

Examples

```r
## Predict paragraph comprehension based on three verbal tests: general info, sentence comprehension, & word classification

## Use HS dataset in MBESS
require("MBESS")
data(HS.data)

## All-possible-subsets regression
apsOut=aps(HS.data,"paragrap",list("general", "sentence","wordc"))

domOut=dominance(apsOut)

dombin(domOut)
```
Description

Computes dominance weights including conditional and general.

Usage

dominance(apsOut)

Arguments

apsOut Output from /codeaps

Details

Provides full dominance weights table that are used to compute conditional and general dominance weights as well as reports conditional and general dominance weights.

Value

DA Dominance analysis table
CD Conditional dominance weights
GD General dominance weights

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

aps calc.yhat dombin rlw

Examples

Predict paragraph comprehension based on three verbal
tests: general info, sentence comprehension, & word
classification

Use HS dataset in MBESS
require ("MBESS")
data(HS.data)
All-possible-subsets regression

```
apsOut=aps(HS.data,"paragrap",list("general", "sentence", "wordc"))
```

Dominance weights

```
dominance(apsOut)
```

effect.size

Description

Creates adjusted effect sizes for linear regression.

Usage

```
effect.size(lm.out)
```

Arguments

- `lm.out`: Output from `lm` class object

Details

The function `effect.size` produces a family of effect size corrections for the R-squared metric produced from an `lm` class object. Suggestions for recommended correction are supplied, based on Yin and Fan (2001).

Value

Returns adjusted R-squared metric.

Author(s)

J. Kyle Roberts <kyler@smu.edu>

References

See Also

`regr.yhat`
Examples

```r
require("MBESS")
data(HS.data)
attach(HS.data)
lm.out<-lm(deduct+addition+arithmetic)
effect.size(lm.out)
detach(HS.data)
```

genList

Generate List R^2 Values

Description

Use the bitmap matrix to generate the list of R^2 values needed.

Usage

```r
genList(ivlist, value)
```

Arguments

- `ivlist` List of independent variables in dataset
- `value` Number of variables

Details

Returns the number of R^2 values that will be calculated in output tables.

Value

Returns `newlist` from generate list function call.

Note

This function is internal to `commonalityCoefficients`, called during runtime and passed the appropriate parameters. This is not an end-user function.

Author(s)

Kim Nimon <kim.nimon@gmail.com>
isOdd Function

Description

Function receives value and returns true if value is odd.

Usage

odd(val)

Arguments

- **val**

 Value to check

Details

Determines value of parameter in argument.

Value

Returns true when value checked is odd. Otherwise, function returns a value false.

Note

This function is internal to commonalityCoefficients, called during runtime and passed the appropriate parameters. This is not an end-user function.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

plotCI.yhat

Plot CIs from yhat

Description

This function plots CIs that have been produced from /codebooteval.yhat.

Usage

plotCI.yhat(sampStat, upperCI, lowerCI, pid=1:ncol(sampStat), nr=2, nc=2)
Arguments

sampStat Set of sample statistics
upperCI Set of upper CIs
lowerCI Set of lower CIs
pid Which set of Metrics to plot (default to all)
nr Number of rows (default = 2)
nc Number of columns (default = 2)

Details

This function plots CIs that have been produced from /codebooteval.yhat.

Value

This returns a plot of CIs that have been produced from /codebooteval.yhat.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

See Also

lm calc.yhat boot booteval.yhat

Examples

```r
## Bootstrap regression results predicting paragraph comprehension based on three verbal tests: general info, sentence comprehension, & word classification

## Use HS dataset in MBESS
require("MBESS")
data(HS.data)

## Regression
lm.out<-lm(paragraph~general+sentence+wordc,data=HS.data)

## Calculate regression metrics
regrOut<-calc.yhat(lm.out)

## Bootstrap results
require("boot")
boot.out<-boot(HS.data,boot.yhat,100,lmOut=lm.out,regrout=regrOut)
```
regr

Regression effect reporting for \textit{lm} class objects

Description

The \texttt{regr} reports beta weights, standardized beta weights, structure coefficients, adjusted effect sizes, and commonality coefficients for \textit{lm} class objects.

Usage

\texttt{regr(lm.out)}

Arguments

- \texttt{lm.out} \textit{lm} class object

Details

The function \texttt{regr} takes the \textit{lm} class object and reports beta weights, standardized beta weights, structure coefficients, adjusted effect sizes, and commonality coefficients for \textit{lm} class objects.

Value

- \texttt{LM_Output} The summary of the output from the \textit{lm} class object
- \texttt{Beta_Weights} Beta weights for the regression effects
- \texttt{Structure_Coefficients} Structure coefficients for the regression effects
- \texttt{Commonality_Data} Commonality coefficients for the regression effects. The output only produces a parsed version of \texttt{CCdata}
- \texttt{Effect_Size} Adjusted effect size computations based on R^2 adjustments

Author(s)

J. Kyle Roberts <kyler@smu.edu>, Kim Nimon <kim.nimon@gmail.com>

References

rlw

See Also

`commonalityCoefficients`, `effect.size`

Examples

```r
require("MBESS")
data(HS.data)
attach(HS.data)
km.out<-lm(deduct~addition*arithmet)
regr(km.out)
detach(HS.data)
```

rlw

Relative Weights

Description

The function computes relative weights.

Usage

```r
rlw(dataMatrix, dv, ivlist)
```

Arguments

- `dataMatrix` : Dataset containing the dependent and independent variables
- `dv` : The dependent variable named in the dataset
- `ivlist` : List of independent variables named in the dataset

Details

The function computes relative weights.

Value

The function returns relative weights for each predictor.

Author(s)

Kim Nimon <kim.nimon@gmail.com>

References

setBits

See Also
aps calc.yhat commonality dominance

Examples

```r
## Relative weights from regression model predicting paragraph
## comprehension based on three verbal tests: general info, sentence comprehension, & word classification

## Use HS dataset in MBESS
df <- data.frame(1:10)  # Example dataset

## Relative weights
setBits <- setBits(data.frame, df)
```

Description

Creates the binary representation of n and stores it in the nth column of the matrix.

Usage

```r
setBits(col, effectBitMap)
```

Arguments

- **col**: Column of matrix to represent in binary image
- **effectBitMap**: Matrix of mean combinations in binary form

Details

Creates the binary representation of col and stores it in its associated column.

Value

Returns matrix effectBitMap of mean combinations in binary form.

Note

This function is internal to `commonalityCoefficients`, called during runtime and passed the appropriate parameters. This is not an end-user function.

Author(s)

Kim Nimon <kim.nimon@gmail.com>
Index

*Topic models
 aps, 3
 boot.yhat, 4
 booteval.yhat, 5
 commonality, 13
 commonalityCoefficients, 14
 dombin, 15
 dominance, 17
 plotCI.yhat, 20
 rlw, 23
*Topic multivariate
 canonCommonality, 9
 canonVariate, 10
*Topic package
 yhat-package, 2
*Topic regression
 aps, 3
 boot.yhat, 4
 booteval.yhat, 5
 commonality, 13
 commonalityCoefficients, 14
 dombin, 15
 dominance, 17
 plotCI.yhat, 20
 rlw, 23

aps, 3, 3, 14, 16, 17, 24

boot, 5, 7, 21
boot.yhat, 3, 4
booteval.yhat, 3, 5, 5, 21

calc.yhat, 3–5, 7, 7, 14, 16, 17, 21, 24
canonCommonality, 3, 9, 11, 15
canonVariate, 10, 10
ci.yhat, 11
combCI, 12
commonality, 3, 4, 13, 16, 24
commonalityCoefficients, 3, 14, 19, 20, 23, 24

dombin, 3, 15, 17
dominance, 3, 4, 14, 16, 17, 24
effect.size, 18, 23
genList, 15, 19
lm, 5, 7, 21
odd, 15, 20
plotCI.yhat, 3, 7, 20
regr, 3, 18, 22
rlw, 3, 4, 14, 16, 17, 23
setBits, 15, 24
yhat, 18
yhat (yhat-package), 2
yhat-package, 2