Package ‘zoib’

October 21, 2019

Type Package

Title Bayesian Inference for Beta Regression and Zero-or-One Inflated Beta Regression

Version 1.5.4

Date 2019-10-21

Author Fang Liu <fang.liu.131@nd.edu> with contributions from Yunchuan Kong

Maintainer Fang Liu <fang.liu.131@nd.edu>

Depends R (>= 3.3.0), rjags, coda, matrixcalc, Formula, abind

Description Fits beta regression and zero-or-one inflated beta regression and obtains Bayesian Inference of the model via the Markov Chain Monte Carlo approach implemented in JAGS.

URL https://www.r-project.org, https://www3.nd.edu/~fliu2/#tools

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2019-10-21 05:30:02 UTC

R topics documented:

zoib-package .................................................. 2
AlcoholUse .................................................... 3
BiRepeated ..................................................... 4
check.psrf ...................................................... 5
GasolineYield .................................................. 6
paraplot .......................................................... 8
pred.zoib ....................................................... 9
zoib ............................................................ 10

Index 16
Description

Bayesian Inference for Beta Regression and Zero-or-One-Inflated Beta Regression Models

beta regression and zero/one inflated beta regression on data with \([0,1]\)-bounded responses. Bayesian inferences of the model are obtained via Markov Chain Monte Carlo sampling.

<table>
<thead>
<tr>
<th>Package:</th>
<th>zoib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.5.4</td>
</tr>
<tr>
<td>Date:</td>
<td>2019-10-21</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (&gt;= 3)</td>
</tr>
</tbody>
</table>

Details

zoib accommodates boundary inflations at 0 or 1 of the response variables. It models clustered and correlated responses by introducing random components into the linear predictors of the link functions. The inferences from the models are based in the Bayesian framework via the Markov Chain Monte Carlo (MCMC) approaches.

The main function zoib() generates posterior samples on the regression coefficients, the design matrices in the link functions of the zoib regressions models, and predicted responses. It also produces a MCMC model object(JAGS) and posterior samples of the model parameters in the "mcmc" format. The DIC of the implemented Bayesian model can be calculated using dic.samples(JAGS.object) available in package rjags for model comparison purposes. Convergence of MCMC chains can be checked using functions traceplot(), autocorr.plot() and gelman.diag() available in package coda on the posterior draws from the MCMC algorithms. zoib also contains a function check.psrf() that checks whether the multivariate psrf value can be calculated for multi-dimensional variables, provides box plots and summary statistics on multiple univariate psrf values. Posterior summary of the parameters can be obtained using summary().

Author(s)

Fang Liu (<fang.liu.131@nd.edu>), with contributions from Yunchuan Kong

Maintainer: Fang Liu (<fang.liu.131@nd.edu>)

References


See Also
betareg, rjags, coda

### AlcoholUse

**California County-level Teenager Monthly Alcohol Use data**

**Description**

AlcoholUse contains the county-level monthly alcohol use data from students in California in years 2008 to 2010. The data can be downloaded at http://www.kidsdata.org. The data has information on the percentage of public school students in grades 7, 9, and 11 in five buckets of days (0, 1-2, 3-9, 10-19, 20-30) in which they drank alcohol in the past 30 days. Since the percentages across the five days categories add up to 1 given a combination of County, Grade and Gender. Data points associated with 0 are completely redundant and are not in AlcoholUse. zoib is applied to examining whether the proportions of alcohol use in the past month are different across gender, grade, days of drinking.

**Usage**

data(AlcoholUse)

**Format**

A data frame with 1340 observations on the following 6 variables.

- **County** a factor with 56 levels/clusters/counties.
- **Grade** a numeric/factor vector: 7, 9, 11 grades.
- **Days** a factor with levels 0 [1,2] [3,9] [10,19] [20,30].
- **MedDays** a numeric vector: the med point of each of the 4 day buckets.
- **Gender** a factor with levels Female Male.
- **Percentage** a numeric vector; Proportions of public school students in 4 buckets of days in which they drank alcohol in the past 30 days per Gender, Grade, and County.

**Source**

http://www.kidsdata.org
Examples

```r
## Not run:
##### eg3: modelling with clustered beta variables with inflation at 0
library(zoib)
data("AlcoholUse", package = "zoib")
eg3 <- zoib(Percentage ~ Grade*Gender+MedDays | Grade*Gender+MedDays | 1, 
data = AlcoholUse, random = 1, EUID = AlcoholUse$County, 
zero.inflation = TRUE, one.inflation = FALSE, joint = FALSE, 
n.iter = 5000, n.thin = 20, n.burn = 1000)
sample1 <- eg3$coeff
summary(sample1)

# check convergence on the regression coefficients
traceplot(sample1);
autocorr.plot(sample1);
check.psrf(sample1)

# plot posterior mean of y vs. observed y to check on goodness of fit.
ypred = rbind(eg3$ypred[[1]], eg3$ypred[[2]])
post.mean = apply(ypred, 2, mean);
par(mfrow = c(1,1), mar = c(4,4,0.5,0.5))
plot(AlcoholUse$Percentage, post.mean, xlim = c(0,0.4), ylim = c(0,0.4), 
col = "blue", xlab = "Observed y", ylab = 'Predicted y', main ="")
abline(0,1,col = "red")
## End(Not run)
```

---

**BiRepeated**

*Data from a correlated bivariate beta distribution with repeated measures*

**Description**

BiRepeated is a simulated data set with bi-Beta variables $y_1$ and $y_2$ on 200 independent cases. Both $y_1$ and $y_2$ are repeatedly measured at a given set of covariate values $x = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6)$. Joint zoib modeling is applied to examine the effect of $x$ on $y_1$ and $y_2$ simultaneously.

**Usage**

data(BiRepeated)

**Format**

A data frame with 200 independent cases, from which 6 measurements are taken on 2 response variables.

- **id** id of the 200 cases.
- **y1** value of one beta variable (6 measurements per case) ranged from 0 to 1.
- **y2** value of the other beta variables (6 measurements per case) ranged from 0 to 1.
- **x** numerical; explanatory variable.
check.psrf

Examples

## Not run:
library(zoib)
data("BiRepeated", package = "zoib")
eg2 <- zoib(y1|y2 ~ x|1|x, data= BiRepeated, random=1,n.response=2,
            EUID= BiRepeated$id, joint=TRUE,zero.inflation = FALSE,
            one.inflation = FALSE, prior.Sigma = "VC.unif",
            n.iter=7000,n.thin=25,n.burn=2000)
coeff <- eg$coeff
summary(coeff)
### check convergence
traceplot(coeff);
autocorr.plot(coeff);
check.psrf(coeff)
### plot posterior mean of y vs. observed y to check on goodness of fit.
n= nrow(BiRepeated)
ypred1 = rbind(eg$ypred[[1]][,1:n],eg$ypred[[2]][,1:n])
ypred2 = rbind(eg$ypred[[1]][,,(n+1):(2*n)],eg$ypred[[2]][,,(n+1):(2*n)])
post.mean1 = apply(ypred1,2,mean);
post.mean2 = apply(ypred2,2,mean);
plot(BiRepeated$y1, post.mean1, xlim=c(0,1),ylim=c(0,1), col="green2",
pch=2,xlab='Observed y', ylab='Predicted y’, main="")
points(BiRepeated$y2,post.mean2,col='purple')
abline(0,1,col='red')
legend(0.1,0.9,col=c('green2','purple'),c("y1","y2"),pch=c(2,1))
## End(Not run)

---

check.psrf  Convergence Check for Markov Chain Monte Carlo simulations via Potential Scale Reduction Factor

Description

check.psrf computes and summarizes univariate potential scale reduction factor. It also checks whether the multivariate potential scale reduction factor can be calculated.

Usage

check.psrf(post1 = NULL, post2 = NULL, post3 = NULL, post4 = NULL, post5 = NULL)

Arguments

post1  an mcmc.list with posterior samples from all Markov chains, or a data frame containing the draws from the 1st Markov Chain.
Monte Carlo Posterior draws (data frame) from the 2nd Markov Chain, if the 
post1 is a data frame; specify post2 only needed

Monte Carlo Posterior draws (data frame) from the 3rd Markov Chain, if the 
post1 is a data frame; specify post3 only needed

Monte Carlo Posterior draws (data frame) from the 4th Markov Chain, if the 
post1 is a data frame; specify post4 only needed

Monte Carlo Posterior draws (data frame) from the 5th Markov Chain, if the 
post1 is a data frame; specify post5 only needed

Details

The posterior samples from each chain are stored in a data frame, with columns representing pa-
rameters from the model, and rows presenting posterior draws on the parameters. If the input post1 
is a data frame contains the draws from one chain, then check.psrf can take up to 5 chains though it 
is not necessary to have 5 chain; but at least 2 chains are necessary.

Value

The function outputs

psrf.s univariate psrf values and the 95% confidence interval from all model param-
eters.

psrf.m multivariate psrf if the covariance matrix of the parameters are positive definite.

psrf.s.summ the summary of the univariate psrf across parameter.

Author(s)

Fang Liu (fang.liu.131@nd.edu)

Examples

```r
## Not run:
post1= data.frame(cbind(rnorm(400,0,1), rbeta(400,2,3)))
post2= data.frame(cbind(rnorm(400,0,1), rbeta(400,2,3)))
check.psrf(post1,post2)
## End(Not run)
```

GasolineYield | Gasoline Yields Data
---|---

Description

GasolineYield contains proportion of crude oil converted to gasoline after distillation and fraction-
ation.
**GasolineYield**

**Usage**

data(GasolineYield)

**Format**

A data frame with 32 observations on the following 3 variables.

- **yield**: a numeric vector; proportion of crude oil converted to gasoline after distillation and fractionation.
- **temp**: a numeric vector; temperature (F) at which 100% gasoline has vaporized.
- **batch**: crude oil batch ID.

**Details**

The Gasoline Yields Data is a subset of the data GasolineYield in R package "betareg". Refer to the detailed description in R package "betareg".

**Examples**

```r
## Not run:
library(zoib)
data("GasolineYield", package = "zoib")

eg.fixed <- zoib(yield ~ temp + as.factor(batch)| 1,  
      data=GasolineYield, joint = FALSE, random = 0,  
      EUID = 1:nrow(d), zero.inflation = FALSE,  
      one.inflation = FALSE, n.iter = 1100, n.thin = 5,  
      n.burn=100)

# yields 400 posterior draws (200 per chain) on the model parameters
coeff <- eg.fixed$coef
summary(coeff)

### check on convergence
traceplot(coeff)
autocorr.plot(coeff)
check.psrf(coeff)

### Design Matrix: Xb, Xd, Xb0, Xb1
eg.fixed$Xb; eg.fixed$Xd; eg.fixed$Xb0; eg.fixed$Xb1

# plot posterior mean of y vs. observed y to check on goodness of fit.
ypred = rbind(eg.fixed$ypred[[1]],eg.fixed$ypred[[2]])

post.mean = apply(ypred,2,mean);
plot(GasolineYield$yield, post.mean, col='blue',pch=2);
abline(0,1,col='red')
```
# mixed effects zoib with batch as a random variable

eg.random <- zoib(yield ~ temp | 1 | 1, data=GasolineYield,
   joint = FALSE, random=1, EUID=GasolineYield$batch,
   zero.inflation = FALSE, one.inflation = FALSE,
   n.iter=3200, n.thin=15, n.burn=200)

sample2 <- eg.random$coeff

summary(sample2)

# check convergence on the regression coefficients
traceplot(sample2)
autocorr.plot(sample2)
check.psrf(sample2)

# plot posterior mean of y vs. observed y to check on goodness of fit.
ypred = rbind(eg.random$ypred[[1]],eg.random$ypred[[2]])
post.mean= apply(ypred,2,mean);
plot(GasolineYield$yield, post.mean, col='blue',pch=2);
abline(0,1,col='red')

## End(Not run)

paraplot

paraplot

visual display of the posterior inferences of the parameters from a zoib model

Description

paraplot plots the posterior mode, mean, or median with Bayesian credible intervals for the parameters from a zoib model. plot.para can accommodate up to 4 groups (models) of inferences.

Usage

paraplot(par1, para2=NULL, para3=NULL, para4=NULL,
   tickx=NULL, jitter=NULL, pch = 1:4, col=1:4,
   legpos=NULL, legtext, annotate=FALSE)

Arguments

para1          a data frame or matrix with posterior inferences from approach (model) 1.
para2          a data frame or matrix with posterior inferences from approach (model) 4; specify para2 only needed.
para3          a data frame or matrix with posterior inferences from approach (model) 3; specify para3 only needed.
para4          a data frame or matrix with posterior inferences from approach (model) 2; specify para4 only needed.
tickx         customization of the tickx of the x-axis.
jitter jittering distance between the plotting positions of different groups to enhance plot readability.

pch point types for different groups.

col colors for different types.

legpos the positions of legend in the format of c(x,y).

legtext contents of the legtext, such as the names of the approaches.

annotate whether to label parameters.

Details

Each of the applicable para objects contains 3 columns. The 1st column is the point estimate (posterior mean, median or mode), the 2nd and 3rd columns contain the lower and upper bounds of the Bayesian credible intervals. The rows represent the parameters from an approach (model). It is not necessary that all para objects have the same set of parameters.

Author(s)

Fang Liu (fang.liu.131@nd.edu)

Examples

```r
## Not run:
set.seed(12)
x=rnorm(4); para1 = cbind(x, x-1,x+1); rownames(para1) = c("a","b","c","d")
x=rnorm(4)+1; para2 = cbind(x, x-1,x+1); rownames(para2) = c("a","b","e","f")
x=rnorm(3)+2; para3 = cbind(x, x-1,x+1); rownames(para3) = c("a","b","d")
paraplot(para1, para2, para3, para4=NULL, legpos=c(-1.5,6),
         legtext=c("model 1","model 2","model 3"), annotate=TRUE)
paraplot(para1, legpos=c(-2,3), legtext="m1", annotate=TRUE)
## End(Not run)
```

pred.zoib posterior predictive samples of Y for given new X

Description

generate posterior predictive samples of Y for a given set of new X, and produce posterior summary on the posterior predictive samples

Usage

```r
pred.zoib(object, xnew, summary=TRUE)
```
Arguments

object: the object output from function zoib

xnew: a set of new X at each the posterior predictive values are calculated. xnew should be of the same type and format as the X in the original data where the zoib model is fitted

summary: if TRUE (the default), a basic summary on each posterior predictive value, including mean, SD, min, max, med, 2.5% and 97.5% quantiles, are provided.

Details

xnew should be in the format of data.frame and should of the same type and have the same variables as the X in the original data where the zoib model is fitted. See the example below.

Author(s)

Fang Liu (fang.liu.131@nd.edu)

Examples

## Not run:
data("GasolineYield")
eg1 <- zoib(yield ~ temp + as.factor(batch)| 1, data=GasolineYield,
  joint = FALSE, random = 0, EUID = 1:nrow(d),
  zero.inflation = FALSE, one.inflation = FALSE,
  n.iter = 1600, n.thin = 2, n.burn=100, seeds=c(1,2),n.chain=2)
xnew <- data.frame(temp = c(205, 218), batch = factor(c(1, 2), levels = 1:10))
ypred <- pred.zoib(eg1, xnew)

data("BiRepeated")
eg2 <- zoib(y1|y2 ~ x|1|x, data= BiRepeated, n.response=2,
  random=1, EUID= BiRepeated$id,
  zero.inflation = FALSE, one.inflation = FALSE,
  prior.Sigma = "VC.unif", n.iter=2100, n.thin=10, n.burn=100)
xnew <- data.frame(x=BiRepeated[1:6,4])
pred.zoib(eg2,xnew)

## End(Not run)

---

zoib  

Bayesian Inference for Zero/One Inflated Beta Regression

Description

Description: zoib fits a zero/one inflated beta regression model and obtains the Bayesian Inference for the model via the Markov Chain Monte Carlo approach implemented in JAGS.
Usage

zoib(model, data, n.response=1, joint = TRUE, 
zero.inflation = TRUE, one.inflation = TRUE, 
random = 0, EUID, link.mu = "logit", link.x0 = "logit", 
link.x1 = "logit", prec.int = matrix(1e-3, n.response, 4), 
prior.beta = matrix("DN", n.response, 4), 
prec.DN = matrix(1e-3, n.response, 4), 
lambda.L2 = matrix(1e-3, n.response, 4), 
lambda.L1 = matrix(1e-3, n.response, 4), 
lambda.ARD = matrix(1e-3, n.response, 4), prior.Sigma = "VC.unif", 
scale.unif = 20, scale.halfcauchy = 20, 
n.chain = 2, n.iter = 5000, n.burn = 200, n.thin = 2, inits=NULL, seeds=NULL)

Arguments

model Symbolic description of the model in the format of formula, such as y ~ x, y1 | y2 ~ x1+x2, or y1 ~ x | z. Refer to "details" for more information.
data Data to be analyzed.
n.response Number of response variables. Default is 1.
joint Whether to jointly model multiple responses if n.response >= 2. Default is TRUE.
zero.inflation A vector that contains n.response values of TRUE or FALSE on whether each of the response variables has inflation at zero. Default is TRUE.
one.inflation A vector that contains n.response values of TRUE or FALSE on whether each of the response variables has inflation at one. Default is TRUE.
random Specifies which linear predictor(s) or link function(s) contain a random component. Default is 0 (no random component). Refer to "details" for more information.
EUID Listing of the experimental unit ID in each row of the data set.
link.mu Link function for the mean of the beta distribution piece of the zoib model. Choices are "logit" (default), "probit" and "cloglog".
link.x0 Link function for Pr(y=0). Choices are "logit" (default), "probit" and "cloglog".
link.x1 Link function for Pr(y=1 | y>0). Choices are "logit" (default), "probit" and "cloglog".
prec.int Precision parameter of the prior distribution (diffuse normal) of the intercept in the linear predictor of each link function. Default is 0.001 in all 4 link functions for all response variables.
prior.beta Prior choice for the regression coefficients other than the intercepts in each of the 4 link functions. Default is "diffuse normal" in all 4 link functions for all response variables. Refer to "details" for more information.
prec.DN Precision parameters of the normal distribution if the diffuse normal prior is chosen as the prior distributions of the regression coefficients in all 4 linear predictors for all response variables. Default precision is 0.001.
lambda.L1 Scale parameter of the prior distributions of the regression coefficients in the linear predictors for all response variables if the L1-like prior is chosen. Refer to the Liu and Kong (2015) and Bae and Mallick (2004) for details.
lambda.L2  Scale parameter of the prior distributions of the regression coefficients in the linear predictors for all response variables if the L2-like prior is chosen. Refer to the Liu and Kong (2015) and Bae and Mallick (2004) for details.

lambda.ARD  Scale parameter in the prior distributions of the regression coefficients in the linear predictors for all response variables if the ARD prior is chosen. Refer to the Liu and Kong (2015) and Bae and Mallick (2004) for details.

prior.Sigma  Prior choice for the variance or the variance-covariance in the case of a single random variable and multiple random variables, respectively. The default is "VC.unif". When there is a single random variable, choose from "VC.unif" and "VC.halfcauchy". Refer to "details" for more information.

scale.unif  Upper bound of the uniform prior for the standard deviation of each random variable if prior.Sigma="VC.unif" is specified. Default is 20.

scale.halfcauchy  Scale parameter of the half-Cauchy prior for the standard deviation of each random variable if prior.Sigma="VC.halfCauchy" is specified. Default is 20.

n.chain  Number of Markov chains from which posterior samples will be drawn (>=1; default = 2).

n.iter  Number of iterations per chain in the MCMC sampling (default = 5000) before burning-in and thinning.

n.burn  Burning in period of the MCMC chains (default = 200).

n.thin  Thinning period of the MCMC chains after the burn-in (default = 5).

inits  optional specification of initial values for regression coefficients and variance/covariance parameters in the form of a list (see initialization below). If omitted, initial values will be generated automatically. Refer to "details" for more information.

seeds  a vector of dimension n.chain that contains seeds for the initial values and the random number generators of the MCMC chains, if users wish to make the output from the model reproducible.

Details

*************** model **************

When there are multiple responses y, each y should be separated by "|", such as "y1 | y2 | y3" on the left hand side of the formula. On the right side of the formula, it can include up to 5 parts in the following order: xb | xd | x0 | x1 | z, where xb represents the fixed-effects covariates/factors in the link function of the mean of the beta distribution, xd represents the fixed-effects covariates/factors in the link function of the sum of the two shape parameters of the beta distribution, x0 represents the fixed-effect covariates/factors in the link function of Pr(y=0), x1 represents the fixed-effect covariates/factors in the link function of Pr(y=1|y>0), and z represents the random-effect covariates/factors. The current version of the package only accommodates z being the same across all the link functions that have a random component. xb and xd should always be specified, even if xd contains only an intercept. If there is no zero inflation in any of the y’s, then the x0 part can be omitted, and zoib automatically adjusts the order of the rest of the X specifications; similarly for the x1 part and the random effects part z.

For example, if there are 3 response variables and 2 independent variables (xx1, xx2), and none of the y’s have zero inflation, and all have one inflation, then specification of y1 | y2 | y3 ~ xx1 + xx2
\[ y_1 | \mathbf{x}_1, \mathbf{x}_2, \text{together with zero.inflation = c(F,F,F) and one.inflation = c(T,T,T), implies } \mathbf{x}_b = (1, \mathbf{x}_1, \mathbf{x}_2), \mathbf{x}_d = 1 \text{ (intercept), } \mathbf{x}_0 = \text{NULL, } \mathbf{x}_1 = (1, \mathbf{x}_1) \text{ for all } y_1 \text{'s, } z = (1, \mathbf{x}_2). \text{ If } y_1 \text{ has inflation at 0, and } y_3 \text{ has inflation at 1, and there is no random effect, model } y_1 | y_2 | y_3 \sim \mathbf{x}_1 + \mathbf{x}_2 | \mathbf{x}_1 | \mathbf{x}_1 | \mathbf{x}_2, \text{ together with zero.inflation = c(T,F,F) and one.inflation=c(F,F,T), implies } \mathbf{x}_b = (1, \mathbf{x}_1, \mathbf{x}_2), \mathbf{x}_d = (1, \mathbf{x}_1), \mathbf{x}_0 = (1, \mathbf{x}_1) \text{ for } y_1, \mathbf{x}_1 = (1, \mathbf{x}_2) \text{ for } y_3. \text{ Refer to Formula in package Formula for more details on the specification of terms in formula such as interaction terms and categorical x's, etc.}

************* random *************

Denote the four link functions by

Eqn 1. \( g(\mu) = \mathbf{x}_b^*b \), where \( g \) is the link function (logit, probit or cloglog), and \( \mu \) is the mean of the Beta distribution

Eqn 2. \( \log(\eta) = \mathbf{x}_d^*d \), where \( \eta \) is the sum of the two shape parameters of the Beta distribution

Eqn 3. \( g(p_0) = \mathbf{x}_0^*b_0 \), where \( g \) is the link function (logit, probit or cloglog), and \( p_0 = \Pr(y=0) \)

Eqn 4. \( g(p_1) = \mathbf{x}_1^*b_1 \), where \( g \) is the link function (logit, probit or cloglog), and \( p_1 = \Pr(y=1|y>0) \)

then random =
0: no random effect (default);
1: only the linear predictor in Eqn 1 has a random component; that is, \( g(\mu) = \mathbf{x}_b^*b + z^*\mathbf{gamma} \)
2: only the linear predictor in Eqn 2 has a random component; that is, \( \log(\eta) = \mathbf{x}_d^*d + z^*\mathbf{gamma} \)
3: only the linear predictor in Eqn 3 has a random component; that is, \( g(p_0) = \mathbf{x}_0^*b_0 + z^*\mathbf{gamma} \)
4: only the linear predictor in Eqn 4 has a random component; that is, \( g(p_1) = \mathbf{x}_1^*b_1 + z^*\mathbf{gamma} \)
12: the linear predictors in Eqns 1 and 2 contain random component \( z^*\mathbf{gamma} \)
13: the linear predictors in Eqns 1 and 3 contain random component \( z^*\mathbf{gamma} \)
14: the linear predictors in Eqns 1 and 4 contain random component \( z^*\mathbf{gamma} \)
23: the linear predictors in Eqns 2 and 3 contain random component \( z^*\mathbf{gamma} \)
24: the linear predictors in Eqns 2 and 4 contain random component \( z^*\mathbf{gamma} \)
34: the linear predictors in Eqns 3 and 4 contain random component \( z^*\mathbf{gamma} \)
123: the linear predictors in Eqns 1, 2 and 3 contain random component \( z^*\mathbf{gamma} \)
134: the linear predictors in Eqns 1, 3 and 4 contain random component \( z^*\mathbf{gamma} \)
124: the linear predictors in Eqn 1, 2 and 4 contain random component \( z^*\mathbf{gamma} \)
1234: the linear predictors in all Eqns contain random component \( z^*\mathbf{gamma} \)

************* prior.beta *************

1. "DN": Diffuse Normal
2. "L1": L1-like shrinkage prior
3. "L2": L2-like shrinkage prior
4. "ARD": ARD-like shrinkage prior

************** prior.Sigma *******

1. "VC.unif": Sigma is diagonal, the prior for the standard deviation of each random variable follows a uniform distribution;
2. "VC.halfcauchy": Sigma is diagonal, the prior for the standard deviation of each random variable follows a half-Cauchy distribution with a large scale parameter;
3. "UN.unif": Sigma is fully parameterized, the prior for the standard deviation of each random variable follows a uniform distribution; each element in the correlation matrix follows an independent unif(0,1) distribution with necessary constraints to ensure positive definiteness.
4. "UN.halfcauchy": Sigma is fully parameterized, the prior for the standard deviation of each random variable follows a half-Cauchy distribution; each element in the correlation matrix follows an independent unif(0,1) distribution with necessary constraints to ensure positive definiteness.

************* inits *************
If supplied, should be in the following parameter order:

\[ \text{inits} = \text{list}((b=, d=, b0=, b1=, sigma=, R=), \text{list}(b=, d=, b0=, b1=, sigma=, R=), \ldots) \]

The notations \( b, d, b0, b1 \) are the same as in the "random" section above, with each specified in a matrix format of dimension \( (nx+1) \times n.response \), where \( nx \) is number of regression coefficients corresponding to the respective \( x \)'s (+1 because of the intercept). \( sigma \) is a vector containing the standard deviation of each random component, and \( R \) contains the lower triangle of the correlation matrix. For example, in a 3x3 correlation matrix, \( R \) is specified as \( c(1, r21, 1, r31, r32, 1) \). Each inner list contains the starting values for one MCMC chain. If initial values are specified only for a subset of the parameters in a model, NULL should be used for the rest of the unspecified parameters (whose initial values will be generated automatically by the function).

**Value**

- **model**: the zoib model
- **MCMC.model**: the MCMC (JAGS) model object, from which samples can be drawn and DIC can be calculated
- **coeff**: posterior samples of regression coefficients from the zoib model
- **Xb**: design matrix in the link function for modeling the mean of the beta regression
- **Xd**: design matrix in the link function for modeling the sum of the two parameters of the beta regression
- **X0**: design matrix in the link function for modeling \( \text{Pr}(y=0) \)
- **X1**: design matrix in the link function for modeling \( \text{Pr}(y=1|y>0) \)
- **yobs**: observed \( Y \)
- **ypred**: posterior predictive samples of \( Y \)
- **resid**: residual
- **resid.std**: standardized residual

**Author(s)**

Fang Liu (<fang.liu.131@nd.edu>)

**References**

Examples

## Not run:
# refer to data sets GasolineYield, BiRepeated, and AlcoholUse in package zoib
# for examples on fixed effect models, mixed effects models, joint modeling
# of bivariate beta variables with repeated measures, and modelling clustered
# beta variables with inflation at 0 using zoib

## End(Not run)
Index

*Topic datasets
  AlcoholUse, 3
  BiRepeated, 4
  GasolineYield, 6
*Topic package
  zoib-package, 2

AlcoholUse, 3
BiRepeated, 4
check.psrf, 5
Formula, 13
GasolineYield, 6
paraplot, 8
pred.zoib, 9

zoib, 10
zoib-package, 2