Package ‘zoo’

May 28, 2019

Version 1.8-6
Date 2019-05-27
Title S3 Infrastructure for Regular and Irregular Time Series (Z's Ordered Observations)
Description An S3 class with methods for totally ordered indexed observations. It is particularly aimed at irregular time series of numeric vectors/matrices and factors. zoo’s key design goals are independence of a particular index/date/time class and consistency with ts and base R by providing methods to extend standard generics.
Depends R (>= 3.1.0), stats
Suggests coda, chron, DAAG, fts, ggplot2, mondate, scales, strucchange, timeDate, timeSeries, tis, tseries, xts
Imports utils, graphics, grDevices, lattice (>= 0.20-27)
License GPL-2 | GPL-3
URL http://zoo.R-Forge.R-project.org/
NeedsCompilation yes
Author Achim Zeileis [aut, cre] (https://orcid.org/0000-0003-0918-3766),
Gabor Grothendieck [aut],
Jeffrey A. Ryan [aut],
Joshua M. Ulrich [ctb],
Felix Andrews [ctb]
Maintainer Achim Zeileis <Achim.Zeileis@R-project.org>
Repository CRAN
Date/Publication 2019-05-28 08:00:53 UTC

R topics documented:

aggregate.zoo ......................................................... 2
as.zoo ................................................................. 6
coredata ............................................................. 7
aggregate.zoo

Compute Summary Statistics of zoo Objects

Description

Splits a "zoo" object into subsets along a coarser index grid, computes summary statistics for each, and returns the reduced "zoo" object.

Usage

```r
## S3 method for class 'zoo'
aggregate(x, by, FUN = sum, ..., 
    regular = NULL, frequency = NULL, coredata = TRUE)
```
Arguments

x     an object of class "zoo".
by    index vector of the same length as index(x) which defines aggregation groups
      and the new index to be associated with each group. If by is a function, then it
      is applied to index(x) to obtain the aggregation groups.
FUN   a function to compute the summary statistics which can be applied to all subsets.
      Always needs to return a result of fixed length (typically scalar).
...   further arguments passed to FUN.
regular logical. Should the aggregated series be coerced to class "zooReg" (if the series
      is regular)? The default is FALSE for "zoo" series and TRUE for "zooReg" series.
frequency numeric indicating the frequency of the aggregated series (if a "zooReg" series
      should be returned. The default is to determine the frequency from the data
      if regular is TRUE. If frequency is specified, it sets regular to TRUE. See
      examples for illustration.
coredata logical. Should only the coredata(x) be passed to every by group? If set to
      FALSE the full zoo series is used.

Value

An object of class "zoo" or "zooReg".

Note

The xts package functions endpoints, period.apply to.period, to.weekly, to.monthly, etc.,
can also directly input and output certain zoo objects and so can be used for aggregation tasks in
some cases as well.

See Also

zoo

Examples

## averaging over values in a month:
# x.date is jan 1,3,5,7; Feb 9,11,13; mar 15,17,19
x.date <- as.Date(paste(2004, rep(1:4, 4:1), seq(1,20,2), sep = "")); x.date
x <- zoo(rnorm(12), x.date); x
# coarser dates - jan 1 (4 times), feb 1 (3 times), mar 1 (3 times)
x.date2 <- as.Date(paste(2004, rep(1:4, 4:1), 1, sep = "")); x.date2
x2 <- aggregate(x, x.date2, mean); x2
# same - uses as.yearmon
x2a <- aggregate(x, as.Date(as.yearmon(time(x))), mean); x2a
# same - uses by function
x2b <- aggregate(x, function(tt) as.Date(as.yearmon(tt)), mean); x2b
# same - uses cut
x2c <- aggregate(x, as.Date(cut(time(x), "month")), mean); x2c
# almost same but times of x2d have yearmon class rather than Date class
x2d <- aggregate(x, as.yearmon, mean); x2d
# compare time series
plot(x)
lines(x2, col = 2)

## aggregate a daily time series to a quarterly series
# create zoo series
tt <- as.Date("2000-1-1") + 0:300
z.day <- zoo(tt, tt)

# function which returns corresponding first "Date" of quarter
first.of.quarter <- function(tt) as.Date(as.yearqtr(tt))

# average z over quarters
# 1. via "yearqtr" index (regular)
# 2. via "Date" index (not regular)
z.qtr1 <- aggregate(z.day, as.yearqtr, mean)
z.qtr2 <- aggregate(z.day, first.of.quarter, mean)

# The last one used the first day of the quarter but suppose
# we want the first day of the quarter that exists in the series
# (and the series does not necessarily start on the first day
# of the quarter).
z.day[!duplicated(as.yearqtr(time(z.day)))]

# This is the same except it uses the last day of the quarter.
# It requires R 2.6.0 which introduced the fromLast argument.
## Not run:
z.day[!duplicated(as.yearqtr(time(z.day)), fromLast = TRUE)]

## Not run

# The aggregated series above are of class "zoo" (because z.day
# was "zoo"). To create a regular series of class "zooreg",
# the frequency can be automatically chosen
zr.qtr1 <- aggregate(z.day, as.yearqtr, mean, regular = TRUE)
# or specified explicitly
zr.qtr2 <- aggregate(z.day, as.yearqtr, mean, frequency = 4)

## aggregate on month and extend to monthly time series
if(require(chron)) {
y <- zoo(matrix(c(11:15, nrow = 5, ncol = 2), chron(c(15, 20, 80, 100, 110))
colnames(y) <- c("A", "B")

# aggregate by month using first of month as times for coarser series
# using first day of month as representative time
y2 <- aggregate(y, as.Date(as.yearmon(time(y))), head, 1)

# fill in missing months by merging with an empty series containing
# a complete set of 1st of the months
yrt2 <- range(time(y2))
y0 <- zoo(seq(from = yrt2[1], to = yrt2[2], by = "month"))
aggregate.zoo

merge(y2, y0)
}

# given daily series keep only first point in each month at
# day 21 or more
z <- zoo(101:200, as.Date("2000-01-01") + seq(0, length = 100, by = 2))
zz <- z[as.numeric(format(time(z), "%d")) >= 21]
zz[!duplicated(as.yearmon(time(zz)))]

# same except times are of "yearmon" class
aggregate(zz, as.yearmon, head, 1)

# aggregate POSIXct seconds data every 10 minutes
Sys.setenv(TZ = "GMT")
tt <- seq(0, 2000, 10)
x <- zoo(tt, structure(tt, class = c("POSIXt", "POSIXct")))
aggregate(x, time(x) - as.numeric(time(x)) %% 600, mean)

# aggregate weekly series to a series with frequency of 52 per year
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
z <- zoo(reg(1:100 + rnorm(100), start = as.Date("2001-01-01"), deltat = 7)

# new.freq() converts dates to a grid of freq points per year
# yd is sequence of dates of firsts of years
# yy is years of the same sequence
# last line interpolates so dates, d, are transformed to year + frac of year
# so first week of 2001 is 2001.0, second week is 2001 + 1/52, third week
# is 2001 + 2/52, etc.
new.freq <- function(d, freq = 52) {
  y <- as.Date(cut(range(d), "years")) + c(0, 367)
yd <- seq(y[1], y[2], "year")
  yy <- as.numeric(format(yd, "%Y"))->
  floor(freq * approx(yd, yy, xout = d)$y) / freq
}

# take last point in each period
aggregate(z, new.freq, tail, 1)

# or, take mean of all points in each
aggregate(z, new.freq, mean)

# example of taking means in the presence of NAs
z.na <- zoo(reg(c(1:364, NA), start = as.Date("2001-01-01"))
aggregate(z.na, as.yearqtr, mean, na.rm = TRUE)

# Find the sd of all days that lie in any Jan, all days that lie in
# any Feb, ..., all days that lie in any Dec (i.e. output is vector with
# 12 components)
aggregate(z, format(time(z), "%m"), sd)
Description

Methods for coercing "zoo" objects to other classes and a generic function as.zoo for coercing objects to class "zoo".

Usage

as.zoo(x, ...)

Arguments

x
an object,
...
further arguments passed to zoo when the return object is created.

Details

as.zoo currently has a default method and methods for ts, fts, irts, mcmc, tis, xts objects (and zoo objects themselves).

Methods for coercing objects of class "zoo" to other classes currently include: as.ts, as.matrix, as.vector, as.data.frame, as.list (the latter also being available for "ts" objects). Furthermore, fortify.zoo can transform "zoo" series to "data.frame" including the time index and optionally melting a wide series into a long data frame.

In the conversion between zoo and ts, the zooReg class is always used.

Value

as.zoo returns a zoo object.

See Also

zoo, fortify.zoo, zooReg, ts, irts, tis, fts, mcmc, xts.

Examples

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

## coercion to zoo:
## default method
as.zoo(rnorm(5))
## method for "ts" objects
as.zoo(ts(rnorm(5), start = 1981, freq = 12))

## coercion from zoo:
x.date <- as.POSIXct(paste("2003-", rep(1:4, 4:1), "-", sample(1:28, 10, replace = TRUE), sep = ""))
**coredata**

Extracting/Replacing the Core Data of Objects

Description

Generic functions for extracting the core data contained in a (more complex) object and replacing it.

Usage

```r
coredata(x, ...)  
coredata(x) <- value
```

Arguments

- `x`: an object.
- `...`: further arguments passed to methods.
- `value`: a suitable value object for use with `x`.

Value

In `zoo`, there are currently `coredata` methods for time series objects of class "zoo", "ts", "its", "irts", all of which strip off the index/time attributes and return only the observations. There are also corresponding replacement methods for these classes.

See Also

- `zoo`

Examples

```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

x.date <- as.Date(paste(2003, rep(1:4, 4:1), seq(1,20,2), sep = "-"))
x <- zoo(matrix(rnorm(20), ncol = 2), x.date)

## the full time series
x

## and only matrix of observations
coredata(x)
```
frequency<-  
Replacing the Index of Objects

Description

Generic function for replacing the frequency of an object.

Usage

frequency(x) <- value

Arguments

x  
an object.

value  
a frequency.

Details

frequency<- is a generic function for replacing (or assigning) the frequency of an object. Currently, there is a "zooreg" and a "zoo" method. In both cases, the value is assigned to the "frequency" of the object if it complies with the index(x).

See Also

zooreg, index

Examples

z <- zooreg(1:5)
z as.ts(z)
frequency(z) <- 3z as.ts(z)
Convenience Functions for Plotting zoo Objects with ggplot2

Description

`fortify.zoo` takes a `zoo` object and converts it into a data frame (intended for ggplot2). `autoplot.zoo` takes a `zoo` object and returns a ggplot2 object. It essentially uses the mapping `aes(x = Time, y = Value, group = Series)` and adds `colour = Series, linetype = Series, shape = Series` in the case of a multivariate series with `facets = NULL`.

Usage

```r
## S3 method for class 'zoo'
autoplot(object, geom = "line", facets, ...)
## S3 method for class 'zoo'
fortify(model, data,
    names = c("Index", "Series", "Value"),
    melt = FALSE, sep = NULL, ...)
    facet_free(facets = Series ~ ., margins = FALSE, scales = "free_y", ...)

yearmon_trans(format = "%b %Y", n = 5)
scale_x_yearmon(..., format = "%b %Y", n = 5)
scale_y_yearmon(..., format = "%b %Y", n = 5)

yearqtr_trans(format = "%Y-%q", n = 5)
scale_x_yearqtr(..., format = "%Y-%q", n = 5)
scale_y_yearqtr(..., format = "%Y-%q", n = 5)
```

Arguments

- **object**: an object of class "zoo".
- **geom**: character specifying which geom to use in `qplot`.
- **facets**: specification of facets for `qplot`. The default in the `autoplot` method is to use `facets = NULL` for univariate series and `facets = Series ~ .` for multivariate series.
- **...**: further arguments passed to `qplot` for `autoplot` (and not used for `fortify`). For the `scale_*_*` functions the arguments are passed on to `scale_*_continuous`.
- **model**: an object of class "zoo" to be converted to a "data.frame".
- **data**: not used (required by generic `fortify` method).
- **names**: (list of) character vector(s). New names given to index/time column, series indicator (if melted), and value column (if melted). If only a subset of characters should be changed, either NAs can be used or a named vector.
- **sep**: if specified then the Series column is split into multiple columns using sep as the split character.
melt Should the resulting data frame be in long format (melt = TRUE) or wide format (melt = FALSE).
margins As in `facet_grid`.
scales As in `facet_grid` except it defaults to "free_y".
format A format acceptable to `format.yearmon` or `format.yearqtr`.
n Approximate number of axis ticks.

Details

Convenience interface for visualizing zoo objects with ggplot2. autoplot.zoo uses `fortify.zoo` (with melt = TRUE) to convert the zoo object into a data frame and then uses a suitable `aes()` mapping to visualize the series.

Value

`fortify.zoo` returns a `data.frame` either in long format (melt = TRUE) or in wide format (melt = FALSE). The long format has three columns: the time index, a factor indicating the series, and the corresponding value. The wide format simply has the time index plus all columns of `coredata(model)`.

autoplot.zoo returns a ggplot object.

Author(s)

Trevor L. Davis <trevor.l.davis@gmail.com>, Achim Zeileis

See Also

`autoplot`, `fortify`, `qplot`

Examples

```R
if(require("ggplot2") && require("scales")) {
  suppressWarnings(RNGversion("3.5.0"))
  set.seed(1)

  ## example data
  x.Date <- as.Date(paste(2003, 02, c(1, 3, 7, 9, 14), sep = "-"))
  x <- zoo(rnorm(5), x.Date)
  xlow <- x - runif(5)
  xhigh <- x + runif(5)
  z <- cbind(x, xlow, xhigh)

  ## univariate plotting
  autoplot(x)
  ## by hand
  ggplot(aes(x = Index, y = Value), data = fortify(x, melt = TRUE)) +
    geom_line() + xlab("Index") + ylab("x")
  ## adding series one at a time
  last_plot() + geom_line(aes(x = Index, y = xlow), colour = "red", data = fortify(xlow))
  ## add ribbon for high/low band
```
ggplot2.zoo

```r

# multivariate plotting in multiple or single panels
autoplot(z)  # multiple without color/linetype
autoplot(z, facets = Series ~ .)  # multiple with series-dependent color/linetype
autoplot(z, facets = NULL)  # single with series-dependent color/linetype

# by hand with color/linetype and with/without facets
qplot(x = Index, y = Value, group = Series, colour = Series, linetype = Series, data = fortify(z, melt = TRUE)) + geom_line() + xlab("Index") + ylab("")

# variations
autoplot(z, geom = "point")
autoplot(z, facets = NULL) + geom_point()
autoplot(z, facets = NULL) + scale_colour_grey() + theme_bw()

# for "ts" series via coercion
autoplot(as.zoo(EuStockMarkets))
autoplot(as.zoo(EuStockMarkets), facets = NULL)

autoplot(z) +
aes(colour = NULL, linetype = NULL) +
facet_grid(Series ~ ., scales = "free_y")

autoplot(z) + aes(colour = NULL, linetype = NULL) + facet_free() # same

z.yq <- zooreg(rnorm(50), as.yeartr("2000-1"), freq = 4)
autoplot(z.yq) + scale_x_yeartr()

# mimic matplot
data <- cbind(A = c(6, 1, NA, NA), B = c(16, 4, 1, NA), C = c(25, 7, 2, 1))
autoplot(zoo(data), facet = NULL) + geom_point()

# with different line types
autoplot(zoo(data), facet = NULL) + geom_point() + aes(linetype = Series)

# illustrate just fortify() method
z <- zoo(data)
fortify(z)
fortify(z, melt = TRUE)
fortify(z, melt = TRUE, names = c("Time", NA, "Data"))
fortify(z, melt = TRUE, names = c(Index = "Time"))

# with/without splitting
fortify(z)
fortify(z, melt = TRUE, sep = ".",
         names = list(Series = c("Lower", "Upper")))

# scale_x_yearmon for a discrete labeling (rather than continuous)
df <- data.frame(dates = as.yearmon("2018-08") + 0:6/12, values = c(2:6, 0, 1))
ggplot(df, aes(x = dates, y = values)) +
```

index

**Extracting/Replacing the Index of Objects**

**Description**

Generic functions for extracting the index of an object and replacing it.

**Usage**

```r
index(x, ...)  
index(x) <- value
```

**Arguments**

- `x`: an object.
- `...`: further arguments passed to methods.
- `value`: an ordered vector of the same length as the "index" attribute of `x`.

**Details**

`index` is a generic function for extracting the index of objects, currently it has a default method and a method for `zoo` objects which is the same as the `time` method for `zoo` objects. Another pair of generic functions provides replacing the index or time attribute. Methods are available for "zoo" objects only, see examples below.

The start and end of the index/time can be queried by using the methods of `start` and `end`.

**See Also**

`time`, `zoo`

**Examples**

```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

x.date <- as.Date(paste(2003, 2, c(1, 3, 7, 9, 14), sep = "-"))
x <- zoo(rnorm(5), x.date)

## query index/time of a zoo object
index(x)
time(x)
```
## is.regular

### Check Regularity of a Series

#### Description

is.regular is a regular function for checking whether a series of ordered observations has an underlying regularity or is even strictly regular.

#### Usage

```r
is.regular(x, strict = FALSE)
```

#### Arguments

- **x**: an object (representing a series of ordered observations).
- **strict**: logical. Should strict regularity be checked? See details.

#### Details

A time series can either be irregular (unequally spaced), strictly regular (equally spaced) or have an underlying regularity, i.e., be created from a regular series by omitting some observations. Here, the latter property is called `regular`. Consequently, regularity follows from strict regularity but not vice versa.

is.regular is a generic function for checking regularity (default) or strict regularity. Currently, it has methods for "ts" objects (which are always strictly regular), "zoo" objects (which are at least regular), "zoo" objects (which can be either irregular, regular or even strictly regular) and a default method. The latter coerces x to "zoo" before checking its regularity.
Value

A logical is returned indicating whether \( x \) is (strictly) regular.

See Also

zooreg, zoo

Examples

```r
## checking of a strictly regular zoo series
z <- zoo(1:10, seq(2000, 2002.25, by = 0.25), frequency = 4)
z
class(z)
frequency(z) ## extraction of frequency attribute
is.regular(z)
is.regular(z, strict = TRUE)
## by omitting observations, the series is not strictly regular
is.regular(z[-3])
is.regular(z[-3], strict = TRUE)

## checking of a plain zoo series without frequency attribute
## which is in fact regular
z <- zoo(1:10, seq(2000, 2002.25, by = 0.25))
z
class(z)
frequency(z) ## data driven computation of frequency
is.regular(z)
is.regular(z, strict = TRUE)
## by omitting observations, the series is not strictly regular
is.regular(z[-3])
is.regular(z[-3], strict = TRUE)

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

## checking of an irregular zoo series
z <- zoo(1:10, rnorm(10))
z
class(z)
frequency(z) ## attempt of data-driven frequency computation
is.regular(z)
is.regular(z, strict = TRUE)
```

Description

Methods for computing lags and differences of "zoo" objects.
Usage

```r
## S3 method for class 'zoo'
lag(x, k = 1, na.pad = FALSE, ...)
## S3 method for class 'zoo'
diff(x, lag = 1, differences = 1, arithmetic = TRUE, na.pad = FALSE, ...)
```

Arguments

- `x`  
  a "zoo" object.
- `k, lag`  
  For `lag` the number of lags (in units of observations). Note the sign of `k` behaves as in `lag`. For `diff` it is the number of backward lags used (or if negative the number of forward lags).
- `differences`  
  an integer indicating the order of the difference.
- `arithmetic`  
  logical. Should arithmetic (or geometric) differences be computed?
- `na.pad`  
  logical. If `TRUE` it adds any times that would not otherwise have been in the result with a value of `NA`. If `FALSE` those times are dropped.
- `...`  
  currently not used.

Details

These methods for "zoo" objects behave analogously to the default methods. The only additional arguments are `arithmetic` in `diff` `na.pad` in `lag` which can also be specified in `diff.zoo` as part of the dots. Also, "k" can be a vector of lags in which case the names of "k", if any, are used in naming the result.

Value

The lagged or differenced "zoo" object.

Note

Note the sign of `k`: a series lagged by a positive `k` is shifted earlier in time.

`lag.zoo` and `lag.zooreg` can give different results. For a lag of 1 `lag.zoo` moves points to the adjacent time point whereas `lag.zooreg` moves the time by `deltat`. This implies that a point in a zoo series cannot be lagged to a time point that is not already in the series whereas this is possible for a zooreg series.

See Also

`zoo`, `lag`, `diff`

Examples

```r
x <- zoo(11:21)

lag(x, k = 1)
lag(x, k = -1)
# this pairs each value of x with the next or future value
```
make.par.list

Process parameters so that a list of parameter specifications is returned (used by plot.zoo and xyplot.zoo).

Usage

\[
\text{make.par.list}(\text{nams}, x, n, m, \text{def}, \text{recycle} = \text{sum}(\text{unnamed}) > 0)
\]

Arguments

- **nams**: character vector with names of variables.
- **x**: list or vector of parameter specifications, see details.
- **n**: numeric, number of rows.
- **m**: numeric, number of columns. (Only determines whether \(m\) is 1 or greater than 1.
- **def**: default parameter value.
- **recycle**: logical. If TRUE recycle columns to provide unspecified ones. If FALSE use \(\text{def}\) to provide unspecified ones. This only applies to entire columns. Within columns recycling is always done regardless of how \(\text{recycle}\) is set. Defaults to TRUE if there is at least one unnamed variable and defaults to FALSE if there are only named variables in \(x\).

Details

This function is currently intended for internal use. It is currently used by plot.zoo and xyplot.zoo but might also be used in the future to create additional new plotting routines. It creates a new list which uses the named variables from \(x\) and then assigns the unnamed in order. For the remaining variables assign them the default value if \(!\text{recycle}\) or recycle the unnamed variables if \(\text{recycle}\).

Value

A list of parameters, see details.

Examples

```
make.par.list(letters[1:5], 1:5, 3, 5)
suppressWarnings( make.par.list(letters[1:5], 1:4, 3, 5, 99) )
make.par.list(letters[1:5], c(d=3), 3, 5, 99)
make.par.list(letters[1:5], list(d=1:2, 99), 3, 5)
make.par.list(letters[1:5], list(d=1:2, 99, 100), 3, 5)
```
Description

MATCH is a generic function for value matching.

Usage

MATCH(x, table, nomatch = NA, ...)  
## S3 method for class 'times'
MATCH(x, table, nomatch = NA, units = "sec", eps = 1e-10, ...)

Arguments

x                  an object.
table              the values to be matched against.
nomatch           the value to be returned in the case when no match is found. Note that it is coerced to integer.
units              See trunc.times.
eps                See trunc.times.
...                further arguments to be passed to methods.

Details

MATCH is a new generic function which aims at providing the functionality of the non-generic base function match for arbitrary objects. Currently, there is only a default method which simply calls match.

MATCH.times is used for chron objects. x will match any time in table less than units away.

See Also

match

Examples

MATCH(1:5, 2:3)
merge.zoo

Merge Two or More zoo Objects

Description

Merge two zoo objects by common indexes (times), or do other versions of database join operations.

Usage

```r
## S3 method for class 'zoo'
merge(..., all = TRUE, fill = NA, suffixes = NULL,
       check.names = FALSE, retclass = c("zoo", "list", "data.frame"),
       drop = TRUE)
```

Arguments

- `...`: two or more objects, usually of class "zoo".
- `all`: logical vector having the same length as the number of "zoo" objects to be merged (otherwise expanded).
- `fill`: an element for filling gaps in merged "zoo" objects (if any).
- `suffixes`: character vector of the same length as the number of "zoo" objects specifying the suffixes to be used for making the merged column names unique.
- `check.names`: See `link{read.table}`.
- `retclass`: character that specifies the class of the returned result. It can be "zoo" (the default), "list" or NULL. For details see below.
- `drop`: logical. If a "zoo" object without observations is merged with a one-dimensional "zoo" object (vector or 1-column matrix), should the result be a vector (`drop = TRUE`) or a 1-column matrix (`drop = FALSE`)? The former is the default in the `merge` method, the latter in the `cbind` method.

Details

The `merge` method for "zoo" objects combines the columns of several objects along the union of the dates for `all = TRUE`, the default, or the intersection of their dates for `all = FALSE` filling up the created gaps (if any) with the `fill` pattern.

The first argument must be a zoo object. If any of the remaining arguments are plain vectors or matrices with the same length or number of rows as the first argument then such arguments are coerced to "zoo" using `as.zoo`. If they are plain but have length 1 then they are merged after all non-scalars such that their column is filled with the value of the scalar.

`all` can be a vector of the same length as the number of "zoo" objects to merged (if not, it is expanded): All indexes (times) of the objects corresponding to TRUE are included, for those corresponding to FALSE only the indexes present in all objects are included. This allows intersection, union and left and right joins to be expressed.

If `retclass` is "zoo" (the default) a single merged "zoo" object is returned. If it is set to "list" a list of "zoo" objects is returned. If `retclass = NULL` then instead of returning a value it updates
each argument (if it is a variable rather than an expression) in place so as to extend or reduce it to
use the common index vector.

The indexes of different "zoo" objects can be of different classes and are coerced to one class in
the resulting object (with a warning).

The default `cbind` method is essentially the default `merge` method, but does not support the `retclass`
argument. The `rbind` method combines the dates of the "zoo" objects (duplicate dates are not al-
lowed) and combines the rows of the objects. Furthermore, the `c` method is identical to the `rbind`
method.

**Value**

An object of class "zoo" if `retclass="zoo"`, an object of class "list" if `retclass="list"` or
modified arguments as explained above if `retclass=NULL`. If the result is an object of class "zoo" then
its frequency is the common frequency of its zoo arguments, if they have a common frequency.

**See Also**

`zoo`

**Examples**

```r
## simple merging
dx.date <- as.Date(paste(2003, 02, c(1, 3, 7, 14), sep="-"))
x <- zoo(rnorm(5), x.date)

y1 <- zoo(matrix(1:10, ncol = 2), 1:5)
y2 <- zoo(matrix(rnorm(10), ncol = 2), 3:7)

## using arguments 'fill' and 'suffixes'
merge(x, y1, y2, all = FALSE)
merge(x, y1, y2, all = FALSE, suffixes = c("a", "b"))
merge(x, y1, y2, all = TRUE)
merge(x, y1, y2, all = TRUE, fill = 0)

## if different index classes are merged, as in
## the next merge example then ## a warning is issued and
##### the indexes are coerced.
## It is up to the user to ensure that the result makes sense.
merge(x, y1, y2, all = TRUE)

## extend an irregular series to a regular one:
# create a constant series
z <- zoo(1, seq(4)[-2])
# create a 0 dimensional zoo series
z0 <- zoo(), 1:4)
# do the extension
merge(z, z0)
# same but with zero fill
merge(z, z0, fill = 0)
merge(z, coredata(z), 1)
```
```r
## merge multiple series represented in a long form data frame
## into a multivariate zoo series and plot, one series for each site.
## Additional examples can be found here:
##
m <- 5 # no of years
n <- 6 # no of sites
sites <- LETTERS[1:n]
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
DF <- data.frame(site = sites, year = 2000 + 1:m, data = rnorm(m*n))
tozoo <- function(x) zoo(x$data, x$year)
Data <- do.call(merge, lapply(split(DF, DF$site), tozoo))
plot(Data, screen = 1, col = 1:n, pch = 1:n, type = "o", xlab = "")
legend("bottomleft", legend = sites, lty = 1, pch = 1:n, col = 1:n)

## for each index value in x merge it with the closest index value in y
## but retaining x's times.
x <- zoo(1:3, as.Date(c("1992-12-13", "1997-05-12", "1997-07-13")))
f <- function(u) which.min(abs(as.numeric(index(y)) - as.numeric(u)))
ix <- sapply(index(x), f)
cbind(x, y = coredata(y)[ix])

## this merges each element of x with the closest time point in y at or
## after x's time point (whereas in previous example it could be before
## or after)
window(na.locf(merge(x, y), fromLast = TRUE), index(x))

## c() can combine several zoo series, e.g., zoo series with Date index
z <- zoo(1:5, as.Date("2000-01-01") + 0:4)
z2 <- zoo(6:7, time(z)[length(z)] + 1:2)

## c() combines these in a single series
c(z, z2)

## the order does not matter
c(z2, z)

## note, however, that combining a zoo series with an unclassed vector
## of observations coerces to zoo/Date first and can give unexpected results
c(z, 6:7)
```

---

**na.aggregate**

*Replace NA by Aggregation*
**Description**

Generic function for replacing each NA with aggregated values. This allows imputing by the overall mean, by monthly means, etc.

**Usage**

```r
da.aggregate(object, ...)  # Default S3 method:
da.aggregate(object, by = 1, ..., FUN = mean, na.rm = FALSE, maxgap = Inf)
```

**Arguments**

- `object` an object.
- `by` a grouping variable corresponding to `object`, or a function to be applied to `time(object)` to generate the groups.
- `...` further arguments passed to `by` if `by` is a function.
- `FUN` function to apply to the non-missing values in each group defined by `by`.
- `na.rm` logical. Should any remaining NAs be removed?
- `maxgap` maximum number of consecutive NAs to fill. Any longer gaps will be left unchanged.

**Value**

An object in which each NA in the input object is replaced by the mean (or other function) of its group, defined by `by`. This is done for each series in a multi-column object. Common choices for the aggregation group are a year, a month, all calendar months, etc.

If a group has no non-missing values, the default aggregation function `mean` will return `NaN`. Specify `na.rm = TRUE` to omit such remaining missing values.

**See Also**

`zoo`

**Examples**

```r
z <- zoo(c(1, NA, 3:9),
  c(as.Date("2010-01-01") + 0:2,
    as.Date("2010-02-01") + 0:2,
    as.Date("2011-01-01") + 0:2))

## overall mean
na.aggregate(z)

## group by months
na.aggregate(z, as.yearmon)

## group by calendar months
na.aggregate(z, months)

## group by years
na.aggregate(z, format, "%Y")
```
na.approx

Replace NA by Interpolation

Description

Generic functions for replacing each NA with interpolated values.

Usage

na.approx(object, ...)
# S3 method for class 'zoo'
na.approx(object, x = index(object), xout, ..., na.rm = TRUE, maxgap = Inf, along)
# S3 method for class 'zooreg'
na.approx(object, ...)
# S3 method for class 'ts'
na.approx(object, ...)
# Default S3 method:
na.approx(object, x = index(object), xout, ..., na.rm = TRUE, maxgap = Inf, along)

na.spline(object, ...)
# S3 method for class 'zoo'
na.spline(object, x = index(object), xout, ..., na.rm = TRUE, maxgap = Inf, along)
# S3 method for class 'zooreg'
na.spline(object, ...)
# S3 method for class 'ts'
na.spline(object, ...)
# Default S3 method:
na.spline(object, x = index(object), xout, ..., na.rm = TRUE, maxgap = Inf, along)

Arguments

object object in which NAs are to be replaced
x, xout Variables to be used for interpolation as in approx.
na.rm logical. If the result of the (spline) interpolation still results in leading and/or trailing NAs, should these be removed (using na.trim)?
maxgap maximum number of consecutive NAs to fill. Any longer gaps will be left unchanged. Note that all methods listed above can accept maxgap as it is ultimately passed to the default method.
along deprecated.
... further arguments passed to methods. The n argument of approx is currently not supported.
Details

Missing values (NAs) are replaced by linear interpolation via `approx` or cubic spline interpolation via `spline`, respectively.

It can also be used for series disaggregation by specifying `xout`.

By default the index associated with `object` is used for interpolation. Note, that if this calls `index.default` this gives an equidistant spacing `1:NROW(object)`. If `object` is a matrix or `data.frame`, the interpolation is done separately for each column.

If `obj` is a plain vector then `na.approx(obj, x, y, xout, ...)` returns `approx(x = x[!na], y = coredata(obj)[!na], ...)`, (where `na` indicates observations with NA) such that `xout` defaults to `x`. Note that if there are less than two non-NAs then `approx()` cannot be applied and thus no NAs can be replaced.

If `obj` is a `zoo`, `zooreg` or `ts` object its `coredata` value is processed as described and its time index is `xout` if specified and `index(obj)` otherwise. If `obj` is two dimensional then the above is applied to each column separately. For examples, see below.

If `obj` has more than one column, the above strategy is applied to each column.

Value

An object of similar structure as `object` with NAs replaced by interpolation. For `na.approx` only the internal NAs are replaced and leading or trailing NAs are omitted if `na.rm = TRUE` or not replaced if `na.rm = FALSE`.

See Also

`zoo`, `approx`, `na.contiguous`, `na.locf`, `na.omit`, `na.trim`, `spline`, `stinterp`

Examples

```r
z <- zoo(c(2, NA, 1, 4, 5, 2), c(1, 3, 4, 6, 7, 8))

## use underlying time scale for interpolation
na.approx(z)

## use equidistant spacing
na.approx(z, 1:6)

# with and without na.rm = FALSE
zz <- c(NA, 9, 3, NA, 3, 2)
na.approx(zz, na.rm = FALSE)
na.approx(zz)

d0 <- as.Date("2000-01-01")
z <- zoo(c(11, NA, 13, NA, 15, NA), d0 + 1:6)

# NA fill, drop or keep leading/trailing NAs
na.approx(z)
na.approx(z, na.rm = FALSE)

# extrapolate to point outside of range of time points
# (a) drop NA, (b) keep NA, (c) extrapolate using rule = 2 from approx()
```
na.approx(z, xout = d0 + 7)
na.approx(z, xout = d0 + 7, na.rm = FALSE)
na.approx(z, xout = d0 + 7, rule = 2)

# use splines - extrapolation handled differently
z <- zoo(c(11, NA, 13, NA, 15, NA), d0 + 1:6)
na.spline(z)
n.spline(z, na.rm = FALSE)
n.spline(z, xout = d0 + 1:6)
n.spline(z, xout = d0 + 2:5)
n.spline(z, xout = d0 + 7)
n.spline(z, xout = d0 + 7, na.rm = FALSE)

## using na.approx for disaggregation
zy <- zoo(1:3, 2000:2001)

# yearly to monthly series
zmo <- na.approx(zy, xout = as.yearmon(2000+0:13/12))
zmo

# monthly to daily series
sq <- seq(as.Date(start(zmo)), as.Date(end(zmo), frac = 1), by = "day")
zd <- na.approx(zmo, x = as.Date, xout = sq)
head(zd)

# weekly to daily series
zww <- zoo(1:3, as.Date("2001-01-01") + seq(0, length = 3, by = 7))

# The lines do not show up because of the NAs
plot(cbind(z, z), type = "b", screen = 1)
# use na.approx to force lines to appear
plot(cbind(z, na.approx(z)), type = "b", screen = 1)

# Workaround where less than 2 NAs can appear in a column
za <- zoo(cbind(1:5, NA, c(1:3, NA, 5), NA)); za
ix <- colSums(!is.na(za)) > 0
za[, ix] <- na.approx(za[, ix]); za

# using na.approx to create regularly spaced series
# z has points at 10, 20 and 40 minutes while output also has a point at 30
if(require("chron")) {
    tt <- as.chron("2000-01-01 10:00:00") + c(1, 2, 4) * as.numeric(times("00:10:00"))
    z <- zoo(1:3, tt)
tseq <- seq(start(z), end(z), by = times("00:10:00"))
    na.approx(z, xout = tseq)
}
na.fill

Fill NA or specified positions.

Description

Generic function for filling NA values or specified positions.

Usage

na.fill(object, fill, ...)  
## S3 method for class 'ts'
na.fill(object, fill, ix, ...)  
## S3 method for class 'zoo'
na.fill(object, fill, ix, ...)  
## Default S3 method:
na.fill(object, fill, ix, ...)

na.fill0(object, fill, ix = !is.na(object))

Arguments

object an object.
fill a three component list or a vector that is coerced to a list. Shorter objects are recycled. The three components represent the fill value to the left of the data, within the interior of the data and to the right of the data, respectively. The value of any component may be the keyword "extend" to indicate repetition of the leftmost or rightmost non-NA value or linear interpolation in the interior. NULL means that items are dropped rather than filled.
ix logical. Should be the same length as the number of time points. Indicates which time points not to fill. This defaults to the non-NA values.
... further arguments passed to methods.

Details

na.fill is a generic function for filling NA or indicated values. It currently has methods for the time series classes "zoo" and "ts" and a default method based on the "zoo" method.

Furthermore, na.fill0 works with plain vectors and "Date" objects. It also works with "zoo" objects provided that no fill component is NULL.

See Also

na.approx
Examples

z <- zoo(c(NA, 2, NA, 1, 4, 5, 2, NA))
na.fill(z, "extend")
na.fill(z, c("extend", NA))
na.fill(z, -(1:3))
na.fill(z, list(NA, NULL, NA))

na.locf

Last Observation Carried Forward

Description

Generic function for replacing each NA with the most recent non-NA prior to it.

Usage

na.locf(object, na.rm = TRUE, ...)  
## Default S3 method:
na.locf(object, na.rm = TRUE, fromLast, rev,  
    maxgap = Inf, rule = 2, ...)

na.locf0(object, fromLast = FALSE, maxgap = Inf, coredata = NULL)

Arguments

object   an object.
na.rm    logical. Should leading NAs be removed?
fromLast logical. Causes observations to be carried backward rather than forward. Default is FALSE. With a value of TRUE this corresponds to NOCB (next observation carried backward). It is not supported if x or xout is specified.
rev      Use fromLast instead. This argument will be eliminated in the future in favor of fromLast.
maxgap   Runs of more than maxgap NAs are retained, other NAs are removed and the last occurrence in the resulting series prior to each time point in xout is used as that time point’s output value. (If xout is not specified this reduces to retaining runs of more than maxgap NAs while filling other NAs with the last occurrence of a non-NA.)
rule     See approx.
...      further arguments passed to methods.
coredata logical. Should LOCF be applied to the core data of a (time series) object and then assigned to the original object again? By default, this strategy is applied to time series classes (e.g., ts, zoo, xts, etc.) where it preserves the time index.
na.locf

Value

An object in which each NA in the input object is replaced by the most recent non-NA prior to it. If there are no earlier non-NAs then the NA is omitted (if na.rm = TRUE) or it is not replaced (if na.rm = FALSE).

The arguments x and xout can be used in which case they have the same meaning as in approx.

Note that if a multi-column zoo object has a column entirely composed of NA then with na.rm = TRUE, the default, the above implies that the resulting object will have zero rows. Use na.rm = FALSE to preserve the NA values instead.

The function na.locf0 is the workhorse function underlying the default na.locf method. It has more limited capabilities but is faster for the special cases it covers. Implicitly, it uses na.rm=FALSE.

See Also

zoo

Examples

az <- zoo(1:6)

bz <- zoo(c(2,NA,1,4,5,2))
na.locf(bz)
na.locf(bz, fromLast = TRUE)

cz <- zoo(c(NA,9,3,2,3,2))
na.locf(cz)

# generate and fill in missing dates
z <- zoo(c(0,0.007306621, 0.007659046, 0.007681013, 0.007817548, 0.007847579, 0.007867313),
as.Date(c("1993-01-01", "1993-01-09", "1993-01-16", "1993-01-23", "1993-01-30", "1993-02-06")))
g <- seq(start(z), end(z), "day")
na.locf(z, xout = g)

# similar but use a 2 second grid
g <- seq(start(z), end(z), by = "2 sec")
na.locf(z, xout = g)

## get 5th of every month or most recent date prior to 5th if 5th missing.
## Result has index of the date actually used.

z <- zoo(c(1311.56, 1309.04, 1295.5, 1296.6, 1286.57, 1288.12, 1289.12, 1289.12, 1285.33, 1307.65, 1309.93, 1311.46, 1311.28, 1308.11, 1301.74, 1305.41, 1309.72, 1310.61, 1305.19, 1313.21,
# z.na is same as z but with missing days added (with NAs)
# It is formed by merging z with a zero with series having all the dates.

rng <- range(time(z))
z.na <- merge(z, zoo(seq(rng[1], rng[2], by = "day")))

# use na.locf to bring values forward picking off 5th of month
na.locf(z.na)[as.POSIXlt(time(z.na))$mday == 5]

## this is the same as the last one except instead of always using the
## 5th of month in the result we show the date actually used

# idx has NAs wherever z.na does but has 1, 2, 3, ... instead of
# z.na's data values (so idx can be used for indexing)
idx <- coredata(na.locf(seq_along(z.na) + (0 * z.na)))

# pick off those elements of z.na that correspond to 5th
z.na[idx[as.POSIXlt(time(z.na))$mday == 5]]

## only fill single-day gaps
merge(z.na, filled1 = na.locf(z.na, maxgap = 1))

## fill NAs in first column by inflating the most recent non-NA
## by the growth in second column. Note that elements of x-x
## are NA if the corresponding element of x is NA and zero else
m <- zoo(cbind(c(1, 2, NA, NA, 5, NA, NA), seq(7)^2), as.Date(1:7))
r <- na.locf(m[,1]) * m[,2] / na.locf(m[,2] + (m[,1]-m[,1]))
cbind(V1 = r, V2 = m[,2])

## repeat a quarterly value every month
## preserving NAs
zq <- zoo(c(1, NA, 3, 4), as.yearqtr(2000) + 0:3/4)
tt <- as.yearmon(start(zq)) + seq(0, len = 3 * length(zq))/12
na.locf(zq, xout = tt, maxgap = 0)

## na.locf() can also be mimicked with ave()
x <- c(NA, 10, NA, NA, 20, NA)
f <- function(x) x[1]
ave(x, cumsum(!is.na(x)), FUN = f)

## by replacing f() with other functions various generalizations can be
## obtained, e.g.,
f <- function(x) if (length(x) > 3) x else x[1] # like maxgap
Description

Generic function for filling NA values using seasonal Kalman filter.

Usage

```r
na.StructTS(object, ...)  
## S3 method for class 'ts'
na.StructTS(object, ..., na.rm = FALSE, maxgap = Inf)
## S3 method for class 'zoo'
na.StructTS(object, ..., na.rm = FALSE, maxgap = Inf)
```

Arguments

- `object`: an object.
- `...`: other arguments passed to methods.
- `na.rm`: logical. Whether to remove end portions or fill them with NA.
- `maxgap`: Runs of more than maxgap NAs are retained, other NAs are removed and the last occurrence in the resulting series prior to each time point in xout is used as that time point’s output value.

Details

Interpolate with seasonal Kalman filter, using `StructTS`, followed by `tssmooth`. The input object should be a regular time series and have a frequency. It is assumed the cycle length is 1.

See Also

`StructTS, tssmooth, na.approx`

Examples

```r
z <- zoo(repeat(10 * seq(8), each = 4) + repeat(c(3, 1, 2, 4), times = 8), start = as.yearqtr(2000), freq = 4)
z[25] <- NA
zout <- na.StructTS(z)
plot(cbind(z, zout), screen = 1, col = 1:2, type = c("l", "p"), pch = 20)
```
**na.trim**

Trim Leading/Trailing Missing Observations

**Description**

Generic function for removing leading and trailing NAs.

**Usage**

```r
na.trim(object, ...)  
## Default S3 method:  
na.trim(object, sides = c("both", "left", "right"),  
is.na = c("any", "all"), maxgap = Inf, ...)
```

**Arguments**

- **object**: an object.
- **sides**: character specifying whether NAs are to be removed from both sides, just from the left side or just from the right side.
- **is.na**: If "any" then a row will be regarded as NA if it has any NAs. If "all" then a row will be regarded as NA only if all elements in the row are NA. For one dimensional zoo objects this argument has no effect.
- **maxgap**: maximum number of consecutive NAs to trim. Any longer gaps will be left unchanged.
- **...**: further arguments passed to methods.

**Value**

An object in which leading and/or trailing NAs have been removed.

**See Also**

- `na.approx`, `na.contiguous`, `na.locf`, `na.omit`, `na.spline`, `stinterp`, `zoo`

**Examples**

```r
# examples of na.trim  
x <- zoo(c(1, 4, 6), c(2, 4, 6))  
xx <- zoo(matrix(c(1, 4, 6, NA, 5, 7), 3), c(2, 4, 6))  
na.trim(x)  
na.trim(xx)
```

```r  
# using na.trim for alignment  
# cal defines the legal dates  
# all dates within the date range of x should be present  
cal <- zoo(c(1, 2, 3, 6, 7))  
x <- zoo(c(12, 16), c(2, 6))
```
**ORDER**

```r
na.trim(merge(x, cal))
```

---

**ORDER**  
*Ordering Permutation*

---

**Description**

ORDER is a generic function for computing ordering permutations.

**Usage**

ORDER(x, ...)  
## Default S3 method:  
ORDER(x, ..., na.last = TRUE, decreasing = FALSE)

**Arguments**

- `x`  
an object.
- `...`  
further arguments to be passed to methods.
- `na.last`  
for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed.
- `decreasing`  
 logical. Should the sort order be increasing or decreasing?

**Details**

ORDER is a new generic function which aims at providing the functionality of the non-generic base function `order` for arbitrary objects. Currently, there is only a default method which simply calls `order`. For objects (more precisely if `is.object` is TRUE) order leverages the generic `xtfrm`. Thus, to assure ordering works, one can supply either a method to `xtfrm` or to ORDER (or both).

**See Also**

`order`

**Examples**

ORDER(rnorm(5))
Description

Plotting method for objects of class "zoo".

Usage

```r
## S3 method for class 'zoo'
plot(x, y = NULL, screens, plot.type,
     panel = lines, xlab = "Index", ylab = NULL, main = NULL,
     xlim = NULL, ylim = NULL, xy.labels = FALSE, xy.lines = NULL,
     yax.flip = FALSE, oma = c(6, 0, 5, 0),
     mar = c(0, 5.1, 0, if(yax.flip) 5.1 else 2.1),
     col = 1, lty = 1, lwd = 1, pch = 1, type = "l", log = "",
     nc, widths = 1, heights = 1, ...) 
## S3 method for class 'zoo'
lines(x, y = NULL, type = "l", ...) 
## S3 method for class 'zoo'
points(x, y = NULL, type = "p", ...) 
```

Arguments

- **x**: an object of class "zoo".
- **y**: an object of class "zoo". If y is NULL (the default) a time series plot of x is produced, otherwise if both x and y are univariate "zoo" series, a scatter plot of y versus x is produced.
- **screens**: factor (or coerced to factor) whose levels specify which graph each series is to be plotted in. screens=c(1,2,1) would plot series 1, 2 and 3 in graphs 1, 2 and 1. If not specified then 1 is used if plot.type=“single” and seq_len(ncol(x)) otherwise.
- **plot.type**: for multivariate zoo objects, "multiple" plots the series on multiple plots and "single" superimposes them on a single plot. Default is "single" if screens has only one level and "multiple" otherwise. If neither screens nor plot.type is specified then "single" is used if there is one series and "mulitple" otherwise. This option is provided for back compatibility. Usually screens is used instead.
- **panel**: a function(x, y, col, lty, ...) which gives the action to be carried out in each panel of the display for plot.type = "multiple".
- **ylim**: if plot.type = "multiple" then it can be a list of y axis limits. If not a list each graph has the same limits. If any list element is not a pair then its range is used instead. If plot.type = "single" then it is as in plot.
- **xy.labels**: logical, indicating if text labels should be used in the scatter plot, or character, supplying a vector of labels to be used.
xy.lines

numeric, logical, indicating if lines should be drawn in the scatter plot. Defaults to the value of xy.labels if that is logical, otherwise to FALSE.

yax.flip

numeric, logical, indicating if the y-axis (ticks and numbering) should flip from side 2 (left) to 4 (right) from series to series when type = "multiple".

xlab, ylab, main, xlim, oma, mar

graphical arguments, see par.

col, lty, lwd, pch, type

graphical arguments that can be vectors or (named) lists. See the details for more information.

log

specification of log scales as "x", "y" or "xy".

nc

the number of columns to use when plot.type = "multiple". Defaults to 1 for up to 4 series, otherwise to 2.

widths, heights

widths and heights for individual graphs, see layout.

Details

The methods for plot and lines are very similar to the corresponding ts methods. However, the handling of several graphical parameters is more flexible for multivariate series. These parameters can be vectors of the same length as the number of series plotted or are recycled if shorter. They can also be (partially) named list, e.g., list(A = c(1,2), c(3,4)) in which c(3, 4) is the default value and c(1, 2) the value only for series A. The screens argument can be specified in a similar way. If plot.type and screens conflict then multiple plots will be assumed. Also see the examples.

In the case of a custom panel the panel can reference parent.frame$panel.number in order to determine which frame the panel is being called from. See examples.

class(mfrow=...) and Axis can be used in conjunction with single panel plots in the same way as with other classic graphics.

For multi-panel graphics, plot.zoo takes over the layout so class(mfrow=...) cannot be used. Axis can be used within the panels themselves but not outside the panel. See examples. Also, class(new = TRUE) is not supported for multi-panel graphics.

In addition to classical time series line plots, there is also a simple barplot method for "zoo" series.

See Also

zoo, plot.ts, barplot, xyplot.zoo

Examples

## example dates
x.Date <- as.Date(paste(2003, 02, c(1, 3, 7, 9, 14), sep = "-"))

## univariate plotting
x <- zoo(rnorm(5), x.Date)
x2 <- zoo(rnorm(5, sd = 0.2), x.Date)
plot(x)
lines(x2, col = 2)

## multivariate plotting
z <- cbind(x, x2, zoo(rnorm(5, sd = 0.5), x.Date))
plot(z, type = "b", pch = 1:3, col = 1:3, ylab = list(expression(mu), "b", "c"))
colnames(z) <- LETTERS[1:3]
plot(z, screens = 1, col = list(B = 2))
plot(z, type = "b", pch = 1:3, col = 1:3)
plot(z, type = "b", pch = list(A = 1:5, B = 3), col = list(C = 4, 2))
plot(z, type = "b", screen = c(1,2,1), col = 1:3)
# right axis is for broken lines
plot(x)
opar <- par(usr = c(par("usr")[1:2], range(x2)))
lines(x2, lty = 2)
# axis(4)
axis(side = 4)
par(opar)

## Custom x axis labelling using a custom panel.
## 1. test data
z <- zoo(c(21, 34, 33, 41, 39, 38, 37, 28, 33, 40),
"1992-03-13")))
z2 <- merge(a = z, b = z+10)
# 2. axis tick for every point. Also every 3rd point labelled.
my.panel <- function(x, y, ..., pf = parent.frame()) {
  fmt <- "%b-%d" # format for axis labels
  lines(x, y, ...)
  # if bottom panel
  if (with(pf, length(panel.number) == 0 ||
    panel.number %% nr == 0 || panel.number == nser)) {
    # create ticks at x values and then label every third tick
    axis(side = 1, at = x, labels = FALSE)
    ix <- seq(1, length(x), 3)
    labs <- format(x, fmt)
    axis(side = 1, at = x[ix], labels = labs[ix], tcl = -0.7, cex.axis = 0.7)
  }
}
# 3. plot
plot(z2, panel = my.panel, xaxt = "n")

# with a single panel plot a fancy x-axis is just the same
# procedure as for the ordinary plot command
plot(z2, screen = 1, col = 1:2, xaxt = "n")
# axis(1, at = time(z2), labels = FALSE)
tt <- time(z2)
axis(side = 1, at = tt, labels = FALSE)
ix <- seq(1, length(tt), 3)
fmt <- "%b-%d" # format for axis labels
labs <- format(tt, fmt)
# axis(1, at = time(zz)[ix], labels = labs[ix], tcl = -0.7, cex.axis = 0.7)
axis(side = 1, at = tt[ix], labels = labs[ix], tcl = -0.7, cex.axis = 0.7)
legend("bottomright", colnames(zz), lty = 1, col = 1:2)

## plot a multiple ts series with nice x-axis using panel function

tab <- ts(cbind(A = 1:24, B = 24:1), start = c(2006, 1), freq = 12)
pnl.xaxis <- function(...) {
  lines(...)
  panel.number <- parent.frame()$panel.number
  nser <- parent.frame()$nser
  # if bottom panel
  if (!length(panel.number) || panel.number == nser) {
    tt <- list(...)[[1]]
    ym <- as.yearmon(tt)
    mon <- as.numeric(format(ym, "%m"))
    yy <- format(ym, "%Y")
    mm <- substring(month.abb[mon], 1, 1)
    if (any(mon == 1))
      # axis(1, tt[mon == 1], yy[mon == 1], cex.axis = 0.7)
      axis(side = 1, at = tt[mon == 1], labels = yy[mon == 1], cex.axis = 0.7)
      # axis(1, tt[mon > 1], mm[mon > 1], cex.axis = 0.5, tcl = -0.3)
      axis(side = 1, at = tt[mon > 1], labels = mm[mon > 1], cex.axis = 0.5, tcl = -0.3)
  }
}

plot(as.zoo(tab), panel = pnl.xaxis, xaxt = "n", main = "Fancy X Axis")

## Another example with a custom axis
## test data
z <- zoo(matrix(1:25, 5), c(10,11,20,21))
colnames(z) <- letters[1:5]

plot(zoo(coredata(z)), xaxt = "n", panel = function(x, y, ..., Time = time(z)) {
  lines(x, y, ...)
  # if bottom panel
  pf <- parent.frame()
  if (with(pf, panel.number %% nr == 0 || panel.number == nser)) {
    axis(side = 1, at = x, labels = Time)
  }
})

## plot with left and right axes
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
z <- zoo(cbind(A = cumsum(rnorm(100)), B = cumsum(rnorm(100, mean = 0.2))))
opar <- par(mai = c(.8, .8, .2, .8))
plot(z[,1], type = "l",
xlab = "x-axis label", ylab = colnames(z)[1])
par(new = TRUE)
plot(z[,2], type = "l", ann = FALSE, yaxt = "n", col = "blue")
# axis(4)
axis(side = 4)
legend(x = "topleft", bty = "n", lty = c(1,1), col = c("black", "blue"),
        legend = paste(colnames(z), c("(left scale)", "(right scale)")))
usr <- par("usr")
# if you don’t care about srt= in text then mtext is shorter:
# mtext(colnames(z)[2], 4, 2, col = "blue")
text(usr[2] + .1 * diff(usr[1:2]), mean(usr[3:4]), colnames(z)[2],
    srt = -90, xpd = TRUE, col = "blue")
par(opar)

## another plot with left and right axes
d1 <- c(38.2, 18.1, 83.2, 42.7, 22.8, 48.1, 81.8, 129.6, 52.0, 110.3)
d2 <- c(2.2, 0.8, 0.7, 1.6, 0.9, 0.9, 1.1, 2.8, 5.1, 2.1)
z1 <- zooreg(d1, start = as.POSIXct("2013-01-01 00:00:01"), frequency = 0.00000001)
z2 <- zooreg(d2, start = as.POSIXct("2013-01-01 00:00:20"), frequency = 0.00000001)
zt <- zooreg(rnorm(1050), start = as.POSIXct("2013-01-01 00:00:01"), frequency = 0.000007)
z <- merge(zt, z1, z2, all = TRUE)
z <- na.spline(z[,2:3], na.rm = FALSE)
## function to round up to a number divisible by n (2011 by Owen Jones)
roundup <- function(x, n) ceiling(ceiling(x)/n) * n
## plot how to match secondary y-axis ticks to primary ones
plot(z$z1, ylim = c(0, signif(max(na.omit(z$z1)), 2)), xlab = "")
## use multiplication for even tick numbers and fake secondary y-axis
max.yl <- roundup(max(na.omit(z$z2)), par("yaxp"))[3]
multipl.yl <- max(na.omit(z$z2)) / max.yl
multipl.z2 <- signif(max(na.omit(z$z1) * 1.05), 2)/max.yl
lines(z$z2 * multipl.z2, lty = 2)
at4 <- axTicks(4)
axis(4, at = at4, seq(0, max.yl, length.out = par("yaxp")[3] + 1))

# automatically placed point labels
## Not run:
library("maptools")
pointLabel(time(z), coredata(z[,2]), labels = format(time(z)), cex = 0.5)
## End(Not run)

## plot one zoo series against the other.
plot(x, x2)
plot(x, x2, xy.labels = TRUE)
plot(x, x2, xy.labels = 1:5, xy.lines = FALSE)

## shade a portion of a plot and make axis fancier
v <- zooreg(rnorm(50), start = as.yearmon(2004), freq = 12)
plot(v, type = "n")
u <- par("usr")
rect(as.yearmon("2007-8"), u[3], as.yearmon("2009-11"), u[4],
    border = 0, col = "grey")
plot.zoo

lines(v)
axis(1, floor(time(v)), labels = FALSE, tcl = -1)

## shade certain times to show recessions, etc.
v <- zooar eg(rnorm(50), start = as.yearmon(2004), freq = 12)
plot(v, type = "n")
u <- par("usr")
rect(as.yearmon("2007-8"), u[3], as.yearmon("2009-11"), u[4],
border = 0, col = "grey")
lines(v)
axis(1, floor(time(v)), labels = FALSE, tcl = -1)

## fill area under plot

pnl.xyarea <- function(x, y, fill.base = 0, col = 1, ...)
{
  lines(x, y, ...)
  panel.number <- parent.frame()$panel.number
  col <- rep(col, length = panel.number)[panel.number]
  polygon(c(x[1], x, tail(x, 1), x[1]),
  c(fill.base, as.numeric(y), fill.base, fill.base), col = col)
}
plot(zoo(EuStockMarkets), col = rainbow(4), panel = pnl.xyarea)

## barplot
x <- zoo(cbind(rpois(5, 2), rpois(5, 3)), x.Date)
barplot(x, beside = TRUE)

## 3d plot
## The persp function in R (not part of zoo) works with zoo objects.
## The following example is by Enrico Schumann.
## https://stat.ethz.ch/pipermail/r-sig-finance/2009q1/003710.html
nC <- 10  # columns
nO <- 100 # observations
dataM <- array(runif(nC * nO), dim=c(nO, nC))
zz <- zoo(dataM, 1:nO)
persp(1:nO, 1:nC, zz)

# interactive plotting
## Not run:
library("TeachingDemos")
tke.test1 <- list(Parameters = list( lwd = list("spinbox", init = 1, from = 0, to = 5, increment = 1, width = 5),
  lty = list("spinbox", init = 1, from = 0, to = 6, increment = 1, width = 5) ))
z <- zoo(rnorm(25))
tkexamp(plot(z), tke.test1, plotloc = "top")

## End(Not run)

# setting ylim on a multi-panel plot - 2nd panel y axis range is 1-50
data("anscombe", package = "datasets")
ans6 <- zoo(anscombe[, 1:6])
read.zoo

Description

read.zoo and write.zoo are convenience functions for reading and writing "zoo" series from/to text files. They are convenience interfaces to read.table and write.table, respectively. To employ read.csv, read.csv2, read.delim, read.delim2 instead of read.table additional functions read.csv.zoo etc. are provided.

Usage

read.zoo(file, format = "", tz = "", FUN = NULL,
          regular = FALSE, index.column = 1, drop = TRUE, FUN2 = NULL,
          split = NULL, aggregate = FALSE, ..., text, read = read.table)

write.zoo(x, file = "", index.name = "Index", row.names = FALSE, col.names = NULL, ...)

read.csv.zoo(..., read = read.csv)
read.csv2.zoo(..., read = read.csv2)
read.delim.zoo(..., read = read.delim)
read.delim2.zoo(..., read = read.delim2)

Arguments

file character string or strings giving the name of the file(s) which the data are to be read from/written to. See read.table and write.table for more information. Alternatively, in read.zoo, file can be a connection or a data.frame (e.g., resulting from a previous read.table call) that is subsequently processed to a "zoo" series.

format date format argument passed to FUN.

tz time zone argument passed to as.POSIXct.

FUN a function for computing the index from the first column of the data. See details.

regular logical. Should the series be coerced to class "zoo_reg" (if the series is regular)?

index.column numeric vector or list. The column names or numbers of the data frame in which the index/time is stored. If the read.table argument colClasses is used and "NULL" is among its components then index.column refers to the column numbers after the columns corresponding to "NULL" in colClasses have been removed. If specified as a list then one argument will be passed to argument FUN per component so that, for example, index.column = list(1, 2) will cause

screens <- c(1, 1, 2, 2, 3, 3)
ylim <- unname(tapply(as.list(ans6), screens, range))
plot(ans6, screens = screens, ylim = ylim)
FUN(x[,1], x[,2], ...) to be called whereas index.column = list(1:2) will cause FUN(x[,1:2], ...) to be called where x is a data frame of characters data. Here ... refers to format and/or tz, if they specified as arguments. index.column = 0 can be used to specify that the row names be used as the index. In the case that no row names were input sequential numbering is used. If index.column is specified as an ordinary vector then if it has the same length as the number of arguments of FUN (or FUN2 in the event that FUN2 is specified and FUN is not) then index.column is converted to a list. Also it is always converted to a list if it has length 1.

drop logical. If the data frame contains just a single data column, should the second dimension be dropped?

x a "zoo" object.

index.name character with name of the index column in the written data file.

row.names logical. Should row names be written? Default is FALSE because the row names are just character representations of the index.

col.names logical. Should column names be written? Default is to write column names only if x has column names.

FUN2 function. It is applied to the time index after FUN and before aggregate. If FUN is not specified but FUN2 is specified then only FUN2 is applied.

split NULL or column number or name or vector of numbers or names. If not NULL then the data is assumed to be in long format and is split according to the indicated columns. See the R reshape command for description of long data. If split = Inf then the first of each run among the times are made into a separate series, the second of each run and so on. If split = -Inf then the last of each run is made into a separate series, the second last and so on.

aggregate logical or function. If set to TRUE, then aggregate.zoo is applied to the zoo object created to compute the mean of all values with the same time index. Alternatively, aggregate can be set to any other function that should be used for aggregation. If FALSE (the default), no aggregation is performed and a warning is given if there are any duplicated time indexes. Note that most zoo functions do not accept objects with duplicate time indexes. See aggregate.zoo.

... further arguments passed to read.table, write.table, or read.zoo, respectively.

text character. If file is not supplied and this is, then data are read from the value of text via a text connection. See below for an example.

read function. The function for reading file (unless it is a data.frame already).

Details

read.zoo is a convenience function which should make it easier to read data from a text file and turn it into a "zoo" series immediately. read.zoo reads the data file via read.table(file, ...). The column index.column (by default the first) of the resulting data is interpreted to be the index/time, the remaining columns the corresponding data. (If the file only has only column then that is assumed to be the data column and 1, 2, ... are used for the index.) To assign the appropriate class to the index, FUN can be specified and is applied to the first column.
To process the index, `read.zoo` calls `FUN` with the index as the first argument. If `FUN` is not specified, the following default is employed:

(a) If `file` is a data frame with a single index column that appears to be a time index already, then `FUN = identity` is used. The conditions for a readily produced time index are: It is not character or factor (and the arguments `tz` and `format` must not be specified).

(b) If the conditions from (a) do not hold then the following strategy is used. If there are multiple index columns they are pasted together with a space between each. Using the (pasted) index column: 
   (1) If `tz` is specified then the index column is converted to `POSIXct`. 
   (2) If `format` is specified then the index column is converted to `Date`. 
   (3) Otherwise, a heuristic attempts to decide between "numeric", "POSIXct", and "Date" by trying them in that order (which may not always succeed though). By default, only the standard date/time format is used. Hence, supplying `format` and/or `tz` is necessary if some date/time format is used that is not the default. And even if the default format is appropriate for the index, explicitly supplying `FUN` or at least `format` and/or `tz` typically leads to more reliable results than the heuristic.

If `regular` is set to `TRUE` and the resulting series has an underlying regularity, it is coerced to a "zoo" series.

To employ other functions than `read.table` to read the initial data, further convenience interfaces `read.csv.zoo` etc. are provided.

`write.zoo` is a convenience function for writing "zoo" series to text files. It first coerces its argument to a "data.frame", adds a column with the index and then calls `write.table`.

See also vignette("zoo-read", package = "zoo") for detailed examples.

**Value**

`read.zoo` returns an object of class "zoo" (or "zooreg").

**Note**

`read.zoo` works by first reading the data in using `read.table` and then processing it. This implies that if the index field is entirely numeric the default is to pass it to `FUN` or the built-in date conversion routine a number, rather than a character string. Thus, a date field such as `09122007` intended to represent December 12, 2007 would be seen as `9122007` and interpreted as the 91st day thereby generating an error.

This comment also applies to trailing decimals so that if `2000.10` were intended to represent the 10th month of 2000 in fact it would receive `2000.1` and regard it as the first month of 2000 unless similar precautions were taken.

In the above cases the index field should be specified to be "character" so that leading or trailing zeros are not dropped. This can be done by specifying a "character" index column in the "colClasses" argument, which is passed to `read.table`, as shown in the examples below.

**See Also**

`zoo`
Examples

## this manual page provides a few typical examples, many more cases
## are covered in vignette("zoo-read", package = "zoo")

## read text lines with a single date column
Lines <- c("2013-12-24 2\n2013-12-25 3\n2013-12-26 8")
read.zoo(text = Lines, FUN = as.Date) # explicit coercion
read.zoo(text = Lines, format = "%Y-%m-%d") # same
read.zoo(text = Lines) # same, via heuristic

## read text lines with date/time in separate columns
read.zoo(text = Lines, index = 1:2,
         FUN = paste, FUN2 = as.POSIXct) # explicit coercion
read.zoo(text = Lines, index = 1:2, tz = "") # same
read.zoo(text = Lines, index = 1:2) # same, via heuristic

## read text lines with month/year in separate columns
Lines <- c("Jan 1998 4.36\nFeb 1998 4.34")
read.zoo(text = Lines, index = 1:2, FUN = paste, FUN2 = as.yearmon)

## read directly from a data.frame (artificial and built-in BOD)
Dat <- data.frame(date = paste("2000-01-", 10:15, sep = ""),
                   a = sin(1:6), b = cos(1:6))
read.zoo(Dat)
data("BOD", package = "datasets")
read.zoo(BOD)

## Not run:
## descriptions of typical examples

## turn *numeric* first column into yearmon index
## where number is year + fraction of year represented by month
z <- read.zoo("foo.csv", sep = ",", FUN = as.yearmon)

## first column is of form yyyy.mm
## (Here we use format in place of as.character so that final zero
## is not dropped in dates like 2001.10 which as.character would do.)
f <- function(x) as.yearmon(format(x, nsmall = 2), "%Y.%m")
z <- read.zoo("foo.csv", header = TRUE, FUN = f)

## turn *character* first column into "Date" index
## Assume lines look like: 12/22/2007 1 2
z <- read.zoo("foo.tab", format = "%m/%d/%Y")
# Suppose lines look like: 09/12/2007 1 2 and there is no header
z <- read.zoo("foo.txt", format = "%d%m%Y")
## csv file with first column of form YYYY-mm-dd HH:MM:SS
## Read in times as "chron" class. Requires chron 2.3-22 or later.
z <- read.zoo("foo.csv", header = TRUE, sep = ",", FUN = as.chron)

## same but with custom format. Note as.chron uses POSIXt-style
## Read in times as "chron" class. Requires chron 2.3-24 or later.
z <- read.zoo("foo.csv", header = TRUE, sep = ",", FUN = as.chron, format = ")

## same file format but read it in times as "POSIXct" class.
z <- read.zoo("foo.csv", header = TRUE, sep = ",", tz = "")

## csv file with first column mm-dd-yyyy. Read times as "Date" class.
z <- read.zoo("foo.csv", header = TRUE, sep = ",", format = "%m-%d-%Y")

## whitespace separated file with first column of form YYYY-mm-ddTHH:MM:SS
## and no headers. T appears literally. Requires chron 2.3-22 or later.
z <- read.zoo("foo.csv", FUN = as.chron)

# read in all csv files in the current directory and merge them
read.zoo(Sys.glob("*.csv"), header = TRUE, sep = ",")

# We use "NULL" in colClasses for those columns we don't need but in
# col.names we still have to include dummy names for them. Of what
# is left the index is the first three columns (1:3) which we convert
# to chron class times in FUN and then truncate to 5 seconds in FUN2.
# Finally we use aggregate = mean to average over the 5 second intervals.
library("chron")

Lines <- "CVX 20070201 9 30 51 73.25 81400 0
CVX 20070201 9 30 51 73.25 100 0
CVX 20070201 9 30 51 73.25 300 0
CVX 20070201 9 30 51 73.25 81400 0
CVX 20070201 9 40 51 73.25 100 0
CVX 20070201 9 40 52 73.25 100 0
CVX 20070201 9 40 53 73.25 300 0"

z <- read.zoo(text = Lines,
colClasses = c("NULL", "NULL", "numeric", "numeric", "numeric",
               "numeric", "numeric", "NULL"),
col.names = c("Symbol", "Date", "Hour", "Minute", "Second", "Price", "Volume", "junk"),
index = 1:3, # do not count columns that are "NULL" in colClasses
FUN = function(h, m, s) times(paste(h, m, s, sep = ":")),
FUN2 = function(tt) trunc(tt, "00:00:05"),
aggregate = mean)

## End(Not run)
Description

A generic function for applying a function to rolling margins of an array.

Usage

rollapply(data, ...)  
## S3 method for class 'ts'
rollapply(data, ...)  
## S3 method for class 'zoo'
rollapply(data, width, FUN, ..., by = 1, by.column = TRUE,  
          fill = if (na.pad) NA, na.pad = FALSE, partial = FALSE,  
          align = c("center", "left", "right"), coredata = TRUE)  
## Default S3 method:
rollapply(data, ...)  
rollapplyr(..., align = "right")

Arguments

data  
the data to be used (representing a series of observations).

width  
numeric vector or list. In the simplest case this is an integer specifying the  
window width (in numbers of observations) which is aligned to the original  
sample according to the align argument. Alternatively, width can be a list  
regarded as offsets compared to the current time, see below for details.

FUN  
the function to be applied.

...  
onoptional arguments to FUN.

by  
calculate FUN at every by-th time point rather than every point. by is only used  
if width is length 1 and either a plain scalar or a list.

by.column  
logical. If TRUE, FUN is applied to each column separately.

fill  
a three-component vector or list (recycled otherwise) providing filling values at  
the left/within/to the right of the data range. See the fill argument of na.fill  
for details.

na.pad  
deprecated. Use fill = NA instead of na.pad = TRUE.

partial  
logical or numeric. If FALSE (default) then FUN is only applied when all indexes  
of the rolling window are within the observed time range. If TRUE, then the  
subset of indexes that are in range are passed to FUN. A numeric argument to  
partial can be used to determin the minimal window size for partial computa-  
tions. See below for more details.

align  
specifies whether the index of the result should be left- or right-aligned or cen-  
tered (default) compared to the rolling window of observations. This argument  
is only used if width represents widths.

coredata  
logical. Should only the coredata(data) be passed to every width window?  
If set to FALSE the full zoo series is used.
Details

If `width` is a plain numeric vector its elements are regarded as widths to be interpreted in conjunction with `align` whereas if `width` is a list its components are regarded as offsets. In the above cases if the length of `width` is 1 then `width` is recycled for every by-th point. If `width` is a list its components represent integer offsets such that the i-th component of the list refers to time points at positions \( i + \text{width}[i] \). If any of these points are below 1 or above the length of `index(data)` then \( \text{FUN} \) is not evaluated for that point unless `partial = TRUE` and in that case only the valid points are passed.

The rolling function can also be applied to partial windows by setting `partial = TRUE` For example, if `width = 3`, `align = "right"` then for the first point just that point is passed to \( \text{FUN} \) since the two points to its left are out of range. For the same example, if `partial = FALSE` then \( \text{FUN} \) is not invoked at all for the first two points. If `partial` is a numeric then it specifies the minimum number of offsets that must be within range. Negative `partial` is interpreted as `FALSE`.

If `width` is a scalar then `partial = TRUE` and `fill = NA` are mutually exclusive but if offsets are specified for the width and 0 is not among the offsets then the output will be shorter than the input even if `partial = TRUE` is specified. In that case it may still be useful to specify `fill` in addition to `partial`.

If `FUN` is `mean`, `max` or `median` and `by.column` is `TRUE` and `width` is a plain scalar and there are no other arguments then special purpose code is used to enhance performance. Also in the case of `mean` such special purpose code is only invoked if the `data` argument has no `NA` values. See `rollmean`, `rollmax` and `rollmedian` for more details.

Currently, there are methods for "zoo" and "ts" series and "default" method for ordinary vectors and matrices.

`rollaplyr` is a wrapper around `rollapply` that uses a default of `align = "right"`.

If `data` is of length 0, `data` is returned unmodified.

Value

A object of the same class as `data` with the results of the rolling function.

See Also

`rollmean`

Examples

```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

## rolling mean
z <- zoo(1:15, as.Date(31:35))
rollapply(z, 2, mean)

## non-overlapping means
z2 <- zoo(rnorm(6))
rollapply(z2, 3, mean, by = 3)  # means of nonoverlapping groups of 3
aggregate(z2, c(3,3,3,6,6,6), mean)  # same
```
## optimized vs. customized versions

```r
rollapply(z, 3, mean)  # uses rollmean which is optimized for mean
rollmean(z, 3)         # same
rollapply(z, 3, (mean)) # does not use rollmean
```

## rolling regression:

```r
# set up multivariate zoo series with
data <- as.zoo(log(UKDriverDeaths))
time <- as.yearmon(time(data))
seat <- merge(y = data, y1 = lag(data, k = -1),
              y2 = lag(data, k = -12), all = FALSE)

# run a rolling regression with a 3-year time window
rr <- rollapply(seat, width = 36,
     FUN = function(z) coef(lm(y ~ y1 + y12, data = as.data.frame(z))),
     by.column = FALSE, align = "right")
```

## plot the changes in coefficients

```r
# showing the shifts after the oil crisis in Oct 1973
# and after the seatbelt legislation change in Jan 1983
plot(rr)
```

## rolling mean by time window (e.g., 3 days) rather than
## by number of observations (e.g., when these are unequally spaced):

```r
# - test data
tt <- as.Date("2000-01-01") + c(1, 2, 5, 6, 7, 8, 10)
z <- zoo(seq_along(tt), tt)

# - fill it out to a daily series, zm, using NAs
# using a zero width zoo series g on a grid
g <- zoo(seq(start(z), end(z), "day"))
zm <- merge(z, g)

# - 3-day rolling mean
rollapply(zm, 3, mean, na.rm = TRUE, fill = NA)
```

## rolling weekly sums (with some missing dates)

```r
z <- zoo(1:11, as.Date("2016-03-09") + c(0:7, 9:10, 12))
weeksum <- function(z) sum(z[time(z) > max(time(z)) - 7])
zs <- rollapplyr(z, 7, weeksum, fill = NA, coredata = FALSE)
merge(value = z, weeksum = zs)
```

## replicate cumsum with either 'partial' or vector width 'k'

```r
cumsum(1:10)
rollapplyr(1:10, 10, sum, partial = TRUE)
rollapplyr(1:10, 1:10, sum)
```
## different values of rule argument

```r
z <- zoo(c(NA, NA, 2, 3, 4, 5, NA))
rollapply(z, 3, sum, na.rm = TRUE)
rollapply(z, 3, sum, na.rm = TRUE, fill = NULL)
rollapply(z, 3, sum, na.rm = TRUE, fill = NA)
rollapply(z, 3, sum, na.rm = TRUE, partial = TRUE)
```

# this will exclude time points 1 and 2
# it corresponds to align = "right", width = 3
```
rollapply(zoo(1:8), list(seq(-2, 0)), sum)
```

# but this will include points 1 and 2
```
rollapply(zoo(1:8), list(seq(-2, 0)), sum, partial = 1)
rollapply(zoo(1:8), list(seq(-2, 0)), sum, partial = 0)
```

# so will this
```
rollapply(zoo(1:8), list(seq(-2, 0)), sum, fill = NA)
```

# by = 3, align = "right"
```
L <- rep(list(NULL), 8)
L[seq(3, 8, 3)] <- list(seq(-2, 0))
str(L)
rollapply(zoo(1:8), L, sum)
```

```
rollapply(zoo(1:8), list(0:2), sum, fill = 1:3)
rollapply(zoo(1:8), list(0:2), sum, fill = 3)
```

```
L2 <- rep(list(-2:0), 10)
L2[5] <- list(NULL)
str(L2)
rollapply(zoo(1:10), L2, sum, fill = "extend")
rollapply(zoo(1:10), L2, sum, fill = list("extend", NULL))
```

```
rollapply(zoo(1:10), L2, sum, fill = list("extend", NA))
```

```
rollapply(zoo(1:10), L2, sum, fill = NA)
rollapply(zoo(1:10), L2, sum, fill = 1:3)
rollapply(zoo(1:10), L2, sum, partial = TRUE)
rollapply(zoo(1:10), L2, sum, partial = TRUE, fill = 99)
```

```
rollapply(zoo(1:10), list(-1), sum, partial = 0)
rollapply(zoo(1:10), list(-1), sum, partial = TRUE)
```

```
rollapply(zoo(cbind(a = 1:6, b = 11:16)), 3, rowSums, by.column = FALSE)
```

# these two are the same
```
rollapply(zoo(cbind(a = 1:6, b = 11:16)), 3, sum)
rollapply(zoo(cbind(a = 1:6, b = 11:16)), 3, colSums, by.column = FALSE)
```

# these two are the same
```
rollapply(zoo(1:6), 2, sum, by = 2, align = "right")
aggregate(zoo(1:6), c(2, 2, 4, 4, 6, 6), sum)
```
# these two are the same
rollapply(zoo(1:3), list(-1), c)
lag(zoo(1:2), -1)

# these two are the same
rollapply(zoo(1:3), list(1), c)
lag(zoo(1:3))

# these two are the same
rollapply(zoo(1:5), list(c(-1, 0, 1)), sum)
rollapply(zoo(1:5), 3, sum)

# these two are the same
rollapply(zoo(1:5), list(0:2), sum)
rollapply(zoo(1:5), 3, sum, align = "left")

# these two are the same
rollapply(zoo(1:5), list(-2:0), sum)
rollapply(zoo(1:5), 3, sum, align = "right")

# these two are the same
rollapply(zoo(1:6), list(NULL, NULL, -(2:0)), sum)
rollapply(zoo(1:6), 3, sum, by = 3, align = "right")

# these two are the same
rollapply(zoo(1:5), list(c(-1, 1)), sum)
rollapply(zoo(1:5), 3, function(x) sum(x[-2]))

# these two are the same
rollapply(1:5, 3, rev)
embed(1:5, 3)

# these four are the same
x <- 1:6
rollapply(c(0, 0, x), 3, sum, align = "right") - x
rollapply(x, 3, sum, partial = TRUE, align = "right") - x
rollapply(x, 3, function(x) sum(x[-3]), partial = TRUE, align = "right")
rollapply(x, list(-(2:1)), sum, partial = 0)

# same as Matlab's buffer(x, n, p) for valid non-negative p
x <- 1:30; n <- 7; p <- 3
t(rollapply(c(rep(0, p), x, rep(0, n-p)), n, by = n-p, c))

# these three are the same
y <- 10 * seq(8); k <- 4; d <- 2
# 1
Embed <- function(x, m, d = 1, indices = FALSE, as.embed = TRUE) {
  n <- length(x) - (m-1)*d
  X <- seq_along(x)
  if(n <= 0)
    stop("Insufficient observations for the requested embedding")
  }
rollmean

Rolling Means/Maximums/Medians/Sums

Description

Generic functions for computing rolling means, maximums, medians, and sums of ordered observations.

Usage

rollmean(x, k, fill = if (na.pad) NA, na.pad = FALSE, align = c("center", "left", "right"), ...)

rollmax(x, k, fill = if (na.pad) NA, na.pad = FALSE, align = c("center", "left", "right"), ...)

rollmedian(x, k, fill = if (na.pad) NA, na.pad = FALSE, align = c("center", "left", "right"), ...)

rollsum(x, k, fill = if (na.pad) NA, na.pad = FALSE, align = c("center", "left", "right"), ...)
rollapplyr(..., align = "right")
rollmaxr(..., align = "right")
rollmedianr(..., align = "right")
rollsumr(..., align = "right")

Arguments

x an object (representing a series of observations).
k integer width of the rolling window. Must be odd for rollmedian.
fill a three-component vector or list (recycled otherwise) providing filling values at the left/within/to the right of the data range. See the fill argument of na.fill for details.
na.pad deprecated. Use fill = NA instead of na.pad = TRUE.
align character specifying whether the index of the result should be left- or right-aligned or centered (default) compared to the rolling window of observations.
...
Further arguments passed to methods.

Details

These functions compute rolling means, maximums, medians, and sums respectively and are thus similar to rollapply but are optimized for speed.

Currently, there are methods for "zoo" and "ts" series and default methods. The default method of rollmedian is an interface to runmed. The default methods of rollmean and rollsum do not handle inputs that contain NAs. In such cases, use rollapply instead.

If x is of length 0, x is returned unmodified.

Value

An object of the same class as x with the rolling mean/max/median/sum.

See Also

rollapply, zoo, na.fill

Examples

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

x.Date <- as.Date(paste(2004, rep(1:4, 4:1), sample(1:28, 10), sep = "-"))
x <- zoo(rnorm(12), x.Date)

## rolling operations for univariate series
rollmean(x, 3)
rollmax(x, 3)
rollmedian(x, 3)
rollsum(x, 3)
## rolling operations for multivariate series

```r
xm <- zoo(matrix(1:12, 4, 3), x.Date[1:4])
rollmean(xm, 3)
rollmax(xm, 3)
rollmedian(xm, 3)
rollsum(xm, 3)

## rollapply vs. dedicated rollmean
rollapply(xm, 3, mean) # uses rollmean
rollapply(xm, 3, function(x) mean(x)) # does not use rollmean
```

---

### window.zoo

**Extract/Replacing the Time Windows of Objects**

#### Description

Methods for extracting time windows of "zoo" objects and replacing it.

#### Usage

```r
## S3 method for class 'zoo'
window(x, index, start = NULL, end = NULL, ...)  
## S3 replacement method for class 'zoo'
window(x, index, start = NULL, end = NULL, ...) <- value
```

#### Arguments

- **x**: an object.
- **index**: the index/time window which should be extracted.
- **start**: an index/time value. Only the indexes in `index` which are greater or equal to `start` are used. If the index class supports comparisons to character variables, as does "Date" class, "yearmon" class, "yearqtr" class and the chron package classes "dates" and "times" then `start` may alternately be a character variable.
- **end**: an index/time value. Only the indexes in `index` which are lower or equal to `end` are used. Similar comments about character variables mentioned under `start` apply here too.
- **value**: a suitable value object for use with `window(x)`.
- **...**: currently not used.

#### Value

Either the time window of the object is extracted (and hence return a "zoo" object) or it is replaced.

#### See Also

- `zoo`
Examples

```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

### zoo example
x.date <- as.Date(paste(2003, rep(1:4, 4:1), seq(1,19,2), sep = "-"))
x <- zoo(matrix(rnorm(20), ncol = 2), x.date)
x

window(x, start = as.Date("2003-02-01"), end = as.Date("2003-03-01"))
window(x, index = x.date[1:6], start = as.Date("2003-02-01"))
window(x, index = x.date[c(4, 8, 10)])
window(x, index = x.date[c(4, 8, 10)]) <- matrix(1:6, ncol = 2)
x

### for classes that support comparisons with "character" variables
### start and end may be "character".
window(x, start = "2003-02-01")

### zooreg example (with plain numeric index)
z <- zooreg(rnorm(10), start = 2000, freq = 4)
window(z, start = 2001.75)
window(z, start = c(2001, 4))

### replace data at times of d0 which are in dn
d1 <- d0 <- zoo(1:10) + 100
dn <- head(d0, 4)
window(d1, time(dn)) <- coredata(dn)

### if the underlying time index is a float, note that the index may
### print in the same way but actually be different (e.g., differing
### by 0.1 second in this example)
zp <- zoo(1:4, as.POSIXct("2000-01-01 00:00:00") + c(-3600, 0, 0.1, 3600))
### and then the >= start and <= end may not select all intended
### observations and adding/subtracting some "fuzz" may be needed
window(zp, end = "2000-01-01 00:00:00")
window(zp, end = as.POSIXct("2000-01-01 00:00:00") + 0.5)
```

---

**xblocks**

*Plot contiguous blocks along x axis.*

---

**Description**

Plot contiguous blocks along x axis. A typical use would be to highlight events or periods of missing data.

**Usage**

`xblocks(x, ...)`
## Default S3 method:
xblocks(x, y, ..., col = NULL, border = NA,
    ybottom = par("usr")[3], ytop = ybottom + height,
    height = diff(par("usr")[3:4]),
    last.step = median(diff(tail(x))))

## S3 method for class 'zoo'
xblocks(x, y = x, ...)

## S3 method for class 'ts'
xblocks(x, y = x, ...)

### Arguments

- **x, y**
  In the default method, x gives the ordinates along the x axis and must be in increasing order. y gives the color values to plot as contiguous blocks. If y is numeric, data coverage is plotted, by converting it into a logical (!is.na(y)). Finally, if y is a function, it is applied to x (time(x) in the time series methods). If y has character (or factor) values, these are interpreted as colors – and should therefore be color names or hex codes. Missing values in y are not plotted. The default color is taken from palette()[1]. If col is given, this over-rides the block colors given as y.

- **...**
  In the default method, further arguments are graphical parameters passed on to gpar.

- **col**
  if col is specified, it determines the colors of the blocks defined by y. If multiple colors are specified they will be repeated to cover the total number of blocks.

- **border**
  border color.

- **ybottom, ytop, height**
  y axis position of the blocks. The default it to fill the whole plot region, but by setting these values one can draw blocks along the top or bottom of the plot. Note that height is not used directly, it only sets the default value of ytop.

- **last.step**
  width (in native units) of the final block. Defaults to the median of the last 5 time steps (assuming steps are regular).

### Details

Blocks are drawn forward in "time" from the specified x locations, up until the following value. Contiguous blocks are calculated using rle.

### Author(s)

Felix Andrews <felix@nfrac.org>

### See Also

- panel.xblocks
- rect
## Examples

```r
## example time series:
suppressWarnings(RNGversion("3.5.0"))
set.seed(0)
flow <- ts(filter(rlnorm(200, mean = 1), 0.8, method = "r"))

## highlight values above and below thresholds.
## this draws on top using semi-transparent colors.
rgb <- hcl(c(0, 0, 260), c = c(100, 0, 100), l = c(50, 90, 50), alpha = 0.3)
plot(flow)
xblocks(flow > 30, col = rgb[1]) ## high values red
xblocks(flow < 15, col = rgb[3]) ## low value blue
xblocks(flow >= 15 & flow <= 30, col = rgb[2]) ## the rest gray

## same thing:
plot(flow)
xblocks(time(flow), cut(flow, c(0,15,30,Inf), labels = rev(rgb)))

## another approach is to plot blocks underneath without transparency.
plot(flow)
## note that 'ifelse' keeps its result as class 'ts'
xblocks(ifelse(flow < mean(flow), hcl(0, 0, 90), hcl(0, 80, 70)))
## need to redraw data series on top:
lines(flow)
ox(TRUE)

## for single series only: plot.default has a panel.first argument
plot(time(flow), flow, type = "l",
     panel.first = xblocks(flow > 20, col = "lightgray"))
## (see also the 'panel' argument for use with multiple series, below)

## insert some missing values
flow[1:10, 50:80, 100]] <- NA

## the default plot shows data coverage
## (most useful when displaying multiple series, see below)
plot(flow)
xblocks(flow)

## can also show gaps:
plot(flow, type = "s")
xblocks(time(flow), is.na(flow), col = "gray")

## Example of alternating colors, here showing calendar months
flowdates <- as.Date("2000-01-01") + as.numeric(time(flow))
flowz <- zoo(coredata(flow), flowdates)
plot(flowz)
xblocks(flowz, months, ## i.e. months(time(flowz)),
        col = gray.colors(2, start = 0.7), border = "slategray")
lines(flowz)

## Example of multiple series.
```
## set up example data
z <- ts(cbind(A = 0:5, B = c(6:7, NA, NA, 10:11), C = c(NA, 13:17)))

## show data coverage only (highlighting gaps)
plot(z, panel = function(x, ...) 
  xblocks(x, col = "darkgray"))

## draw gaps in darkgray
plot(z, type = "s", panel = function(x, ...) { 
  xblocks(time(x), is.na(x), col = "darkgray") 
  lines(x, ...); points(x) 
})

## Example of overlaying blocks from a different series.
## Are US presidential approval ratings linked to sunspot activity?
## Set block height to plot blocks along the bottom.
plot(presidents) 
  xblocks(sunspot.year > 50, height = 2)

---

**xyplot.zoo**

*Plot zoo Series with Lattice*

### Description

`xyplot` methods for time series objects (of class "zoo", "its", or "tis").

### Usage

```r
## S3 method for class 'zoo'
xyplot(x, data, ...) 

## S3 method for class 'zoo'
llines(x, y = NULL, ...) 

## S3 method for class 'zoo'
lpoints(x, y = NULL, ...) 

## S3 method for class 'zoo'
ltext(x, y = NULL, ...) 

panel.segments.zoo(x0, x1, ...) 
panel.rect.zoo(x0, x1, ...) 
panel.polygon.zoo(x, ...) 
```

### Arguments

- **x, x0, x1**
  time series object of class "zoo", "its" or "tis". For `panel.plot.default` it should be a numeric vector.
- **y**
  numeric vector or matrix.
- **data**
  not used.
arguments are passed to \texttt{xyplot.ts}, and may be passed through to \texttt{xyplot} and \\
\texttt{panel.xyplot}.

Some of the commonly used arguments are:

- \textbf{screens} \texttt{factor} (or coerced to factor) whose levels specify which graph each \\
  series is to be plotted in. \texttt{screens = c(1, 2, 1)} would plot series 1, 2 \\
  and 3 in graphs 1, 2 and 1. This also defines the strip text in multi-panel \\
  plots.

- \textbf{scales} \texttt{the default is set so that all series have the "same" X axis but "free" Y} \\
  \texttt{axis. See xyplot in the lattice package for more information on scales.}

- \textbf{layout} \texttt{numeric vector of length 2 specifying number of columns and rows in} \\
  the plot, see \texttt{xyplot} for more details. The default is to fill columns with up \\
  to 6 rows.

- \textbf{xlab} \texttt{character string used as the X axis label.}

- \textbf{ylab} \texttt{character string used as the Y axis label. If there are multiple panels it may} \\
  \texttt{be a character vector the same length as the number of panels, but \texttt{NOTE}} \\
  \texttt{in this case the vector should be reversed OR the argument \texttt{as.table} set to} \\
  \texttt{FALSE.}

- \textbf{lty, lwd, pch, type, col} \texttt{graphical arguments passed to \texttt{panel.xyplot}.} \\
  \texttt{These arguments can also be vectors or (named) lists, see details for more} \\
  \texttt{information.}

\section*{Details}

\texttt{xyplot.zoo} plots a "zoo", "its" or "tis" object using \texttt{xyplot.ts} from \texttt{lattice}. Series of other \\
classes are coerced to "zoo" first.

The handling of several graphical parameters is more flexible for multivariate series. These param-
eters can be vectors of the same length as the number of series plotted or are recycled if shorter. 
They can also be (partially) named list, e.g., \texttt{list(A = c(1,2), c(3,4))} in which \texttt{c(3, 4)} is the 
default value and \texttt{c(1, 2)} the value only for series \texttt{A}. The \texttt{screens} argument can be specified in a 
similar way.

Note that since \texttt{zoo} 1.6-3 \texttt{plot.panel.default} and \texttt{plot.panel.custom} are no longer necessary, 
as normal panel functions (\texttt{panel.xyplot} by default) will work.

Similarly, there are now methods for the generic \texttt{lattice} drawing functions \texttt{llines}, \texttt{lpoints}, and 
\texttt{ltext}. These can also be called as \texttt{panel.lines}, \texttt{panel.points}, and \texttt{panel.text}, respectively. 
The old interfaces (\texttt{panel.lines.zoo}, \texttt{panel.points.zoo}, and \texttt{panel.text.zoo}), will be re-
moved in future versions. \texttt{panel_polygon.zoo} may also be removed.

\section*{Value}

Invisibly returns a "trellis" class object. Printing this object using \texttt{print} will display it.

\section*{See Also}

\texttt{xyplot.ts}, \texttt{zoo}, \texttt{plot.ts}, \texttt{barplot.plot.zoo}
Examples

```r
if(require("lattice") & require("grid")) {

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
z <- zoo(cbind(a = 1:5, b = 11:15, c = 21:25) + rnorm(5))

# plot z using same Y axis on all plots
xyplot(z, scales = list(y = list(relation = "same", alternating = FALSE)))

# plot a double-line-width running mean on the panel of b.
# Also add a grid.
# We show two ways to do it.

# change strip background to levels of grey
# If you like the defaults, this can be omitted.
strip.background <- trellis.par.get("strip.background")
trellis.par.set(strip.background = list(col = grey(7:1/8)))

# Number 1. Using trellis.focus.
print(xyplot(z))
trellis.focus("panel", 1, 2, highlight = FALSE)
# (or just trellis.focus() for interactive use)
z.mean <- rollmean(z, 3)
panel.lines(z.mean[,2], lwd = 2)
panel.grid(h = 10, v = 10, col = "grey", lty = 3)
trellis.unfocus()

# Number 2. Using a custom panel routine.
xyplot(z, panel = function(x, y, ...) {
  if (packet.number() == 2) {
    panel.grid(h = 10, v = 10, col = "grey", lty = 3)
    panel.lines(rollmean(zoo(y, x), 3), lwd = 2)
  }
}

# plot a light grey rectangle "behind" panel b
trellis.focus("panel", 1, 2)
grid.rect(x = 2, w = 1, default.units = "native",
  gp = gpar(fill = "light grey"))
# do.call("panel.xyplot", trellis.panelArgs())
do.call("panel.lines", trellis.panelArgs()[1:2])
trellis.unfocus()
# a better method is to use a custom panel function.
# see also panel.xblocks() and layer() in the latticeExtra package.

# same but make first panel twice as large as others
lopt <- list(layout.heights = list(panel = list(x = c(2,1,1))))
xyplot(z, lattice.options = lopt)
# add a grid
```


update(trellis.last.object(), type = c("l", "g"))

# Plot all in one panel.
xyplot(z, screens = 1)
# Same with default styles and auto.key:
xyplot(z, superpose = TRUE)

# Plot first two columns in first panel and third column in second panel.
# Plot first series using points, second series using lines and third
# series via overprinting both lines and points
# Use colors 1, 2 and 3 for the three series (1=black, 2=red, 3=green)
# Make 2nd (lower) panel 3x the height of the 1st (upper) panel
# Also make the strip background orange.
p <- xyplot(z, screens = c(1,1,2), type = c("p", "l", "o"), col = 1:3,
            par.settings = list(strip.background = list(col = "orange"))
print(p, panel.height = list(y = c(1, 3), units = "null"))

# Example of using a custom axis
# Months are labelled with smaller ticks for weeks and even smaller
# ticks for days.
Days <- seq(from = as.Date("2006-1-1"), to = as.Date("2006-8-8"), by = "day")
z1 <- zoo(seq(length(Days)) %*% 2, Days)
Months <- Days[format(Days, "%d") == "01"]
Weeks <- Days[format(Days, "%w") == "0"]
print(xyplot(z1, scales = list(x = list(at = Months))) )
trellis.focus("panel", 1, 1, clip.off = TRUE)
panel.axis("bottom", check.overlap = TRUE, outside = TRUE, labels = FALSE,
          tck = .7, at = as.numeric(Weeks))
panel.axis("bottom", check.overlap = TRUE, outside = TRUE, labels = FALSE,
          tck = .4, at = as.numeric(Days))
trellis.unfocus()
trellis.par.set(strip.background = strip.background)

# separate the panels and suppress the ticks on very top
xyplot(z, between = list(y = 1), scales = list(tck = c(1,0)))

# left strips but no top strips
xyplot(z, screens = colnames(z), strip = FALSE, strip.left = TRUE)

# plot list of zoo objects using different x scales
z.l <- list(
zoo(cbind(a = rnorm(10), b = rnorm(10)), as.Date("2006-01-01") + 0:9),
zoo(cbind(c = rnorm(10), d = rnorm(10)), as.Date("2006-12-01") + 0:9)
)
zm <- do.call(merge, z.l)
xlim <- lapply(zm, function(x) range(time(na.omit(x))))
xyplot(zm, xlim = xlim, scale = list(relation = "free"))
# to avoid merging see xyplot.list() in the latticeExtra package.
}

## Not run:
### playwith (>= 0.9)
library("playwith")

z3 <- zoo(cbind(a = rnorm(100), b = rnorm(100) + 1), as.Date(1:100))
playwith(xplot(z3), time.mode = TRUE)
# hold down Shift key and drag to zoom in to a time period.
# then use the horizontal scroll bar.

# set custom labels; right click on points to view or add labels
labs <- paste(round(z3, 1), index(z3), sep = "@")
trellis.par.set(user.text = list(cex = 0.7))
playwith(xplot(z3, type = "o"), labels = labs)

# this returns indexes into times of clicked points
ids <- playGetIDs()
z3[ids,]

### another example of using playwith with zoo
# set up data
dat <- zoo(matrix(rnorm(100*100), ncol=100), Sys.Date()+1:100)
rownames(dat) <- paste("Series", 1:100)

# This will give you a spin button to choose the column to plot,
# and a button to print out the current series number.
playwith(xplot(dat[, c(1, i)]), parameters = list(i = 1:100),
do_something = function(playState) print(playState$env$i))

### End(Not run)

---

### yearmon

**An Index Class for Monthly Data**

#### Description

"yearmon" is a class for representing monthly data.

#### Usage

```
yearmon(x)
```

#### Arguments

- **x** numeric (interpreted as being “in years”).
Details

The "yearmon" class is used to represent monthly data. Internally it holds the data as year plus
0 for January, 1/12 for February, 2/12 for March and so on in order that its internal representa-
tion is the same as ts class with frequency = 12. If x is not in this format it is rounded via
floor(12*x + .0001)/12.

There are coercion methods available for various classes including: default coercion to "yearmon"
(which coerces to "numeric" first) and coercions to and from "yearmon" to "Date" (see below),
"POSIXct", "POSIXlt", "numeric", "character" and "jul". The last one is from the "tis" pack-
age available on CRAN. In the case of as.yearmon.POSIXt the conversion is with respect to GMT.
(Use as.yearmon(format(...)) for other time zones.) In the case of as.yearmon.character the
format argument uses the same percent code as "Date". These are described in strptime. Unlike
"Date" one can specify a year and month with no day. Default formats of "%Y-%m", "%Y-%m-%d"
and "%b %Y".

There is an is.numeric method which returns FALSE.

as.Date.yearmon and as.yearmon.yearqtr each has an optional second argument of "frac"
which is a number between 0 and 1 inclusive that indicates the fraction of the way through the
period that the result represents. The default is 0 which means the beginning of the period.

There is also a date method for as.yearmon usable with objects created with package date.

Sys.yearmon() returns the current year/month and methods for min, max and range are defined
(by defining a method for Summary).

A yearmon mean method is also defined.

Value

Returns its argument converted to class yearmon.

See Also

yearqtr, zoo, zooreg, ts

Examples

Sys.setenv(TZ = "GMT")

x <- as.yearmon(2000 + seq(0, 23)/12)
x

as.yearmon("mar07", "%b%y")
as.yearmon("2007-03-01")
as.yearmon("2007-12")

# returned Date is the fraction of the way through
# the period given by frac (= 0 by default)

as.Date(x)
as.Date(x, frac = 1)
as.POSIXct(x)

# given a Date, x, return the Date of the next Friday
```r
nextfri <- function(x) 7 * ceiling(as.numeric(x - 1)/7) + as.Date(1)

# given a date, d, return the same Date in the following month
# Note that as.Date(yearmon) gives first Date of the month.
d <- as.Date("2005-1-1") + seq(0,90,30)
next.month <- function(d) as.Date(as.yearmon(d) + 1/12) + as.numeric(d - as.Date(as.yearmon(d)))
next.month(d)

# 3rd Friday in last month of the quarter of date x
as.Date(as.yearmon(as.yearqtr(x)) + 2/12) + 14

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

z <- zoo(rnorm(24), x, frequency = 12)
z
as.ts(z)

## convert data frame to multivariate monthly "ts" series
## 1. read raw data
Lines.raw <- "ID Date Count
123 20 May 1999 1
123 21 May 1999 3
222 1 Feb 2000 2
222 3 Feb 2000 4"

DF <- read.table(text = Lines.raw, skip = 1,
  col.names = c("ID", "d", "b", "Y", "Count"))

## 2. fix raw date
DF$yearmon <- as.yearmon(paste(DF$b, DF$Y), "%b %Y")

## 3. aggregate counts over months, convert to zoo and merge over IDs
ag <- function(DF) aggregate(zoo(DF$Count), DF$yearmon, sum)
z <- do.call("merge.zoo", lapply(split(DF, DF$ID), ag))

## 4. convert to "zooreg" and then to "ts"
frequency(z) <- 12
as.ts(z)

xx <- zoo(seq_along(x), x)

## aggregating over year
as.year <- function(x) as.numeric(floor(as.yearmon(x)))
aggregate(xx, as.year, mean)

yearqtr

An Index Class for Quarterly Data

Description

"yearqtr" is a class for representing quarterly data.
yearqtr

Usage

```r
yearqtr(x)
as.yearqtr(x, ...)
```

Arguments

- `x` for `yearqtr` a numeric (interpreted as being “in years”). For `as.yearqtr` another date class object. For the "yearqtr" method of `format` an object of class "yearqtr" or if called as `format.yearqtr` then an object with an `as.yearqtr` method that can be coerced to "yearqtr".
- `format` character string specifying format. For coercing to "yearqtr" from character: "%Y" and "%q" have to be specified. For formatting an existing "yearqtr": "%c", "%Y", "%y" and "%q", if present, are replaced with the century, year, last two digits of the year, and quarter (i.e. a number between 1 and 4), respectively.

Details

The "yearqtr" class is used to represent quarterly data. Internally it holds the data as year plus 0 for Quarter 1, 1/4 for Quarter 2 and so on in order that its internal representation is the same as `ts` class with frequency = 4. If `x` is not in this format it is rounded via `floor(4*x + .0001)/4`.

`as.yearqtr.character` uses a default format of "%Y %q","%Y q%" or "%Y-%q" according to whichever matches. %q accepts the numbers 1-4 (possibly with leading zeros). Due to this %q does not match to single digits only and consequently formats such as `as.yearqtr("Q12008", "%q%Y")` are ambiguous and do not work (i.e., result in NA).

There are coercion methods available for various classes including: default coercion to "yearqtr" (which coerces to "numeric" first) and coercion from "yearqtr" to "Date" (see below), "POSIXct", "POSIXlt", "numeric", "character" and "jul". The last one is from the frame package on CRAN.

There is an `is.numeric` method which returns FALSE.

There is also a `date` method for `as.yearqtr` usable with objects created with package `date`.

`Sys.yearqtr()` returns the current year/month and methods for `min`, `max` and `range` are defined (by defining a method for `Summary`).

A `yearqtr` `mean` method is also defined.

Certain methods support a `frac` argument. See `yearmon`.

Value

`yearqtr` and `as.yearqtr` return the first argument converted to class `yearqtr`. The `format` method returns a character string representation of its argument first argument.
See Also

`yearmon`, `zoo`, `zooreg`, `ts`, `strptime`.

Examples

```r
Sys.setenv(TZ = "GMT")

x <- as.yearqtr(2000 + seq(0, 7)/4)
x

format(x, "%Y Quarter %q")
as.yearqtr("2001 Q2")
as.yearqtr("2001 q2") # same
as.yearqtr("2001-2") # same

# returned Date is the fraction of the way through
# the period given by frac (= 0 by default)
dd <- as.Date(x)
format.yearqtr(dd)
as.Date(x, frac = 1)
as.POSIXct(x)

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

zz <- zoo(rnorm(8), x, frequency = 4)
zz
as.ts(zz)
```

---

**zoo**

Z's Ordered Observations

Description

`zoo` is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.

Usage

```r
zoo(x = NULL, order.by = index(x), frequency = NULL,
    calendar = getOption("zoo.calendar", TRUE))
## S3 method for class 'zoo'
print(x, style = , quote = FALSE, ...)
```
Arguments

- **x**: a numeric vector, matrix or a factor.
- **order.by**: an index vector with unique entries by which the observations in x are ordered. See the details for support of non-unique indexes.
- **frequency**: numeric indicating frequency of order.by. If specified, it is checked whether order.by and frequency comply. If so, a regular "zoo" series is returned, i.e., an object of class c("zooreg", "zoo"). See below and zooreg for more details.
- **calendar**: logical. If frequency is specified and is 4 or 12: Should yearqtr or yearmon be used for a numeric index order.by?
- **style**: a string specifying the printing style which can be "horizontal" (the default for vectors), "vertical" (the default for matrices) or "plain" (which first prints the data and then the index).
- **quote**: logical. Should characters be quoted?
- **...**: further arguments passed to the print methods of the data and the index.

Details

**zoo** provides infrastructure for ordered observations which are stored internally in a vector or matrix with an index attribute (of arbitrary class, see below). The index must have the same length as NROW(x) except in the case of a zero length numeric vector in which case the index length can be any length. Emphasis has been given to make all methods independent of the index/time class (given in order.by). In principle, the data x could also be arbitrary, but currently there is only support for vectors and matrices and partial support for factors.

**zoo** is particularly aimed at irregular time series of numeric vectors/matrices, but it also supports regular time series (i.e., series with a certain frequency). **zoo**'s key design goals are independence of a particular index/date/time class and consistency with ts and base R by providing methods to standard generics. Therefore, standard functions can be used to work with "zoo" objects and memorization of new commands is reduced.

When creating a "zoo" object with the function zoo, the vector of indexes order.by can be of (a single) arbitrary class (if x is shorter or longer than order.by it is expanded accordingly), but it is essential that ORDER(order.by) works. For other functions it is assumed that c(), length(), MATCH() and subsetting [, work. If this is not the case for a particular index/date/time class, then methods for these generic functions should be created by the user. Note, that to achieve this, new generic functions ORDER and MATCH are created in the zoo package with default methods corresponding to the non-generic base functions order and match. Note that the order and hence the default ORDER typically work if there is a xtfm method. Furthermore, for certain (but not for all) operations the index class should have an as.numeric method (in particular for regular series) and an as.character method might improve printed output (see also below).

The index observations order.by should typically be unique, such that the observations can be totally ordered. Nevertheless, zoo() is able to create "zoo" objects with duplicated indexes (with a warning) and simple methods such as plot() or summary() will typically work for such objects. However, this is not formally supported as the bulk of functionality provided in zoo requires unique index observations/time stamps. See below for an example how to remove duplicated indexes.

If a frequency is specified when creating a series via zoo, the object returned is actually of class "zooreg" which inherits from "zoo". This is a subclass of "zoo" which relies on having a "zoo"
series with an additional "frequency" attribute (which has to comply with the index of that series). Regular "zoo\reg" series can also be created by \texttt{zoo\reg}, the \texttt{zoo} analogue of \texttt{ts}. See the respective help page and \texttt{is.regular} for further details.

Methods to standard generics for "\texttt{zoo}" objects currently include: \texttt{print} (see above), \texttt{summary}, \texttt{str}, \texttt{head}, \texttt{tail}, \texttt{[} (subsetting), \texttt{rbind}, \texttt{cbind}, \texttt{merge} (see \texttt{merge.zoo}), \texttt{aggregate} (see \texttt{aggregate.zoo}), \texttt{rev}, \texttt{split} (see \texttt{aggregate.zoo}), \texttt{barplot}, \texttt{plot} and \texttt{lines} (see \texttt{plot.zoo}). For multivariate "\texttt{zoo}" series with column names the $\$\ extractor is available, behaving similar as for "\texttt{data.frame}" objects. Methods are also available for \texttt{median} and \texttt{quantile}.

\texttt{ifelse} is not a method (because \texttt{ifelse} is not a generic) but must be written out including the \texttt{.zoo} suffix.

To "prettify" printed output of "\texttt{zoo}" series the generic function \texttt{index2char} is used for turning index values into character values. It defaults to using \texttt{as.character} but can be customized if a different printed display should be used (although this should not be necessary, usually).

The subsetting method \texttt{[} work essentially like the corresponding functions for vectors or matrices respectively, i.e., takes indexes of type "\texttt{numeric}"", "\texttt{integer}" or "\texttt{logical}". But additionally, it can be used to index with observations from the index class of the series. If the index class of the series is one of the three classes above, the corresponding index has to be encapsulated in \texttt{I()} to enforce usage of the index class (see examples). Subscripting by a \texttt{zoo} object whose data contains logical values is undefined.

Additionally, \texttt{zoo} provides several generic functions and methods to work (a) on the data contained in a "\texttt{zoo}" object, (b) the index (or time) attribute associated to it, and (c) on both data and index:

(a) The data contained in "\texttt{zoo}" objects can be extracted by \texttt{coredata} (strips off all "\texttt{zoo}"-specific attributes) and modified using \texttt{coredata<-}. Both are new generic functions with methods for "\texttt{zoo}" objects, see \texttt{coredata}.

(b) The index associated with a "\texttt{zoo}" object can be extracted by \texttt{index} and modified by \texttt{index<-}. As the interpretation of the index as "time" in time series applications is more natural, there are also synonymous methods \texttt{time} and \texttt{time<-}. The start and the end of the index/time vector can be queried by \texttt{start} and \texttt{end}. See \texttt{index}.

(c) To work on both data and index/time, \texttt{zoo} provides methods \texttt{lag}, \texttt{diff} (see \texttt{lag.zoo}) and \texttt{window}, \texttt{window<-} (see \texttt{window.zoo}).

In addition to standard group generic function (see \texttt{Ops}), the following mathematical operations are available as methods for "\texttt{zoo}" objects: \texttt{transpose} \texttt{t} which coerces to a matrix first, and \texttt{cumsum}, \texttt{cumprod}, \texttt{cummin}, \texttt{cummax} which are applied column wise.

Coercion to and from "\texttt{zoo}" objects is available for objects of various classes, in particular "\texttt{ts}". "\texttt{irts}" and "\texttt{its}" objects can be coerced to "\texttt{zoo}", the reverse is available for "\texttt{its}" and for "\texttt{irts}" (the latter in package \texttt{tseries}). Furthermore, "\texttt{zoo}" objects can be coerced to vectors, matrices and lists and data frames (dropping the index/time attribute). See \texttt{as.zoo}.

Several methods are available for NA handling in the data of "\texttt{zoo}" objects: \texttt{na.aggregate} which uses group means to fill in NA values, \texttt{na.approx} which uses linear interpolation to fill in NA values, \texttt{na.contiguous} which extracts the longest consecutive stretch of non-missing values in a "\texttt{zoo}" object, \texttt{na.fill} which uses fixed specified values to replace NA values, \texttt{na.locf} which replaces NAs by the last previous non-NA, \texttt{na.omit} which returns a "\texttt{zoo}" object with incomplete observations removed, \texttt{na.spline} which uses spline interpolation to fill in NA values and \texttt{na.StructTS} which uses a seasonal Kalman filter to fill in NA values, \texttt{na.trim} which trims runs of NAs off the beginning.
and end but not in the interior. Yet another NA routine can be found in the stinepack package where
na_stininterp performs Stineman interpolation.

A typical task to be performed on ordered observations is to evaluate some function, e.g., computing
the mean, in a window of observations that is moved over the full sample period. The generic
function rollapply provides this functionality for arbitrary functions and more efficient versions
rollmean, rollmax, rollmedian are available for the mean, maximum and median respectively.

The zoo package has an as.Date numeric method which is similar to the one in the core of R
except that the origin argument defaults to January 1, 1970 (whereas the one in the core of R has
no default).

Note that since zoo uses date/time classes from base R and other packages, it may inherit bugs
or problems with those date/time classes. Currently, there is one such known problem with the c
method for the POSIXct class in base R: If x and y are POSIXct objects with tzone attributes, the
attribute will always be dropped in c(x, y), even if it is the same across both x and y. Although
this is documented at c.POSIXct, one may want to employ a workaround as shown at https://

Value

A vector or matrix with an "index" attribute of the same dimension (NROW(x)) by which x is
ordered.

References

Achim Zeileis and Gabor Grothendieck (2005). zoo: S3 Infrastructure for Regular and Irregular
and available as vignette("zoo").

available as vignette("zoo-quickref").

See Also

zooreg, plot.zoo, index, merge.zoo

Examples

suppressWarnings(RNGversion("3.5.0"))
set.seed(1)

## simple creation and plotting
x.Date <- as.Date("2003-02-01") + c(1, 3, 7, 9, 14) - 1
x <- zoo(rnorm(5), x.Date)
plot(x)
time(x)

## subsetting with numeric indexes
x[c(2, 4)]
## subsetting with index class
x[as.Date("2003-02-01") + c(2, 8)]
## different classes of indexes/times can be used, e.g. numeric vector

\[ x \leftarrow \text{zoo}(rnorm(5), c(1, 3, 7, 9, 14)) \]

### subsetting with numeric indexes then uses observation numbers

\[ x[c(2, 4)] \]

### subsetting with index class can be enforced by \( I() \)

\[ x[I(c(3, 9))] \]

## visualization

\[ \text{plot}(x) \]

### or POSIXct

\[ y \leftarrow \text{ISOdatetime}(2003, \text{02}, c(1, 3, 7, 9, 14), 0, 0, 0) \]

\[ y \leftarrow \text{zoo}(rnorm(5), y) \]

\[ \text{plot}(y) \]

### create a constant series

\[ z \leftarrow \text{zoo}(1, \text{seq}(4)[-2]) \]

### create a 0-dimensional zoo series

\[ z_0 \leftarrow \text{zoo}(, 1:4) \]

### create a 2-dimensional zoo series

\[ z_2 \leftarrow \text{zoo}((1:12, 4, 3), \text{as.Date("2003-01-01") + 0:3}) \]

### create a factor zoo object

\[ f_z \leftarrow \text{zoo}(\text{gl}(2, 5), \text{as.Date("2004-01-01") + 0:9}) \]

### create a zoo series with 0 columns

\[ z_{20} \leftarrow \text{zoo}((\text{matrix(nrow = 4, ncol = 0), 1:4}) \]

### arithmetic on zoo objects intersects them first

\[ x_1 \leftarrow \text{zoo}(1:5, 1:5) \]

\[ x_2 \leftarrow \text{zoo}(2:6, 2:6) \]

\[ 10 * x_1 + x_2 \]

### $ extractor for multivariate zoo series with column names

\[ z \leftarrow \text{zoo}(cbind(f_\text{oo} = rnorm(5), \text{bar} = rnorm(5))) \]

\[ z$f_\text{oo} \]

\[ z$s_{xyz} \leftarrow \text{zoo}(\text{rnorm}(3), 2:4) \]

\[ z \]

### add comments to a zoo object

\[ \text{comment}(x_1) \leftarrow \text{c("This is a very simple example of a zoo object.",} \]

\"It can be recreated using this R code: example(zoo)\"

### comments are not output by default but are still there

\[ x_1 \]

\[ \text{comment}(x_1) \]

### ifelse does not work with zoo but this works

### to create a zoo object which equals \( x_1 \) at

\[ \text{time} i \text{ if } x_1[i] > x_1[i-1] \text{ and } 0 \text{ otherwise} \]

\[ (\text{diff}(x_1) > 0) * x_1 \]

### zoo series with duplicated indexes
z3 <- zoo(1:8, c(1, 2, 2, 2, 3, 4, 5, 5))
plot(z3)
## remove duplicated indexes by averaging
lines(aggregate(z3, index(z3), mean), col = 2)
## or by using the last observation
lines(aggregate(z3, index(z3), tail, 1), col = 4)

## x1[x1 > 3] is not officially supported since
## x1 > 3 is of class "zoo", not "logical".
## Use one of these instead:
x1[which(x1 > 3)]
x1[coredata(x1 > 3)]
x1[as.logical(x1 > 3)]
subset(x1, x1 > 3)

## any class supporting the methods discussed can be used
## as an index class. Here are examples using complex numbers
## and letters as the time class.

z4 <- zoo(11:15, complex(real = c(1, 3, 4, 5, 6), imag = c(0, 1, 0, 0, 1)))
merge(z4, lag(z4))

z5 <- zoo(11:15, letters[1:5])
merge(z5, lag(z5))

# index values relative to 2001Q1
zz <- zooreg(cbind(a = 1:10, b = 11:20), start = as.yearqtr(2000), freq = 4)
zz[] <- mapply("/", as.data.frame(zz), coredata(zz[as.yearqtr("2001Q1")]))

## even though time index must be unique zoo (and read.zoo)
## will both allow creation of such illegal objects with
## a warning (rather than an error) to give the user a
## chance to fix them up. Extracting and replacing times
## and aggregate.zoo will still work.
## Not run:
# this gives a warning
# and then creates an illegal zoo object
z6 <- zoo(11:15, c(1, 1, 2, 2, 5))
z6

# fix it up by averaging duplicates
aggregate(z6, identity, mean)

# or, fix it up by taking last in each set of duplicates
aggregate(z6, identity, tail, 1)

# fix it up via interpolation of duplicate times
time(z6) <- na.approx(ifelse(duplicated(time(z6)), NA, time(z6)), na.rm = FALSE)
# if there is a run of equal times at end they
# wind up as NAs and we cannot have NA times
z6 <- z6[!is.na(time(z6))]
z6
x1. <- x1 <- zoo (matrix (1:12, nrow = 3), as.Date("2008-08-01") + 0:2)
colnames (x1) <- c ("A", "B", "C", "D")
x2 <- zoo (matrix (1:12, nrow = 3), as.Date("2008-08-01") + 1:3)
colnames (x2) <- c ("B", "C", "D", "E")

both.dates = as.Date (intersect (index (t1), index (t2)))
both.cols = intersect (colnames (t1), colnames (t2))

x1[both.dates, both.cols]
## there is "[.zoo" but no "<-zoo" however four of the following
## five examples work

## wrong
## x1[both.dates, both.cols] <- x2[both.dates, both.cols]

# 4 correct alternatives
# #1
window(x1, both.dates)[, both.cols] <- x2[both.dates, both.cols]

# #2. restore x1 and show a different way
x1 <- x1.
window(x1, both.dates)[, both.cols] <- window(x2, both.dates)[, both.cols]

# #3. restore x1 and show a different way
x1 <- x1.
x1[time(x1)]

# #4. restore x1 and show a different way
x1 <- x1.
x1[time(x1)]

## End(Not run)

---

**zooreg**

*Regular zoo Series*

**Description**

zooreg is the creator for the S3 class "zooreg" for regular "zoo" series. It inherits from "zoo" and is the analogue to ts.

**Usage**

zooreg(data, start = 1, end = numeric(), frequency = 1,
       deltat = 1, ts.eps = getOption("ts.eps"), order.by = NULL,
       calendar = getOption("zoo.calendar", TRUE))
Arguments

data
the time of the first observation. Either a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit.

end
the time of the last observation, specified in the same way as start.

frequency
the number of observations per unit of time.

deltat
the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.

ts.eps
time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.

order.by
a vector by which the observations in x are ordered. If this is specified the
arguments start and end are ignored and zoo(data, order.by, frequency)
is called. See zoo for more information.

calendar
logical. Should yearqtr or yearmon be used for a numeric time index with
frequency 4 or 12, respectively?

Details

Strictly regular series are those whose time points are equally spaced. Weakly regular series are
strictly regular time series in which some of the points may have been removed but still have the
original underlying frequency associated with them. "zooreg" is a subclass of "zoo" that is used
to represent both weakly and strictly regular series. Internally, it is the same as "zoo" except it
also has a "frequency" attribute. Its index class is more restricted than "zoo". The index: 1.
must be numeric or a class which can be coerced via as.numeric (such as yearmon, yearqtr,
Date, POSIXct, tis, xts, etc.). 2. when converted to numeric must be expressible as multiples of
1/frequency. 3. group generic functions Ops should be defined, i.e., adding/subtracting a numeric
to/from the index class should produce the correct value of the index class again.

zooreg is the zoo analogue to ts. The arguments are almost identical, only in the case where
order.by is specified, zoo is called with zoo(data, order.by, frequency). It creates a regular
series of class "zooreg" which inherits from "zoo". It is essentially a "zoo" series with an addi-
tional "frequency" attribute. In the creation of "zooreg" objects (via zoo, zooreg, or coercion
functions) it is always check whether the index specified complies with the frequency specified.

The class "zooreg" offers two advantages over code "ts": 1. The index does not have to be plain
numeric (although that is the default), it just must be coercible to numeric, thus printing and plotting
can be customized. 2. This class can not only represent strictly regular series, but also series with
an underlying regularity, i.e., where some observations from a regular grid are omitted.

Hence, "zooreg" is a bridge between "ts" and "zoo" and can be employed to coerce back and
forth between the two classes. The coercion function as.zoo.ts returns therefore an object of
class "zooreg" inheriting from "zoo". Coercion between "zooreg" and "zoo" is also available
and drops or tries to add a frequency respectively.

For checking whether a series is strictly regular or does have an underlying regularity the generic
function is.regular can be used.
Methods to standard generics for regular series such as `frequency`, `deltat` and `cycle` are available for both "zooreg" and "zoo" objects. In the latter case, it is checked first (in a data-driven way) whether the series is in fact regular or not.

`as.zoo.reg.tis` has a class argument whose value represents the class of the index of the zooreg object into which the tis object is converted. The default value is "ti". Note that the frequency of the zooreg object will not necessarily be the same as the frequency of the tis object that it is converted from.

**Value**

An object of class "zooreg" which inherits from "zoo". It is essentially a "zoo" series with a "frequency" attribute.

**See Also**

`zoo`, `is.regular`  

**Examples**

```r
## equivalent specifications of a quarterly series
## starting in the second quarter of 1959.
zooreg(1:10, frequency = 4, start = c(1959, 2))
as.zoo(ts(1:10, frequency = 4, start = c(1959, 2)))
zoo(1:10, seq(1959.25, 1961.5, by = 0.25), frequency = 4)

## use yearqtr class for indexing the same series
z <- zoo(1:10, yearqtr(seq(1959.25, 1961.5, by = 0.25)), frequency = 4)
z

## create a regular series with a "Date" index
zooreg(1:5, start = as.Date("2000-01-01"))
## or with "yearmon" index
zooreg(1:5, end = yearmon(2000))

## lag and diff (as diff is defined in terms of lag)
## act differently on zoo and zooreg objects!
## lag.zoo moves a point to the adjacent time whereas
## lag.zooreg moves a point by deltat
x <- c(1, 2, 3, 6)
zz <- zoo(x, x)
zh <- as.zoo.reg(zz)
lag(zz, k = -1)
lag(zh, k = -1)
diff(zz)
diff(zh)

## lag.zooreg wihtout and with na.pad
lag(zh, k = -1)
lag(zh, k = -1, na.pad = TRUE)

## standard methods available for regular series
```
frequency(z)
deltat(z)
cycle(z)
cycle(z[-(3:4)])

# this converts zz to "zooreg" and then to "ts" expanding it to a daily series which is 154 elements long, most with NAs.
## Not run:
length(as.ts(zz)) # 154

## End(Not run)
# probably a monthly "ts" series rather than a daily one was wanted.
# This variation of the last line gives a result only 6 elements long.
length(as.ts(aggregate(zz, as.yearmon, c))) # 6

zrr <- as.zooreg(zz)

dd <- as.Date(c("2000-01-01", "2000-02-01", "2000-03-01", "2000-04-01"))
zrd <- as.zooreg(zoo(1:4, dd))
Index

* Topic **array**
  rollapply, 43
* Topic **dplot**
  xblocks, 51
* Topic **hplot**
  xplot.zoo, 54
* Topic **iteration**
  rollapply, 43
* Topic **manip**
  MATCH, 17
  ORDER, 31
* Topic **ts**
  aggregate.zoo, 2
  as.zoo, 6
  coredata, 7
  frequency<-, 8
  index, 12
  is.regular, 13
  lag.zoo, 14
  make.par.list, 16
  merge.zoo, 18
  na.aggregate, 20
  na.approx, 22
  na.fill, 25
  na.locf, 26
  na.StructTS, 29
  na.trim, 30
  plot.zoo, 32
  read.zoo, 38
  rollapply, 43
  rollmean, 48
  window.zoo, 50
  xplot.zoo, 54
  yearmon, 58
  yearqtr, 60
  zoo, 62
  zooreg, 68
  -.yearmon (yearmon), 58
  -.yearqtr (yearqtr), 60
  [.yearmon (yearmon), 58
  [.yearqtr (yearqtr), 60
  [.zoo (zoo), 62
  [<-.zoo (zoo), 62
  [[[.yearmon (yearmon), 58
  [[[.yearqtr (yearqtr), 60
  $.zoo (zoo), 62
  $<-.zoo (zoo), 62

aggregatem.zoo, 2, 39, 64
approx, 22, 23, 26, 27
as.character.yearmon (yearmon), 58
as.character.yearqtr (yearqtr), 60
as.data.frame, 6
as.data.frame.yearmon (yearmon), 58
as.data.frame.yearqtr (yearqtr), 60
as.data.frame.zoo (as.zoo), 6
as.Date (yearmon), 58
as.Date.yearqtr (yearqtr), 60
as.list, 6
as.list.ts (as.zoo), 6
as.list.yearmon (yearmon), 58
as.list.yearqtr (yearqtr), 60
as.list.zoo (as.zoo), 6
as.matrix, 6
as.matrix.zoo (as.zoo), 6
as.numeric.yearmon (yearmon), 58
as.numeric.yearqtr (yearqtr), 60
as.POSIXct, 38
as.POSIXct.yearmon (yearmon), 58
as.POSIXct.yearqtr (yearqtr), 60
as.POSIXlt.yearmon (yearmon), 58
as.POSIXlt.yearqtr (yearqtr), 60
as.ts, 6
as.ts.zoo (as.zoo), 6
as.ts.zooreg (zooreg), 68
as.vector, 6
as.vector.zoo (as.zoo), 6
as.yearmon (yearmon), 58
as.yearqtr (yearqtr), 60
INDEX

as.zoo, 6, 64
as.zoo.factor (zoo), 62
as.zoo.zooreg (zooreg), 68
as.zooreg (zooreg), 68
autoplot, 10
autoplot.zoo (ggplot2.zoo), 9

barplot, 33, 55
barplot.zoo (plot.zoo), 32
c.POSIXct, 65
c.yearmon (yearmon), 58
c.yearqtr (yearqtr), 60
c.zoo (merge.zoo), 18
cbind.zoo (merge.zoo), 18
coredata, 7, 64
coredata<-(coredata), 7
cummax.zoo (zoo), 62
cummin.zoo (zoo), 62
cumprod.zoo (zoo), 62
cumsum.zoo (zoo), 62
cycle, 70
cycle.yearmon (yearmon), 58
cycle.yearqtr (yearqtr), 60
cycle.zoo (zooreg), 68
cycle.zooreg (zooreg), 68

Date, 69
deltat, 70
deltat.zoo (zooreg), 68
deltat.zooreg (zooreg), 68
diff, 15
diff.zoo (lag.zoo), 14
dim<-.zoo (zoo), 62
end.zoo (index), 12

facet_free (ggplot2.zoo), 9
facet_grid, 10
format.yearmon, 10
format.yearmon (yearmon), 58
format.yearqtr, 10
format.yearqtr (yearqtr), 60
fortify, 9, 10
fortify.zoo, 6
fortify.zoo (ggplot2.zoo), 9
frequency, 70
frequency.zoo (zooreg), 68
frequency.zooreg (zooreg), 68

frequency<-, 8
fts, 6

ggplot2.zoo, 9
gpar, 52

head.tS (zoo), 62
head.zoo (zoo), 62

ifelse.zoo (zoo), 62
index, 8, 12, 64, 65
index2char (zoo), 62
index<-(index), 12
index<-.zooreg (zooreg), 68
irts, 6
is.numeric.yearmon (yearmon), 58
is.numeric.yearqtr (yearqtr), 60
is.object, 31
is.regular, 13, 64, 69, 70
is.zoo (zoo), 62

lag, 15
lag.zoo, 14, 64
lag.zooreg (zooreg), 68
layout, 33
lines, 33
lines.zoo (plot.zoo), 32
llines, 55
llines.its (xyplot.zoo), 54
llines.tis (xyplot.zoo), 54
llines.zoo (xyplot.zoo), 54
lpoints, 55
lpoints.its (xyplot.zoo), 54
lpoints.tis (xyplot.zoo), 54
lpoints.zoo (xyplot.zoo), 54
ltext, 55
ltext.its (xyplot.zoo), 54
ltext.tis (xyplot.zoo), 54
ltext.zoo (xyplot.zoo), 54

make.par.list, 16
MATCH, 17, 63
match, 17, 63
MATCH.yearmon (yearmon), 58
MATCH.yearqtr (yearqtr), 60
mcmc, 6
mean, 39
mean.yearmon (yearmon), 58
mean.yearqtr (yearqtr), 60
mean.zoo (zoo), 62
median.zoo (zoo), 62
merge.zoo, 18, 64, 65

na.aggregate, 20, 64
na.approx, 22, 25, 29, 30, 64
na.contiguous, 23, 30, 64
na.contiguous (zoo), 62
na.fill, 25, 43, 49, 64
na.fill0 (na.fill), 25
na.locf, 23, 26, 30, 64
na.locf0 (na.locf), 26
na.omit, 23, 30, 64
na.spline, 30, 64
na.spline (na.approx), 22
na.StructTS, 29, 64
na.trim, 22, 23, 30, 64
names.zoo (zoo), 62
names<-.zoo (zoo), 62

Ops, 64, 69
Ops.yearmon (yearmon), 58
Ops.yearqtr (yearqtr), 60
Ops.zoo (zoo), 62
ORDER, 31, 63
order, 31, 63

panel.lines.its (xyplot.zoo), 54
panel.lines.tis (xyplot.zoo), 54
panel.lines.ts (xyplot.zoo), 54
panel.plot.custom (xyplot.zoo), 54
panel.plot.default (xyplot.zoo), 54
panel.points.its (xyplot.zoo), 54
panel.points.tis (xyplot.zoo), 54
panel.points.ts (xyplot.zoo), 54
panel.points.zoo (xyplot.zoo), 54
panelpolygon.its (xyplot.zoo), 54
panelpolygon.tis (xyplot.zoo), 54
panelpolygon.ts (xyplot.zoo), 54
panelpolygon.zoo (xyplot.zoo), 54
panel.rect.its (xyplot.zoo), 54
panel.rect.tis (xyplot.zoo), 54
panel.rect.ts (xyplot.zoo), 54
panel.rect.zoo (xyplot.zoo), 54
panel.segments.its (xyplot.zoo), 54
panel.segments.tis (xyplot.zoo), 54
panel.segments.ts (xyplot.zoo), 54
panel.segments.zoo (xyplot.zoo), 54
panel.text.its (xyplot.zoo), 54
panel.text.tis (xyplot.zoo), 54
panel.text.ts (xyplot.zoo), 54
panel.text.zoo (xyplot.zoo), 54
panel.xblocks, 52
panel.xyplot, 55
par, 33
plot.ts, 33, 55
plot.zoo, 32, 55, 64, 65
points.zoo (plot.zoo), 32
POSIXct, 69
print.yearmon (yearmon), 58
print.yearqtr (yearqtr), 60
print.zoo (zoo), 62
qplot, 9, 10
quantile.zoo (zoo), 62
range.yearmon (yearmon), 58
range.yearqtr (yearqtr), 60
range.zoo (zoo), 62
rbind.zoo (merge.zoo), 18
read.csv.zoo (read.zoo), 38
read.csv2.zoo (read.zoo), 38
read.delim.zoo (read.zoo), 38
read.delim2.zoo (read.zoo), 38
read.table, 38, 39
read.table.zoo (read.zoo), 38
read.zoo, 38, 39
rect, 52
reshape, 39
rev.zoo (zoo), 62
rle, 52
rollapply, 43, 49, 65
rollapplyr (rollapply), 43
rollmax, 44, 65
rollmax (rollmean), 48
rollmaxr (rollmean), 48
rollmean, 44, 48, 65
rollmeann (rollmean), 48
rollmedian, 44, 65
rollmediann (rollmean), 48
rollsum (rollmean), 48
rollsumr (rollmean), 48
runmed, 49
scale.zoo (zoo), 62
scale_x_yearmon (ggplot2.zoo), 9
INDEX

scale_x_yearqtr (ggplot2.zoo), 9
scale_y_yearqtr (ggplot2.zoo), 9
scale_y_yearmon (ggplot2.zoo), 9
spline, 23
split.zoo (aggregate.zoo), 2
start.zoo (index), 12
stinterp, 23, 30
str.zoo (zoo), 62
strptime, 59, 62
StructTS, 29
subset.zoo (zoo), 62
Summary.yearmon (yearmon), 58
summary.yearmon (yearmon), 58
Summary.yearqtr (yearqtr), 60
summary.yearqtr (yearqtr), 60
summary.zoo (zoo), 62
Sys.yearmon (yearmon), 58
Sys.yearqtr (yearqtr), 60
t.zoo (zoo), 62
tail.ts (zoo), 62
tail.zoo (zoo), 62
text, 32
time, 12
time.zoo (index), 12
time<- (index), 12
time<-.zoo (zoo), 62
tis, 6, 69
transform.zoo (zoo), 62
trunc.times, 17
ts, 6, 59, 62, 64, 68, 69
tsmooth, 29
unique.yearmon (yearmon), 58
unique.yearqtr (yearqtr), 60
window.zoo, 50, 64
window<-.zoo (window.zoo), 50
with.zoo (zoo), 62
write.table, 38–40
write.zoo (read.zoo), 38
xblocks, 51
xtfrm, 63
xtfrm.yearmon (yearmon), 58
xtfrm.yearqtr (yearqtr), 60
xtfrm.zoo (zoo), 62
xts, 6, 69
xyplot, 55

xyplot.its (xyplot.zoo), 54
xyplot.tis (xyplot.zoo), 54
xyplot.ts, 55
xyplot.zoo, 33, 54

yearmon, 58, 61–63, 69
yearmon_trans (ggplot2.zoo), 9
yearqtr, 59, 60, 63, 69
yearqtr_trans (ggplot2.zoo), 9

zoo, 3, 6, 7, 12, 14, 15, 19, 21, 23, 27, 30, 33, 40, 49, 50, 55, 59, 62, 62, 69, 70
zooreg, 6, 8, 14, 59, 62–65, 68, 69

zoo, 3, 6, 7, 12, 14, 15, 19, 21, 23, 27, 30, 33, 40, 49, 50, 55, 59, 62, 62, 69, 70